
The influence of network topology on reverse-engineering of

gene-regulatory networks

Alexandru Mizeranschi, Noel Kennedy, Paul Thompson, Huiru Zheng, and
Werner Dubitzky∗

University of Ulster, Coleraine/Jordanstown, UK
w.dubitzky@ulster.ac.uk

Abstract
Modeling and simulation of gene-regulatory networks (GRNs) has become an important aspect
of modern computational biology investigations into gene regulation. A key challenge in this
area is the automated inference (reverse-engineering) of dynamic, mechanistic GRN models
from time-course gene expression data. Common mathematical formalisms used to represent
such models capture both the relative weight or strength of a regulator gene and the type
of the regulator (activator, repressor) with a single model parameter. The goal of this study
is to quantify the role this parameter plays in terms of the computational performance of
the reverse-engineering process and the predictive power of the inferred GRN models. We
carried out three sets of computational experiments on a GRN system consisting of 22 genes.
While more comprehensive studies of this kind are ultimately required, this computational
study demonstrates that models with similar training (reverse-engineering) error that have been
inferred under varying degrees of a priori known topology information, exhibit considerably
different predictive performance. This study was performed with a newly developed multiscale
modeling and simulation tool called MultiGrain/MAPPER.

Keywords: Gene-regulation, automated model inference, rate law, structure parameters

1 Introduction

Systems biology refers to the quantitative analysis of the dynamic interactions among multiple
components of a biological system and aims to understand the characteristics of a system as
a whole [3]. It involves the development and application of system-theoretic concepts for the
study of complex biological systems through iteration over mathematical modelling, computa-
tional simulation and biological experimentation. Modeling and simulation of gene-regulation
networks is becoming an area of growing interest in systems biology research [13].

∗Corresponding author

Procedia Computer Science

Volume 29, 2014, Pages 410–421

ICCS 2014. 14th International Conference on Computational Science

410 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.037 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.037&domain=pdf


Figure 1: Automated inference of gene-regulatory networks from time-course gene expression
data.

The regulation of genes and their products is at the heart of modern systems biology re-
search. For instance, the understanding gene-regulatory processes in the context of diseases
is increasingly important for therapeutic development. Cells regulate the expression of their
genes to create functional gene products (RNA, proteins) from the information stored in genes
(DNA) [2]. Gene regulation is a complex process involving the transcription of genetic in-
formation from DNA to RNA, the translation of RNA information to make protein, and the
post-translational modification of proteins. Gene regulation is essential for life as it allows an
organism to respond to changes in the environment by making the required amount of the right
type of protein when needed. Developing quantitative models of gene regulation is essential to
guide our understanding of gene regulation. The approaches considered in our study concentrate
on an abstract conceptualization of gene-regulation networks that ignores intricate intermediate
biological processes of cellular gene regulation, such as splicing, capping, translation, binding
and unbinding [13].

As the amount of gene expression data is growing, researchers are becoming increasingly
interested in the automated inference of quantitative dynamic, mechanistic gene-regulatory
network models from time-course gene expression data [11, 13, 4, 17, 6, 7]. This inference
process is depicted in Figure 1.

The modeling and simulation loop in the GRNmodel reverse-engineering workflow (Figure 1)
keeps generating models which predict time-course gene expression data until the error between
measured and predicted/simulated data falls below a pre-defined threshold. The quality of a
reverse-engineered model is mainly determined by two factors:

1. Predictive power: The accuracy of the predicted time-course response for unseen stim-
ulus/input data.

2. Inferential power: The accuracy of the reverse-engineered gene-regulatory structure.

Reverse-engineering high-fidelity GRN models is a long-standing problem [13]. Currently,
some of the main challenges include a lack of sufficient amounts of time-course gene expression
data and a lack of reverse-engineering algorithms and methods that are able to incorporate
existing biological knowledge effectively. The data problem has two aspects:

1. Because of the high costs and other factors, the number of experiments performed on real
GRN systems is often very small. In particular, experiments with different experimental

Reverse-engineering of gene regulation networks Mizeranschi et al.

