
A multi-model reverse-engineering algorithm for
large gene regulation networks

Alexandru Mizeranschi, Paul Thompson, Huiru Zheng, Werner Dubitzky
University of Ulster, Coleraine/Jordanstown, UK

Abstract—Modeling and simulation of gene-regulatory net-
works (GRNs) has become an important aspect of modern
systems biology investigations into mechanisms underlying gene
regulation. An important and unsolved problem in this area
is the automated inference (reverse-engineering) of dynamic,
mechanistic GRN models from time-course gene expression data.
The conventional one-stage model inference algorithm determines
the values of all model parameters simultaneously. Recently, two-
stage algorithms have been proposed to improve the accuracy of
the inferred models and the efficiency of the reverse-engineering
process. The main objective of this study is to compare the
performance of the conventional one-stage and the modern two-
stage algorithm, with emphasis on the computational complexity.
We explored data generated from artificial and real GRN systems
under different experimental conditions and regulatory structure
constraints. Our results suggest that the 2-stage approach outper-
forms the one-stage methods by far in terms of model inference
speed without a loss of accuracy.

I. INTRODUCTION

The regulation of genes and their products is at the heart
of a systems view of complex biological processes. Hence,
the modeling and simulation of gene-regulation networks
(GRNs) is becoming an area of growing interest in systems
biology research [1]. As the amount of gene expression data
is growing, researchers are becoming increasingly interested in
the automated inference or reverse-engineering of quantitative
dynamic, mechanistic gene-regulatory network models from
time-course gene expression data [2]. The quality of such
reverse-engineered GRN models is determined mainly by two
factors: (1) Predictive power: The accuracy of predicted time-
course responses for unseen stimulus/input data (i.e. new ex-
perimental/biological conditions). (2) Inferential power: The
accuracy of the reverse-engineered gene-regulatory structure.

Reverse-engineering GRN models with high predictive and
inferential power is a long-standing problem [2]. In the present
study, we focus on mechanistic models based on ordinary
differential equations (ODEs) that represent both the gene
expression kinetics of the system and its regulatory structure
features. Such approaches represent a GRN system consisting
of N genes by N ODEs. Common equation forms, or rate
laws, include the S-system (Eq. (2)) and the ANN (Eq. (6)).

The maximum number of regulatory interactions in a GRN
system is N2, where N denotes the number of genes in the
system. The number of model parameters to be determined
in the inference process grows as the number of genes N
increases. The number of model parameters also depends on
the rate law chosen to represent the system. For models with
a large number of free parameters the computation effort/time
needed to determine the model parameters becomes an impor-
tant factor. Real gene networks are sparse, with an average

number of ca. 2 regulators per gene [3]. Viewing sparseness
of GRNs as a “design constraint”, GRN inference approaches
could use this to improve the effectiveness and efficiency of
the reverse-engineering process.

Two basic model inference algorithms have been proposed
in the literature: the conventional 1-stage algorithm and a more
recent 2-stage algorithm [4], [5], [6], [7]. 1-stage algorithms
attempt to estimate all model parameters simultaneously. By
contrast, 2-stage approaches first construct an ensemble of N
one-gene GRN models (one model per gene), derive the overall
gene-regulatory structure from the ensemble, and then estimate
the remaining model parameters in a final inference process.

The 2-stage approach has some important advantages over
the 1-stage algorithm. Essentially, the 2-stage procedure re-
alizes a kind of ensemble strategy. The advantage of such
a strategy is that the intermediate information (generated in
stage 1) can potentially be exploited to improve the overall
model construction process. For instance, this could be used to
improve the all-important inferential power, which is the major
weakness of state-of-the-art inference algorithms. In this study,
we do not seek to improve inferential or predictive power
over state-of-the-art methods. Instead, this study focuses on
assessing the computational complexity of the two methods.

