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Abstract—Reverse-engineering of quantitative, dynamic gene-
regulatory network (GRN) models from time-series gene 
expression data is becoming important as such data are 
increasingly generated for research and other purposes. A key 
problem in the reverse-engineering process is the under-
determined nature of these data. Because of this, the reverse-
engineered GRN models often lack robustness and perform 
poorly when used to simulate system responses to new 
conditions. In this study, we present a novel method capable of 
inferring robust GRN models from multi-condition GRN 
experiments. This study uses two important computational 
intelligence methods: artificial neural networks and particle 
swarm optimization.  

Keywords—Gene regulatory networks; reverse-engineering; 
machine learning; multi-model fusion; optimization 

I. INTRODUCTION 

Regulation of gene expression (or gene regulation) refers to 
processes that cells use to create functional gene products 
(RNA, proteins) from the information stored in genes (DNA). 
Gene regulation is essential for life as it increases the 
versatility and adaptability of an organism by allowing it to 
express protein when needed. While aspects of gene 
regulation are well understood, many open research questions 
still remain [1]. The dynamic behavior and regulatory 
interactions of genes can be revealed by time-series 
experiments, that is, experiments that measure the expression 
of multiple genes over time [2]. In contrast to static gene 
expression data, the modeling and simulation approach allows 
the determination of stable states in response to a condition or 
stimulus as well as the identification of pathways and 
networks that are activated in the process [3]. A range of 
mathematical methods facilitating the reverse-engineering of 
quantitative, dynamic gene-regulatory network (GRN) models 
from time-series gene expression data have been reported in 
the literature [4]. Typical methods based on differential 
equations include the S-system (SS), artificial neural networks 
(ANN), and general rate law of transcription (GRLOT) 
method [5] [6].  

One of the issues in reverse-engineering GRN models is the 
under-determined nature of the problem [7]. Essentially, this 
means that for the given data and the differential equations 
specifying the model, there is no unique solution to these 
equations. A consequence of this is that models derived from 
such data lack robustness. Thus, the predictive accuracy on 
unseen data sets is often poor. Various approaches have been 

employed to address this issue [8] [9]. The fact that the data is 
normally noisy and that the reverse-engineering process 
involves a non-deterministic element (optimization) is also a 
factor that influences robustness, but it is not as fundamental 
as the lack of complete information. 

In the present study, we investigate the reverse engineering 
of robust GRN models based on repeated measures from the 
same GRN system under different conditions. We refer to 
experiments that generate data in this way as multi-condition 
experiments. The principal idea is that when the same GRN 
system is subject to different (non-destructive) conditions or 
stimuli, it will display a range of responses that together are 
more characteristic for the underlying system properties than 
a single response to a single stimulus. This concept is similar 
to data fusion, which is a process that integrates multiple 
sources of information representing the same real-world entity 
into a consistent and accurate model of that entity [10]. 
However, whereas in conventional data fusion the merging of 
information is normally achieved on the data level by a 
straightforward join operation based on a common attribute or 
key, combining time-series data is not that simple. 

In this paper, we present a novel approach to exploit data 
obtained from repeated GRN time-series measures under 
varying conditions to infer robust GRN models. We 
demonstrate the usefulness of this approach by comparing the 
resultant multi-condition GRN models with the individual 
single-condition models. At present it is still relatively costly 
and time consuming to perform multi-condition experiments, 
hence we base our study on artificial GRN time-series data 
sets. While this is a limitation in the present study, we believe 
that the results we obtained are still valid when applied to data 
derived from real GRN systems. It is likely that in the future 
the costs for multi-condition experiments will be lower and 
that multi-condition experiments are therefore expected to 
become commonplace. 

