
Autonomic Wheel Alignment for Mobile Robots

Martin Doran, Roy Sterritt, George Wilkie

Faculty of Mathematics and Computing

University of Ulster

Jordanstown, N.Ireland

doran-M18@email.ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk

Abstract—In pursuit of future space exploration, NASA has

described the concept of Multiple Rovers; this concept was

based on the fact that multiple rovers are capable of

completing more tasks and covering a larger area than a single

rover. However, the amount of expenditure put into each rover

will be greatly reduced compared to that of a single dedicated

rover. These lower spec. rovers would be more vulnerable to

hardware faults. However, if the software system built into

each rover is based on autonomic principles, then the ability of

the rover to continue to operate would be greatly increased.

When studying the features of mobile robots using the X80-h

from Dr. Robot, it was found that this type of Robot can suffer

from a wheel alignment issue – were, when given a command

to move forward by a given distance, it would either veer off to

the left or to the right. This resulted in the Robot not arriving

at the expected destination. The alignment ‘error’ was not

always consistent for each Robot; it was found that after each

attempt the Robot was at various distances from the expected

destination point. To plot the path of the Robot at each

attempt, Indoor GPS was used. The Indoor GPS provides x, y

and degree of angle data which can then be recorded into a

database. The goal is to use this data to create an algorithm to

compensate for the alignment error; this will therefore

improve the Robots reliability to reach its expected destination.

Autonomic, Alignment, GPS, Dead-reckoning

I. INTRODUCTION

In 2003, NASA put forward the concept of Autonomous
Nano-technology Swarm (ANTS). This involved using
multiple spacecraft to complete space missions by a means
of collaboration and redundancy [1]. This concept was taken
further by including multiple robotic rovers for use in planet
and moon exploration [2]. However, using multiple rovers
would mean less expenditure on each individual rover;
therefore, it would be assumed that the reliability and
robustness of the rover would be greatly reduced [3]. If the
rover develops a fault during the task, then depending on the
nature of that fault, it could either delay the mission or
perhaps damage the Rover permanently. However, if the
rover is equipped with a reflective and self-aware software
system [4], it may be able to limit the damage or provide an
alternate strategy for completing the mission.

In [10], a navigation architecture for an Autonomous
Exploration Rover (AERO) is described. This robot
participated in the NASA Robot Centennial Challenge in
2013. The authors describe how AERO needed to use dead-
reckoning for extended periods and how a fibre optic ring
gyro was employed to assist with this task by providing

acceleration and angular velocity information. Such
gyroscopic equipment is an added expense, which could
become considerable in the situation where a swarm of
robots is to be engaged. Ideally, it would be good to achieve
a more basic form of dead-reckoning - relying on
calculations from direct angular and movement instructions
communicated to the robot.
 Robots that employ differential drive wheels such
as the X80-h [11], are susceptible to hardware issues such as
a wheel alignment error. This can be the result of many
hours of use or perhaps a component fault or mal-
adjustment. The problem causes the robot to slew to the right
or left when it is commanded to move in a straight line. This
problem clearly needs to be addressed if the basic form of
dead reckoning is to have any chance of success.

Under laboratory conditions, it is easy to rectify the wheel
alignment error by adjusting a Motor Calibration Board.
However, if the Robot is inaccessible, then the onboard
software system would need to check for the fault and
provide a suitable work-around strategy where necessary.
Detection of this problem would be provided by the Robot’s
self-monitoring system. While the Robot is in operation, it
will be periodically checking each system for an ‘I AM OK’
response from its various sensors and visuals. Self-
optimization [5] allows the Robot to analyze the data
therefore checking that all systems are performing as
expected. In the case of a wheel alignment error, the Robot
would have to decide if it is safe to continue to operate; does
the terrain allow for alignment compensation adjustments to
be made, which would depend upon existing path obstacles,
walls, cliff edges and slopes. The Robot would implement a
basic strategy of self-preservation but at the same time
evaluate the possibility of completing the mission using an
alternative, compensated, path.