II. RELATED WORK

A. 2-stage GRN model inference approaches

The 2-stage approach was first proposed by Maki et al. [7].
It decomposes the system of ODEs into N individual equations
and infers the parameters corresponding to one gene at a time.
In this way, the number of parameters per single-gene model
is reduced by a factor of N , where N is the number of genes
in the GRN system. The i = 1, ..., N resulting single-gene
models, Eq. (1), have a form similar to Eqs. (2) and (6).

dyi(t)

dt
= fi(y1(t), y2(t), ..., yN (t)) (1)

where

yi(t) =

{
xj(t) if j = i
x̂j(t) otherwise

and x̂j is obtained by making a direct estimation on the
observed gene expression level of gene j from the available
time-series data using a technique such as spline interpolation.
This direct estimation procedure becomes necessary because
the numerical integration procedure (ODE solver) requires
estimates of the the input data for all inputs at a temporal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

resolution which is usually much higher than that of the
experimental data. When we reverse-engineer the full model
with the 1-stage procedure, these estimates are provided by the
solutions of the other (j 6= i) equations in the ODE system.
A positive side effect of this direct estimation procedure is
that the degree of model-data fit of single-gene models is very
high.

Swain et al. [4] performed a comparative study of three
commonly used ODE rate laws: the ANN rate law [8], the S-
system [9], and the generalised rate law of transcription [10].
They employed a 2-stage approach to infer GRN models
and compared these in terms of inferential and predictive
power. A genetic algorithm was used as optimization method.
In the first stage (called bottom-up phase), the optimization
problem is split into N gene-specific parameter inference
problems that infer the parameters of single-gene models.
The algorithm retains the fittest single-gene models after a
number of iterations. These models are then combined into
a full GRN model. The GRN models they created with this
approach (from single stimulus/response data sets) were able
to reproduce the training data accurately. However, an accurate
reproduction of regulatory network features was only possible
with training data originating from multiple experiments under
varying conditions.

B. Penalty term approaches

Kikuchi et al. [11] proposed to infer biologically plausible
(sparse) GRN structures by incorporating prior knowledge into
the GRN model inference procedure. Essentially, sparseness
relates to the empirical observation that the total fraction
of regulatory influences in biological GRN systems is far
lower than the maximal number, N2, of possible regulatory
influences. The authors used the S-system rate law formulation
(Eq. (2)):

dxi(t)

dt
= αi

N∏
j=1

x
gij
j (t)− βi

N∏
j=1

x
hij

j (t), with i = 1...N (2)

where N denotes the number of genes in the GRN sys-
tem, αi and βi denote constants for transcript synthesis and
degradation rates, and gij and hij denote the kinetic orders
governing the synthesis- and degradation-regulatory influence
of gene j on gene i, such that positive values indicate ac-
tivation, negative values indicate repression, and zero values
indicate absence of any regulation.

Their approach defines the error function shown in Eq. (3)
to enforce GRN structures with higher degrees of sparseness.
The error function computes the combined deviation (error) of
the predicted versus observed experimental time courses. The
first term of the error function defines a relative squared error,
the second is the penalty term.

∆ =

N∑
k=1

T∑
t=1

(
x̂k(t)− xk(t)

xk(t)

)2

+

C

∑
i,j

|gij |+
∑

i,j,i 6=j

|hij |

 , (3)

where i, j, k = 1...N identify the genes in the system,
xk(t) denotes the experimentally observed and x̂k(t) the
predicted amount or concentration of transcript of gene k at
time t; gij and hij denote the kinetic orders of the S-system
rate law (Eq. (2)); and C denotes the penalty constant defining
how much the penalty term contributes to the the overall error.
A value of C = 0 means no penalty is added. The sums in
the penalty term essentially add up the magnitude or strength
of the regulatory influences (repressing and activating) from
genes j = 1, ..., N to gene i.

The penalty term of the error function in Eq. (3) effectively
enforces a sparse connectivity edge structure in the inferred
GRN model graph – fewer regulatory influences with lower
regulatory strength result in a lower overall error computed
by the ∆ function. Kikuchi et al. have tested their approach
for C values between 0.15 and 0 (no penalty). They found
that the convergence rate of their experiments with the penalty
term was 5 times higher than for experiments without penalty.
This was also reflected in lower computation times: parameter
inference experiments with C = 0.15 were 1.5 times faster
than those with no penalty (C = 0).