II. REVERSE ENGINEERING AND DATA COMBINATION 

Many reverse-engineering methods have been proposed in 
recent years. Furthermore, different approaches have been 
adopted in an attempt to improve the performance of these 
methods and create more robust models, improve predictive 
performance, and identify regulatory interactions from gene 
expression measurements. Swain et al. [5] evaluated three 
commonly used approaches which formulate dynamic GRN 
models as ordinary differential equations (ODEs). The authors 
assessed the ability of the different ODE structures to 
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replicate the GRN systems’ regulatory structure and dynamic 
gene expression behavior under varying conditions. The study 
evaluated three commonly encountered ODE rate law 
formulations: SS, ANN and GRLOT. The results suggest that 
the ANN and GRLOT methods are superior to the SS method 
in their ability to accurately predict network behavior. The 
former two methods also produced more accurate network 
structures from the underlying data than the SS method. 
However, the study did not explore combining data from 
multi-condition experiments. Although the research has 
thoroughly investigated the rate law formalisms, relying on 
sparse data based on only a single experiment may limit a 
model’s usefulness in terms of the range of the experimental 
conditions that can be successfully predicted by it. 

Andrews et al. [11] use an artificial intelligence model 
known as Cost Based Abduction (CBA) to generate GRN 
models from multiple data sources. They successfully apply 
their method to study the pheromone pathway in yeast using 
protein-DNA data, protein-protein interaction data and gene 
knock-out data. Their approach combines different data types 
which represent the same experimental condition. Yeang et al. 
[12] also explore the pheromone pathway in yeast by creating 
annotated interaction graphs they call physical network 
models. They combine multiple data types also. In our 
approach we consider only one gene expression data type, 
measurement of mRNA abundance, each data set representing 
the systems response to a different experimental condition. 

Ting and Low [13] compare two approaches, model 
combination and data combination when multiple batches of 
data are available. The former method uses the available data 
sets creating a single model for each then combining the 
output. The latter approach creates one model, using the 
available data sets to train the model. The model combination 
method involves estimating predictive accuracy for a given 
instance through k-fold cross validation and creating a single 
model from the instances achieving the highest predictive 
performance (low error or high accuracy). They conclude that 
the model combination approach is stronger when there is 
only a small difference in the predictive error rate for each 
model. Our current study focuses on data combination 
utilizing all available data rather than a voting algorithm for 
the creation of a combined model.  

Peeling and Tucker [14] present a method for modeling 
GRN’s by forming a consensus Bayesian network model from 
multiple microarray gene expression data sets. Their study 
focuses on qualitative combination of Bayesian networks to 
determine the dependency structure between genes. The 
method of data combination presented in our study primarily 
focuses on reproducing quantitative network dynamics and 
predicting behavior. We have identified and discussed the 
need to develop this method further to include structure 
recovery in this article’s section on future work.  

Steele et al. [15] developed a method for transforming 
literature-based gene association scores to network prior 
probabilities. The Bayesian networks developed from this 
methodology therefore benefit from partial a priori knowledge 
of regulatory interactions thus simplifying the reverse-

engineering process. Our current study reverse engineers 
GRN models using known network topology. The literature-
based method therefore does not benefit the approach 
presented in this study but can be considered in future work 
concerning structure recovery. 

Wang et al. [16] address the idea of combining multiple 
time-series microarray data sets by developing a high-level 
framework they refer to as the Gene Network Reconstruction 
tool. The idea is to combine solutions from each data set into 
an overall, consistent solution. The combination therefore 
occurs at the model level rather than the data level and the 
focus of their study is primarily on network structure. 

Chen et al. [17] propose a two-step method for inferring 
GRN models from multiple data sets. First, they infer 
(optimize) a GRN structure (network topology) from each 
data set, which is then combined into a single, final network. 
They propose two methods based on computing the statistical 
mean and mode for each resulting topology. The second step 
consists of an additional optimization process that estimates 
the parameters of the combined GRN model after discovering 
its structure.  

Gupta et al. [18] used multi-objective optimization to 
integrate different methods for reverse-engineering. To 
illustrate this, they used a combination of linear ODE and 
correlation-based methods, using data from time-course and 
gene inactivation (knock-out) experiments. The novel aspect 
in this approach is the combination of different inference 
methods into the same procedure, along with using 
heterogeneous sources of input data. 