II. ARCHITECTURE OF SYSTEM

A. Autonomic Architecture

One of the fundamental aspects of autonomic computing

technology is known as CHOP – configure, heal, optimize
and protect [6]. Self-configuring: can dynamically adapt to
changing environments. In the case of a Robotic device, this
could be loading in a new component to cope with surface
changes i.e. sandy surface to a rocky surface. Self-healing:
can discover, diagnose and react to disruptions. If a
component is not responding then performing a restart of
that particular system may alleviate the problem. Self-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:doran-M18@email.ulster.ac.uk
mailto:r.sterritt@ulster.ac.uk

Optimizing: can monitor and allocate resources
automatically. If one of the sensors fails on a Robot, the
remaining sensors are re-calibrated to compensate for the
loss. Self-protecting: can anticipate, detect and identify
possible threats to the software or hardware systems; for
example, if a component is over-heating, then the system
containing that particular component can be shutdown thus
preserving the remaining components.

The CHOP attributes can then be combined with an
Autonomic Management system. This is known as MAPE –
monitoring, analysing, planning and executing [6]. For
example, in the situation were a Robotic device has a system
virus, the autonomic manager would perform a monitor and
analyse function and determine that there is a risk to the
software system. Then, the autonomic manger uses the self-
protecting mechanism to inform the self-configuration
mechanism to perform an installation patch to rectify the
issue [8].

The Intelligent Machine Design (IMD) architecture from
an autonomic computing system is closely related to how
biological systems work [7]. The architecture proposes three
distinct layers; The Reaction layer, the Routine Layer and the
Reflection Layer. The lower layer, the Reaction Layer, is
connected to the sensors and effectors. In relation to the
Wheel Alignment experiment, Fig.1., this would relate to the
sensors on the X80 Robot such as the infrared, ultrasonic and
camera, which would be used to spot path obstacles/hazards
in real-time, as the robot progresses along a prescribed path.

Figure 1. Autonomic Intelligent Machine Design for X80 Robot.

The Routine Layer will handle know situations either

learned or hard-wired, such as following a compensated path
calculated from known wheel alignment issues. The
Reflection Layer makes decisions based on a knowledge
base collected over a period of time. The Reflection Layer
uses data to decide the best course of action. In the case of
the Wheel Alignment error, the Reflection Layer can call on
past experience (database store), to inform the Routine Layer
what process to engage – in this case what Wheel Alignment
algorithm to use, which might depend upon the nature of the
terrain such as solid or loose or whether there is a incline or
decline, all of which may require differing degrees of wheel
alignment compensation when plotting a compensated path.
The reflection layer would also be concerned with post-

evaluating the performance on the finished task in order to
decide if further refinement should be made to the known
wheel alignment algorithms.

The learning process involved in developing or refining a

Wheel Alignment algorithm, is described in Fig.2. This is part
of the Reflection layer. The process is currently achieved
indoors. It is currently partly manually achieved, but the
intention is that this would be automated for eventual field
use. The process consists of a GUI, which allows the User to
plot a Robot journey and to display the Robot system data;
this includes a set of coded routines, which send the specific
commands to the Robot. The GUI interface is coded in .net
C#. Communication to the Robot is carried out via a wireless
router, which passes commands that directly control all the
hardware modules inside the Robot, such as motion, power
and cameras. Indoor GPS, is supplied by a module on the
Robot, which uses passive Landmarks attached to the
ceiling.

Figure 2. Architecture used in the Autonomic Wheel Alignment .

For this project, the Wheel Alignment algorithm is held on
a PC and all recorded data is stored on a SQL Server
database. The Robot commands are sent via the application
software to the Robot using a WIFI network. Sensor data
from the Robot is sent via the WIFI network back to the PC
and processed by the Wheel Alignment algorithm. Fig.3.
shows the workflows involved in processing the Wheel
Alignment. Their interaction is as follows;

During the learning process, when the wheel alignment
algorithm is being compiled, the robot is instructed to move
in a straight line to a target position, a known distance from
the starting point. The actual path the robot takes is recorded
and the degree to which the robot deviates from the direct
path is determined. This information is used in compiling the
wheel alignment algorithm. It is envisaged that different
algorithms will be required to handle surfaces with different
frictional characteristics and also for surfaces presenting
either an incline or a decline. Further research is required to
determine how these parameters affect the wheel alignment
algorithm.

Figure 3. Process flow of the proposed wheel alignment program .

