
Reverse engineering of gene regulation models from
multi-condition experiments

Noel Kennedy, Alexandru Mizeranschi,
Paul Thompson, Huiru Zheng, Werner Dubitzky

University of Ulster, Northern Ireland, UK

Abstract—Reverse-engineering of quantitative, dynamic gene-
regulatory network (GRN) models from time-series gene
expression data is becoming important as such data are
increasingly generated for research and other purposes. A key
problem in the reverse-engineering process is the under-
determined nature of these data. Because of this, the reverse-
engineered GRN models often lack robustness and perform
poorly when used to simulate system responses to new
conditions. In this study, we present a novel method capable of
inferring robust GRN models from multi-condition GRN
experiments. This study uses two important computational
intelligence methods: artificial neural networks and particle
swarm optimization.

Keywords—Gene regulatory networks; reverse-engineering;
machine learning; multi-model fusion; optimization

I. INTRODUCTION

Regulation of gene expression (or gene regulation) refers to
processes that cells use to create functional gene products
(RNA, proteins) from the information stored in genes (DNA).
Gene regulation is essential for life as it increases the
versatility and adaptability of an organism by allowing it to
express protein when needed. While aspects of gene
regulation are well understood, many open research questions
still remain [1]. The dynamic behavior and regulatory
interactions of genes can be revealed by time-series
experiments, that is, experiments that measure the expression
of multiple genes over time [2]. In contrast to static gene
expression data, the modeling and simulation approach allows
the determination of stable states in response to a condition or
stimulus as well as the identification of pathways and
networks that are activated in the process [3]. A range of
mathematical methods facilitating the reverse-engineering of
quantitative, dynamic gene-regulatory network (GRN) models
from time-series gene expression data have been reported in
the literature [4]. Typical methods based on differential
equations include the S-system (SS), artificial neural networks
(ANN), and general rate law of transcription (GRLOT)
method [5] [6].

One of the issues in reverse-engineering GRN models is the
under-determined nature of the problem [7]. Essentially, this
means that for the given data and the differential equations
specifying the model, there is no unique solution to these
equations. A consequence of this is that models derived from
such data lack robustness. Thus, the predictive accuracy on
unseen data sets is often poor. Various approaches have been

employed to address this issue [8] [9]. The fact that the data is
normally noisy and that the reverse-engineering process
involves a non-deterministic element (optimization) is also a
factor that influences robustness, but it is not as fundamental
as the lack of complete information.

In the present study, we investigate the reverse engineering
of robust GRN models based on repeated measures from the
same GRN system under different conditions. We refer to
experiments that generate data in this way as multi-condition
experiments. The principal idea is that when the same GRN
system is subject to different (non-destructive) conditions or
stimuli, it will display a range of responses that together are
more characteristic for the underlying system properties than
a single response to a single stimulus. This concept is similar
to data fusion, which is a process that integrates multiple
sources of information representing the same real-world entity
into a consistent and accurate model of that entity [10].
However, whereas in conventional data fusion the merging of
information is normally achieved on the data level by a
straightforward join operation based on a common attribute or
key, combining time-series data is not that simple.

In this paper, we present a novel approach to exploit data
obtained from repeated GRN time-series measures under
varying conditions to infer robust GRN models. We
demonstrate the usefulness of this approach by comparing the
resultant multi-condition GRN models with the individual
single-condition models. At present it is still relatively costly
and time consuming to perform multi-condition experiments,
hence we base our study on artificial GRN time-series data
sets. While this is a limitation in the present study, we believe
that the results we obtained are still valid when applied to data
derived from real GRN systems. It is likely that in the future
the costs for multi-condition experiments will be lower and
that multi-condition experiments are therefore expected to
become commonplace.

II. REVERSE ENGINEERING AND DATA COMBINATION

Many reverse-engineering methods have been proposed in
recent years. Furthermore, different approaches have been
adopted in an attempt to improve the performance of these
methods and create more robust models, improve predictive
performance, and identify regulatory interactions from gene
expression measurements. Swain et al. [5] evaluated three
commonly used approaches which formulate dynamic GRN
models as ordinary differential equations (ODEs). The authors
assessed the ability of the different ODE structures to

112978-1-4673-5875-0/13/$31.00 c©2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

replicate the GRN systems’ regulatory structure and dynamic
gene expression behavior under varying conditions. The study
evaluated three commonly encountered ODE rate law
formulations: SS, ANN and GRLOT. The results suggest that
the ANN and GRLOT methods are superior to the SS method
in their ability to accurately predict network behavior. The
former two methods also produced more accurate network
structures from the underlying data than the SS method.
However, the study did not explore combining data from
multi-condition experiments. Although the research has
thoroughly investigated the rate law formalisms, relying on
sparse data based on only a single experiment may limit a
model’s usefulness in terms of the range of the experimental
conditions that can be successfully predicted by it.