Kimura et al. [5] combined the two-stage approach of
Maki et al. (Eq. (1)) with the sparsity-inducing penalty term
of Kikuchi et al. (Eq. (3)). They observed that the penalty
term approach is biased as it has a tendency to “push” the
number of regulatory influences to zero. They proposed an
alternative formulation of the penalty term that compensates
for this inherent bias. In their formulation, the penalty term
contains a parameter specifying the “desired” average number
of regulatory influences. Thus, the error function for single-
gene models corresponding to gene i can be stated as follows:

∆i =

T∑
t=1

(
x̂i(t)− xi(t)

xi(t)

)2

+ C

N−I∑
j=1

(|Gij |+ |Hij |) , (4)

where I denotes the average number of regulatory influ-
ences, |Gij | and |Hij | denote vectors that arrange the absolute
values of the kinetic orders gij and hij in ascending order, and
the rest of the parameters have the same interpretation as in
Eq. (3). In this formulation, the penalty term only penalizes
the error in cases where the number of genes which directly
affect gene i (either by synthesis regulation or by degradation)
is greater than I .

Noman and Iba [6] further improved the penalty term
formulation of the gene-specific error function ∆i in Eq. (4)
by grouping the kinetic orders gij and hij into a single term
|Kij |:

∆i =

T∑
t=1

(
x̂i(t)− xi(t)

xi(t)

)2

+ c

2N−I∑
j=1

(|Kij |) , (5)

where |Kij | denotes a vector of the combined kinetic orders
gij and hij in ascending order. The error function in Eq. (5)
combines the kinetic orders into a single vector (sorted in as-
cending order) to avoid a bias inherent in the error function in
Eq. (4) towards regulations where a regulator gene affects the

target gene both at the level of synthesis (gij) and degradation
(hij). Because it is uncommon for a gene to regulate both the
synthesis and degradation of its target gene, the error function
of Noman and Iba seems more realistic. The authors also
adapted this approach to the ANN rate law [12]. However, their
results varied considerably from one experiment to the next.
This was attributed to the under-determination of the problem
(lack of sufficient amounts of data) and the noise inherent in
the gene expression measurements.

Because of the promising results achieved with the penalty
term approach and the ability of this method to capture the
sparseness of the regulatory structure inherent in real GRN
systems, we adopted this approach in our own experiments.

III. APPROACH

A. Methods

For the experiments presented in this study, we have
adopted the ANN rate law proposed by Vohradský [8] to rep-
resent GRN models because this formalism has the advantage
of having fewer parameters to optimize than comparable rate
laws [8], [4], [9], [10]. The ANN rate law is defined by Eq. (6).

dxi(t)

dt
=

ai

1 + exp(−
N∑
j

ωijxj(t) + θi)

− dixi(t), (6)

where i, j = 1, ..., N denote genes in a GRN system
consisting of N genes, and xi(t), xj(t) denote the total amount
or concentration of transcript of genes i and j, respectively, at
time t. Furthermore, ai denotes the maximal rate of transcript
synthesis of gene i, and di is a rate constant controlling the
rate of transcript degradation. The parameter ωij represents the
strength of the synthesis-regulatory influence of gene j on gene
i, where ωij > 0 represents synthesis activation, ωij < 0 syn-
thesis repression, and ωij = 0 means no synthesis regulation.
The parameter θi represents an activation/repression threshold
for the sigmoidal regulation function regulating the messenger
synthesis of gene i.

In order to facilitate the inference of realistic GRN models
with sparse a network structure, we adopted the penalty
approach defined by Eq. (5) [12]. We used the normalised
root mean squared error (NRMSE) to determine the deviation
of the time courses predicted by the GRN model and the
experimentally observed data. The NRMSE is less sensitive
to the absolute magnitude of the measurements, hence it
facilitates comparison of errors across models and systems.
The NRMSE is defined by the root mean squared error divided
by the range of the observed values.

