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Abstract—Dopamine is an important neurotransmitter 

responsible for regulating various brain functions such as 

learning and cognition. Dysfunctions within the dopaminergic 

system are implicated in many neurological and neuropsychiatric 

disorders. To understand such a complex system, biologically 

realistic multiscale computational models are necessary. Such 

models require the extraction of relevant and important factors 

or processes from one scale to bridge and interact with systems at 

other scales. In this paper, we analyze an influential 

computational model of dopamine synthesis and release within a 

pre-synaptic terminal by systematically perturbing its 

variables/substrates. Based on the relative changes in steady 

states and the time to reach the new perturbed steady states, we 

found that the substrates within the cascade of intracellular 

biochemical reactions can vary widely in terms of influence and 

timescale. We then categorize the substrates according to their 

relative timescales and changes in steady states. The perturbation 

results are then used to guide our selection for the most 

appropriate equations and functions to be approximated in 

developing reduced models of the original model. Our 

preliminary simulation results show that either a slow or fast 

version of the reduced model can be simulated significantly faster 

than the original model. Our work demonstrates, through 

perturbation analysis, the feasibility of reduced models of the 

dopaminergic presynaptic terminal to improve computational 

efficiency, implement in multiscale modelling, and in silico 

neuropharmacology.  

Keywords—Mathematical model; dynamical systems; 

neuromodulator; neuropharmacology; multiple timescales 

I.  INTRODUCTION 

Dopamine (DA) is a catecholamine neurotransmitter 
(neuromodulator) mediated by G protein-coupled dopamine 
receptors [1]. DA has been intensively studied due to its 
critical role in motor control, motivation, reward based 
behavior, hypertension and hormonal regulation [2].  
Empirical studies have shown a correlation between the 
activity of phasic DA neuron activity and the temporal-
difference (TD) reward prediction error of reinforcement 
learning, suggesting that DA neurons capable of encoding 
variance between anticipated and obtained awards through 
bursting and pausing patterns of firing [3]-[4].  

Dysfunctions in the DA system are linked to a number of 
brain disorders, and a large number of pharmacologically 
active compounds that interact with dopamine receptor 
function have been developed and used clinically for the 

treatment of various disorders [5]-[9]. Moreover, drugs such 
as cocaine, amphetamines and L-DOPA (a DA precursor) can 
induce psychotic episodes by increasing dopamine levels [10]. 
Addictive drugs and natural rewards have a modulatory effect 
on DA signaling, producing changes in synaptic plasticity 
within the DA system and DA receptive neurons. Several 
features of addiction have been attributed to the DA system 
such as both short and long term changes in the firing of 
dopamine neurons in the ventral tegmental area [11] and a 
significant, long-term down regulation of DA D2 receptors in 
the striatum [12]. Hence, the DA system is a highly important 
target for neuropharmacology.  

Indeed, the DA system has been the target of some 
effective pharmacological treatments for pathological 
conditions. Indirect DA receptor agonists, together with L-
DOPA, have been used to reduce symptom severity of 
Parkinson’s disease patients with great efficacy [13]. Although 
DA replacement therapy serves only to alleviate symptoms 
and has not been known to treat Parkinson’s disease, it has led 
to the discovery of more DA receptor agonists, a search that 
could be improved with the use of computational models. The 
DA system has also been the target of drugs prescribed for 
pituitary tumors [14], type 2 diabetes [15], depression and 
bipolar disorder [16]. 

Significant progress has been made in discovering the 
structural, genetic, physiology and pharmacological properties 
of dopamine neurons [17]. This has facilitated the 
development of sufficiently realistic computational models, 
for example, computational models of the DA neurons, DA 
synthesis, release and reuptake, and signal transduction [18] 
[20]. Biologically plausible computational models can assist in 
furthering our understanding of how neuromodulators 
contribute at the neuronal circuit and behavioral levels [21]-
[24].  

As neuromodulators act across multiple spatial and 
temporal domains, an important modelling approach is to 
develop and simulate multiscale models. However, multiscale 
models are currently still not as prevalent as approaches in 
genomics, molecular/cellular biology, pharmacokinetics and 
metabolism in the pharmaceutical industry [25]-[26]. An 
essential element of multiscale models is to extract relevant 
and important factors or processes at one scale (e.g. 
molecular) to bridge and interact with other scales (e.g. 
system) [27]. However, it is sometimes not immediately clear 
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which factors or processes are relatively more important for 
retention.  

