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Abstract - Motion Onset Visually Evoked Potentials
(mVEPs) have the advantage of being an elegant and
less visual fatiguing stimuli than that of other VEPs
such as the steady state VEP (SSVEP) or P300 and
therefore may be apposite for use in movement-free
brain-controlled computer games wusing brain-
computer interface (BCI) technology. To investigate
the effects of 3-Dimensional (3D) graphic variations on
mVEPs, we present in this pilot study a set of five
hypothetical game levels with differing graphics, each
with increasing visual complexity, in which the
user/player must attend to one of five mVEP inducing
stimuli. The mVEP based on-screen virtual buttons
involves a leftward motion lasting 140 milliseconds to
elicit a response from the dorsal pathway. This pilot
study focused on offline classification results. BCI
classification accuracy results for separating target vs.
non target mVEP stimuli (2 class) as well as classifying
target stimuli among the five stimuli (5 class) are
compared for each variation in graphic complexity.
The results of the study show a trend indicating the
classification accuracy is inversely proportional to
graphic complexity however the difference in BCI
classification accuracy for each level of complexity are
not significant (>70%, p>0.05). The results are
encouraging, suggesting that the use of 3D graphics of
varied complexity is possible when using mVEP based
BCI as a control strategy.

Keywords - Brain-Computer Interface (BCI), Motion
Onset Visually Evoked  Potentials (mVEP),
Electroencephalography (EEG), Gaming, 3D, Graphics,
Visual

1. INTRODUCTION

Research into the application of brain-
computer interface (BCI) [1] as a control scheme for
computer games has increased dramatically in recent
years and is reflected in the number of published
papers on the topic [2]. The notion that one can
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control a video game without the need for muscle
control ie. “movement-free” may provide novel
gaming experiences and new forms of immersion for
gamers. It will also allow physically impaired users
such as those suffering from Amyotrophic Lateral
Sclerosis (ALS), spinal cord injury or brainstem
stroke, access to video gaming technology providing
them with additional forms of entertainment. An
Electroencephalography (EEG) based BCI provides
a method of communication which involves reading
brain activity non-invasively via a set of electrical
sensors placed directly on the user’s scalp.

Most BCI games to date have not appealed to
traditional gamers due largely to the rudimentary
graphics employed. To date the graphical richness
of BCI games has been compromised in favour of
gaining BCI system accuracy. In traditional games
rich graphical complexity is merely part of the
gameplay experience and helps the player feel
immersed in gameplay but in a BCI controlled game,
rich graphics may hinder the accuracy of the BCI
system due to their motion, depth or use of flashing
imagery.

Limits in the accuracy of interaction and the
level of latency in BCI games to date are suspected
issues preventing widespread adoption of the
technology. This is due to the speed at which the
BCI system can analyse, interpret and convert the
ongoing EEG signals into useful commands for a
video game to recognise and execute. This caveat
limits the players’ interaction options within BCI
games and may not promote BCI technology in the
best possible light [3]. Another reason why adoption
of BCI as a control method has been slow is the need
for electrodes to be mounted on the users scalp.
This need for electrodes introduces other factors into
the BCI system such as higher costs and setup times
for the hardware. However, recent technological
improvements in hardware have led to advances
such as less expensive, dry type electrodes which

© 2015 GSTF



8th Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2015)

have lowered both prices and setup times for BCI
hardware [4].

In most studies, BCI games have been used to
test the feasibility of BCI system or control strategy,
maintain the interest of the user whilst they learn to
operate a BCI and to retrieve test results rather than
as a form of entertainment in their own right. The
disadvantage of only creating a game for testing
purposes is that the game does not appeal to the
wider gaming population and hence the perception
of BCI among the gaming community is perhaps not
as positive as could be to date. The limited scope,
controller input and limited visual appeal in most
BCI games requires improvement. This paper
provides a preliminary study to address one of the
above mentioned issues relating to BCI gaming,
namely assessing the effect of graphic complexity in
games on brain-computer interface (BCI)
performance.