Andrews et al. [11] use an artificial intelligence model
known as Cost Based Abduction (CBA) to generate GRN
models from multiple data sources. They successfully apply
their method to study the pheromone pathway in yeast using
protein-DNA data, protein-protein interaction data and gene
knock-out data. Their approach combines different data types
which represent the same experimental condition. Yeang et al.
[12] also explore the pheromone pathway in yeast by creating
annotated interaction graphs they call physical network
models. They combine multiple data types also. In our
approach we consider only one gene expression data type,
measurement of mRNA abundance, each data set representing
the systems response to a different experimental condition.

Ting and Low [13] compare two approaches, model
combination and data combination when multiple batches of
data are available. The former method uses the available data
sets creating a single model for each then combining the
output. The latter approach creates one model, using the
available data sets to train the model. The model combination
method involves estimating predictive accuracy for a given
instance through k-fold cross validation and creating a single
model from the instances achieving the highest predictive
performance (low error or high accuracy). They conclude that
the model combination approach is stronger when there is
only a small difference in the predictive error rate for each
model. Our current study focuses on data combination
utilizing all available data rather than a voting algorithm for
the creation of a combined model.

Peeling and Tucker [14] present a method for modeling
GRN’s by forming a consensus Bayesian network model from
multiple microarray gene expression data sets. Their study
focuses on qualitative combination of Bayesian networks to
determine the dependency structure between genes. The
method of data combination presented in our study primarily
focuses on reproducing quantitative network dynamics and
predicting behavior. We have identified and discussed the
need to develop this method further to include structure
recovery in this article’s section on future work.

Steele et al. [15] developed a method for transforming
literature-based gene association scores to network prior
probabilities. The Bayesian networks developed from this
methodology therefore benefit from partial a priori knowledge
of regulatory interactions thus simplifying the reverse-

engineering process. Our current study reverse engineers
GRN models using known network topology. The literature-
based method therefore does not benefit the approach
presented in this study but can be considered in future work
concerning structure recovery.

Wang et al. [16] address the idea of combining multiple
time-series microarray data sets by developing a high-level
framework they refer to as the Gene Network Reconstruction
tool. The idea is to combine solutions from each data set into
an overall, consistent solution. The combination therefore
occurs at the model level rather than the data level and the
focus of their study is primarily on network structure.

Chen et al. [17] propose a two-step method for inferring
GRN models from multiple data sets. First, they infer
(optimize) a GRN structure (network topology) from each
data set, which is then combined into a single, final network.
They propose two methods based on computing the statistical
mean and mode for each resulting topology. The second step
consists of an additional optimization process that estimates
the parameters of the combined GRN model after discovering
its structure.

Gupta et al. [18] used multi-objective optimization to
integrate different methods for reverse-engineering. To
illustrate this, they used a combination of linear ODE and
correlation-based methods, using data from time-course and
gene inactivation (knock-out) experiments. The novel aspect
in this approach is the combination of different inference
methods into the same procedure, along with using
heterogeneous sources of input data.

Marbach et al. [19] investigated the way in which ensemble
networks resulting from reverse-engineering experiments
could be used to “vote” the topology of a combined GRN
model. For creating the ensemble network, they used an
evolutionary method called analog genetic encoding. They ran
50 iterations of this procedure, each time retaining the
network with the best fitness as part of the ensemble. Then,
they used ensemble voting to generate a new network,
showing that this network outperforms all initial members of
the ensemble.

Our novel approach is to combine the data of the multi-
condition experiments and reverse engineer a single model
from this. Initially our method is concerned with reproducing
network dynamics, structure recovery is subject to future
research. As we use multiple data sets for training the model,
we hypothesize that the resulting model should be more
robust, more accurate and open to a wider scope of
perturbation and behavior prediction than models generated
from a single data set.

III. APPROACH AND STUDY DESIGN

The approach in this investigation assumes that the
biological GRN system, S, under study is provoked with a set
of n distinct stimuli or conditions C1 C2 … Cn to elicit
the corresponding dynamic gene-regulatory responses
R1, R2, … , Rn. In this study, a condition Ci is defined as a set
of data values specifying the initial perturbation of the system
variables, representing gene expression quantities.

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 113

Each response Ri represents a set of u time-series of transcript
concentrations/abundances, where u denotes the number of
genes in S, and m the number of time points sampled for each
gene, and rijk denotes a single measurement of gene j at time
point k.

For simplicity, we assume the same number of
measurements m for each gene in the considered time interval.
In general, this is not necessary, though. Conceptually, we
distinguish two types of scenarios: a concrete and an abstract
GRN system.