411



conditions applied to the same system are rare. As a consequence, there are normally
only very few data sets available for modeling (model inference and model validation).
Commonly there is only one data set for model inference, and none for model validation.
Systematic studies on how many data sets are required are rare [11].

2. Many time-course gene expression experiments involve only a small number of time points;
sometimes as low as two or three. Again, there is a lack of systematic studies that shed
more light on this aspect.

More critical than the number of measured time points is to have stimulus-response data of
more than one experimental condition [11], as a single-condition data set is unlikely to carry
enough information to reveal the underlying network topology with sufficient accuracy.

A great deal of research on reverse-engineering dynamic, mechanistic GRN models involve
only a small or moderate number (order of 5-10) of genes. Approaches with more than ten
genes are still uncommon. One reason for this is the computational resources (processors) that
are needed to reverse-engineer a GRN model – the more genes, the more computing power is
needed. The objective of this study is to shed more light on the performance aspects of GRN
model reverse-engineering. In particular, we focus on the issue on quantifying the computational
complexity of the reverse-engineering process and the predictive power of the inferred models
depending on the parameters that represent the network structure. This study was performed
with a tool called MultiGrain/MAPPER (see Section 3), which we developed as part of the
EU project MAPPER1. MultiGrain/MAPPER was designed for modelling and simulation of
gene-regulation networks within a multiscale modelling framework.

The remainder of the paper is organized as follows: Section 2 describes the modeling and
simulation of gene-regulatory networks. It discusses the important role of the network topology
model parameter “omega” in the conceptualization (representation) of dynamic, mechanistic
GRN models and in the model reverse-engineering process. Section 3 presents the computa-
tional experiments we have conducted to quantify the role of the “omega” parameter on the
computational performance of the reverse-engineering process and the predictive performance of
the resulting models. The results of these experiments are presented and discussed in Section 4.
Section 5 concludes with some final remarks and an outlook on future work.

2 Modeling and simulation of gene-regulation networks

2.1 ODE-based GRN model representation

As time-course gene expression data are more readily available, mathematical modeling and
computational simulation are becoming important tools for investigating the gene-regulatory
structure and time-dependent changes of transcripts in GRNs [13, 7]. The most common
strategy for modeling and simulating dynamic GRNs is based on nonlinear ordinary differential
equations (ODEs) obtained from standard mass-balance2 kinetic rate laws [3]. The ODEs in
a GRN model relate changes in gene transcript concentrations to each other (and possibly to
an external perturbations). Such GRN models consist of a differential equation for each of
the genes in the network, describing the transcription rate of the gene as a function of the
other genes (and of the external perturbations). The parameters of the equations have to be
inferred from the time-course gene expression data set based on a priori knowledge. ODE GRN

1http://www.mapper-project.eu
2Mass-action kinetics assumes that the rate of an elementary reaction is proportional to the product of the

concentrations of reacting species (reactants): rate∝ [A][B] for A +B → C.

Reverse-engineering of gene regulation networks Mizeranschi et al.

412



Figure 2: Illustration GRN network structure for 5-gene GRN system: (a) Synthesis-regulatory
network structure. (b) Degradation-regulatory network structure.

models are similar to metabolic models that are formulated based on enzyme kinetics, where
each rate law approximates a series of elementary chemical steps. Here, the rate laws are one
level of complexity above that and represent a series of enzymatic steps. Because these rate
laws combine mechanistic details into a small set of model parameters, they are sometimes
referred to as “lumped” models. In a sense, these models are neither fully mechanistic nor
purely phenomenological.

