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Abstract—As the size and complexity of cyber-physical systems 

continue to grow, there is a heightened need to develop new 

analytical techniques capable of achieving a level of service with 

successful operations upon which users can place even more 

reliance.    This paper presents an emerging strategy for meeting 

this demand ‘Autonomic Analytics’, utilizing the autonomic 

computing paradigm to deliver real-time, self-managing, context 

and situation aware analytics.  A three-tier rule-discovery 

framework and associated support and analysis tools are 

described. These assist with the development, management and 

maintenance of analytical rules and beliefs to allow for the 

progressive development evolution from ‘human-in-the-loop’ to 

‘human-on-the-loop’ towards the long-term (and some believe 

impossible and undesirable) vision of ‘human-out-of-the-loop’.  

Index Terms—Autonomic Computing, Analytics, CPS 

 

I. INTRODUCTION 

Autonomic computing is rapidly becoming established as a 

significant strategic approach to the design of more reliable, 

easier-to-manage computer based systems. When launching the 

autonomic computing initiative, IBM highlighted the growing 

complexity crisis in the IT industry, comparing it with 

telephony in the 1920s. There, the rapid increase in use of the 

telephone led to estimates that by the 1980s half of the 

population of the USA would have to be employed as 

telephone operators to meet the demand [1].  The 

implementation of automated switching and other 

technological developments avoided this crisis. By analogy, 

IBM is expecting autonomic system implementations to 

achieve similar productivity gains. It is anticipated, however, 

that significant research and development will be required to 

achieve that goal.  

The envisaged goal of autonomic computing is the 

production of systems that are self-managing in four main 

respects: self-configuring, self-healing, self-protecting and self-

optimizing.  Some of the prerequisites for autonomic 

computing include complete visibility of the managed 

platform, complete control of that platform without undesirable 

side effects, and complete knowledge of how to relate visible 

situations to concrete actions. Most importantly is the ability to 

capture and represent both enterprise and personal policy 

(rules). Because of the need for differing levels of human 

involvement, autonomic computing maturity and sophistication 

has been categorized into five “stages of adoption” [2][3]: 

Basic, Managed, Predictive, Adaptive, and Autonomic.  These 

prerequisites are priorities in the work reported in this paper 

while evolving along the autonomic computing maturity 

stages. 

There are two strategies for introducing autonomic 

behavior. The first is to engineer it into systems and the second 

is to achieve it through adaptive learning. The first approach 

can be progressed immediately, with human experts generating 

or overseeing the generation of rules for autonomic functions. 

Over time, this could be increasingly supplemented with self-

learning processes [4].  

The initial vision for autonomic computing was that these 

rules, policies and beliefs were “management” oriented to 

facilitate self-management of the system.  Yet given the 

advantage that AC provides – localized monitoring and 

adapting, this may be extended to “analytics” along with other 

areas, - deeper rules, policies and beliefs and not just for the 

automation of the system management (self-management) but 

the application and about the wider world in which the cyber-

physical system operates. 

 

II. AUTONOMIC COMPUTING PARADIGM 

The basic building blocks of any autonomic system 

architecture include sensors and effectors [5].  By monitoring 

behavior through sensors, comparing this with expectations 

(historical and current data, rules and beliefs), planning what 

action is necessary (if any) and then executing that action 

through effectors, creates a control loop [6]. The control loop, a 

success of manufacturing science for many years, provides the 

basic backbone structure for each system component [7]. 

Figure 1 & 2 depicts IBM‟s view of the necessary 

components within an autonomic manager. (For an alternative 

artifacts view, see [8].)  It is assumed that an autonomic 

manager is responsible for a managed element within a self-

contained autonomic element. Interaction will occur with 

remote autonomic managers through virtual, peer-to-peer, 

client-server [9] or grid [10] configurations. 



 

Figure 1 IBM’s view of the architecture of an 

Autonomic Element [6]. 

The monitor and analyze parts of the structure process 

information from the sensors to provide both self-awareness 

and an awareness of the external environment.  The plan and 

execute parts decide on the necessary self-management 

behavior that will be executed through the effectors.  

 

 

Figure 2 Necessary Components within IBM’s view 

of an Autonomic Manager[3] 

 

The simple correlator in the monitor parts and the rules 

engine in the analyze part use correlations, rules, beliefs, 

expectations, histories and other information known to the 

autonomic element, or available to it. 

Figure 3 logically depicts each element in a system having 

an AM and achieving global self-management through 

cooperative communication (sH:self-healing; sO:self-

optimizing; sC:self-configuring; sH:self-healing and s*: other 

self-management events).  

 

 

Figure 3 Cooperative environment of AEs 

 

III. ANALYTICS 

A. Analytics 

Wikipedia simply describes Analytics as: the discovery and 

communication of meaningful patterns in data. Especially 

valuable in areas rich with recorded information, analytics 

relies on the simultaneous application of statistics, computer 

programming and operations research to quantify performance. 

Analytics often favors data visualization to communicate 

insight and that firms may commonly apply analytics to 

business data, to describe, predict, and improve business 

performance. Specifically, arenas within analytics 

include enterprise decision management, retail analytics, store 

assortment and stock-keeping unit optimization, marketing 

optimization and marketing mix analytics, web analytics, sales 

force sizing and optimization, price and promotion modeling, 

predictive science, credit risk analysis, and fraud analytics. 