The User Interface provides a means of specifying

direction and distance parameters for the Robot. A Wi-Fi
connection is made to the Robot and GPS via the router.
Once a new task is initiated, the main routines in the program
will pass commands to the Robot to move forward using the
supplied parameters. Once a task is completed, the Robot can
analyze the data and check that all systems are performing
correctly. If an alignment error is detected, then a
programmed routine (the wheel alignment algorithm) is
employed to re-align the Robot therefore increasing the
destination accuracy. However, the result can be impacted by
the physical environment such as obstacles, walls and cliff
edges.

III. INDOOR LOCALIZATION

The indoor GPS used in this project, is the StarGazer,
supplied by the Hagisonic Company, Korea. It comprises of
an infrared camera (installed on each Robot) and a number
of ceiling (passive) Landmarks. It can measure a series of
images, which are reflected from the ceiling Landmarks
unique reference IDs (see Fig.4.) The Landmarks are placed
on the ceiling at 2 meters apart; close enough to avoid ‘dead
zone’ – i.e. a space where the StarGazer cannot read any of
the ceiling Landmarks. In-order for the StarGazer to
establish a local GPS reading, the room must be mapped
using the ceiling Landmarks. One of the Landmarks is used

as a reference marker; then, using commands supplied by the
Hagisonic Company, the Robot is moved from one
Landmark to the next until all the ceiling Landmarks are
encoded into the StarGazer memory. The Landmark
information remains in the device memory until another
room mapping is performed. In [9] an experiment showed
that the maximum position error and maximum direction
error of the StarGazer localization were 2cm and 5 degree,
respectively. This accuracy is sufficient for most localization
cases.

Figure 4. Overhead room view showing the GPS StarGazer ceiling

Landmarks .

To retrieve the GPS data from the StarGazer, a .Net C#
Windows Form interface is currently used. StarGazer
functions can be accessed via the StarGazerGPS.dll.
Connection is made via a Wi-Fi router using a dedicated port
number on the Robot. When the StarGazer device detects a
ceiling Landmark, it calculates the X and Y co-ordinates.
The StarGazer device is located on a North–South axis on
the Robot; the direction angle is then calculated between the
StarGazer device and the current Landmark detected on the
ceiling above.

IV. ALIGNMENT EVALUATION

Detailed analysis of the alignment error is required for
each Robot used. To find the mean alignment error value,
each Robot was tested 12 times. This gave a mean set of
values that were used to generate a wheel alignment
algorithm. The tester entered a desired distance and direction
they wished the Robot to follow; this path was plotted on the
User Interface. These values were then used as a marker
against the actual path values returned from the Robot’s
indoor GPS. After the Robot had completed each test run,
the path taken by the Robot was plotted on the User
Interface. Each test was recorded in a SQL database. Fig.5.
shows the results from each test together will the expected
path values, for one robot. The averaged values from the
SQL database, shown in Table 1 were then used to derive the
wheel alignment algorithm, making note of the frictional

characteristics and angular properties of the terrain over
which the measurements were made. Eventually it is our
intention that this process will be automated so that the
reflection layer of the autonomic software will be able to
automatically refine the wheel alignment algorithms over
time.

Figure 5. Test data alignment error plotting: at -30° direction for a

distance of 2 meters.

TABLE I. TEST VALUES FOR WHEEL ALIGNMENT ERROR PATH

V. WHEEL ALIGNMENT ERROR DETECTION

A feature of autonomic behavior is for the Robot to
establish that there is an error in the first place. The self-
evaluation process, employed in the Robot’s function, will
expect certain parameters to be fulfilled with an expected
tolerance value. In the case of the alignment error, the Robot
needs to establish that after it has executed its journey or a
check-point within that journey, that its actual position is not
the same as its expected position. In a laboratory situation,
this could easily be established using indoor GPS to work
out the difference value between actual position and expected
position; however, in the field, such as a space mission, GPS
may not be available. In this situation the Robot may have to
rely on dead reckoning and hence the importance’s of the
Robot being aware of any wheel alignment errors and the
changes in this characteristic over time and surface
characteristics.

VI. WHEEL ALIGNMENT ALGORITHM

The StarGazer GPS module can be used to supply x, y
and direction data of the Robot; this data can then be
collected and stored in a database. The data can also be
represented graphically (see Fig.5.). Algorithm 1 shows how
these methods can be achieved.