The equations in an ODE-based GRN model represent two gene-regulatory processes: tran-
script synthesis and transcript degradation. Transcript synthesis is a process that constructs
(synthesizes) transcript molecules (messenger mRNA), and transcript degradation is a process
that destroys (degrades) transcript molecules. The two processes are regulated based on the
conditions within the cell and in its environment to ensure that the right amount of the right
type of transcript is available when needed. Regulation means that a process is either activated
or repressed. Synthesis activation increases the rate of transcript synthesis, and synthesis re-
pression decreases it. Degradation activation increases the rate of transcript degradation, and
degradation repression decreases it. Both processes combine to regulate the total amount of
transcript in a cell. Mathematically, a GRN model is defined by a set of coupled ODEs. There
is one ODE for each gene in the GRN.

Eq. (1a) illustrates a generic ODE-based GRN model defining the total rate of transcript
change of a GRN system consisting of i = 1,2, ..., n genes. Eq. (1b) provides a simplified notation
by making the time variable t “implicit”. We will use this simplified form in the remainder of
this text.

dxi

dt
(t) = Ωi(Si, x1(t), x2(t), ..., xn(t), t) −Δi(Di, x1(t), x2(t), ..., xn(t), t) (1a)

dxi

dt
= Ωi(Si, x1, x2, ..., xn) −Δi(Di, x1, x2, ..., xn) (1b)

where

• xi, xj ∈ {x1, x2, ..., xn}: Transcript concentration of genes i and j, respectively, at time t;

• dxi/dt: Total rate of xi change at time t;

Reverse-engineering of gene regulation networks Mizeranschi et al.

413



• Ωi(⋅): The rate of synthesis of transcript xi at time t;

• Δi(⋅): The rate of degradation of transcript xi at time t;

• Si,Di: Constant parameters governing Ωi(⋅) and Δi(⋅), respectively;

• t: Time.

Notice, while the total rate of transcript change, dxi/dt, may be negative at any given time,
neither the rate of transcript synthesis nor the rate of transcript degradation can be negative!

An important aspect in ODE-based GRN models is the representation of the regulatory net-
work structure. The structure is determined by the nature (activator, repressor, no regulation)
and relative strength or weight of influence of transcript xj on transcript xi. The gene-regulatory
structure of a GRN is usually conceptualized as a network (or graph) consisting of nodes (or
vertices) and links (or edges) between nodes [1]. The nodes represent genes or transcripts, and
the links represent gene-regulatory or transcript-regulatory influences. Mathematically, such
networks are described as edge-labeled directed graphs.

Usually, visualizations of GRN graphs depict only the influences (edges) regulating tran-
script synthesis. Figure 2a illustrates such a synthesis-regulatory graph structure based on a
5-gene GRN. Since there are only two types of synthesis regulation (synthesis activation and re-
pression), the edge “labels” of a synthesis-regulatory graph are normally visualized by drawing
arrows with two different heads, “→” and “ ⊣ ” as illustrated in Figure 2a. A directed graph
(edge-labeled or not) allows more than one edge joining the same vertex, but more than one
edge going in the same direction between two vertices is not allowed. This is consistent with
our conceptualization of GRNs which requires that a regulator gene cannot simultaneously ac-
tivate and repress transcript synthesis of the same target gene. Figure 2b shows the same GRN
system depicted in Figure 2a, but with the addition of the regulatory structure governing the
process of transcript degradation. In general, the degradation-regulatory structure of GRNs is
also represented as an edge-labeled directed graph. Even though most, if not all, GRN models
represent transcript degradation in some form or another, the visualizations of the regulatory
network structure do not usually show the degradation-regulatory influences, because degrada-
tion is often modeled as a uniform process that does not involve complex regulatory influences
between distinct genes.

We can appreciate how ODE-based GRN models represent the network structure of a GRN
system when we replace the generic ODE GRN model shown in Eq. (1) by a concrete ODE
rate law. In this study we chose a widely used rate model called artificial neural network
(ANN ) [19], which is defined by Eq. (2).

dxi

dt
= α̂i

1

1 + exp(γi −
n

∑
j
ωij xj)

− βixi , (2)

where

• xi, xj ∈ {x1, x2, ..., xn}: Transcript concentration of genes i and j, respectively, at time t,
where n is the total number of genes in the GRN system;

• dxi/dt: Total rate of xi change at time t;

• α̂i ∈ R
+: Maximal synthesis rate of transcript xi;

• ωij ∈ R: Type of synthesis regulation of transcript xi by xj , such that

ωij > 0: synthesis activation of xi by xj ;

ωij < 0: synthesis repression of xi by xj ;

Reverse-engineering of gene regulation networks Mizeranschi et al.