Concrete GRN system: The reverse-engineered GRN
model represents a single concrete GRN system derived from a
single individual, e.g. the cell cycle gene regulation network of
a particular mouse cell. In this case, the multiple conditions are
applied at time points T1 < T2 < … < Tn, and the time interval
ΔT = Ti+1 − Ti between consecutive conditions is chosen large
enough for the system to fully “recover” from the provocation
with condition Ci. This implies that the condition has no
lasting effect on the system (e.g. does not destroy the system).

Abstract GRN system: The reverse-engineered GRN
model represents a single abstract GRN system derived from a
collection of individuals that are assumed to be similar in some
important aspects. For example, the cell cycle gene regulation
networks of eight mouse cells (from one or more mice). In this
case, there is no restriction on the conditions applied and all
conditions may be applied in parallel.

Once the response data has been obtained, the process is
identical for reverse-engineering GRN models representing
concrete and abstract GRN systems. Based on the n response
data sets from n experiments (each applying a different
stimulus), we

1. Randomly determine nL training or learning data sets L

and nV validation data sets V, such that n = nL + nV
(typically: nL > nV):

2. Generate a combined training or learning data set Λ.

3. Reverse-engineer from each of the nL training data sets a
GRN model .

4. Reverse-engineer the final model MΛ from the combined
learning data set Λ.

5. Validate (determine average accuracy or error) the models
generated in Steps (3) and (4) against the validation data
sets V.

Fig. 1. Illustration of the process for reverse-engineering a GRN model from
multi-condition experimental data (here with six conditions corresponding to

four training or learning data sets and two validation data sets).

Fig. 1 depicts the basic study design we adopted to explore
and evaluate our approach. In this particular case we used
nL = 4 and nV = 2. In the diagram, the notation Mi (Vj) denotes
the data set created by simulating model Mi with the initial
condition from data set Vj.

A. GRN Modeling

We use the term GRN systems to refer to gene-regulatory
networks that describe regulatory gene-gene interactions
without explicit representation of intermediary elements such
as metabolites, nuclear receptors and transcription factors,
which combine to direct and catalyze the reactions between
genes [20]. The simulated data generated from the reference
models represents measured mRNA abundance over time.
Under this modeling assumption, one gene can either activate
or repress another gene directly or indirectly (via other genes).
Fig. 2 shows the network topology of the three GRN systems
investigated in this study. System A describes a simple 3-gene
[21], and B a 5-gene GRN system [22]. Model C describes a 7-
gene GRN system based on the bile acid and xenobiotic
system (BAXS) [23]. TABLE I. maps the nodes in the BAXS
network to their corresponding genes and gene products.

TABLE I. ELEMENTS OF BAXS GRN NETWORK

Node Gene Gene product
X1 NR0B2 SHP1
X2 NR1I2 PXR
X3 NR1H4 FXR
X4 ABCB1 MDR1
X5 ABCC2 MRP2
X6 ABCB11 BSEP
X7 CYP3A4 CYP3A4

The BAXS describes a genetic network that facilitates two
distinct but intimately overlapping physiological processes;
the enterohepatic circulation and maintenance of bile acid

114 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

Legend: Transcriptional regulation (activation)
 Transcriptional regulation (repression)

Fig. 2. The three gene regulatory networks or GRN system investigated in this study

concentrations and the detoxification and removal from the
body of harmful xenobiotic, e.g. drugs, pesticides, and
endobiotic compounds such as steroid hormones [24]. The
model describes a simple catabolic pathway which is induced
by the presence of a functional intermediate acting as an
inducer of the network. Such an inducer could be either an
endogenous or exogenous substance e.g. lithocholic acid
(LCA), a secondary bile acid which activates transcription of
both NR1I2 and NR1H4 [25] leading to activation of
CYP3A4.This results in the production of enzymes which
metabolize the inducer in this network e.g. LCA [26], thus
switching off the network after a period of time. This is
represented in the model as repression of NR1I2 and NR1H4
by CYP3A4 as the CYP3A4 enzyme metabolizes the inducer
therefore there is no further activation of these genes.

B. Model equation and data generation

Common rate laws to model the reaction kinetics
(regulatory interactions) of GRN systems include the s-
system, Hill functions, mass action kinetics, general rate law
of transcription, and artificial neural network formulations
[4]. Because of its flexibility and advantageous properties [5],
the models in this study are based on the ANN formalism
[21]. Equation (1) defines the ANN-based rate of change
Xi /dt of transcript Xi of gene i within a GRN system of u
genes.

where

u defines the number of genes in the GRN system to be
modeled, i = 1, …, u.

vi denotes the maximal expression rate of gene i.