Algorithm 1 Plotting the Robot Path

Input: Direction of Robot (°), Distance to travel(meters)
1: a = direction of Robot

2: d = distance to travel

3: c = current Robot distance
4: gpsX = x-coordinate from the GPS StarGazer module

5: gpsY = y-coordinate from the GPS StarGazer module

6: gpsDir = direction of the Robot from GPS StarGazer module
7: Take a reading from GPS every 0.2 meters until the distance

travelled is equal to the SET distance.

8: while c < d do
9: if timerCounter % 10 = 0 do

10: Add gpsX reading to xPlot Array

11: Add gpsY reading to yPlot Array
12: Add gpsDir reading to dirPlot Array

13: Write data to SQL database Table

14: end if

11: end while

12: return plot result

The SQL data, stored from testing can be used in the

Wheel Alignment (Arc Method) see Fig.6.

Figure 6. In this example, the direction and destination are given at -30°

and 2 meters respectively bewtween A and B (a) - this represents the Robot

with perfect alignment; (b) represents the Robot with an alignment error.

The Robots’ direction is adjusted to – 13.7°, to compensate for the
alignment error. This is the Arc Method – see Algorithm 2.

Algorithm 2 shows how the data is retrieved and
manipulated to calculate a new angle of direction to
compensate for the alignment error. For the tests executed in
Fig.5 an average value is calculated for each test. Then a
further average is calculated over all the tests (12 in this
case). The new start angle value is calculated by subtracting
the average angle (from the test results) from the default
start angle. Therefore, when the robot is given a new
destination point, the robot will set its navigation direction to
the new start angle value (calculated from the tests results),
before it begins to move. This will improve the robots
chances of arriving close to the designated destination point.
This method however, relies on the terrain being clear of
obstacles and walls.

Algorithm 2 Wheel Alignment (Arc Method)

Input: Direction of Robot (°), Distance to travel(meters)
1: Read test data from SQL Tables.

2: for (ts = number of tests) do
3: for (vs = each value in test[ts]) do
4: Read each test value into an array

5: Calculate the average value of each test vs[ts]
6: Store the average value in an array

7: Calculate the Mean value of all tests

8: Alignment Error Angle = Mean value of tests
9: Enter the journey values for the Robot.

10: sa = start angle

11: dir = direction to travel
11: dis = distance to travel

12: aa= alignment error angle

13: cd = current Robot distance
13: while cd < dis do

14: Set Robot angle

15: sa= aa - dir
16: Turn robot to new angle direction

12: Move robot forward

11: end while

12: return end position

The main drawback of the Arc Method was that it relied

on an area along the ‘arc’ path that was free of obstacles. If
the journey between two points is more restrictive, then the
alignment adjustments would need to be made at a regular
interval. Fig.7. shows the Wave Method, were the alignment
adjustments are made a certain intervals along the journey.

Figure 7. The Alignement Wave Method. Adjustments to the Robot are
made a regular intervals, so that the Robot travels as close to the expected

path as possible.

At each interval the Robot is turned back towards the
original expected A to B path. As the Robot heads back
towards the expected path, the alignment error begins to pull
it away from the path. At the next interval, the Robot is
turned once gain toward the expected path. These
adjustments give the Robot path a wave appearance.

Algorithm 3 Wheel Alignment (Wave Method)

Input: Direction of Robot (°), Distance to travel(meters)

1: Read test data from SQL Tables.

2: for (ts = number of tests) do
3: for (vs = each value in test[ts]) do
4: Read each test value into an array

5: Calculate the average value of each test vs[ts]
6: Store the average value in an array

7: Calculate the Mean value of all tests

8: Alignment Error Angle = Mean value of tests
9: Enter the journey values for the Robot.

10: sa = start angle
11: dir = direction to travel

12: dis = distance to travel

13: aa= alignment error angle
14: cd = current Robot distance

15: is = interval setting(cm)

16: while cd < dis do
17: Adjust the Robot direction at interval setting

18: if cd % is == 0 do

19: Set Robot angle
20: sa= aa - dir

21: Turn robot to new angle direction

22: Move robot forward
23: moveRobotForward()

24: end if

25: end while

26: return end position

VII. EXPERIMENTS

The Arc method (see Algorithm 2), was implemented
using .net C# platform. The following set of tests (see Fig.8),
show the Arc method applied to an X80 Robot.