This study focuses on testing the Motion onset
Visual Evoked Potential (mVEP) based BCI control
strategy (see section 2.1 below) for an action game.
The action genre is the most popular game genre
used in BCI [2] although there are only a limited
number of studies employing mVEP as a control
method [5][6][7]. mVEP offers a less visually
fatiguing stimulus than other BCI control methods
such as P300 and steady state visually evoked
potentials (SSVEP) (summarised below) due its use
of motion rather than flashing imagery and it can
also be used with low luminance values. mVEP also
has the advantage that little user training is required
for its successful use. There are a number of control
strategies available to designers of a BCI video
game and each comes with its own (dis)advantages.
A short overview of the most common BCI
strategies used are provided in the following
sections.

Options for game control available to BCI
game designers include P300 which uses flashing
stimuli to elicit an Event Related Potential (ERP)
response in the visual cortex and can be seen as a
large positive peak in the ongoing EEG signal 250-
500 milliseconds after an evoked stimulus [8][9].
Steady state visual evoked potentials also make use
of flashing stimuli to elicit an ERP such as the
reverse chequerboard pattern (chequerboard patterns
alternating at a specific frequency) which elicits a
response in the visual cortex and can be seen as a
large positive peak at specific frequencies in the
ongoing EEG signal [10][11]. Motor Imagery (MI)
is a BCI control method which uses cortical changes
known as Event Related Synchronisation (ERS) and
Event Related Desynchronisation (ERD) in the
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motor cortex of the brain when the user imagines or
performs body movements such as imagined
movement of the hands, feet or tongue [12][13].

Motion Onset Visual Evoked Potentials
(mVEP) involves the use of moving imagery to elicit
a response from the dorsal pathway [7]. A typical
mVEP interface as used in [5][6][7] consists of a set
of on-screen virtual buttons which are rectangular in
shape (Fig. 1). The red vertical line inside one of the
buttons will start moving (motion onset) and move
from the right hand side of the button in a
continuous motion to the left hand side of the button
and then disappear (motion offset). This motion of
the vertical line will happen in each of the virtual
buttons in turn and when a user concentrates on their
required button, a response will be elicited in the
ongoing EEG signal when the user has recognised
his/her required choice. It is the onset of motion in
each of the buttons which stimulates a response from
the dorsal pathway of the brain and can be seen in
the ongoing EEG signal as an N2 peak with a
latency of 160-200ms, followed by a P2 peak with a
latency of around 240ms. It is these clear and robust
EEG features which highlight mVEP as a suitable
method for BCI control.

An mVEP BCI system can operate at low
luminance levels, which provides ideal properties for
gaming use as the mVEP controls may be presented
to the user without affecting the in game imagery
such as graphics, feedback text and moving imagery
etc. mVEP also has the advantage of low visual
fatigue which is important because in the case of
gaming there are already multiple on-screen items
and game characteristics that exhibit properties
which can cause visual fatigue such as fast moving,
flashing imagery.

Also, very little user training is required to
successfully use an mVEP BCI and the importance
of this becomes clear when making games available
to the commercial market where users may not be
willing to train how to use a BCI system out of a
laboratory setting.

The accuracy of an mVEP based BCI system
can be high as can be seen in [5] where the authors
reported >90% accuracies for all 15 subjects tested
after just ten trails. These accuracies were reported
using a five class (five mVEP buttons) BCI setup.
As with other BCI control methods however, latency
still remains an issue in mVEP.

The hypothetical game chosen for this study
used a basic capsule shaped third person character
and increasingly complex graphics over the course
of four game levels. The purpose of the study was
to investigate if the mVEP accuracies were affected
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by the increasingly complex 3D and full colour
graphics. It was hypothesised that as the graphical
complexity increases with added colours, items or
speed, the mVEP accuracy would decrease due to
increased visual distraction and attractions the user
is likely to attend to or ignore.

The classification accuracy from mVEP
stimulated using five on screen stimuli for five
different levels of graphical complexity, namely,
basic training, character movement, characters speed
with changing coloured background, in game pickup
items at side of screen and in game pickup items
placed on characters path to dodge was assessed.