In this paper, we focus on an influential mathematical 

model of pre-synaptic DA synthesis, release and reuptake 

[19]. The model can be used to investigate the effects of 

amounts of DA concentrations, enzyme expression levels, 

tyrosine inputs, dopamine transporters and firing rate changes 

(Fig. 1). Most of the model parameters are comparable to that 

in experiments (see [19] for details). However, the model 

consists of several coupled nonlinear differential equations 

and mathematical functions and variables that may potentially 

respond with very different timescales and amplitudes. This 

poses a significant problem in reducing the model to make it 

computationally more efficient, and for developing it across 

multiple scales, e.g. from molecular to neuronal-circuit levels.  

In this work, we analyze the various components of the 
model in [19] by systematically perturbing its variables 
(substrates) [28]. This allows us to categorize the relative 
importance of the model variables in relation to each other and 
to tease apart the relative timescales of the variables thus 
providing the conditions for model reduction.  

 
 

Fig. 1. Biochemical processes within a dopaminergic pre-synaptic terminal. 

Numbers denote steady-state concentrations of substrates (red) and 

fluxes/velocities (blue). Adapted from [19].   

 

II. COMPUTATIONAL MODEL OF DOPAMINE SYNTHESIS AND 

RELEASE 

The model in [19] consists of biochemical reactions that 
occur during the synthesis, release, catabolism and reuptake of 
DA within the presynaptic terminal. A schematic diagram of 
the model including these reactions is shown in Fig. 1. The 
model consists of nine coupled nonlinear differential equations 
that describe the chemical kinetics of the various substrates 

involved in maintaining homeostatic DA synthesis and release 
(see (1)-(9); Table I). The substrates are denoted in lower case 
while the enzyme names and velocities are denoted in upper 
case. Transport and reaction velocities are prefixed with a 
capital V  followed by the name of the enzyme, transporter or 
process in subscript. For example, the mathematical symbol 
VTH (tyr, bh4, cda, eda) denotes the velocity (function) of the 
tyrosine hydroxylase (TH) reaction and its dependence on the 
concentrations of the substrates tyrosine (tyr), 
tetrahydrobiopterin (bh4), cytosolic DA (cda), and 
extracellular DA (eda). The full names for the rest of the 
substrates and velocities are shown in Table I.  

 

Table I 

Steady-state values for the substrates and velocities in the 

model.  

Substrate 

/velocity 
Full name 

Steady state value 

Current full 

model 
[19] 

[bh2] Dihydrobiopterin 22.7 41 

[bh4] Tetrahydrobiopterin 337.2 319 

[l-dopa] 3,4-dihyroxyphenylalanine 0.34 0.36 

[tyr] Tyrosine 93.4 126 

[tyr-pool] Tyrosine pool 701 Not given  

[hva] Homovanillic acid 6.26 Not given  

[cda] Cystosolic dopamine 4.2 2.65 

[vda] Vesicular dopamine 78 81 

[eda] Extracellular dopamine 0.012 0.002 

VTH 
Tyrosine hydroxylase 26.7 27.3 

VDRR 
Dihydropteridine reductase 26.7 27.3 

Vtyrin 
Neutral amino acid transporter 241 241 

Vtyr-pool 
Tyrosine pool 26.7 27.3 

VAADC 

Aromatic amino acid 

decarboxylase 
77.5 81 

VMAT 

Vesicular monoamine 
transporter 

72.3 80.1 

VDAT 
Dopamine (reuptake) transporter 0.12 0.02 

Vcatab 

Catabolism of cystosolic 

dopamine  
22.7 41 
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The function fire(t) in (6) and (7) is related to the firing 
rate of the pre-synaptic DA neurons and is generally time 
dependent [19]. In this paper, we follow [19] and set the value 

to be 1 hr, i.e. vesicular dopamine is released at a constant 
rate with entire pool turning over every hour. The specific 
functional forms of the reaction velocities used for (1)-(9) are 
determined by Michaelis-Menten kinetics as follows [19]:  
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The kinetic parameters (with units in μM, μM/hr) are taken 
from [19] with the exception of those denoted by an * which 
are from [27]: kAADC,m = 130, VAADC,max = 10000, kDAT,m = 0.2, 

VDAT,max = 8000,   
    = 100,         

 
 = 200,   

    = 10, 

  
     =  

     = 75,     
  = 80,        = 3,          = 

7082,      = 40,      = 46,      = 60,      = 125,   (   ) = 

110,   (   ) = 150, NADPH = 124*, NADP =  0.25*,    = 6, 

    = 0.6,          
      = 0.2,     

      = 0.2,     
      = 10, 

         = 3,             = 30,     
      = 3.45, and      = 400.  