Xj denotes the gene product of gene j influencing the product,
Xi , of gene i, with: j = 1, …, u.

wij denotes the strength of control or regulation of gene j on
gene i. Positive values indicate activating, negative values
repressing control.

di defines an external influence on gene i, which modulates
the gene’s sensitivity of response to activating or

repressing influences. The higher | di |, the lower the
influence of the weights wij on gene i. In GRN modeling,
di is sometimes interpreted as reaction delay parameter, as
it shifts the sigmoidal transfer function along the
horizontal time axis, thus determining how fast the gene’s
expression level responds.

ki denotes the degradation rate constant of the i-th gene
expression product.

Equation (1) defines a rate law capable of describing the
dynamic behavior of GRN systems. The ANN rate law
represents and calculates expression rates based on the
weighted sum of multiple regulatory inputs. This additive
input processing is able to represent logical disjunctions. The
expression rate is restricted to a certain interval where the
sigmoidal transfer function maps the regulatory input to the
expression interval. The external input, di, regulates the
sensitivity to the summed regulatory input of all genes.

For each of the three GRN systems depicted in Fig. 2, a
single GRN reference model was manually created on the
basis of the ANN rate law defined in Equation (1). Each GRN
reference model serves as a surrogate for the corresponding
biological GRN system to facilitate that generation of
artificial dynamic gene expression data. The parameters for
each reference model were determined manually through a
process of trial and error. Each model was simulated with
different parameter configurations multiple times using
different initial conditions. After visual inspection of the
generated data, the parameter values were updated and the
reference models simulated again. This experimentation
continued until plausible dynamics were identified. The
criteria we applied to determine plausible dynamics were that
a steady state was reached during the simulation, that no
measurement increased infinitely nor all measured expression
levels stabilized at zero.

We then used the three GRN reference models to create six
time-series gene expression data sets based on different
experimental conditions (initial values of transcript
abundance). Visual inspection was again applied until six
different system behaviors that were both plausible and
sufficiently different were identified. The reference models
were simulated over 600 sampling time points, each simulated
Δt representing 1 second.

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 115

Through this process, we generated 6 time-series data sets
for each of the three GRN systems representing the response
of the systems to varying experimental conditions. From each
of the three groups of six data sets, we randomly selected four
as training or learning sets, and two as validation data sets.
This configuration of data sets was viewed as a reasonable
compromise: (a) on one hand, we required a number of
training data sets under different conditions to be able to
capture the underlying intricacies of the system under
investigation, (b) on the other hand, we did not want to rely
only on a single data set as independent validation data set.

Current time-series gene expression experiments typically
sample somewhere between 10 and 30 time points, in rare
cases several dozen time points are measured. After our initial
exploration with 600 sampling points, we repeated the
generation of 3 times 6 data sets, sampling 20 time points per
gene over the explored total time interval. This sampling
frequency provides more realistic data sets which are in line
with current protocols for current time-series gene expression
experiments.

By simulating the reference models over 600 sampling time
points and then over 20 sampling time points, we can
compare the accuracy of models reverse-engineered from
both detailed and sparse data sets. This approach allows us to
determine if the data combination method investigated in this
work is sensitive to the amount of available data. Although
these data sets have been created artificially, a great deal of
thought went into this process, to ensure that the data is
representative of current time-series gene expression
experiments. We expect that the sampling frequencies and the
number of conditions with which real GRN systems are being
probed will continue to grow in the future.

C. Reverse engineering

Equipped with four training or learning data sets for each of
the three GRN reference systems, we reverse engineered four
individual GRN models for each system from the
corresponding training data sets. Each reverse-engineering
process is essentially a parameter estimation or optimization
process applying the following algorithm.

Given a learning data sets L and the GRN model parameters

M = ({ vi }, { wij }, { di }, { ki }), where i, j ∈ 1, …, u (the
number of genes in the model)

1. Set and fix topology (weight) parameters to zero for
gene pairs that do not interact:
(∀ i, j ∈ {1, … u}) (wij = 0 | no_interaction(i, j)).

2. Initialize remaining parameters. M ← initialize.

3. Modify non-fixed model parameters using particle
swarm optimization: M ← PSO.

4. Use M to simulate time course data set, , for all genes
based on the initial values (condition) of L:

 ← simulate(L)

5. Compare simulated data with the learning data L:
error ← compare(,L). IF error is not sufficiently small
and maximum iterations are not reached, GO TO Step 3,
otherwise finish learning and GO TO Step 6.