Marbach et al. [19] investigated the way in which ensemble 
networks resulting from reverse-engineering experiments 
could be used to “vote” the topology of a combined GRN 
model. For creating the ensemble network, they used an 
evolutionary method called analog genetic encoding. They ran 
50 iterations of this procedure, each time retaining the 
network with the best fitness as part of the ensemble. Then, 
they used ensemble voting to generate a new network, 
showing that this network outperforms all initial members of 
the ensemble. 

Our novel approach is to combine the data of the multi-
condition experiments and reverse engineer a single model 
from this. Initially our method is concerned with reproducing 
network dynamics, structure recovery is subject to future 
research. As we use multiple data sets for training the model, 
we hypothesize that the resulting model should be more 
robust, more accurate and open to a wider scope of 
perturbation and behavior prediction than models generated 
from a single data set. 

III. APPROACH AND STUDY DESIGN 

The approach in this investigation assumes that the 
biological GRN system, S, under study is provoked with a set 
of n distinct stimuli or conditions C1  C2  …  Cn to elicit 
the corresponding dynamic gene-regulatory responses 
R1, R2, … , Rn. In this study, a condition Ci is defined as a set 
of data values specifying the initial perturbation of the system 
variables, representing gene expression quantities. 
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Each response Ri represents a set of u time-series of transcript 
concentrations/abundances, where u denotes the number of 
genes in S, and m the number of time points sampled for each 
gene, and rijk denotes a single measurement of gene j at time 
point k.  

For simplicity, we assume the same number of 
measurements m for each gene in the considered time interval. 
In general, this is not necessary, though. Conceptually, we 
distinguish two types of scenarios: a concrete and an abstract 
GRN system. 

Concrete GRN system: The reverse-engineered GRN 
model represents a single concrete GRN system derived from a 
single individual, e.g. the cell cycle gene regulation network of 
a particular mouse cell. In this case, the multiple conditions are 
applied at time points T1 < T2 < … < Tn, and the time interval 
ΔT = Ti+1 − Ti between consecutive conditions is chosen large 
enough for the system to fully “recover” from the provocation 
with condition Ci. This implies that the condition has no 
lasting effect on the system (e.g. does not destroy the system).  

Abstract GRN system: The reverse-engineered GRN 
model represents a single abstract GRN system derived from a 
collection of individuals that are assumed to be similar in some 
important aspects. For example, the cell cycle gene regulation 
networks of eight mouse cells (from one or more mice). In this 
case, there is no restriction on the conditions applied and all 
conditions may be applied in parallel. 

Once the response data has been obtained, the process is 
identical for reverse-engineering GRN models representing 
concrete and abstract GRN systems. Based on the n response 
data sets from n experiments (each applying a different 
stimulus), we  

 
1. Randomly determine nL training or learning data sets L 

and nV validation data sets V, such that n = nL + nV 
(typically: nL > nV): 

 

 

2. Generate a combined training or learning data set Λ. 

3. Reverse-engineer from each of the nL training data sets a 
GRN model . 

4. Reverse-engineer the final model MΛ from the combined 
learning data set Λ.  

5. Validate (determine average accuracy or error) the models 
generated in Steps (3) and (4) against the validation data 
sets V. 

 

 
Fig. 1. Illustration of the process for reverse-engineering a GRN model from 
multi-condition experimental data (here with six conditions corresponding to 

four training or learning data sets and two validation data sets). 

Fig. 1 depicts the basic study design we adopted to explore 
and evaluate our approach. In this particular case we used 
nL = 4 and nV = 2. In the diagram, the notation Mi (Vj) denotes 
the data set created by simulating model Mi with the initial 
condition from data set Vj. 