Figure 8. The above tests show the Arc method being applied to the X80

Robot. The white dashed line A – B, shows the expected path. The orange
dashed line, shows the actual Robot path.

The Wave Method (see Algorithm 3), was implemented
using .net C# platform. The following tests Fig.9 shows the
Wave method applied to an X80 Robot.

Figure 9. The above tests show the Arc method being applied to the X80

Robot. The white dashed line A – B, shows the expected path. The orange

dashed line, shows the actual Robot path.

The Wave Method test results along with the Arc Method

test results are displayed in a chart: see Fig.10. Included in
the chart are the original Alignment Error test results and
also the perfect Alignment values.

Figure 10. This chart shows the how the Arc Method and the Wave

Method, improves the average distance between the expected destination

point to the actual Robot destination point.

VIII. CONCLUSION AND FUTURE WORK

The purpose of this research is development of
algorithms to deal with Wheel Alignment issues, found in
Mobile robots. As explained previously, low cost swarm
robots will not have the sophistication as described in [10],
and therefore will rely on autonomic solutions to continue to
perform in the field, even with defects such as wheel
alignment. The experiments described in this paper show
how a low cost mobile robot, with a wheel alignment defect,
can be instructed to overcome this defect. It was found that
the algorithms Arc and Wave, greatly improved the Robots
ability to arrive at or near the expected destination point.
However, these tests were conducted on a flat uninterrupted
surface; future development will introduce different surfaces,
inclines, declines and obstacles. The Autonomic Reflection
Layer will be represented in future development, as a Robot
that retains its historical data and uses this information to
evaluate possible strategies when confronting defects such as
wheel alignment errors.

REFERENCES

[1] D. A. Norman, A. Ortony, and D. M. Russel, “Affect and machine
design: Lessons for the development of autonomus machines,” IBM
Systems Journal, vol. 42, no. 1, pp.38 – 44, 2003.

[2] R. Luna, A. Oyama, K. Bekris, “Network-Guilded Multi-Robot Path
Planning for Resource-Constrained Planetary Rovers”, IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS’10), pp. 776-783, 2010.

[3] G. Punzo, G. Dobie, D. J. Bennet, J. Jamieson, M. Macdonald, “Low-
Cost, Multi-agent systems for planetary surface exploration”, 63rd
International Congress, 2012.

[4] R. Sterrit, M. Parashar, H. Tianfield, R. Unland, “A concise
introduction into autonomic computing”, Advanced engineering
Informatics, 19, pp.181-187, 2005.

[5] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, C. A. Rouff
“Autonomous and Autonomic Systems: A Paradigm for Future Space
Exploration Missions”, IEEE Transactions on Systems, Man, and
Cybernetics - TSMC , vol. 36, no. 3, pp. 279-291, 2006.

[6] D. M. Chess, A. Segal, I. Whalley, S. R. White, “An architectural
blueprint for autonomic computing”, IBM Corporation, 2004.

[7] H. Shualib, R. J. Anthony, M. Pelc, “Framework for Certifying
Autonomic Computing Systems”, The Seventh international
Conference on Autonomic and Autonomous Systems, 2011

[8] C. C. Insaurralde, “Autonomic Management Capabilities for Robotics
and Automation”, 1st Global Virtual Conference, Electronics,
Electrical Systems, Electrical Engineering, 16, pp. 518-523, 2013

[9] I. Ul-Haque and E. Prassler, “Experimental Evaluation of a Low-cost
Mobile Robot Localization Technique for Large Indoor Public
Environments”, in Robotics (ISR), 2010 41st International
Symposium on and 2010 6th German Conference on Robotics
(ROBOTIK), 2010, pp. 1–7.

[10] V. Dimitrov, M.DeDonato, A.Panzica, S.Zutshi, M.Wills and T.Padir,
“Hierarchical Navigation Architecture and Robotic Arm Controller
for a Sample Return Rover”, IEEE International Conference on
Systems, Man, and Cybernetics, IEEE Computer Society, 2013,
pp.4476 – 4481, DOI 10.1109/SMC.2013.761.

[11] Dr. Robot Inc. X80 Reference Manual, Version 1.0.3, Canada, 2010.