6. Store M as GRN model.

Notice, in Step 1 of the reverse-engineering algorithm
described above, the ANN weights are fixed in such a way
that for genes that are known not to interact, the weight is set
to zero. These fixed weights are not subject to the
optimization procedure (Step 3). The algorithm then proceeds
to optimize or estimate the remaining ANN weights { wij ≠ 0 }
only for genes i and j that are known to interact in the
underlying GRN system, plus the parameters { di } and { ki }.
In other words, we assume that the interaction topology or
network is known. This is a simplification to limit the
computational complexity. In a future implementation of this
algorithm, we will explore problems without this constraint.

For each learning data set, which represents a different
condition on the same concrete GRN system, a GRN model
was reverse-engineered. We used Copasi [27] to code and
represent the GRN models and implement the reverse-
engineer algorithm described above. To realize the parameter
estimation step of the algorithm, we used Copasi’s
implementation of the particle swarm optimization (PSO)
method [28]. Copasi also provides numerical integration
methods needed in Step 4 of the algorithm, in which the time-
course is predicted or simulated based on the initial values
specified in the learning data set L. For deterministic
solutions, the LSODA integrator is used [29]. The comparison
Step 5 of the reverse engineering algorithm calculates the
deviation (error) between each corresponding time-course in
the learning data set L and the predicted or simulated time-
course data . To calculate the error, we applied the
commonly used root mean squared error (RMSE) measure.
Since our models consist of u genes, we essentially calculate
the total RMSE by dividing the sum of all individual RMSEs
by u.

The integration (simulation) Step 4 and the comparison
Step 5 in the reverse-engineering algorithm is also relevant to
the model validation stage, which comes after reverse-
engineering has been completed.

D. Model validation

The training error is an indicator of how well the reverse-
engineered model can replicate (simulate) the data from
which it was constructed. A robust measure to assess how
well the reverse-engineered model has captured the
characteristics of the underlying system needs to determine
the prediction error on unseen data. Because experiments
generating gene expression time-course data are costly, the
validation on independent data is frequently not reported in
the literature. For each of the three GRN systems investigated
in this study, have we use two independent validation data
sets (V1, V2) to estimate the generalization error, and hence the

116 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

TABLE II. EXAMPLE OF COMBINING THE 4 DATA SETS OF THE VOHRADSKY 3 GENE MODEL. ONLY THE FIRST 6 TIMES STEPS ARE SHOWN.

 L1 L2 L3 L4

Time
0 2.000 2.000 2.000 6.000 6.000 2.000 6.000 2.000 6.000 1.000 6.000 1.000
1 2.036 2.007 2.018 6.018 5.918 2.021 5.949 2.011 5.953 1.061 5.907 1.037
2 2.072 2.014 2.035 6.037 5.837 2.041 5.898 2.022 5.907 1.121 5.815 1.073
3 2.107 2.021 2.052 6.055 5.758 2.061 5.848 2.032 5.861 1.181 5.727 1.109
4 2.141 2.028 2.069 6.073 5.681 2.080 5.798 2.043 5.816 1.241 5.642 1.144
5 2.175 2.036 2.085 6.091 5.606 2.100 5.749 2.053 5.773 1.300 5.559 1.178

… … … … … … … … … … … … …

robustness, of our models, by averaging the total RMSE of
the models on the two validation data sets.

E. Combined modeling algorithm

The steps described above explain the procedures we
adopted to reverse-engineer and validate 3 times 4
individual models, 1 model for each of the 4 learning data
sets for each of the 3 GRN systems depicted in Fig. 2. The
training and validation errors we obtained are shown in
TABLE III. The purpose of this study is to demonstrate that
by using multi-condition experimental data, it is possible to
generate more robust GRN models. Exploiting the multiple
experimental data sets requires a suitable way of combining
and using the available data to reverse-engineer a single
model. The main steps of this algorithm are described
below. We illustrate this based on the 3-gene Vohradsky
GRN system.

1. Combining the learning data sets
For each of the nL = 4 learning data set (L1, …, L4), the same
number of gene expression abundances (u = 3) are sampled
m times (m = 20) over the same total time interval. This
means we can join these data sets as described in TABLE II,
which shows the 4 data sets for the 3-gene Vohradsky GRN
system were refers gene i of data set L for the first 6
sampling points.

