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Abstract 

This paper presents a new argument for the likelihood ratio measure of confirmation by showing 

that one of the adequacy criteria used in another argument (Zalabardo 2009) can be replaced by a 

more plausible and better supported criterion which is a special case of the weak likelihood 

principle. This new argument is also used to show that the likelihood ratio measure is also to be 

preferred not to a measure that has recently received support in the literature.  
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1. Introduction 

Assessing the support that a piece of evidence provides for a given hypothesis is important in 

many different fields, including law and medicine as well as science more generally. A 

probabilistic approach to this topic in terms of measures of confirmation (or evidential support) 

has not only received significant attention in the philosophical literature but has also been studied 

in detail in other disciplines such as cognitive science (see for example Tentori et al. 2007) and 

computer science (see for example Greco et al. 2012). The idea is that a measure, denoted c, of 

the confirmation of hypothesis, H, by evidence, E, should satisfy the following condition: 
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where Pr is a probability distribution. If c(H,E) > 0, E is said to confirm H, whereas if c(H,E) < 

0, E is said to disconfirm H. 

 

Various confirmation measures have been proposed which satisfy the above condition but are 

nevertheless not ordinally equivalent.
2
 Some well-known measures include the following: 
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where the distance measure, d, the log-ratio measure, r, the log-likelihood ratio measure, l, in 

particular have had a lot of supporters.
3
 It is worth noting that taking logarithms in (2) and (3) 

has no effect on the orderings provided by these measures, but is just to ensure that they satisfy 

the condition noted above. For simplicity, the ratio and likelihood ratio measures, which do not 

involve logarithms, will be used in the rest of the paper unless otherwise specified  
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 Two measures c1 and c2 are said to be ordinally equivalent if and only if for any evidence-hypothesis pairs (E1,H1) 

and (E2,H2), c1(H1,E1) > c1(H2,E2) if and only if c2(H1,E1) > c2(H2,E2) and similarly for ‘<’ and ‘=’. 
3
 See Zalabardo (2009), Fitelson (1999) and references therein for further details on these measures. The likelihood 

ratio, Pr(E|H)/Pr(E|~H) is often referred to as the Bayes factor due to its role in Bayesian inference where it is the 

ratio of the posterior to prior odds. 
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Given the number of non-equivalent confirmation measures, it is not surprising that various 

adequacy criteria have been proposed to differentiate between them. In this paper, the focus will 

be on criteria proposed by Zalabardo (2009) in his argument for the likelihood ratio measure. 

Section 2 will present his argument and show that while one of his criteria is unobjectionable and 

follows from a widely accepted criterion, the case for another one of his criteria is much less 

straightforward. An alternative adequacy criterion is proposed in section 3 and it is then shown 

that this provides reason not only to prefer the likelihood ratio measure to those mentioned 

already, but also to another measure that has received support in recent literature. 

 

2. Zalabardo’s argument for the likelihood ratio measure 

In his defence of the likelihood ratio measure of confirmation, José Zalabardo (2009) starts by 

drawing upon an argument due to Schlesinger (1995) in order to reject the difference measure, d.  

Schlesinger asks us to consider two scenarios, which we shall call Original Schlesinger 

Scenarios, one where Pr(H1) = 1/10
9
 and Pr(H1|E1) = 1/100 and another where Pr(H2) = 0.26 

and Pr(H2|E2) = 0.27. He claims, and Zalabardo agrees, that intuitively the degree of 

confirmation should be much greater in the former case than in the latter. This is borne out by the 

ratio measure which gives r(H1,E1) = 10
7
 and r(H2,E2)  ≈ 1.038, but not by the difference 

measure which gives d(H1,E1) = 0.00999… and d(H2,E2)  = 0.01. Note that the likelihood ratio 

measure also handles this example appropriately since l(H,E) can be expressed as [Pr(H | E) ×  

Pr(∼H)] / [Pr(H) × Pr(∼H | E)] and so l(H2,E2) ≈ 1.01 x 10
7
 and l(H2,E2) ≈ 1.053.  