414



ωij = 0: no synthesis regulation of xi by xj .

• ∣ωij ∣ ∈ R
+

0 : Relative weight of synthesis-regulatory influence of xj on xi;

• γi ∈ R: Sensitivity of xi synthesis to the combined influence ∑j ωij xj of the regulators;
and

• βi ∈ R
+: Degradation rate constant modulating degradation rate of xi.

The ANN rate law is inspired by research on artificial neural neurons [14]. In this formula-
tion, the transcript synthesis rate Ωi(⋅) (first term in Eq. (2)) is determined by summing up the
weighted influences of all transcripts in the system with an exponential function that produces
sigmoidal kinetics. Because 1/(1 + exp(⋅)) ∈ [0,1], the constant α̂i represents the maximal rate
at which xi can be synthesized. And the transcript degradation rate Δi(⋅) (second term in
Eq. (2)) is modeled as being directly proportional to the concentration of the transcript xi

itself: Δi(⋅) = βixi.
Two other well-known ODE-based formalisms that have been used to model GRN systems

are the Hill [9] and the synergistic-system [16] rate laws.

2.2 Reverse-engineering of GRN models from time-course data

Once one has chosen a formalism to represent a GRN, one needs to determine concrete values of
the model parameters – the parameters that describe the network structure, and the parameters
that represent other system aspects. These values could be determined manually based on
available knowledge about the underlying GRN system, or automatically based on available
experimental data from the GRN system.

ReverseEngineerModel
Input: M ← Model equations; L← Parameter limits; G← Network topology
Input: D ← Training data; ε← Error threshold
Output: P ← Parameter values; E ← Training error;
S ← Simulation data (* Initialize simulation data *)

E ←∞ (* Initialize training error *)

repeat
P ← Optimize(L,E) (* Generate parameter values with optimizer *)

S ← SolveODE(M,P,D) (* Solve model equations with ODE solver *)

E ← Error(S,D) (* Determine training error *)

until E < ε ;

Algorithm 1: Basic reverse-engineering algorithm. The network topology, G, is an optional
input. In this study, we experiment with various degrees of known network topology.

The automated approach whose basic workflow is depicted in Figure 1 requires a suitable
algorithm to estimate the model parameters. A pseudo code of the a general reverse-engineering
algorithm is shown in Algorithm 1. The algorithm is called “general” because it shows only
key steps and does not make explicit certain details, e.g. keeping track of and memorizing the
current best solutions.

Algorithm 1 illustrates the basic steps in reverse-engineering an ODE GRN model from
time-course gene expression data. The main loop contains the critical steps of the algorithm:
(1) An optimizer algorithm that generates candidate model parameter values by attempting to
minimize the training error, E. (2) An ODE solver component that numerically integrates the
model equations using the initial values of the time series in the training data set, D. (3) A

Reverse-engineering of gene regulation networks Mizeranschi et al.

415



component that computes the simulation error, E, based on the time-course gene expression
data in the training data set, D, and the predicted or simulated data, S, determined by the
ODE solver. In terms of computational effort, the ODE solver step in the algorithm accounts
for approximately for 80% of the total computing time of Algorithm 1. The reverse-engineering
process terminates, when the training error drops below the pre-defined error threshold ε.
Usually, a maximal number of iterations is defined to make sure that the algorithm terminates
in reasonable time (this is not shown in Algorithm 1).

Once a “final” model has been determined with Algorithm 1, this model still needs to be
validated before it is accepted. There are a variety of ways to validate a system dynamics
model [5]. A common approach, adopted in this study, is to simulate the response data, S(V ),
to an initial condition defined in a separate, independent validation data set, V , and then
calculate the validation error between S(V ) and V . If this validation error is within acceptable
boundaries, the model is said to be validated.