Section 2 details the methodology undertaken
for this study. Section 3 presents the methods used
to calculate the accuracies achieved from each
subject. Section 4 discusses the results from the
study. Section 5 is the discussion section which
details the limitations of this study and Section 6
concludes the paper.

2. METHODOLOGY

2.1. Paradigm

The paradigm and game graphics presentation
was developed using the Unity 3D [14] game
development engine. A mVEP paradigm with a five
button layout is placed at the top of the screen,
arranged in a horizontal configuration.

A number placed at the top of each mVEP button
differentiated the buttons from each other and also
acted as the indicator of which button the user
should focus their attention by changing colour from
black to red. The user was instructed to focus their
attention on the moving line of the red button (Fig. 1
shows the training level with the ‘400’ button as
currently active while 200’ is the users current
target (shown in red). The motion of each mVEP
button consisted of the red coloured vertical line
moving horizontally from the right hand side to the
left hand side of the rectangle.

The timing protocol for this study followed
closely to that of [7]. A game level consisted of
either 150 (for the first three subjects) or 300 (for the
remaining seven subjects) trials. Each level lasted
960 seconds, during which, each mVEP button will
have been activated 60 times. During a trial, each of
the five buttons is active five times. Each button is
highlighted in turn. In order to avoid user
habituation, each of the buttons motion are activated
in random order. The Stimulus Onset Asynchrony
(SOA) between each button activation is 200ms.
The motion of the vertical line moving from right to
left in each button lasts 140ms and the time between

cach button activation is 60ms. A diagram of the
timing protocol used is shown in (Fig. 2).

L) 280 300 500

Figure 1. mVEP Training Level - no graphics.

Each level has 68 Blocks, contalning % trials for each of the 5 MVEP buttons

Black of 5 Trials

Stimulus 1st¥rial 5th Trial

Phase
Rest
Phase - . .
1000ms 600ms
MVEP
20tms Button
g Fhase
100 200 300 400 500 |
Static Phase
140ms &ins

1 Trial
Trial Timing Detalls

Figure 2. mVEP Timing protocol used in this study.
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Figure 3. Level 1 — Slow speed with limited graphics.

Figure 4. Level 2 — added speed and colour changing sky.
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Figure 5. Level 3 — with additional items on side of road.

Figure 6. Level 4 — obstacles to avoid and realistic sky.

The paradigm commenced with a training level
using a plain white background with the five mVEP
buttons arranged horizontally in the centre of the
screen (Fig. 1). The training level was followed by
Level 1 (Fig. 3), which showed a character
constantly moving in the forward direction with
basic textured road surface, sky and grass. Level 2
(Fig. 4) showed the character moving in the forward
direction with the addition of more speed and the
colour of the skyline constantly changing. Level 3
(Fig. 5) was as level 1 with the addition of barrel
shaped objects placed at the side of the road with a
player score attached to each. Level 4 (Fig. 6) was
as level 3 with an added realistic sky background,
but this time the items were placed on the road and
the character automatically avoided these so in this
case the character moved horizontally across the
screen to add further distraction and complexity.
The setup of the four games presentation levels
resulted in a gradual increase in visual complexity as
the levels progressed. To assess the accuracy of the
results according to graphical complexity, rather
than gameplay experience, the user had no control
over the character and there was no real-time
feedback on the user’s selection performance i.e., all
the character movements were automatically
controlled and the user’s only task was to focus on
the required mVEP stimuli. The only graphical user
interface information other than the mVEP button
arrangement was in Level 3 where each barrel had
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scoring information attached. The scoring
information only served as a further visual
distraction and required no input from the user. This
was added into the level to see how the on screen
scoring information affected the mVEP accuracy.