 

Although Schlesinger’s argument does not rule out the likelihood difference measure, ld, 

proposed by Nozick (1981) or the measure s, proposed by Christensen (1999), Zalabardo appeals 
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to the following adequacy criterion: 

 (C1)  If Pr(H | E1)  >  Pr(H | E2), then E1 confirms H to a higher degree than E2 does.
4
 

This is a very plausible criterion and as Fitelson (2007) comments it ‘seems to be accepted by all 

historical practitioners of confirmation theory’. Although this criterion could be discussed 

further, it will be accepted for the purposes of this paper, where the attention will focus on 

Zalabardo’s argument for the likelihood ratio measure, l, rather than the ratio measure, r. 

 

Zalabardo proposes the following adequacy criteria for a measure of confirmation of hypothesis 

H by evidence E: 

 (C2) If Pr(E1 | H) = Pr(E2 ∣ H) and Pr(E1 ∣∼H) < Pr(E2 ∣∼H), then E1 confirms H to a  

  higher degree than E2 does. 

 (C3) If Pr(E1 ∣ H1) = Pr(E2 ∣ H2) and Pr(E1 ∣∼H1) < Pr(E2 ∣∼H2), then E1 confirms  

  H1 to a higher degree than E2 confirms H2. 

Zalabardo uses an example to motivate criterion (C2), but the case can be strengthened further by 

noting that it is a special case of criterion (C1). To see this, note that if Pr(E1 | H) = Pr(E2 | H) 

and Pr(E1 | ∼H) < Pr(E2 | ∼H) then it follows that Pr(E1) < Pr(E2) and hence via Bayes’ theorem 

that Pr(H | E1)  >  Pr(H | E2). Criterion (C2) does not help in the selection of a confirmation 

measure since it is satisfied by all the measures presented in this paper, but Zalabardo uses (C2) 

to motivate (C3) by arguing that the same intuition that sanctions (C2) also sanctions (C3).  

 

Criterion (C3) is much less straightforward, however. The difference between criteria (C2) and 

(C3) is that the former considers different evidence for the same hypothesis, whereas the latter 
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 Actually, Zalabardo’s criterion is stronger than (C1). It reads ‘E1 confirms H to a higher degree than E2 does just in 

case Pr(H | E1)  >  Pr(H | E2)’. However, the weaker condition expressed in (C1) also suffices to rule out ld and s. 



5 
 

applies the same principle to the case where different evidence is considered for different 

hypotheses. A potential worry might be that the principle will no longer apply since the prior 

probabilities of the hypotheses will in general be different. This gives rise to a potential conflict 

between criterion (C3) and Zalabardo’s use of Schlesinger’s argument. Neither Schlesinger nor 

Zalabardo try to formulate a criterion based on this example, but in the Original Schlesinger 

scenarios the idea seems to be that it is the much larger relative increase in probability that 

warrants the greater degree of confirmation in one case than in the other. Consider now a pair of 

scenarios, which for reasons that will become apparent we will call Modified Schlesinger 

Scenarios. These scenarios have been chosen to be very similar to those Zalabardo uses to show 

that the ratio measure, r, does not satisfy criterion (C3). In the first scenario, let Pr(E1 | H1)  = 

19/20, Pr(E1 | ∼H1) = 1/40 and Pr(H1) = 2/3 and in the second let Pr(E2 | H2)  = 19/20, Pr(E2 | 

∼H2) = 1/30 and Pr(H2) = 1/10. According to criterion (C3), the confirmation should be greater 

in the former case than in the latter and, of course, this is borne out by the likelihood ratio 

measure since l(H1,E1) = 38 and l(H2,E2) = 28.5. By contrast, the ratio measure fails to satisfy 

(C3) since r(H1,E1) ≈ 1.48 and r(H2,E2) = 7.6 since the posterior probabilities are Pr(H1 | E1) 

=76/77 and Pr(H2 | E2) =19/25. However, in conflict with criterion (C3), the intuition underlying 

Schlesinger’s argument suggests that the degree of confirmation should be much greater in the 

latter case since it has a much larger relative increase in probability (an increase from 1/10 to 

19/25 compared to an increase from 2/3 to 76/77 in the former case). 