A. GRN Modeling 

We use the term GRN systems to refer to gene-regulatory 
networks that describe regulatory gene-gene interactions 
without explicit representation of intermediary elements such 
as metabolites, nuclear receptors and transcription factors, 
which combine to direct and catalyze the reactions between 
genes [20]. The simulated data generated from the reference 
models represents measured mRNA abundance over time. 
Under this modeling assumption, one gene can either activate 
or repress another gene directly or indirectly (via other genes). 
Fig. 2 shows the network topology of the three GRN systems 
investigated in this study. System A describes a simple 3-gene 
[21], and B a 5-gene GRN system [22]. Model C describes a 7-
gene GRN system based on the bile acid and xenobiotic 
system (BAXS) [23]. TABLE I. maps the nodes in the BAXS 
network to their corresponding genes and gene products. 

 

TABLE I.  ELEMENTS OF BAXS GRN NETWORK  

Node Gene Gene product 
X1 NR0B2 SHP1 
X2 NR1I2 PXR 
X3 NR1H4 FXR 
X4 ABCB1 MDR1 
X5 ABCC2 MRP2 
X6 ABCB11 BSEP 
X7 CYP3A4 CYP3A4 

The BAXS describes a genetic network that facilitates two 
distinct but intimately overlapping physiological processes; 
the enterohepatic circulation and maintenance of bile acid
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Legend: Transcriptional regulation (activation) 
 Transcriptional regulation (repression) 

Fig. 2. The three gene regulatory networks or GRN system investigated in this study 

concentrations and the detoxification and removal from the 
body of harmful xenobiotic, e.g. drugs, pesticides, and 
endobiotic compounds such as steroid hormones [24]. The 
model describes a simple catabolic pathway which is induced 
by the presence of a functional intermediate acting as an 
inducer of the network. Such an inducer could be either an 
endogenous or exogenous substance e.g. lithocholic acid 
(LCA), a secondary bile acid which activates transcription of 
both NR1I2 and NR1H4 [25] leading to activation of 
CYP3A4.This results in the production of enzymes which 
metabolize the inducer in this network e.g. LCA [26], thus 
switching off the network after a period of time. This is 
represented in the model as repression of NR1I2 and NR1H4 
by CYP3A4 as the CYP3A4 enzyme metabolizes the inducer 
therefore there is no further activation of these genes. 

B. Model equation and data generation 

Common rate laws to model the reaction kinetics 
(regulatory interactions) of GRN systems include the s-
system, Hill functions, mass action kinetics, general rate law 
of transcription, and artificial neural network formulations 
[4]. Because of its flexibility and advantageous properties [5], 
the models in this study are based on the ANN formalism 
[21]. Equation (1) defines the ANN-based rate of change 
Xi /dt of transcript Xi of gene i within a GRN system of u 
genes. 

where 

u defines the number of genes in the GRN system to be 
modeled, i = 1, …, u.  

vi denotes the maximal expression rate of gene i. 

Xj denotes the gene product of gene j influencing the product, 
Xi , of gene i, with: j = 1, …, u. 

wij  denotes the strength of control or regulation of gene j on 
gene i. Positive values indicate activating, negative values 
repressing control. 

di defines an external influence on gene i, which modulates 
the gene’s sensitivity of response to activating or 

repressing influences. The higher | di |, the lower the 
influence of the weights wij on gene i. In GRN modeling, 
di is sometimes interpreted as reaction delay parameter, as 
it shifts the sigmoidal transfer function along the 
horizontal time axis, thus determining how fast the gene’s 
expression level responds. 

ki denotes the degradation rate constant of the i-th gene 
expression product.  

Equation (1) defines a rate law capable of describing the 
dynamic behavior of GRN systems. The ANN rate law 
represents and calculates expression rates based on the 
weighted sum of multiple regulatory inputs. This additive 
input processing is able to represent logical disjunctions. The 
expression rate is restricted to a certain interval where the 
sigmoidal transfer function maps the regulatory input to the 
expression interval. The external input, di, regulates the 
sensitivity to the summed regulatory input of all genes.  