2.2. Data Acquisition

Two female and eight male subjects took part
in this study. Two of these subjects had previous
BCI experience using mVEP and the other eight
were BCI naive. Each subject was involved in a
single recording session with the training plus four
game levels assessed in the session. An EEG cap
was placed on the participants head and electrodes
were placed over occipital areas using a 12 channel
montage (Fig. 7) according to the international 10-
20 system of electrode placement [15]. The left
mastoid acted as ground and FPz as the reference
voltage. Recording took place in an electrostatically
shielded/acoustically insulated room and participants
were seated on a comfortable chair placed 50cm in
front of an LCD computer monitor 56cm (Width
47.7cm and Height 29.8cm) in size and a refresh rate
of 60Hz.

EEG data was collected using a g.BSamp
amplifier [16], g.Gammasys active electrode system
[17] connected to an Easycap electrode cap [18] and
Matlab Simulink [19]. As Unity 3D presented each
visual cue to the user, a stimulus identifier relating
to each mVEP stimulus along with timing
information were sent to Simulink from Unity 3D
using the UDP (User Datagram Protocol)
transmission convention.  The stimulus trigger
information and EEG signals are co-registered in
Simulink.

Nose Position ——p» -

Figure 7. 12 Channel montage used in the study with FPz as
reference voltage and left mastoid as ground.
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3. DATA ANALYSIS

3.1. Data pre-processing Methods

A total of 300 trials per level (each stimuli
was a target for 60 trials) were recorded from each
subject. Data epochs were derived in association
with each motion onset stimulus, beginning 200ms
prior to the motion onset and lasting for 1200ms.
All single trials were baseline corrected with respect
to the mean voltage over the 200ms preceding
motion onset. Data were digitally filtered using a
low-pass Butterworth filter (order 5, with cut-off at
10Hz) and subsequently resampled at 20Hz.
Features were extracted between 100ms and 500ms
(the epoch which normally contains the most
reactive mVEP components e.g. N200, P300 and
N400) post stimulus yielding nine features for each
channel. Data were averaged over five trials
yielding twelve features vectors per stimulus for
each level. Data was split into target vs. non target
where for each non target feature vector five
randomly selected non-target trials were used.

Since mVEP is time locked and phase locked
to the motion onset stimulus, mVEP induced from
the motion stimuli could be obtained through the
above simple averaging procedure [5].

3.2. Channel Selection

A Linear Discriminant Analysis (LDA)
classifier was trained to discriminate target vs. non
target feature vectors extracted from single channels
in a Leave One Out (LOO) cross validation on 50%
of the data (the remaining 50% was held for final
testing). For each of the twelve channels the
average LOO classification accuracy (LOO-CA) was
determined and channels were ranked by accuracy.
The most common three channels across all subjects
consisted of O1, P7 and TP7. The top three ranked
channels were concatenated to form a new feature
vector (27 features per vector) and a further LOO
cross validation was performed. The results of this
are reported as LOO-CA3. A single trial test of
target vs. non target is also applied on the training
data (Target vs. Non Target — Single Trial).

3.3. mVEP Classification — 5 Class

Using all the training data (50% of data) a
new LDA classifier is produced to classify target vs.
non target data. To classify individual symbols in a
single trial test each feature vector associated with
each stimulus in a trial is classified as either target or
non-target. The LDA classifier produced a distance
value, D, reflecting the distance from the hyper
plane separating target and non-target features (D>0
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for target and D<0 for non-target). The vector that
produces the maximum distance value is selected as
the classified stimulus (in some cases non-target data
produces a D>0, however the value of D is normally
maximal among the target stimulus i.e., the stimulus
on which the user is focused). Single trial results for
five class are reported for the training data and then
the setup is applied on the remaining 50% of the
data, unseen testing data.

A second set of tests were performed which
involved applying the classifier trained on the
training level on the remaining four games levels (as
opposed to retraining the classifier for each level).
The evaluation reflects the performances that may be
attainable in an online situation where the user may
play the games within a single training run, but the
classifier is only trained once at the beginning of the
session.

Offline analysis was performed using
customised MATLAB code along with the BioSig
[20] and LIBSVM [21] toolboxes.