2.3 The trouble with “omega”

The omega parameter in the ANN rate law3 plays a crucial role, because it represents two
distinct biological concepts simultaneously. On one hand, it defines the nature of synthesis
regulation between two genes i and j – if it is positive, then j activates i, if it is negative, j
represses i, and if it is zero, j does not regulate i . This could be viewed as a logical or qualitative
role of ωij . On the other hand, its absolute value ∣ωij ∣ defines the relative strength or weight
of a regulator gene j on the target gene i. An important consequence of such a continuous
representation of a discrete concept (network topology) is that a reverse-engineering algorithm
like the one discussed above has a tendency to infer fully connected network structures. Fully
connected structures are difficult to interpret at best, or totally meaningless at worst. Future
reverse-engineering algorithms need to employ heuristics and/or background knowledge to limit
the number of inferred regulatory influences.

The number of parameters that need to be determined by the reverse-engineering procedure
depends on the rate law. Critically, the number of parameters grows with the number of
genes in the underlying GRN system. Since the ωij parameter is linked to synthesis-regulatory
interactions, the number of omega parameters grows with the number, n, of genes in the
GRN system. For a GRN system consisting of n genes, there is a maximum of n2 synthesis-
regulatory interactions (and n2 degradation-regulatory interactions). For the ANN rate law
defined by Eq. (2), the total number of parameter values to be estimated is (n + 3)n, since we
have α̂i, γi, βi, ωi1, ωi2, ..., ωin for each gene i.

The goal of this study is to quantify the role the omega parameters play in terms of the
computational performance of the reverse-engineering algorithm and the predictive performance
of the reverse-engineered GRN models.

3 Experiments and implementation

3.1 Experiments

To quantify the influence of the omega parameter on the complexity of the reverse-engineering
computations and the fidelity of the resulting models, we have designed three sets of experiments
based on the yeast cyclin GRN system that consists of 22 genes [18]. In yeast and other

3The Hill [9] and synergistic-system [16] rate laws have an equivalent parameter.

Reverse-engineering of gene regulation networks Mizeranschi et al.

416



organisms, the cell cycle is controlled by the activity of the protein family of cyclins and cyclin-
dependent kinases that are periodically expressed during cell cycle. Because these proteins are
conserved among different species, insights into how this network regulates the abundance of
its proteins is of importance well beyond the yeast species. However, in this study we did not
use the exact yeast GRN as reported by To and Vohradský [18], instead, we created artificial
variants consistent with the basic characteristics (number and type of synthesis regulators) of
the yeast GRN system.

In order to investigate the influence of topology information encoded by the omega param-
eters, we conducted three sets of reverse-engineering experiments based on the ANN rate law
defined by Eq. (2):

1. Unknown network topology: The topology of the GRN network is not known, hence
all n2 = 222 = 484 omega parameters plus 3 ∗ n = 3 ∗ 22 = 66 non-omega parameters need
to be estimated. In total, 550 parameters.

2. Fully known network topology: The nature of all 64 synthesis regulators (34 activators
and 30 repressors) in the GRN is known. This means that 420 omega parameters are
fixed at a value of zero, and the values of the remaining 64 omega-parameters need to be
estimated within a signed range: (0,+ωmax] for activators and [−ωmin,0) for repressors.
In addition, all 66 non-omega parameters need to be estimated.

3. Partially known network topology: 32 of the 64 synthesis regulators are randomly
identified as known (using the corresponding limits as in case (2) above). This means
that 66 non-omega and 452 omega parameters need to be estimated.

We created a reference GRN systems with the JAGN [12] artificial gene network generation
tool. From this, we generated two independent data sets (each with a different initial condition).
One data set, the training data set, was used for model inference (reverse-engineering), and the
other, the validation data set, for model validation. For each training data set, we reverse-
engineered 20 models4 and validated each against the corresponding validation data set. The
reverse-engineering simulation error threshold was set to ε = 0.01, and each of the 20 models
was guaranteed to have a training error, E, below this threshold: E < ε. We employed the root
mean squared error (RMSE ) to compute E.