 

Does this mean that acceptable measures of confirmation should fail to satisfy criterion (C3)? In 

particular, is there a problem with the ordering provided by the likelihood ratio measure, l, in the 

Modified Schlesinger Scenarios? The answer to this seems to be ‘no’. Note that l assigns a high 
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value in the case where the probability of H1 increases from 2/3 to almost 1. More generally, l 

satisfies the following criterion, known as logicality (see Fitelson 2007):  

 (C4)  If E entails H (∼H), the degree of confirmation of H by E should be maximal  

  (minimal).
5
 

This criterion makes sense if confirmation is to be understood as a generalization of logical 

entailment as is appropriate in the context of inductive logic. Equating ‘E entails H’ with Pr(H | 

E) = 1, then it is reasonable that in certain cases, such as the confirmation of H1 by E1 in the 

Modified Schlesinger Scenarios, the degree of confirmation should be high even though the prior 

probability was high to start with. Thus, although Schlesinger’s argument based on the Original 

Schlesinger Scenarios is very plausible, care must be taken if it is to be applied more generally 

and there is no clear reason to think that it can be extended in such a way as to pose a problem 

for the likelihood ratio measure. 

 

Having said that, it is not clear that (C4) should be adopted as an adequacy criterion for 

confirmation measures. While it is suitable if confirmation is to be considered as a generalization 

of entailment, it is not so clear that it must be accepted if confirmation is to be considered in 

terms of the more general notion of evidential support as discussed at the start of this paper, i.e. 

quantifying the extent to which the hypothesis is made more probable by the evidence.
6
 And the 

same point applies to (C3). While it is far from clear that measures satisfying (C3) should be 

rejected, given its tension with Schlesinger’s argument a more convincing reason would need to 

                                                           
5
 l satisfies (C4) provided division by zero is equated with infinity. To avoid this, the ordinally equivalent measure 

proposed by Kemeny and Oppenheim (1952) can be used instead. It is given by k(H,E) = [Pr(E|H)-Pr(E|∼H)]/ 

[Pr(E|H)+Pr(E|∼H)]. 
6
 There may well be various ways to think about confirmation. For example, in the field of data mining it has been 

argued that measures to quantify the strength of association rules should be confirmation measures, but that they 

should satisfy some criteria differing from those generally accepted in the philosophy literature (Glass, 2013). 
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be provided to adopt it as an adequacy criterion. Instead, however, an alternative criterion will be 

proposed in the following section. 

 

3. A new adequacy criterion for confirmation measures 

Consider the following proposed adequacy criterion:  

 (C5)  If Pr(E | H1) = Pr(E | H2) and Pr(E | ∼H1) < Pr(E | ∼H2), then E confirms H1 to  

  a higher degree than E confirms H2.  

Like criterion (C2) and unlike (C3), this proposal keeps something fixed, in this case the 

evidence, E. Support for (C5) can be obtained by noting that it is a special case of the weak 

likelihood principle which can be stated as follows (see Joyce 2008):  

 (C6)  If Pr(E | H1) ≥ Pr(E | H2) and Pr(E | ∼H1) ≤ Pr(E | ∼H2), with one inequality  

  strict, then E confirms H1 to a higher degree than E confirms H2.
7
  

Joyce argues that this principle ‘must be an integral part of any account of evidential relevance 

that deserves the title “Bayesian”’. Note also that criterion (C5) is a special case of criterion (C3) 

in which E1 and E2 are the same and as such it is a much weaker claim since one can accept 

criterion (C5) while rejecting criterion (C3) but not vice versa. Furthermore, there is no obvious 

tension between criterion (C5) and the Original Schlesinger Scenarios or Modified Schlesinger 

Scenarios. The reason for this is that these scenarios relate to cases where Pr(H1 | E1) / Pr(H1) ≠ 

Pr(H2 | E2) / Pr(H2), which cannot arise if Pr(E  | H1) = Pr(E | H2). For this reason the ratio 

measure fails to satisfy criterion (C5) since r(H1,E1) =  r(H2,E2) if Pr(E | H1) = Pr(E | H2) 

irrespective of the values of Pr(E | ∼H1) and Pr(E | ∼H2). Clearly, the likelihood ratio measure 

satisfies (C5). 

                                                           
7
 Joyce also states a slightly different version which does not allow for equality between Pr(E | H1) and Pr(E | H2). 

Clearly, (5) is not a special case if it is stated in that way, but it would at most be a very modest extension of it. 
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It is worth noting that criterion (C5) is not as discriminating as criterion (C3) since, apart from 

the ratio measure, (C5) is satisfied by all the other measures considered so far. However, if 

providing a correct ordering for the Original Schlesinger Scenarios and criterion (C1) are both to 

be imposed as requirements for confirmation measures, as Zalabardo proposes, d, s and ld can all 

be ruled out. Since (5) rules out r, this means that l is the only measure satisfying the proposed 

adequacy requirements. 