4. RESULTS

4.1. Offline Testing

Data from all subjects were analysed level by
level for all five levels (training plus the game levels
1-4) with results presented as LOO-CA3, target vs.
non target single trial (training), single trial 5 class
(training) and single trial 5 class (testing). Fig. 8
shows the average LOO-CA3 result for all ten
subjects across the five game levels. As can be seen
in the graph, there is a slight downwards trend in
accuracy as the game levels increase in visual
complexity with level 4 accuracy being lower than
the training accuracy as well as the level 1 accuracy.
A single factor Analysis of Variance (ANOVA) test
was conducted for the LOO-CA3 analysis and
suggests the difference in accuracy for each level are
not statistically significant (p>0.05).

Average LOO-CAZ Accuracy Across all Subjects for
3l 5 Game Levels

fevsil

tavel 3 {eveld

Figure 8. Graph to show the average LOO-CA3 accuracy across
all 5 game levels. R?=0.81.
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Fig. 9 shows the results for the target vs. non
target Single Trial (training) analysis method. Here,
as can be seen in the graph, a more pronounced
downwards trend in accuracy. As the game levels
progress, the accuracy decreases in a linear fashion.
However, an ANOVA test reveals the differences in
accuracy are insignificant (p=0.79).

Average targ vs. non targ Single Trial {training)
Accuracy Across all Subjects for all 5 Game Levels

Figure 9. Graph to show the mean Target vs. non Target Single
Trial (training) accuracy across all 5 game levels. R?=0.98.

Fig. 10 shows the results for the Single Trial
5 Class (training) analysis method. Again, there is a
clear downwards trend in accuracy across the five
game levels, beginning with the training level and
gradually decreasing linearly until level 4, again
insignificant differences (p=0.62).

Average Single Trial 5 Class {training) Accuracy
Across all Subjects for all 5 Game Levels

Figure 10. Graph to show the mean Single Trial 5 Class (training)
accuracy across all 5 game levels. R?=0.96.

The final analysis method to be analysed was
Single Trial 5 Class (testing). Only seven of the ten
subjects’ data were analysed using this method as
there were only 150 trials per level for the first three
subjects to participate in the experiments. For the
remaining seven subjects there were 300 trials
recorded in order to leave out 50% of the data to test
the system accuracy.

Fig. 11 shows the results for the Single Trial
5 Class (testing) analysis method. As can be seen in
the graph, again there is a downwards trend in
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accuracy. The levels gradually decrease from the
training level to level 3, but a slight increase can be
seen again by level 4 (p=0.78).

Average Single Trial 5 Class (testing) Accuracy
Across the Final 7 Sublects for 21l S Game Levels

Figure 11. Graph to show the mean Single Trial 5 Class (testing)
accuracy for the final 7 subjects across 5 game levels. R*=0.63.

From analysis of the offline results, it can be
seen that there are clear downwards trends in all
metrics of performance as the game levels graphical
complexities increase, yet none of these trends been
seen to show significant difference in performance
due to graphical complexity.

4.2. Cross Level Testing

In order to test the transfer of the classifier
from training data to each of the four levels, the data
acquired from each of the subjects’ initial training
sessions was used to determine the system
parameters and classifier and then these were
applied onto the data acquired from each of the four
different levels of complexity.

Fig. 12 shows the average results across all
subjects for cross level tests for all four game levels.
It is clear that the accuracy is diminished when
applying a classifier from training to each of the
levels as opposed to retraining the classifier on a
portion of the data from each level. We can see
from the graph that there is a sharp decrease in
accuracy between the first two game levels and the
final two game levels. A further point to note is the
slight increase in level 2 from level 1 and the
increase in level 4 from level 3.
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Average Accuracy for Cross Level Testing Across
all Subjects for the 4 non-Training Game Levels

s Lol

Figure 12. Graph to show the mean cross level accuracy for all
subjects across the 4 non-training game levels. R*=0.70.

From analysis of the cross level results, it can
be concluded that towards the end of the BCI session
and as the graphical complexity increased, the
accuracies decreased. The ANOVA results for the
cross level testing also show that the differences are
not significant (p=0.86).