For each of the three GRN systems depicted in Fig. 2, a 
single GRN reference model was manually created on the 
basis of the ANN rate law defined in Equation (1). Each GRN 
reference model serves as a surrogate for the corresponding 
biological GRN system to facilitate that generation of 
artificial dynamic gene expression data. The parameters for 
each reference model were determined manually through a 
process of trial and error. Each model was simulated with 
different parameter configurations multiple times using 
different initial conditions. After visual inspection of the 
generated data, the parameter values were updated and the 
reference models simulated again. This experimentation 
continued until plausible dynamics were identified. The 
criteria we applied to determine plausible dynamics were that 
a steady state was reached during the simulation, that no 
measurement increased infinitely nor all measured expression 
levels stabilized at zero. 

We then used the three GRN reference models to create six 
time-series gene expression data sets based on different 
experimental conditions (initial values of transcript 
abundance). Visual inspection was again applied until six 
different system behaviors that were both plausible and 
sufficiently different were identified. The reference models 
were simulated over 600 sampling time points, each simulated 
Δt representing 1 second.  
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Through this process, we generated 6 time-series data sets 
for each of the three GRN systems representing the response 
of the systems to varying experimental conditions. From each 
of the three groups of six data sets, we randomly selected four 
as training or learning sets, and two as validation data sets. 
This configuration of data sets was viewed as a reasonable 
compromise: (a) on one hand, we required a number of 
training data sets under different conditions to be able to 
capture the underlying intricacies of the system under 
investigation, (b) on the other hand, we did not want to rely 
only on a single data set as independent validation data set.  

Current time-series gene expression experiments typically 
sample somewhere between 10 and 30 time points, in rare 
cases several dozen time points are measured. After our initial 
exploration with 600 sampling points, we repeated the 
generation of 3 times 6 data sets, sampling 20 time points per 
gene over the explored total time interval.  This sampling 
frequency provides more realistic data sets which are in line 
with current protocols for current time-series gene expression 
experiments.  

By simulating the reference models over 600 sampling time 
points and then over 20 sampling time points, we can 
compare the accuracy of models reverse-engineered from 
both detailed and sparse data sets. This approach allows us to 
determine if the data combination method investigated in this 
work is sensitive to the amount of available data. Although 
these data sets have been created artificially, a great deal of 
thought went into this process, to ensure that the data is 
representative of current time-series gene expression 
experiments. We expect that the sampling frequencies and the 
number of conditions with which real GRN systems are being 
probed will continue to grow in the future.  

C. Reverse engineering 

Equipped with four training or learning data sets for each of 
the three GRN reference systems, we reverse engineered four 
individual GRN models for each system from the 
corresponding training data sets. Each reverse-engineering 
process is essentially a parameter estimation or optimization 
process applying the following algorithm.  

Given a learning data sets L and the GRN model parameters 

M = ( { vi }, { wij }, { di }, { ki } ), where i, j ∈ 1, …, u (the 
number of genes in the model) 

1. Set and fix topology (weight) parameters to zero for 
gene pairs that do not interact:  
(∀ i, j ∈ {1, … u} ) ( wij = 0 | no_interaction( i, j ) ). 

2. Initialize remaining parameters. M ← initialize. 

3. Modify non-fixed model parameters using particle 
swarm optimization: M ← PSO.  

4. Use M to simulate time course data set, , for all genes 
based on the initial values (condition) of L:  

 ← simulate(L) 

5. Compare simulated data  with the learning data L: 
error ← compare( ,L). IF error is not sufficiently small 
and maximum iterations are not reached, GO TO Step 3, 
otherwise finish learning and GO TO Step 6. 

6. Store M as GRN model. 

Notice, in Step 1 of the reverse-engineering algorithm 
described above, the ANN weights are fixed in such a way 
that for genes that are known not to interact, the weight is set 
to zero. These fixed weights are not subject to the 
optimization procedure (Step 3). The algorithm then proceeds 
to optimize or estimate the remaining ANN weights { wij ≠ 0 } 
only for genes i and j that are known to interact in the 
underlying GRN system, plus the parameters { di } and { ki }. 
In other words, we assume that the interaction topology or 
network is known. This is a simplification to limit the 
computational complexity. In a future implementation of this 
algorithm, we will explore problems without this constraint. 