 

Another confirmation measure, which has not been considered so far, is the certainty factor 

(Shortliffe and Buchanan 1975), which has been used in the field of expert systems and has 

recently been advocated as a measure of confirmation (see Crupi et al. 2007 and Crupi and 

Tentori 2013). It is defined as follows: 
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  (6) 

Both l and cf also satisfy symmetry criteria proposed by Eells and Fitelson (2002), while cf also 

satisfies extended symmetry criteria proposed by Crupi et al. (2007) but l does not.
8
 The 

symmetry proposals of Crupi et al. are based on generalizing those of classical logic. For  

example, if E entails H it is not the case in general that H also entails E and so, taking the degree 

of confirmation to be a generalization of entailment, they argue that if E confirms H the degree 

of confirmation of H by E should not necessarily be the same as that of E by H. However, in 
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 More precisely it is the log-likelihood ratio that satisfies the symmetry requirements of Eells and Fitelson. The 

measure of Kemeny and Oppenheim (see footnote 4) also satisfies these requirements.   
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classical logic, if E refutes H (i.e. E entails ∼H), then H also refutes E and so they argue that if E 

disconfirms H the degree of disconfirmation of H by E should be the same as the degree of 

disconfirmation of E by H.  

 

A proper evaluation of the interesting proposal of Crupi et al. is beyond the scope of this paper, 

but it is worth noting that although l does not satisfy their symmetry principles, it does satisfy 

them in the extreme cases, for example, when E refutes H. This follows from the fact that l 

satisfies (C4). Arguably this is sufficient in terms of symmetry for a confirmation measure to 

generalize entailment in classical logic. At the very least, the failure of l to satisfy the more 

detailed symmetry criteria of Crupi et al. does not seem sufficient to rule it out as a measure of 

confirmation independent of other criteria.  

 

Another factor to take into account when comparing l and cf is the fact that cf does not handle the 

Original Schlesinger Scenarios in a satisfactory way. In the scenario where Pr(H1) = 1/10
9
 and 

Pr(H1 | E1)= 1/100 the certainty factor gives the result cf(H1,E1) = 0.00999… while in the 

scenario where Pr(H2) = 0.26 and Pr(H2 | E2)= 0.27 it gives cf(H2,E2) ≈ 0.0135. As pointed out 

earlier, l does give an intuitively correct result in this case.  

 

Finally, cf does not satisfy criterion (C5) in cases of disconfirmation. To see this, suppose that 

the antecedent of (C5) holds so that Pr(E | H1) = Pr(E | H2) and Pr(E | ∼H1) < Pr(E | ∼H2). Let 

us further suppose that E disconfirms H1, which means that Pr(E | H1) < Pr(E) and hence Pr(E | 

H2) < Pr(E) so that E disconfirms H2 as well. Using Bayes’ theorem to replace the term Pr(H | 

E) in the expression for cf(H,E) in the case of disconfirmation, cf(H,E) can be expressed as 
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Pr(E|H)/Pr(E) – 1 and so cf(H1,E)= cf(H2,E) which disagrees with criterion (C5). Strangely, 

although cf fails to satisfy (C5) in cases of disconfirmation, it does satisfy it in cases of 

confirmation. Hence, according to cf, whether the difference between Pr(E | ∼H1) and  Pr(E | 

∼H2) results in a difference in degree of confirmation in cases where Pr(E | H1) = Pr(E | H2) 

depends on whether confirmation or disconfirmation occurs.
9
 

 

Overall, these findings give us reason to prefer the likelihood ratio measure, l, to the certainty 

factor, cf, as well as to the other measures presented earlier in the paper. While cf does satisfy 

some symmetry properties not satisfied by l, it is far from clear that this constitutes a serious 

problem for l. 

 

5. Conclusion 

This paper has provided a new defence of the likelihood ratio measure based on criteria (C1) and 

(C5) and an argument due to Schlesinger. This is a development of an earlier argument due to 

Zalabardo (2009). In particular, it has been argued that one of Zalabardo’s adequacy criteria (C3) 

can be replaced by a logically weaker and better supported criterion (C5). It has also been argued 

that these same criteria give us reasons to prefer the likelihood ratio measure not only to a 

number of measures that have received a lot of attention in the philosophical literature but also to 

the certainty factor measure which has been advocated recently.  
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