4.3. Individual Subject Performances

TABLE 1. AVERAGE RESULTS (% ACCURACY) ACROSS

st | 7es | 835 .7 743
s2 745 76.3 755 §7.6
s3 573 701 655 48.8
s4 748 716 72.0 nia
55 85.5 398.1 95.9 nfa
s6 776 82.1 83.2 nia
57 715 75.6 771 36.1
s8 78.1 85.5 35.3 741
s8 66.3 65.6 851 413
S10 87.2 57.3 37.5 2804
Average 754 813 313 £3.3

Table I shows the average accuracies for all subjects
for the four analysis methods. Subject S5 and S10
achieved consistently high accuracies throughout the
trials. Subject S5 performed best for the analysis
methods LOO-CA3 and Target vs. non-target Single
Trial (training) and subject S10 performed best on
analysis methods single trial five class (training) and
single trial 5 class (testing). Perhaps if subject S5
had participated in 300 trials instead of 150, their
accuracies may have been improved for the final two
analysis methods.

The worst performing subject was S9 who
achieved the lowest accuracies across all
performance metrics. The final method Single Trial
5 Class (testing) provided the lowest accuracy for
subject S9 at 41.3%. It is interesting to note that this
subject (S9) reported that they were physically
fatigued during the session due to partaking in
physical exercise one hour prior to taking part in the
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BCI session. Perhaps a further session using the
same subject in a more relaxed, less fatigued state
may produce greater accuracies.

5. DISCUSSION

mVEP is a relatively new type of VEP to be
applied in BCI and so far has not been widely
studied in this context with only a few studies
investigating mVEP controlled computer games [7].
Gao et al [5] published the first mVEP based BCI
study. In that paper, they investigated an on screen
virtual five button arrangement based on the brief
horizontal motion of a vertical line. It is the brief
motion of this vertical line which invokes a response
from the dorsal pathway of the brain. This study
focused on the use of the mVEP paradigm as it
provides the BCI user with a more aesthetically
pleasing visual stimulus while maintaining low
visual fatigue for the user. This makes mVEP a
more desirable choice for use in BCI games as some
games are played for prolonged periods of time and
already exhibit visual complexities such as flashing
imagery and fast moving backgrounds.

In the current study, we have used a similar
mVEP button design to that of Gao et al and studied
mVEP classification in the context of a 3D graphics
presentation to determine the effects of moving and
changing 3D graphics on the classification accuracy
of mVEPs. The results show that as the graphical
complexity of the game levels increase with the
gradual addition of more colour, flashing imagery,
additional 3D objects and moving characters, there
may be an impact on mVEP classification accuracy,
however the difference in accuracy has not been
shown to be significant in this study. The
downwards trend in accuracy was expected given
the added visual information the user had to attend
to and ignore at the same time.

As the game levels become more visually
complex, the occipital lobe of the brain which is
responsible for vision needs to process a number of
different tasks relating to the rich game interface
such as 3D objects, motion, colour, flashing imagery
and text. The Visual area 5 (V5) also known as the
Middle Temporal (MT) area of the occipital lobe is
responsible for the processing of motion. The
Visual area 1 (V1) is responsible for the processing
of colour and the Visual area 2 (V2) is responsible
for the recognition of complex shapes. Active
engagement of these areas is likely to distort
mVEPs.

Given the increased brain resources required
to process increased graphical complexity, it is
considered important to take into consideration the
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complexity of the game graphics and their impact on
mVEP classification, even though this study has
indicated that the complexity does not significantly
affect mVEP discrimination performance. The
implications of the limited power in the study as a
result of the limited number of participants involved
and limited number of trials per level assessed are
outlined in the following subsection.

The differences in accuracies obtained from
the cross level tests vs. the offline tests involving
classifier retraining may be caused by a number of
factors. For example, the training data which was
attained from a completely different game scenario
i.e., a basic no graphic interface experienced during
the training level (Fig.1) compared to the increasing
graphical interfaces experienced by the user as the
levels progressed. This suggests that it may be best
to set up the classifier and apply it only when stimuli
are presented with a similar level of background
graphical complexity.