For each learning data set, which represents a different 
condition on the same concrete GRN system, a GRN model 
was reverse-engineered. We used Copasi [27] to code and 
represent the GRN models and implement the reverse-
engineer algorithm described above. To realize the parameter 
estimation step of the algorithm, we used Copasi’s 
implementation of the particle swarm optimization (PSO) 
method [28]. Copasi also provides numerical integration 
methods needed in Step 4 of the algorithm, in which the time-
course is predicted or simulated based on the initial values 
specified in the learning data set L. For deterministic 
solutions, the LSODA integrator is used [29]. The comparison 
Step 5 of the reverse engineering algorithm calculates the 
deviation (error) between each corresponding time-course in 
the learning data set L and the predicted or simulated time-
course data . To calculate the error, we applied the 
commonly used root mean squared error (RMSE) measure. 
Since our models consist of u genes, we essentially calculate 
the total RMSE by dividing the sum of all individual RMSEs 
by u. 

The integration (simulation) Step 4 and the comparison 
Step 5 in the reverse-engineering algorithm is also relevant to 
the model validation stage, which comes after reverse-
engineering has been completed.  

D. Model validation 

The training error is an indicator of how well the reverse-
engineered model can replicate (simulate) the data from 
which it was constructed. A robust measure to assess how 
well the reverse-engineered model has captured the 
characteristics of the underlying system needs to determine 
the prediction error on unseen data. Because experiments 
generating gene expression time-course data are costly, the 
validation on independent data is frequently not reported in 
the literature. For each of the three GRN systems investigated 
in this study, have we use two independent validation data 
sets (V1, V2) to estimate the generalization error, and hence the 
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TABLE II.  EXAMPLE OF COMBINING THE 4 DATA SETS OF THE VOHRADSKY 3 GENE MODEL. ONLY THE FIRST 6 TIMES STEPS ARE SHOWN. 

     

 L1 L2 L3 L4 

Time             
0 2.000 2.000 2.000 6.000 6.000 2.000 6.000 2.000 6.000 1.000 6.000 1.000 
1 2.036 2.007 2.018 6.018 5.918 2.021 5.949 2.011 5.953 1.061 5.907 1.037 
2 2.072 2.014 2.035 6.037 5.837 2.041 5.898 2.022 5.907 1.121 5.815 1.073 
3 2.107 2.021 2.052 6.055 5.758 2.061 5.848 2.032 5.861 1.181 5.727 1.109 
4 2.141 2.028 2.069 6.073 5.681 2.080 5.798 2.043 5.816 1.241 5.642 1.144 
5 2.175 2.036 2.085 6.091 5.606 2.100 5.749 2.053 5.773 1.300 5.559 1.178 

… … … … … … … … … … … … … 
             

 

robustness, of our models, by averaging the total RMSE of 
the models on the two validation data sets. 

E. Combined modeling algorithm 

The steps described above explain the procedures we 
adopted to reverse-engineer and validate 3 times 4 
individual models, 1 model for each of the 4 learning data 
sets for each of the 3 GRN systems depicted in Fig. 2. The 
training and validation errors we obtained are shown in 
TABLE III. The purpose of this study is to demonstrate that 
by using multi-condition experimental data, it is possible to 
generate more robust GRN models. Exploiting the multiple 
experimental data sets requires a suitable way of combining 
and using the available data to reverse-engineer a single 
model. The main steps of this algorithm are described 
below. We illustrate this based on the 3-gene Vohradsky 
GRN system. 