The optimization step of the reverse-engineering algorithm was realized with particle swarm
optimization (PSO). PSO is a population-based stochastic optimization technique that is par-
ticularly useful for estimating the values of continuous parameters [10]. It is inspired by the
flocking or schooling behavior of animals and shares many similarities with evolutionary com-
putation techniques, such as genetic algorithms. Similar to genetic algorithms, the PSO is ini-
tialized with a population of random solutions, called particles. The particles “move” through
the search space in a goal-directed fashion dependent on their “fitness”. In each iteration, the
position and velocity of a particle is updated based on its fitness and its relative position to
neighboring particles. Our experiments adopted a multi-island or multi-swarm PSO approach.
Similar to genetic algorithms, a multi-swarm PSO spreads its entire particle population over
multiple islands or swarms. During optimization, a few particles are allowed to cross between
swarms to facilitate “genetic” diversity. The multi-swarm PSO is assumed to have better prop-
erties (than the single-swarm variant) in terms of avoiding convergence to local optima. Our
reverse-engineering experiments were performed with a multi-swarm set-up consisting of 10

4Because of the stochastic nature of the optimizing step in Algorithm 1, each reverse-engineered model is
different. Hence, we created 20 replicas to obtain robust statistics.

Reverse-engineering of gene regulation networks Mizeranschi et al.

417



swarms, each swarm consisting of 100 particles. The fitness in our experiments was determined
by the training error, E, with a threshold of ε = 0.01.

All experiments were performed with our own GRN modeling and simulation tool Multi-
Grain/MAPPER (see next section). The execution environment was preserved for all scenarios.
It consisted of a high-performance computing cluster consisting of 1088 nodes (12 CPU cores
per node) based on an Intel Xeon architecture with either 16 and 24 GB of memory per node,
respectively. The cluster was made available by the Cyfronet Academic Computer Centre in
Krakow, Poland.

3.2 MultiGrain/MAPPER: a GRN modeling and simulation tool

As part of the European MAPPER project (see Footnote 1), we developed a Java-based software
called Multiscale Gene Regulation Modeling Tool (MultiGrain/MAPPER). MultiGrain/MAP-
PER is still under active development. One of the main design goals of MultiGrain/MAPPER
is to facilitate distributed multiscale modeling and simulation of gene regulation systems and
processes. MultiGrain/MAPPER supports the Systems Biology Mark-up Language (SBML)
and the Systems Biology Results Mark-up Language (SBRML). The ODE solver in Multi-
Grain/MAPPER uses Michael Thomas Flanagan’s Java Library5. A core feature of Multi-
Grain/MAPPER is a multi-swarm implementation of particle swarm optimization [10]. The
multi-swarm PSO feature allows us to map the optimization process to multiple and possibly
distributed processors and machines. We use the MAPPER MUltiScale Coupling Library and
Environment (MUSCLE ) library [8] to implement the communication channels between Multi-
Grain/MAPPER swarms and the GRN particles. MUSCLE was originally developed around a
complex automata model of multiscale systems, which provides a framework for linking (cou-
pling) single-scale models to create complex multiscale models.

4 Results and discussion

The results of our experiments are summarized in Table 1. The table shows the average number
of PSO iterations performed, the average wall time taken, and the average validation error
obtained over 20 reverse-engineering experiments per condition (unknown, partially known, and
fully known network topology). Recall, the training error of all 20 models for each topology
conditions was less than ε = 0.01.

Topology ValError TotalTime [sec] Iterations
notop 0.063 ± 0.083 174.80 ± 196.09 16.70 ± 21.67
part 0.042 ± 0.063 128.55 ± 126.63 12.25 ± 14.53
top 0.014 ± 0.003 54.25 ± 66.35 5.95 ± 5.31

Table 1: Results from three sets of reverse-engineering experiments. Each cell shows the mean
value and associated standard deviation for n = 20 repeats. (notop=unknown network topology;
part=partially known network topology; top=fully known network topology)

The boxplots in Figures 3 and 4 visualize all results for the validation error of the reverse-
engineered GRN models and computation time (wall time) of the reverse-engineering processes.