The quantitative effects that the GRN structure information
has on the accuracy and speed of reverse-engineering GRN
models has previously been assessed [13]. If no information
about the GRN topology is used in the reverse-engineering
process (i.e. proportion regulators, regulators per gene, etc.),
the optimization process considers each gene as a possible
regulator of all other genes in the GRN system. It was found
that model inference is much faster and more accurate if the
network topology of the reverse-engineered system is known.

This study focused on quantitatively comparing the perfor-
mance (computing time, model errors) of reverse-engineering
GRN models with the “monolithic” 1-stage and the modular
2-stage approach. Because the ωij parameters of the ANN rate
law defined by Eq. (6) are implemented as double precision
numbers in our implementation, the chance that the numerical
procedures will result in exactly ωij = 0 is extremely low.
Thus, we adopted a threshold approach reported by Tominaga
et al. [14] as follows: if |ωij | < α, then we set ωij = 0. We
used a threshold of α = 0.1 in our experiments.

In order to estimate the model parameters, we used the
particle swarm optimization (PSO) algorithm [15]. The PSO
is a population-based meta-heuristic inspired by the flocking,
schooling or swarming behavior of animals. Two main ad-
vantages of this method include that it optimizes continuous
variables and it has the ability to avoid getting stuck in local
minima by using a multi-swarm approach which successively
swaps particles across each swarm after a fixed number of
iterations in order to increase the “genetic” diversity of the
overall swarm.

B. GRN systems and data

We used 6 artificial and 1 real GRN system to explore and
compare the performance characteristics of the 1-stage and 2-
stage model inference process. With the JAGN tool [16] we
manually created six artificial GRN reference systems, three
11-gene and three 22-gene systems, with an average regulatory
connectivity of 2, 3 and 4, respectively, in each of the groups
of three systems. We simulated each reference system under
two initial conditions to produce two data sets (a training and
corresponding validation data set). In order to create time series
data that is as similar to real gene expression data, we added
Gaussian noise with a standard deviation of 0.15 to create
three noisy versions for each data set. This resulted in a total
of 120 data sets, 60 used for model inference (training) and
60 for model validation. We reverse-engineered three GRN
models from each of the 60 training data sets, varying the
average connectivity parameter value I from 2 to 3 and then 4.
This gave us 180 reverse-engineered models for each reverse-
engineering technique, 360 in total.

In order to assess the behavior of the two modelling
approaches on real biological data, we have set up a smaller
number of experiments using data sets published by Pramila
et al. [17]. We used the alpha 30 and alpha 38 data sets. As a
reference model, we focused on a network with 11 genes and
34 regulatory interactions – the yeast cell cycle “core” network,
initially described by Li et al. [18] and reverse-engineered
by Böck [19]. We executed three sets of experiments, each
containing three experimental repeats. The algorithmic average
connectivity varied across the three experimental sets with the
values 2, 3 and 4, using the 1-stage and 2-stage approaches. In
total, we performed 18 experiments using this biological data
set.

C. Experimental set-up

We carried out a set of reverse-engineering experiments
designed to compare the 2-stage method to the “conventional”
(monolithic) 1-stage reverse-engineering approach which in-
fers complete GRN models without considering single-gene

models in a first, separate step. In order to provide a fair
comparison between the two methods, we have set the ter-
mination criteria as follows. The main PSO algorithm was set
to iterate for a maximum of 200 particle exchanges across
the PSO islands or swarms, with such an exchange occurring
every 50 PSO iterations and swapping 4 particles from each
island to the next one in a circular topology. The size of a sub-
swarm was set to 50 particles and the total swarm consisted
of 50 such sub-swarms. The PSO algorithm converges if the
optimization error ∆ drops below 0.15. These values were
empirically chosen such that they would ensure the successful
termination of each experiment.