Also, the time difference between the training
session and each consecutive game level could be a
contributing factor in the decreasing accuracies i.e.,
the system is using the training data on each
consecutive level which was collected up to one
hour prior to the level being played.

The sharper decrease attained in the cross
level test from level 2 (47.7%) to level 3 (41.5%)
may be attributed to the added in game items at the
side of the road which consisted of barrel shaped
objects and text with scoring information. In the
case of the cross level testing, the subjects may have
been distracted by this additional content and so the
quality of the training data may have been
compromised with the additional noise from eye
movements, decrease in the subjects’ concentration
or the attention to details not present during the
training data collection.

5.1. Limitations

The game graphics presentation levels in this
study increased in graphical complexity in a linear
fashion starting from basic to more complex i.e., the
most complex graphics were presented last in the
session for the subjects. This may have confounded
results as the subject fatigue and/or electrode gel
drying may have impacted on the level results.
Results from a limited number of subjects where the
level presentation order was randomised suggest that
the order of presentation did not influence results,
however, to rule out the influence of confounding
results in future studies, game levels presentation
will be ordered randomly.
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To rule out subject fatigue during the sessions
it may also be prudent to conduct multiple sessions
of shorter duration.

As this was an investigation into graphical
complexity, effects on mVEP production and
classification we did not provide any real time
feedback for the subjects. Feedback on performance
during gameplay is critical for game immersion and
this limitation may have decreased the participants’
interest within the study session. The introduction
of feedback into the games is expected to engage the
subjects more in game play.

The ANOVA results suggested that the
difference in results for each level of complexity
were insignificant indicating that the hypothesis that
mVEP classification results are decreased with
increasing graphical complexity can be rejected.
There may be a number of reasons for this finding.
It may be that the graphics presented on each
consecutive level during the trials were not diverse
enough from each other to justify a significant
difference. There is significant scope to increase the
graphical complexity, bearing in mind the graphical
achievements in some of the most advanced and fast
paced games on the market today e.g., Call of Duty:
Ghosts [22], Gran Turismo 6 [23] and The Last of
Us [24]. Also, there were only 30-60 trials per
target stimuli for each level which is relatively low
for comparative studies and this may have impacted
on performance. This, along with the small sample
size (n=10) and significant variations across subjects
may have impacted on statistical tests. Future
studies will involve increasing the graphical
complexity, number of trials, sessions conducted and
also the number of participants.

6. CONCLUSION

In recent years, computer gaming has become
a mass market form of entertainment that is enjoyed
across demographics. The popularity of computer
gaming has fuelled increased interest in novel forms
of input and control such as BCI [25].

The results from this study indicate that
successful and reliable detection of mVEP responses
are possible for 3D video games of varying levels of
graphical complexity and that the levels of
complexity in game graphics do not adversely affect
mVEP discrimination performance. The graphical
complexity in this study ranged from minimal to
moderate and the results indicate that more complex
graphics could impact on mVEP based BCI
performance. Further work will involve improving
the study design to investigate the impact of more
complex graphics on mVEP discrimination and
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developing and testing an mVEP based BCI
controlled 3D action video game.

(1]

[2]

[3]

[8]

[9]

[10]

REFERENCES

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G.
Pfurtscheller, and T. M. Vaughan, “Brain-computer
interfaces for communication and control.,” Clin.
Neurophysiol., vol. 113, no. 6, pp. 767-91, Jun. 2002.
D. Marshall, D. Coyle, S. Member, S. Wilson, and M.
Callaghan, “Games , Gameplay , and BCI : The State of
the Art,” vol. 5, no. 2, pp. 82-99, 2013.

Boris Reuderink; Bram van de Laar; Hayrettin Gurkok;
Christian Muhl; Mannes Poel; Anton Nijolt; Dirk
Heylen Plass-Oude Bos, Danny, “Brain Computer
Interfacing and Games,” in Brain Computer Interfaces,
Springer London, 2010, pp. 149-178.