2. Formulation of combined model
Essentially, the first step of this combined-data GRN
modeling algorithm creates a combined learning data set Λ
with nL × u genes or gene expression time-series. In the case
of the 3-gene Vohradsky GRN system, we have a total
number of uΛ = nL × u = 4 × 3 = 12 gene expression time-
series (representing only 3 genes). Hence, we formulate a
combined-data GRN model consisting of uΛ = 12
variables representing 12 time-series but only 3 genes.
(Notice, is not yet our final combined GRN model MΛ)
However, the combined model does not allow gene
influences across the boundaries of the individual data sets;
genes can only influence each other within the same
individual training sets. Hence, using the ANN formulation
in Equation (1), we get the following model specification for
the 3-gene Vohradsky GRN system:

Notice, in the 12 equations describing the combined-data
model , each set of model parameters appears only u = 3
times, i.e., once for each gene in the underlying GRN
system (this is also the reason why u is constant across all
12 equations). Since the ANN model formulation (Equation
(1)) defines p = 6 parameters (vi, wi1, wi2, wi3, di, ki,) for each
gene i and, in this case, we have 3 genes (u = 3), we get a
total of p × u = 6 × 3 = 18 parameters to estimate/optimize
in the reverse-engineering process (see next step). This

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 117

means that the number of parameters to be optimized for the
combined-data model is independent of the number of
conditions which create the multi-condition data sets.

3. Reverse-engineering of combined-data model

With the formulation of the combined-data model in
place, the reverse-engineering algorithm described above is
applied to determine/estimate the model’s parameters. The
advantage is that now we have more data to estimate the
model parameters and hence are likely to produce more
reliable estimates.

4. Creation of final combined model

The combined-data model specifies nL times the number
of model equations than the final combined GRN model MΛ.
However, the parameters are exactly the same in both
models. Hence, once the parameters of are determined
(see previous step), we simply use these parameters and
transfer them to MΛ to obtain our final GRN model.

IV. RESULTS

For each GRN system, the initial conditions for the first
experiment were set equal to emulate a basal transcription
level. Subsequent experiments altered the initial conditions
imitating the effect of increased transcription of one or two
genes in the network. The parameters for each reference
model were chosen manually to reproduce plausible
dynamics for each case. An individual GRN model was
reverse engineered for each of the 4 experimental conditions
on the system used to create the learning data and a model
resulting from the combined data approach was reverse
engineered (see TABLE I). Each model was simulated over
600 sampling time points and again over 20 sampling time
points per gene.

TABLE III lists the RMSE for all 30 models derived from
the 3 artificial GRN systems (labeled A, B, C in the table).
The RMSE is shown for each reverse-engineered model
against both the learning and validation data sets for 600 and
20 time points, respectively. The learning RMSE (columns
labeled RE) is less than 0.10 for 25 out of 30 models. Also

noticed, for the GRN systems A and B the learning RMSE
for 600 time points tends to be lower than that for 20 time
points. The final column shows the average RMSE on the
validation data sets for each model. Only 8 of the 30
reverse-engineered models managed to score an average
validation RMSE below 0.10.

The main result is that the final combined model MΛ
consistently scored considerably lower average validation
RMSEs than any of the individual models (M1, …, M4) across
all three reference GRN systems A, B and C (Fig. 2). This
suggests that multi-condition experimental data (as
described in this article) can be successfully used to produce
accurate GRN models and as we have validated against two
unseen data sets this indicates a measure of confidence in
the models robustness.

V. CONCLUSION AND FUTURE WORK

For each of the three GRN systems (Fig. 2), the reverse-
engineered GRN models created using the data combination
approach were significantly more accurate than any of the
other models. The observed results indicate the data
combination approach to reverse engineering results in more
robust GRN models than reverse engineering models from
single-condition data sets. This result is consistent across the
two time resolutions (600 and 20 sampling points). From this
observation we are confident that the data combination
method is not dependent on detailed data and can be applied
successfully to sparse data sets without any loss of
performance. The study was conducted using 3, 5 and 7 gene
GRN systems which were chosen as they exhibited the
characteristics of clusters of co-expressed genes. Also, to
simplify the reverse-engineering process, each was reverse-
engineered using the known topology of the network. Future
studies will investigate the use of this data combination
method without known network topology and also on larger
GRN systems of approximately 20-25 genes. In both cases
we expect a considerable increase of required compute
power due to the increase number of genes and parameters
required. Ultimately this approach needs to be applied to real

TABLE III. MEAN RMSE SCORES FOR EACH REVERSE-ENGINEERED MODELS (INDIVIDUAL AND FINAL COMBINED). RE STANDS FOR “REVERSE-ENGINEERING” AND
INDICATES THE RMSE ON THE LEARNING DATA, V1 AND V2 THE RMSE ON THE VALIDATION DATA, AND THE AVERAGE VALIDATION RMSE (V1 + V2)/2.