For the first stage of the 2-stage approach, the PSO setting
was altered as follows: each PSO swarm contained 20 particles,
the total number of PSO iterations was set to 200, and the
error threshold was 0.05. A similar configuration change was
adopted for the real-data experiments, where we increased
the sub-swarm size to 200 particles in order to facilitate the
successful convergence of these experiments.

We used the following criteria to evaluate the performance
of reverse-engineering experiments and the inferred models:
Wall time: The total time to reverse-engineer a model. For
the 2-stage experiments, this includes the computation times
of both stages. Number of optimization iterations: The
number of particle migrations performed by PSO during the
second reverse-engineering stage. Training error threshold:
Threshold used to terminate the model inference process.
After some explorative experimentation, we used a training
threshold of 0.15. Validation error: Each inferred model was
validated against an independent validation data set, and the
model validation error was recorded. F-Score: A value or score
characterizing the inferential power of the inferred models,
i.e. the accuracy of the inferred GRN regulatory structure. We
adopted the F-score approach reported by Mazur et. al [20] for
a three-class (activation, repression, no regulation) problem.

D. Implementation and hardware set-up

The 2-stage approach presented in this study was real-
ized with the MultiGrain tool which was developed in-house
and described elsewhere [13]. This tool implements a multi-
island or multi-swarm version of the PSO algorithm [15]
which allows for the possibility for parallelization by do-
main decomposition. This is achieved by creating multiple
instances of a software module which implements a PSO
swarm and synchronizing these via message passing using
the MUSCLE [21] coupling library. In terms of the 2-stage
algorithm, the implementation allows for multiple PSO threads
to be executed during the first (decoupled ODE) stage. Using
multiple CPU cores, MultiGrain is able to infer multiple GRN
structures corresponding to the number of PSO sub-swarms
and select the optimal topology (having the lowest training or
validation error) to fix the structure parameters for the second
reverse-engineering stage. The ODE solver in MultiGrain
relies on Michael Thomas Flanagan’s Java Scientific Library,
which implements the Runge-Kutta 4 algorithm used for ODE
integration and cubic spline interpolation method used for
estimating the transient gene product concentrations in the
single-gene model integration phase of the 2-stage approach.

MultiGrain has been tested before in a distributed en-
vironment [21] and it was found that the tool is able to

efficiently make us of the increased computing power available
by increasing the number of PSO sub-swarms and total swarm
size. For the current study, the hardware set-up consisted of a
Linux machine with 48 AMD Opteron 8431 processors, each
with 6 cores. The total amount of RAM was 500 GB.

IV. RESULTS AND DISCUSSION

We notice that the 2-stage algorithm reverse-engineering
experiments were indeed much faster than the ones employing
the one-stage approach. For example, based on an average
system connectivity of 3, the average (across enforced average
reverse-engineering connectivities 2, 3 and 4) 1-stage reverse-
engineering wall time was 84.07 seconds, and for the 2-
stage version 19.43 seconds. Thus, the 2-stage algorithm was
more than 4 times faster. This difference was even greater
for the 22-gene case studies, where the computation times
were 20 times lower (42.07 seconds for an average system
connectivity of 3) for the 2-stage reverse-engineering jobs
than for the corresponding 1-stage versions (868.33 seconds).
The computation times improved also with an increase of the
average connectivity enforced by the penalty term, signifying
that the algorithms were more successful at finding suitable
solutions when the imposed connectivity restriction was less
demanding. This difference was most notable for the 11-
gene experiments using the 1-stage algorithm, where scenarios
having an enforced reverse-engineering connectivity of 4 were
completed successfully in half of the time taken for the
scenarios with connectivity 2: 57.7 seconds vs. 97.6 seconds
on average. These differences were however much less notable
for the 22-gene scenarios.