Consider the validation error results in Figure 3 and Table 1. First, the boxplots clearly
show a decrease in variability of the validation error as we go from unknown topology (notop),

5Michael Thomas Flanagan’s Java Scientific Library: http://www.ee.ucl.ac.uk/~mflanaga/java/

Reverse-engineering of gene regulation networks Mizeranschi et al.

418



to partially known topology (part), and through to fully known topology (top). The variation
of the mean of the validation errors is better conveyed by the last column of Table 1. Indeed,
the mean validation error of the 20 models that have been reverse-engineered with fully known
topology is about 4.5 times lower than that of the models obtained with unknown topology.
This is remarkable because all 60 reverse-engineered models have a training error of less than
the threshold ε = 0.01.

Consider the total time results in Figure 4 and Table 1. Both the boxplot and the data in
the TotalTime column of the table suggest that the variation of the total reverse-engineering
wall times is in the order of the average total time of the corresponding topology condition.
Somewhat surprisingly, the mean total wall time for the unknown topology experiments is
only 3.22 seconds longer than that for the experiments with the fully known topology. This is
surprising, because for the experiments with unknown topology there are approximately 3.75
times more parameters to be estimated than in the experiments with fully known topology.
This suggests a good scalability of the implementation of the reverse-engineering algorithm.

The total wall time data correlates well with the number of iterations (column with header
Iterations in Table 1) performed by the reverse-engineering process. Therefore, we do not
further discuss these data.

0.0

0.1

0.2

0.3

notop part top
Topology

V
al

E
rr

or

Topology
notop

part

top

Topology−dependent ValError

Figure 3: Validation error.

0

250

500

750

notop part top
Topology

To
ta

lT
im

e

Topology
notop

part

top

Topology−dependent TotalTime

Figure 4: Reverse-engineering total time.

5 Conclusions and future work

Automated inference of gene-regulation models from time-course gene expression data is a
long-standing problem [13]. Such models are useful, provided they perform well on unseen
data (predictive power) and that their regulatory structure is close to the real structure of
the underlying GRN system (inferential power). The inference process is a challenging task
because of the lack of sufficient data. In particular, data obtained from multiple experiments
under different experimental conditions is lacking. Such data is likely to reveal more details of
the underlying system [11].

Common rate law model formalisms employ a single parameter per (potential) synthesis
regulator to express the regulator’s nature (activator, repressor, no regulator) as well as the
relative influence weight or strength of the regulator [3, 15, 19, 16, 9]. In trying to cover

Reverse-engineering of gene regulation networks Mizeranschi et al.

419



both concepts, these rate laws are prone to infer fully connected network structures. This
is a big problem, as such structures cannot be interpreted in a meaningful way. When we
separate structure from relative strength in the inference process, we would like to have a
better idea how big an influence the structure has on the inference process, both in terms of
computational complexity and model fidelity. In this study, we explored this question based on
a GRN system consisting of 22 genes. We found that for all models that fitted the training data
well (training error: E < 0.01), only those whose structure is close to the structure of the system
that generated the data perform well on the independent validation data set (validation error).
We were able to quantify the difference based on the three experiments (with different topology
assumptions) we performed. We were also able to quantify the computing time for the different
topology configurations. One of the contributions this study makes is to generate quantities
for these aspects. We note that our implementation of the reverse-engineering Algorithm 1
scales roughly linearly with number of structure parameters (this is not discussed in detail
here for space limitation reasons). Our results underline the importance of having independent
validation data sets generated from the same system from which the models are constructed.

While we believe that the result of our experiments are important, clearly more systematic
computational studies are needed to understand the type of GRN model inference investigated
in this study. We will continue to work in this area in the future.