 600 data points 20 data points
GRN Model Li, M V1 V2 (V1+V2)/2 RE V1 V2 (V1+V2)/2

A

M1 0.022 0.292 0.868 0.580 0.038 0.518 0.263 0.391
M2 0.054 0.510 0.590 0.550 0.036 0.318 0.257 0.288
M3 0.027 0.151 0.378 0.265 0.092 0.159 0.463 0.311
M4 0.084 0.351 0.480 0.416 0.189 0.385 0.225 0.305
MΛ 0.006 0.054 0.055 0.055 0.053 0.139 0.161 0.150

B

M1 0.111 0.411 0.455 0.433 0.109 0.401 0.444 0.423
M2 0.002 0.029 0.029 0.029 0.145 0.653 0.633 0.643
M3 0.037 0.160 0.472 0.316 0.018 0.130 0.239 0.185
M4 0.009 0.268 0.187 0.228 0.011 0.804 0.701 0.753
MΛ 2.88e-6 3.60e-4 3.60e-4 3.60e-4 1.215e-5 1.74e-4 1.73e-4 1.73e-4

C

M1 0.019 0.059 0.071 0.065 0.022 0.128 0.090 0.109
M2 0.030 0.166 0.122 0.144 0.146 0.148 0.224 0.186
M3 0.034 0.302 0.076 0.189 0.028 0.271 0.075 0.173
M4 0.093 0.083 0.189 0.136 0.018 0.017 0.085 0.051
MΛ 0.006 0.019 0.006 0.013 0.006 0.018 0.011 0.015

118 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

biological data to assess how sensitive it would be to the noise
expected in real biological conditions. However simulated data
was used due to the lack of suitable data available. As such
data becomes available in the future this can be done.

Swain et al. [5] suggest a two stage approach for recovering
network structure from gene expression measurements. The
next study will investigate combining this approach with the
data combination method to assess if multiple data sets can
improve the recovery of network structure. A follow-up study
will then combine the methods for network recovery and
behavior prediction and evaluate this as an overall approach to
utilizing multiple data sets in modeling from gene expression
measurements. Throughout this study the ANN formalism has
been used to calculate expression rates. Other general rate
laws such as the Hill equation [30], GRLOT [6], SS [31] and
general mass action will be assessed with the data combination
method to determine which is more accurate at inferring
network structure, predicting dynamic behavior or both.

ACKNOWLEDGEMENTS

This work received funding from the EC's Seventh Framework
Program (FP7/2007-2013) under grant agreement n° RI-
261507 and also from the Department for Employment and
Learning, Northern Ireland.

REFERENCES
[1] E. Davidson and M. Levin, “Gene regulatory networks,” Proceedings of

the National Academy of Sciences of the United States of America, vol.
102, no. 14, pp. 4935-4935, April 05 2005.

[2] M. Ronen, R. Rosenberg, B. I. Shraiman and U. Alon, “Assigning
numbers to the arrows: Parameterizing a gene regulation network by
using accurate expression kinetics,” Proceedings of the National
Academy of Sciences, vol. 99, no. 16, pp. 10555-10560, August 06 2002.

[3] Z. Bar-Joseph, “Analyzing time series gene expression data,”
Bioinformatics, vol. 20, no. 16, pp. 2493-2503, November 01 2004.

[4] K.-H. Cho, S.-M. Choo, S. H. Jung, J.-R. Kim, H.-S. Choi and J. Kim,
“Reverse engineering of gene regulatory networks,” Systems Biology,
IET, vol. 1, no. 3, pp. 149-163, 2007.

[5] M. Swain, J. Mandel and W. Dubitzky, “Comparative study of three
commonly used continuous deterministic methods for modeling gene
regulation networks,” BMC Bioinformatics, vol. 11, no. 1, p. 459, 2010.

[6] P. Mendes, W. Sha and K. Ye, “Artificial gene networks for objective
comparison of analysis algorithms,” Bioinformatics, vol. 19, no. suppl 2,
p. 122, September 27 2003.

[7] M. Stetter, B. Schurmann and M. Djori, “Systems Level Modeling of
Gene Regulatory Networks,” in Artificial Intelligence Methods and Tools
for Systems Biology, W. Dubitzky and F. Azuaje, Eds., Springer, 2004,
pp. 175-195.

[8] C. Spieth, F. Streichert, N. Speer and A. Zell, “Inferring Regulatory
Systems with Noisy Pathway Information,,” in German Conference on
Bioinformatics (GCB 2005), Hamburg, Germany, 2005.

[9] A. Fuente and D. P. Makhecha, “Unravelling gene networks from noisy
under-determined experimental perturbation data,” Systems Biology, IEE
Proceedings, vol. 153, no. 4, pp. 257-262, 2006.

[10] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.

[11] E. A. M. Andrews and A. J. Bonner, “Explaining Genetic Knock-Out
Effects Using Cost-Based Abduction,” in Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence,
Barcelona, 2011.

[12] C. Yeang, T. Ideker and T. Jaakkola, “Physical Network Models,”
Journal of Computational Biology, Vols. 11(2-3), pp. 243-262, 2004.