Since analytics can require extensive computation (re Big 

Data), the algorithms and software used for analytics harness 

the most current methods in computer science, statistics, and 

mathematics. 

From a computer science perspective this is concerned with 

event correlation. 

B. Event Correlation 

The principle aim of event correlation is the interpretation 

of the events involved.  The event signals or messages 

represent symptoms.  Rules and beliefs identify which events to 

correlate and how they should be transformed.  These tend to 

vary over time creating a significant maintenance burden [11].  

Machine learning, data mining and other AI techniques can 

assist in the discovery of correlation rules and beliefs [12][13]. 

However, a human-centered discovery process is more 

effective than either a human or computer operating 

independently [14]. For example, it is useful to provide various 

visualizations of data throughout the knowledge discovery 

process to build user trust in the process and hence instill more 

confidence in the mined patterns. The transformation from data 

to knowledge requires interpretation and evaluation, which can 

also benefit from visualization of the processes involved. 

 

 



 

Figure 4 Three-tier analytical event correlation rule discovery process 

 

 

Visualization techniques can make use of the highly tuned 

perceptual abilities that humans possess, such as a capacity to 

recognize images quickly and to detect the subtlest changes in 

size, color, shape, movement or texture.  Any patterns that 

emerge may indicate the presence of potential for new rules. 

Human interpretation is then required to transform them into 

'knowledge'.  Human input typically produces more meaningful 

insights into the discovered correlations, enabling them to be 

coded as useful rules for fault identification and management. 

The next section describes a framework and support tools 

to assist such event correlation rule discovery. 

IV. EVENT CORRELATION FRAMEWORK 

A three-tier architecture model for analytics & rule 

discovery is shown in Figure 4. This extends earlier work 

described in [15],[16],[17]. It also makes explicit a 

recommendation for extending tier 2 activities from the 

development phase into the operational phase by using 

knowledge management techniques to capture operators‟ 

manual live correlations of events, bring this knowledge into 

the development lifecycle and test to see if the rules are of 

general use. 

The right-hand side of the diagram represents the managed 

operational system and the left-hand side the discovery or 

learning process. Data flows from the system to the discovery 

process; while rules flow from the discovery process to the 

autonomic manager. The representation suggests a cycle of 

activity, reflecting the necessary review that must take place 

after changes have been made to the system. Computer-assisted 

human discovery and human-assisted computer discovery 

techniques can be integrated in the three-tier framework for the 

discovery of event correlations to support the deduction of 

analytical  management rules. The responsibility of the tiers is 

as follows: 

Tier 1. Visualization Correlation (Computer-aided, human 

discovery). New event correlations are discovered 

from visualizing the analytical management data. 

Tier 2. Knowledge Acquisition or Rule Based Correlation. 

New event correlations are discovered through 

consultation with experts and analysis of 

documentation. Correlations from tiers 1 or 3 may also 

be validated in this tier. 

Tier 3. Data Mining Correlation (Human-aided, computer 

discovery). New event correlations are revealed by 

mining the analytical event data.  

New rules may emerge from any of these tiers. The first 

tier, visualization correlation, supports the visualization of data 

in several forms.  Visualization has a significant role 

throughout the knowledge discovery process, from data 

cleaning to mining.  In particular, it facilitates the analysis of 

data to help identify event correlations (knowledge capture).  

The second tier aims to identify correlations and rules using 

more traditional knowledge acquisition techniques, with 

experts and documentation.  At the same time it has a 

supporting role to confirm that discoveries from tiers 1 and 3 

are indeed new and useful information. The third tier mines the 

system data to produce more complex correlation candidates. 



V. AUTONOMIC ANALYTICS 

The Autonomic Computing paradigm essentially places 

elements that are traditionally not managed, human managed, 

or managed centrally, into a cooperative managed environment 

via localized autonomic managers. 

The majority of instances till now of autonomic computing 

are essentially still centralized, although the original vision was 

effectively peer-to-peer localized management with awareness 

of the environment and cooperation with other autonomic 

managers (AMs) to enable global systems management. 

The implication intended behind the earlier statement of 

“traditionally not managed” is that elements like data, 

performance metrics, robots, and so forth have not been 

managed in terms of the overall system.  To do so now implies 

fine grained low level elements are as key as major elements 

such as servers.  Realistically this will increase complexity and 

naturally there will need to be hierarchical/priority views 

within this scheme to enable effective vertical orchestration.  

This autonomic world (systems of systems) view therefore 

implies that the autonomic computing is not just about 

managing servers but potentially everything in the cyber-

physical system [18].  This world view implies that Autonomic 

Computing‟s  peer-to-peer, cooperative, distributed paradigm is 

ideal for implementing such systems. These localized 

autonomic managers are in prime position not just to manage 

the “subconscious” autonomic management functions, but the 

automation of the applications goals-in this case the analytics.  

As such the “knowledge” element in the AE (figure 1) would 

not just contain management data but distributed analytics 

which the autonomics self-function can propagate updates as 

necessary. 

VI. CONCLUSION 

This paper has discussed the concept of utilizing the 

Autonomic Computing paradigm as a platform to provide real-

time distributed context & situation aware analytics and as 

such achieve “Autonomic Analytics”.  The paper also 

discussed a three tier analytics correlation discovery/learning 

process.  The overarching vision of AC, and its derivation as 

AA, will only be achievable through standards, in particular, 

for communicating between AEs and interfacing with 

elements. Self-publishing & self-defining properties will assist 

here. 
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