Acknowledgments

This research received funding from the MAPPER EU-FP7 project (grant no. RI-261507) and
was supported in part by PL-Grid infrastructure.

References

[1] T. Aittokallio and B. Schwikowski. Graph-based methods for analysing networks in cell biology.
Briefings in Bioinformatics, 7(3):243–255, 2006.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular biology of the
cell. Garland Science, New York, 4 edition, 2002.

[3] U. Alon. An Introduction to systems biology: Design principles of biological circuits. CRC Press,
Taylor & Francis Group, London, 2006.

[4] S.G. Baker and B.S. Kramer. Systems biology and cancer: Promises and perils. Progress in
Biophysics and Molecular Biology, 106(2011):410–413, 2011.

[5] Y. Barlas. Model validation in systems dynamics. In International Systems Dynamics Conference,
pages 1–10, 1994.

[6] I. Cantone, L. Marucci, F. Iorio, M.A. Ricci, V. Belcastro, M. Bansal, S. Santini, di Bernardo M.,
di Bernardo D., and Cosma M.P. A yeast synthetic network for in vivo assessment of reverse-
engineering and modeling approaches. Cell, 137:172–181, 2009.

[7] K.-H. Cho, S.-M. Choo, S.H. Jung, J.-R. Kim, H.-S. Choi, and J. Kim. Reverse engineering of
gene regulatory networks. IET Systems Biology, 1(3):149–163, 2007.

[8] J. Hegewald, M. Krafczyk, J. Tölke, A. Hoekstra, and B. Chopard. An agent-based coupling
platform for complex automata. In M. Bubak, GD. Albada, J. Dongarra, and P.M.A. Sloot,
editors, Computational Science – ICCS 2008, volume 5102 of Lecture Notes in Computer Science,
pages 227–233. Springer Berlin Heidelberg, 2008.

[9] A.V. Hill. The possible effect of the aggregation of the molecules of hæmoglobin. Journal of
Physiology, 40:iv–vii, 1910.

Reverse-engineering of gene regulation networks Mizeranschi et al.

420



[10] J. Kennedy and R Eberhart. Particle swarm optimization. In Proceedings of IEEE International
Conference on Neural Networks, volume IV, pages 1942–1948, 1995.

[11] N. Kennedy, A. Mizeranschi, P. Thompson, H. Zheng, and W. Dubitzky. Reverse-engineering of
gene regulation models from multi-condition experiments. In IEEE Symposium Series on Compu-
tational Intelligence 2013 (SSCI 2013), pages 112–119, Singapore, 2013.

[12] F.M. Lopes, R.M. Cesar, and L.da.F. Costa. Gene expression complex networks: Synthesis,
identification, and analysis. Journal of Computational Biology, 18(10):1353–1367, 2011.

[13] D. Marbach, J.C. Costello, R. Küffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R. Allison,
The DREAM5 Consortium, M. Kellis, J.J. Collins, and G. Stolovitzky. Wisdom of crowds for
robust gene network inference. Nature Methods, 9:796–804, 2012.

[14] W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, 5(4):115–133, 1943.

[15] P. Mendes, W. Sha, and K. Ye. Artificial gene networks for objective comparison of analysis
algorithms. Bioinformatics, 19(suppl 2):ii122–ii129, 2003.

[16] M.A. Savageau. Introduction to s-systems and the underlying power-law formalism. Mathematcial
and Computer Modelling, 11:546–551, 1988.

[17] M.T. Swain, J.J. Mandel, andW. Dubitzky. Comparative study of three commonly used continuous
deterministic methods for modeling gene regulation networks. BMC Bioinformatics, 11(1):459,
2010.

[18] C.C. To and J. Vohradský. Measurement variation determines the gene network topology recon-
structed from experimental data: A case study of the yeast cyclin network. The FASEB Journal,
24(9):3468–3478, May 2010.

[19] J. Vohradský. Neural network model of gene expression. The FASEB Journal, 15(3):846–854,
2001.

Reverse-engineering of gene regulation networks Mizeranschi et al.

421