[13] K. Ting and B. Low, “Model combination in the multiple-data-batches
scenario,” Lecture Notes in Computer Science, vol. 1224/1997, pp. 250-
265, 1997.

[14] E. Peeling and A. Tucker, “Consensus gene regulatory networks:
combining multiple microarray gene expression data sets,” AIP
Conference Proceedings, vol. 940, no. 1, pp. 38-49, September 18, 2007
2007.

[15] E. Steele, A. Tucker, P. Hoen and M. J. Schuemie, “Literature-based
priors for gene regulatory networks,” Bioinformatics, vol. 25, no. 14, pp.
1768-1774, July 15 2009.

[16] Y. Wang, T. Joshi, X.-S. Zhang, D. Xu and L. Chen, “Inferring gene
regulatory networks from multiple microarray data sets,” Bioinformatics,
vol. 22, no. 19, pp. 2413-2420, October 01 2006.

[17] B.-L. Chen, L.-Z. Liu and F.-X. Wu, “Inferring gene regulatory networks
from multiple time course gene expression data sets,” in 2011 IEEE
International Conference onSystems Biology (ISB), Zhuhai, China, 2011.

[18] R. Gupta, A. Stincone, P. Antczak, S. Durant, R. Bicknell, A. Bikfalvi
and F. Falciani, “A computational framework for gene regulatory
network inference that combines multiple methods and data sets,” BMC
Systems Biology, vol. 5:52, 2011.

[19] D. Marbach, C. Mattiussi and D. Floreano, “Combining Multiple Results
of a Reverse-Engineering Algorithm: Application to the DREAM Five-
Gene Network Challenge,” Annals of the New York Academy of Sciences,
vol. 1158, no. 1, pp. 102-113, 2009.

[20] G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory
networks,” Nature reviews. Molecular cell biology, vol. 9, no. 10, pp.
770-780, 10//print 2008.

[21] J. Vohradsky, “Neural network model of gene expression,” The FASEB
Journal, vol. 15, no. 3, pp. 846-854, March 01 2001.

[22] W. S. Hlavacek and M. A. Savageau, “Rules for Coupled Expression of
Regulator and Effector Genes in Inducible Circuits,” Journal of
Molecular Biology, vol. 255, no. 1, pp. 121-139, 1/12 1996.

[23] N. Kennedy, P. Thompson, H. Zheng and W. Dubitzky, “Multi-Scale
modelling of the Bile Acid and Xenobiotic System,” in Proceedings of
The 2011 International Conference on Bioinformatics & Computational
Biology, USA, 2011.

[24] S. A. Kliewer and T. M. Willson, “Regulation of xenobiotic and bile acid
metabolism by the nuclear pregnane X receptor,” Journal of lipid
research, vol. 43, no. 3, pp. 359-364, March 1 2002.

[25] D. D. Moore, S. Kato, W. Xie, D. J. Mangelsdorf, D. R. Schmidt, R.
Xiao and S. A. Kliewer, “International Union of Pharmacology. LXII.
The NR1H and NR1I Receptors: Constitutive Androstane Receptor,
Pregnene X Receptor, Farnesoid X Receptor , Farnesoid X Receptor ,
Liver X Receptor , Liver X Receptor , and Vitamin D Receptor,”
Pharmacological Reviews, vol. 58, no. 4, pp. 742-759, December 2006.

[26] S. Nishida, J. Ozeki and M. Makishima, “Modulation of Bile Acid
Metabolism by 1 -Hydroxyvitamin D3 Administration in Mice,” Drug
Metabolism and Distribution, vol. 37, no. 10, pp. 2037-2044, October
2009 October 2009.

[27] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L.
Xu, P. Mendes and U. Kummer, “COPASI–a COmplex PAthway
SImulator,” Bioinformatics, vol. 22, no. 24, pp. 3067-3074, December 15
2006.

[28] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS ’95.,
Proceedings of the Sixth International Symposium on, 1995.

[29] L. Petzold, “Automatic Selection of Methods for Solving Stiff and
Nonstiff Systems of Ordinary Differential Equations,” SIAM Journal on
Scientific and Statistical Computing, vol. 4, no. 1, pp. 136-148, 1983.

[30] H. D. Kim and E. K. O’Shea, “A quantitative model of transcription
factor-activated gene expression,” Nat Struct Mol Biol, vol. 15, no. 11,
pp. 1192-1198, 2008.

[31] M. A. Savageau, “Biochemical systems analysis. A study of function and
design in molecular biology. Addison-Wesley, Reading Mass. 1976.,”
Biochemical education, vol. 5, no. 4, pp. 84-84, 1977.

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