A proportional decrease of the number of PSO iterations
was observed in the 2-stage approach when compared with
the 1-stage approach. The number of iterations performed
was roughly between 10 and 20 times lower for the 11-gene
experiments, with a lower decrease for the scenarios involving
artificial systems with average connectivity 2 (from 46.33 to
4.8 iterations on average for the experiments with average
connectivity 2) and a higher difference for larger average
connectivities (38.87 to 2.6 and 23.8 to 1 iteration for average
connectivities 3 and 4, respectively). Similarly, the number of
iterations dropped by 30 to 50 times for the 22-gene scenarios,
from between 50 and 60 iterations to only one or two iterations
on average. This signifies that the first stage of the 2-stage
algorithm was able to find GRN structures that increased the
performance of the second reverse-engineering stage in terms
of the number of iterations required for convergence. The
question remains, however, whether the resulting GRN models
were meaningful in terms of their predictive and inferential
power.

The training errors, validation errors and the F-score val-
ues were generally similar for the two reverse-engineering
methods. The cut-off value of 0.15 for the training error
was marginally exceeded during the 2-stage scenarios, which
achieved training errors as low as 0.13 on average. In the case
of validation errors, their values did not show a consistent trend
depending on the choice of reverse-engineering algorithm and
average connectivity. However, these values were lower when
the 22-gene systems were being targeted.

With an increase in the average connectivity enforced by
the reverse-engineering algorithm, we noticed a considerable

variability in F-score values, which may cast doubt on the
practical usefulness of this penalty term. For all values of
artificial system average connectivity, the F-score increased
on average 1.5-fold and 2-fold for the experiments with
average connectivities of 3 and 4, respectively, compared to
the experiments using the value 2. The F-score increase was
likely caused by the larger degrees of freedom for the reverse-
engineering algorithm for larger values of the penalty term.

Similar observations were made for the experiments with
real biological data. We noticed a 3-fold decrease in computa-
tion times for the 2-stage (123.56 seconds) compared to the 1-
stage experiments (43.67 seconds), while the iteration numbers
decreased by almost 4 times, from 21.44 to 5.67 iterations
on average. These differences are not as pronounced as for
experiments with artificial data. This may be explained by the
increase of the PSO swarm size aimed at improving the success
rate at stage 2 of the 2-stage process, which also had the
effect of reducing the overall time. The average training errors,
validation errors and F-scores were similar, which paints a
similar picture as for the artificial data experiments.

V. CONCLUSIONS

Automated inference of gene-regulation models from gene
expression time-course data is a long-standing and unsolved
problem [2]. Such models are useful, provided they perform
well on unseen data (predictive power) and that their regulatory
structure is close to the real structure of the underlying GRN
system (inferential power). Developing methods with high in-
ferential power is hampered by a lack of data on the regulatory
structure of real biological systems. Furthermore, automated
GRN model inference for large GRN systems constitutes a
considerable computational challenge because of the large
number of parameters to be estimated. This study focused on
a comparison of the 2-stage and a 1-stage reverse-engineering
approaches, based on the hypothesis that the former would
outperform the latter in terms of computational efficiency,
without a significant loss in predictive and inferential power.

We found that 2-stage was considerably faster than 1-stage
for both artificial and real biological data. We quantified the
difference in terms of wall time and the number of PSO
iterations. No notable difference in terms of predictive and
inferential power was observed. In future studies, we intend
to explore approaches aiming to improve the inferential power
of models reverse-engineered using MultiGrain. Approaches
employing GRN model ensembles [22], [2] and empirical
knowledge derived from real GRN systems seem to be promis-
ing lines of future research in this area.

REFERENCES

[1] G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory
networks,” Nat. Rev. Mol. Cell Biol., vol. 9, no. 10, pp. 770–780, 2008.

[2] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M.
Camacho, K. R. Allison, T. D. Consortium, M. Kellis, J. J. Collins, and
G. Stolovitzky, “Wisdom of crowds for robust gene network inference,”
Nature Methods, vol. 9, pp. 796–804, 2012.

[3] R. D. Leclerc, “Survival of the sparsest: Robust gene networks are
parsimonious,” Molecular Systems Biology, vol. 4, no. 213, 2008.

[4] M. T. Swain, J. J. Mandel, and W. Dubitzky, “Comparative study of
three commonly used continuous deterministic methods for modeling
gene regulation networks,” BMC Bioinformatics, vol. 11, no. 459, 2010.