The initial values for nicotinamide adenine dinucleotide 
phosphate (NADPH) and 2-oxoaldehyde dehydrogenase 
(NADP+) are not readily provided in [19] and are obtained 
from [28], taken as 124 um and 0.25, respectively. The ratio of 
NADPH to NADP+ is described as 500:1 [29], consistent with 
those used in this model. Although the initial parameter values 
used in this model vary slightly from those outlined in [19], 
but still within the ranges of experimental values (see [19]), 
the final steady-state values are readily consistent with those 
in the original model (Table I).  

The full model is simulated in MATLAB (MATLAB 
R2013b, The MathWorks, Natick, MA) with Euler’s 
numerical scheme being used for integrating the differential 
equations. The time step size used for numerical integration in 
the model is 0.0036s (0.00001h).  

 

III. RESULTS 

Intrinsically fast and slow dependent variables or 
substrates were elucidated by carrying out step perturbation of 
each variable and substrate while analyzing the state of the full 
model at each step. This ‘separation of timescales’ approach 
can allow the model to be reduced for increased computational 
speed allowing the user to investigate either slow or fast 
dynamics independently with greater efficacy [28]. For 
example, if fast timescale (e.g. order of milliseconds) is the 
focus of study, the much slower variables can be assumed to 
be relatively constant, and are converted from differential 
equations to mere mathematical functions or constants. The 
model is then reduced to a ‘fast mode’ requiring reduced 
computational cost. Similarly, if slow timescale (e.g. order of 
hours) is the focus, the much faster variables are assumed to 
have rapidly reached their quasi-steady states, i.e. they become 



 

 

mathematical functions. As a result we can have two 
approximate models; one that can be used to examine fast 
dynamics and the other for slower dynamics. Further reduction 
can be obtained by observing how one substrate’s relative 
influence on another. For example, if perturbing one substrate 
elicits a small change in the amplitude (concentration level) of 
another substrate, then we could ignore the contribution of the 
relationship between these two substrates, e.g. replace by a 
constant parameter. To search for the relative timescales and 
effects of one substrate affected by another, we resort to 
perturbation of the variables as discussed below.  

 

A. Model Perturbation and Categorization 

A simple yet robust method of perturbation is used to 
categorize variable responses and timescales. The whole 
system is first simulated and allowed to reach a steady state. 
Perturbations of each substrate/variable (e.g. tyr) are then 
applied by abruptly changing one of the depended 
substrates/variables (e.g bh4, cda or eda) in a step-wise 
manner (Fig. 2) [28]. The system is then allowed to reach its 
new steady state during the perturbed phase. Assuming a 
substrate increases exponentially towards a new steady state 

following perturbation, we find the amount of time () it takes 
for the dependent variable to reach 67% (33% in cases of 

exponential decay) of the new steady state (Fig. 2). If  for 
that particular variable is relatively fast, the relative variable 

or substrate is categorized as a fast variable. Similarly if  is 
slow, the variable/substrate is categorized as slow. Variables 
and substrates that display intermediate timescales or with 
both fast and slow dynamics are categorized as 
“intermediate/mixed”. This process is repeated for other 
substrates/variables with different perturbing amplitudes (1.5, 
2 and 3 times the respective steady-state value), and the 
overall results are shown in Tables II-V.  

 

Fig. 2. Example of responses of the variables/substrates (extracellular 

dopamine, eda, and L-Dopa, l-dopa) over time during a step perturbation of 
another variable/substrate (vesicular dopamine, vda). Arrows denote the 

evaluated timescales of eda and l-dopa. Note the different the scales on the 

horizontal and vertical axes. Perturbation occurs from the 25th hour onward.  

Table II shows the relative changes in steady-state values 
for the perturbation of all variables and substrates, while Table 
III reveals coupling strengths based on the perturbations. 
Clearly, the relative change and timescale can vary greatly 
from one variable to another. For example, in terms of 
percentage change [l-dopa] seems to depend more on [tyr] 
than [vda] and [cda], while [tyr-pool] is more sensitive to [tyr] 
compared to [l-dopa] to [tyr]. In terms of timescales, [cda] 
responds to perturbation of [vda] with about two orders of 
magnitude than [l-dopa] responding to the same [vda] 
perturbation. Table IV shows all the variables/substrates 
dynamics as having intrinsically slow, fast or 
intermediate/mixed dynamics, and they are categorized in 
Table V.  

Table II 
PERCENTAGE CHANGE IN STEADY STATES OF 

SUBSTRATES/VARIABLES AFTER PERTURBATION. 