1. Combining the learning data sets 
For each of the nL = 4 learning data set (L1, …, L4), the same 
number of gene expression abundances (u = 3) are sampled 
m times (m = 20) over the same total time interval. This 
means we can join these data sets as described in TABLE II, 
which shows the 4 data sets for the 3-gene Vohradsky GRN 
system were  refers gene i of data set L for the first 6 
sampling points. 

2. Formulation of combined model 
Essentially, the first step of this combined-data GRN 
modeling algorithm creates a combined learning data set Λ 
with nL × u genes or gene expression time-series. In the case 
of the 3-gene Vohradsky GRN system, we have a total 
number of uΛ = nL × u = 4 × 3 = 12 gene expression time-
series (representing only 3 genes). Hence, we formulate a 
combined-data GRN model  consisting of uΛ = 12 
variables representing 12 time-series but only 3 genes. 
(Notice, is not yet our final combined GRN model MΛ) 
However, the combined model does not allow gene 
influences across the boundaries of the individual data sets; 
genes can only influence each other within the same 
individual training sets. Hence, using the ANN formulation 
in Equation (1), we get the following model specification for 
the 3-gene Vohradsky GRN system: 

 

 

 

 

 

 

 

 

 

 

 

 

Notice, in the 12 equations describing the combined-data 
model , each set of model parameters appears only u = 3 
times, i.e., once for each gene in the underlying GRN 
system (this is also the reason why u is constant across all 
12 equations). Since the ANN model formulation (Equation 
(1)) defines p = 6 parameters (vi, wi1, wi2, wi3, di, ki,) for each 
gene i and, in this case, we have 3 genes (u = 3), we get a 
total of p × u = 6 × 3 = 18 parameters to estimate/optimize 
in the reverse-engineering process (see next step). This 
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means that the number of parameters to be optimized for the 
combined-data model is independent of the number of 
conditions which create the multi-condition data sets. 

3. Reverse-engineering of combined-data model 

With the formulation of the combined-data model  in 
place, the reverse-engineering algorithm described above is 
applied to determine/estimate the model’s parameters. The 
advantage is that now we have more data to estimate the 
model parameters and hence are likely to produce more 
reliable estimates.  

4. Creation of final combined model 

The combined-data model  specifies nL times the number 
of model equations than the final combined GRN model MΛ. 
However, the parameters are exactly the same in both 
models. Hence, once the parameters of  are determined 
(see previous step), we simply use these parameters and 
transfer them to MΛ to obtain our final GRN model. 

IV. RESULTS 

For each GRN system, the initial conditions for the first 
experiment were set equal to emulate a basal transcription 
level. Subsequent experiments altered the initial conditions 
imitating the effect of increased transcription of one or two 
genes in the network. The parameters for each reference 
model were chosen manually to reproduce plausible 
dynamics for each case. An individual GRN model was 
reverse engineered for each of the 4 experimental conditions 
on the system used to create the learning data and a model 
resulting from the combined data approach was reverse 
engineered (see TABLE I). Each model was simulated over 
600 sampling time points and again over 20 sampling time 
points per gene.  

TABLE III lists the RMSE for all 30 models derived from 
the 3 artificial GRN systems (labeled A, B, C in the table). 
The RMSE is shown for each reverse-engineered model 
against both the learning and validation data sets for 600 and 
20 time points, respectively. The learning RMSE (columns 
labeled RE) is less than 0.10 for 25 out of 30 models. Also 

noticed, for the GRN systems A and B the learning RMSE 
for 600 time points tends to be lower than that for 20 time 
points. The final column shows the average RMSE on the 
validation data sets for each model. Only 8 of the 30 
reverse-engineered models managed to score an average 
validation RMSE below 0.10.  

The main result is that the final combined model MΛ 
consistently scored considerably lower average validation 
RMSEs than any of the individual models (M1, …, M4) across 
all three reference GRN systems A, B and C (Fig. 2). This 
suggests that multi-condition experimental data (as 
described in this article) can be successfully used to produce 
accurate GRN models and as we have validated against two 
unseen data sets this indicates a measure of confidence in 
the models robustness.  