[5] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui,
N. Nakagawa, S. Yokoyama, S. Kuramitsu, and A. Konagaya, “Inference
of S-system models of genetic networks using a cooperative coevolu-
tionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, 2005.

[6] N. Noman and H. Iba, “Reverse engineering genetic networks using
evolutionary computation,” Genome Informatics Series, vol. 16, no. 2,
pp. 205–214, 2005.

[7] Y. Maki, T. Ueda, M. Okamoto, N. Uematsu, K. Inamura, K. Uchida,
Y. Takahashi, and Y. Eguchi, “Inference of genetic network using
the expression profile time course data of mouse P19 cells,” Genome
Informatics, pp. 382–383, 2002.

[8] J. Vohradský, “Neural network model of gene expression,” The FASEB
Journal, vol. 15, no. 3, p. 846–854, 2001.

[9] M. A. Savageau, Biochemical systems analysis: A study of function and
design in molecular biology. Reading, MA: Addison-Wesley, 1976.

[10] P. Mendes, W. Sha, and K. Ye, “Artificial gene networks for objective
comparison of analysis algorithms,” Bioinformatics, vol. 19, no. Suppl
2, pp. ii122–ii129, 2003.

[11] S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita,
“Dynamic modeling of genetic networks using genetic algorithm and
S-system,” Bioinformatics, vol. 19, no. 5, pp. 643–650, 2003.

[12] N. Noman, L. Palafox, and H. Iba, “Reconstruction of gene regulatory
networks from gene expression data using decoupled recurrent neural
network model,” in Natural Computing and Beyond. Springer, 2013,
pp. 93–103.

[13] A. Mizeranschi, N. Kennedy, P. Thompson, H. Zheng, and W. Dubitzky,
“The influence of network topology on reverse-engineering of gene-
regulatory networks,” Procedia Computer Science, vol. 29, pp. 410–421,
2014.

[14] D. Tominaga, N. Koga, and M. Okamoto, “Efficient numerical opti-
mization algorithm based on genetic algorithm for inverse problem,” in
Proc. of Genetic and Evolutionary Computation Conference. Morgan-
Kaufmann, 2000, pp. 251–258.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of
IEEE International Conference on Neural Networks, vol. IV, 1995, pp.
1942–1948.

[16] F. M. Lopes, R. M. Cesar, and L. D. F. Costa, “Gene expression
complex networks: Synthesis, identification, and analysis,” Journal of
Computational Biology, vol. 18, no. 10, pp. 1353–1367, 2011.

[17] T. Pramila, W. Wu, S. Miles, W. S. Noble, and L. L. Breeden, “The
Forkhead transcription factor Hcm1 regulates chromosome segregation
genes and fills the S-phase gap in the transcriptional circuitry of the
cell cycle,” Genes and Development, vol. 20, no. 16, pp. 2266–2278,
2006.

[18] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle
network is robustly designed,” PNAS, vol. 101, no. 14, pp. 4781–4786,
2004.

[19] M. Böck, S. Ogishima, H. Tanaka, S. Kramer, and L. Kaderali,
“Hub-centered gene network reconstruction using automatic relevance
determination,” PLoS ONE, vol. 7, no. 5, p. e35077, 2012.

[20] J. Mazur, D. Ritter, G. Reinelt, and L. Kaderali, “Reconstructing non-
linear dynamic models of gene regulation using stochastic sampling,”
BMC Bioinformatics, vol. 10, no. 448, 2009.

[21] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro,
D. Groen, O. Hoenen, A. Mizeranschi, J. L. Suter, D. Coster, P. V.
Coveney, W. Dubitzky, A. G. Hoekstra, P. Strand, and B. Chopard, “Per-
formance of distributed multiscale simulations,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 372, no. 2021, 2014.

[22] M. Mendoza, “Exploring ensemble learning techniques to optimize the
reverse engineering of gene regulatory networks,” Ph.D. dissertation,
Universidade Federal do Rio Grande do Sul, 2014.