S
u

b
st

r
a

te
 

P
e
r
tu

r
b

e
d

 Perturbation Amplitude (%) 

1.5 2 3 

bh2 tyr   4.0 6.4 14.47 

bh2 bh4 0.64 1.007 1.3732 

bh2 cda -28.7458 -37.5458 -43.7729 

bh2 eda -41.5751 -49.3284 -52.3345 

bh4 bh2 30.624 44.8121 74.8 

bh4 tyr 4.61 7.07 10.05 

bh4 cda -0.86 -2.79 -3.4 

bh4 eda 2.45 5.34 6.85 

l-dopa tyr 12.02 17.09 22.197 

l-dopa bh4 1.82 2.63 3.38 

l-dopa cda 2.70 7.892 11.06 

l-dopa vda -9.4658 -9.42 -32.9072 

cda l-dopa 72.98 17.889 39.339 

cda vda -30.757 -83.136 -99.8  

cda eda 11.14 23 58.48 

vda cda 7.67 3.0755 17.19 

eda vda 12.292 34.0633 56.19 

hva cda 3.02 8.02 14.81 

tyr-pool tyr 55.24 67.3941 70.1628 

tyr  tyr-pool 70.172 80.93 70.172 

tyr  bh4 -43.68 -80.94 -235.38 

tyr cda 63.15 62.5437 62.0258 

tyr eda 37.78 38.425 48.6651 

 

Table III 

CLASSIFICATION OF SUBSTRATES/VARIABLES’ COUPLING 

STRENGTHS. 

Strong  

 tyrpool              tyr    l-dopa                cda         eda                     bh2   

  vda                    cda       bh2                     bh4   cda                     bh2 

Weak 

  bh4                     bh2    cda                     bh4   bh4                l-dopa  

Intermediate  

  tyr                      bh2    eda                      bh4         eda                      tyr 

  tyr                 l-dopa       cda                      vda   eda                     bh4 



 

 

  cda                l-dopa    eda                      vda         eda                     cda  

  vda                l-dopa       cda                      tyr   cda                     hva 

  vda                   eda   tyr                   tyrpool   bh4                     tyr  

 

Table IV 
RISE AND DECAY TIME CONSTANTS () (IN UNITS OF 10-5 HOURS) 

OF SUBSTRATES/VARIABLES AFTER PERTURBATIONS.  

S
u

b
st

r
a

te
 

P
e
r
tu

r
b

e
d

 Perturbation Amplitude 

1.5 2 3 

bh2 tyr 0.097 0.096396 0.094077 

bh2 bh4 0.332531 0.324372 0.325767 

bh2 cda 0.182653 0.178864 0.176167 

bh2 eda 0. 17579 0. 17278 0. 17171 

bh4 bh2 1.781210 8.197055 12.66077 

bh4 tyr 0.058466 0.063716 0.64047 

bh4 cda 0.129081 0.127165 0.126272 

bh4 eda 0.125855 0. 12221 0. 12308 

l-dopa tyr 0.099120 0.099502 0.099872 

l-dopa bh4 0.088901 0.090077 0.092284 

l-dopa cda 0.064116 0.078224 0.081265 

l-dopa vda 0.038861 0.050756 0.114403 

cda l-dopa 0.143980 0.125000 0.102000 

cda vda 0.000323 0.001769 0.009089 

cda eda 0.064515 0. 16417 0.057020 

vda cda 0.002426 0.002426 0.002429 

eda vda 0.059719 0.051678 0.037623 

hva cda 0.028875 0.028845 0.028832 

tyr-pool tyr 0.124305 0.124000 0. 12500 

tyr  tyr-pool 0.012233 0. 01190 0.021202 

tyr  bh4 0. 62187 0. 60798 0. 60286 

tyr cda 0.757081 0.753788 0.757526 

tyr eda 0. 75229 0. 75692 0.768391 

 

Table V 
CLASSIFICATION OF SUBSTRATES/VARIABLES’ TIMESCALES. 

Fast Slow Intermediate/Mixed 

eda bh4 bh2 

vda tyr l-dopa 

hva tyr-pool cda 

 
 

B. Towards Reducing Models with Fast or Slow Modes 

To obtain a reduced slow model, fast substrates will have to 
be assumed to have rapidly reached their steady states and their 
associated differential equations will be transformed into 
functions i.e. at their steady state values. For example, we can 
set the differential equation (7) for the fast substrate eda, 
d[eda]/dt = 0, solve the resultant algebraic equation (using the 
Mathematica software package) [28], and obtain the following:  
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Similarly for the other fast variables vda and hva. If we instead 
wish to obtain a reduced fast model, then the slow substrates 
can be assumed to be approximately constant (with specific 
steady-state values initially obtained from the full model 
simulations), and similar solving of algebraic equations will be 
required. Specifically, we could keep the dynamics of the fast 
variables eda, vda and hva, and set the rest of slow and 
intermediate/mixed variables to be constant [28]. For example, 
if we have set d[l-dopa]/dt = 0 in (4), we would have  
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From our simulations, we find that the steady states of the full 
and reduced model are very similar (not shown).  