S. Lee, Y. Shin, S. Woo, K. Kim, and H. Lee, “Review
of Wireless Brain-Computer Interface Systems,” 2013.
F. Guo, B. Hong, X. Gao, and S. Gao, “A brain-
computer interface using motion-onset visual evoked
potential.,” J. Neural Eng., vol. 5, no. 4, pp. 477-85,
Dec. 2008.

B. Hong, F. Guo, T. Liu, X. Gao, and S. Gao, “N200-
speller using motion-onset visual response.,” Clin.
Neurophysiol., vol. 120, no. 9, pp. 1658-66, Sep. 2009.
D. Marshall, S. Wilson, and D. Coyle, “Motion-Onset
Visual Evoked Potentials for Gaming: A pilot study,”
24th IET Irish Signals Syst. Conf. (ISSC 2013), pp. 56—
56,2013.

G. Pires, M. Torres, N. Casaleiro, U. Nunes, and M.
Castelo-Branco, “Playing Tetris with non-invasive
BCL” 2011 IEEE Ist Int. Conf. Serious Games Appl.
Heal., pp. 1-6, Nov. 2011.

A. Finke, A. Lenhardt, and H. Ritter, “The MindGame:
a P300-based brain-computer interface game.,” Neural
Netw., vol. 22, no. 9, pp. 1329-33, Nov. 2009.

E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R.
Smith, R. B. Reilly, and G. McDarby, “Steady-State
VEP-Based Brain-Computer Interface Control in an
Immersive 3D Gaming Environment,” EURASIP J.
Adv. Signal Process., vol. 2005, no. 19, pp. 3156-3164,
2005.

147

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

P. Martinez, H. Bakardjian, and A. Cichocki, “Fully
online multicommand brain-computer interface with
visual neurofeedback using SSVEP paradigm.,”
Comput. Intell. Neurosci., vol. 2007, no. i, p. 94561,
Jan. 2007.

D. Coyle, J. Garcia, A. R. Satti, and T. M. McGinnity,
“EEG-based continuous control of a game using a 3
channel motor imagery BCI: BCI game,” 2011 [EEE
Symp. Comput. Intell. Cogn. Algorithms, Mind, Brain,
pp. 1-7, Apr. 2011.

A. S. Royer, A. J. Doud, M. L. Rose, and B. He, “EEG
control of a virtual helicopter in 3-dimensional space
using intelligent control strategies.,” [EEE Trans.
Neural Syst. Rehabil. Eng., vol. 18, no. 6, pp. 581-9,
Dec. 2010.

“Unity 3D.” Unity Technologies, 2014.

“International 10-20 System.” [Online]. Available:
http://en.wikipedia.org/wiki/10-20_system_(EEG).
[Accessed: 29-May-2014].

“g.tec - g.BSamp Biosignal Amplifier,” 2014. [Online].
Auvailable: http://www.gtec.at/Products/Hardware-and-
Accessories/g.BSamp-Specs-Features. [Accessed: 29-
May-2014].

“g.Tec - g.GAMMADox,” 2014. [Online]. Available:
http://www.gtec.at/Products/Electrodes-and-

Sensors/g. GAMMAsys-Specs-Features. [Accessed: 29-

May-2014].

“Easycap ~EEG  Cap.” [Online].  Available:
http://www.easycap.de/easycap/. [Accessed: 29-May-
2014].

“MATLAB.” MathWorks, 2014.

“BioSig Toolbox.” [Online]. Available:

http://biosig.sourceforge.net/. [Accessed: 06-Jan-2014].
“LIBSVM Toolbox.” [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.  [Accessed:
06-Jan-2014].

“Call of Duty: Ghosts.” Activision, 2013.

“Gran Turismo 6.” Sony Computer Entertainment,
2013.

“The Last of Us.” Naughty Dog, 2013.

A. Nijholt, D. P.-O. Bos, and B. Reuderink, “Turning
shortcomings into  challenges:  Brain—computer
interfaces for games,” Entertain. Comput., vol. 1, no. 2,
pp. 85-94, Apr. 2009.

© 2015 GSTF