V. CONCLUSION AND FUTURE WORK 

For each of the three GRN systems (Fig. 2), the reverse-
engineered GRN models created using the data combination 
approach were significantly more accurate than any of the 
other models. The observed results indicate the data 
combination approach to reverse engineering results in more 
robust GRN models than reverse engineering models from 
single-condition data sets. This result is consistent across the 
two time resolutions (600 and 20 sampling points). From this 
observation we are confident that the data combination 
method is not dependent on detailed data and can be applied 
successfully to sparse data sets without any loss of 
performance. The study was conducted using 3, 5 and 7 gene 
GRN systems which were chosen as they exhibited the 
characteristics of clusters of co-expressed genes. Also, to 
simplify the reverse-engineering process, each was reverse-
engineered using the known topology of the network. Future 
studies will investigate the use of this data combination 
method without known network topology and also on larger 
GRN systems of approximately 20-25 genes. In both cases 
we expect a considerable increase of required compute 
power due to the increase number of genes and parameters 
required. Ultimately this approach needs to be applied to real 

TABLE III.  MEAN RMSE SCORES FOR EACH REVERSE-ENGINEERED MODELS (INDIVIDUAL AND FINAL COMBINED). RE STANDS FOR “REVERSE-ENGINEERING” AND 
INDICATES THE RMSE ON THE LEARNING DATA, V1 AND V2 THE RMSE ON THE VALIDATION DATA, AND THE AVERAGE VALIDATION RMSE (V1 + V2)/2. 

  600 data points  20 data points 
GRN Model Li, M  V1 V2 (V1+V2)/2  RE V1 V2 (V1+V2)/2 

A 

M1 0.022 0.292 0.868 0.580  0.038 0.518 0.263 0.391 
M2 0.054 0.510 0.590 0.550  0.036 0.318 0.257 0.288 
M3 0.027 0.151 0.378 0.265  0.092 0.159 0.463 0.311 
M4 0.084 0.351 0.480 0.416  0.189 0.385 0.225 0.305 
MΛ 0.006 0.054 0.055 0.055  0.053 0.139 0.161 0.150 

B 

M1 0.111 0.411 0.455 0.433  0.109 0.401 0.444 0.423 
M2 0.002 0.029 0.029 0.029  0.145 0.653 0.633 0.643 
M3 0.037 0.160 0.472 0.316  0.018 0.130 0.239 0.185 
M4 0.009 0.268 0.187 0.228  0.011 0.804 0.701 0.753 
MΛ 2.88e-6 3.60e-4 3.60e-4 3.60e-4  1.215e-5 1.74e-4 1.73e-4 1.73e-4 

C 

M1 0.019 0.059 0.071 0.065  0.022 0.128 0.090 0.109 
M2 0.030 0.166 0.122 0.144  0.146 0.148 0.224 0.186 
M3 0.034 0.302 0.076 0.189  0.028 0.271 0.075 0.173 
M4 0.093 0.083 0.189 0.136  0.018 0.017 0.085 0.051 
MΛ 0.006 0.019 0.006 0.013  0.006 0.018 0.011 0.015 
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biological data to assess how sensitive it would be to the noise 
expected in real biological conditions. However simulated data 
was used due to the lack of suitable data available. As such 
data becomes available in the future this can be done. 

Swain et al. [5] suggest a two stage approach for recovering 
network structure from gene expression measurements. The 
next study will investigate combining this approach with the 
data combination method to assess if multiple data sets can 
improve the recovery of network structure. A follow-up study 
will then combine the methods for network recovery and 
behavior prediction and evaluate this as an overall approach to 
utilizing multiple data sets in modeling from gene expression 
measurements. Throughout this study the ANN formalism has 
been used to calculate expression rates. Other general rate 
laws such as the Hill equation [30], GRLOT [6], SS [31] and 
general mass action will be assessed with the data combination 
method to determine which is more accurate at inferring 
network structure, predicting dynamic behavior or both. 
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