 Further reduction of the model can be achieved by 
observing the relative effect of one substrate over another. For 
example, [cda] has relatively smaller effect on [bh4] (Table 
III), and we can ignore this factor in the model reduction 
process. Based on this, as [bh4] depends on [cda] only through 
VTH (see (2)), then VTH can be reduced from (10) to a 
simpler function:  
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where   is some constant parameter. If we have made a further 
approximation that the influence of [eda] on [bh4] is relatively 
weak, we can further simplify it to:  
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for some constant parameter  .  

To obtain a reduced slow model, we set the fast variables 
eda, vda and hva to be instantaneous while keeping the 
dynamics of the slow and intermediate/mixed variables. The 
steady states of the reduced model are similar to that in the full 
model (not shown). The execution time for a 48 hour 
simulation of the reduced slow model and the full model are 
compared using MATLAB’s stopwatch timer. By comparing 
the computational speed of a single run or realization of 
simulated 48 hours, we found that the reduced slow model 



 

 

with fewer differential equations is 0.706 seconds faster than 
the full model. If we repeat the simulations over 10,000 runs 
(e.g. in search for optimal drug dosage), then we can save 
about 1.96 hours of computational time.  

To obtain a reduced fast model, reactions that occur on the 
scale of milliseconds to tens of seconds are isolated and 
analyzed by either holding substrates with slower dynamics at 
a constant value or calculating their values as functions at each 
time step. Homovanillic acid (hva) serves as an endpoint for 
the catabolism of cytosolic dopamine (cda) and exhibits fast 
dynamics. As this model does not explicitly simulate the 
catabolism of cda, no other substrates are dependent on hva, 
therefore it can be excluded from the analysis. The fast model 
can thus be reduced further by simulating the dynamics of 
only eda and vda (extracellular and vesicular dopamine) with 
just two differential equations and the control parameter for 
neuronal spiking, ‘fire’.  

The constant values for the ‘slow’ substrates can be 
obtained by simulating either the full or reduced slow model 
until the difference between the value of substrate X at time T, 
(X(T)), and X(T-1) is less than ε, where ε is small enough to 
represent no significant change. In our simulations, we select ε 
to be 0.002. We found that the steady states of the reduced 
model are similar to that in the full model (not shown). 
Furthermore, with fewer differential equations, the reduced 
fast model was able to complete a 48 hour simulation 2.6064 
seconds faster than the original full model. If the simulation 
were to be repeated 10,000 times we would save 7.24 hours 
using the reduced spiking model.  

 

IV. CONCLUSION 

We have analyzed an influential computational model of 
DA synthesis and release using a simple perturbation method. 
This method has previously been applied successfully to a 
serotonergic pre-synaptic terminal [28]. In this work, we show 
similar success for the dopaminergic pre-synaptic terminal but 
with a different set of substrates and reactions. Specifically, we 
show that different variables or substrates are affected (or 
perturbed) much more than others. Moreover, the intrinsic 
timescales of the variables or substrates can vary widely, 
ranging across several orders of magnitude. The classification 
of timescales is also different from our previous work. This 
large range of timescales can potentially permit us to separate 
the slow and fast variables and hence approximate the model 
into a slow or fast version. Indeed, in this work, we have 
successfully teased apart the multiscale processes in the model. 
In particular, although we have adopted a rather simple 
perturbation method, the reduced models have similar steady 
states as the full model, while their computational efficiencies 
are significantly enhanced due to fewer differential equations. 
Further work would include exploring more advanced 
perturbation techniques, e.g. simultaneous perturbations of 
variables/substrates, and other nonlinear model reduction 
methods.  

It should be noted that the reduced models in this work are 
still equipped for testing the effects of in-silico drug 
manipulation on targets such as the dopamine transporter 

(DAT), MAO-A and MAO-B related metabolism, L-Dopa 
uptake, and autoreceptor function, thus providing a useful and 
efficient platform for faster drug discovery and development. 
Reduced models of neuromodulators can be incorporated into 
large-scale computational models [21]-[24], [30]-[32]. In 
particular, our previous ‘fast’ serotonergic pre-synaptic 
terminal model has been shown to integrate successfully into a 
spiking neuronal network model, effectively simulating an 
entire population of serotonergic neurons [28]. We would 
expect similar success for the reduced dopaminergic model 
presented in this work to bridge from molecular to cognitive 
levels [21]-[22].  
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