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Abstract—	
   A real-time fall detection system is proposed to 
distinguish various falls during daily activities. Falls are detected 
in two steps: first a hierarchical algorithm is used to classify the 
motion and motionless postures such as lying, sit-tilted, sit-
upright, standing and walking; it then analyzes whether the 
current lying or sit-tilted postures are normal or abnormal, based 
on posture transition and users’ current position. If an abnormal 
lying or sit-tilted posture is determined, a fall alert will be 
delivered immediately; if a possible fall is raised (such as normal 
lying but on the ground), then a music based alert starts playing, 
and a fall or normal lying will be determined according to 
whether the user stops the alert music. The advantages of the 
approach are that it can distinguish various falls efficiently (in 
real-time within a smart phone), and can also significantly 
improve the “true positives” for the slow falls with a sit-tilted 
posture, as well as the “true negatives” for the normal lying 
compared to the existed fall detection algorithms. 

Keywords- fall detection; position; posture classification; 
posture transition; smart phone. 

I. INTRODUCTION  
Falls  impact negatively on health and may be considered a 

major global problem, particularly for the elderly population 
and those who are suffering from a form of chronic disease. 
For example, people with chronic heart failure or stroke may 
suffer cardiac and/or gait disorders leading to the increased risk 
of falling during the daily activities. The world health 
organization (WHO) estimated that 424,000 fatal falls occur 
each year, making it the second leading cause of accidental 
deaths, resulting in huge financial implications worldwide. 
Elderly people have the highest risk of fatal falls. For example, 
more than 32% of older persons have experienced a fall at least 
once a year with 24% encountering serious injuries [1][2]. Falls 
are responsible for approximately 70% of accidental death in 
persons aged over 75. Approximately 3% of all persons who 
experience a fall will remain on the ground or floor for more 
than 20 minutes prior to receiving assistance [3]. The period of 
time spent immobile often affects their health outcome such as 
dehydration and hypothermia are some complications that may 
result.  Getting timely help after a debilitating fall improves the 
chance of survival by 80% and increases the possibility of a 
return to independent living. Reliable and immediate detection 
of the fall is therefore important to ensure that the person may 
receive assistance as necessary. People who have experienced a 
fall may exhibit increased fear, depression or anxiety, which 
will decrease their self-confidence and motivation for 

independence and even possibly for remaining in their own 
homes. Therefore, an efficient fall detection system can assist 
elderly people living alone at home and potentially improve 
their life quality. This research documents a daily activity 
monitoring system that can be used to distinguish falls from 
other daily activities and deliver an alert in real time. 

The remainder of the paper is organized as follows. The 
related work is discussed in Section II. Methodologies for the 
system configuration and fall detection algorithms are 
described in Section III. The falls in various situations used to 
evaluate the fall detection algorithm and the experimental 
results are presented in Section IV. Finally, Section V focuses 
on the Discussion, Conclusion and the Future Work. 

II. RELATED WORK   
Different devices (such as environment-embedded sensors 

and wearable sensors) have been used to distinguish fall 
detection from normal daily activities. Sensors, e.g. cameras, 
can be embedded in a tracking environment; however, they can 
only monitor fixed places and there are privacy-protection 
problems. Wearable sensors such as accelerometers and tilt 
sensors are more flexible, allowing users to be monitored both 
within and outside of their home environment [4]. 

Falls are normally characterized by a large acceleration 
change compared to the types of measurements associated with 
normal daily living. Hence accelerometers are the most 
common device used for fall detection along with daily activity 
classification. For example, Kangas et al. [5] proposed a falls 
detection application based on accelerometers attached to the 
waist, wrist and head. Their experimental results demonstrated 
that measurements from the waist and head were more useful 
for the purposes of fall detection. Luo & Hu [6] introduced a 
two thresholds (acceleration amplitude and acceleration 
direction angle) based approach for fall detection using a waist-
mounted accelerometer. Their algorithm obtained 100% 
accuracy for ‘intentional’ falls. Nevertheless, the approach did 
not successfully detect the situation where the subject lay down 
‘slowly’. Lindemann et al. [7] combined three thresholds 
(acceleration in the xy-plane and in 3-axes, in addition to 
velocity in 3-axes) to distinguish falls using two head-worn 
accelerometers placed orthogonally on the head behind the 
ears. Their head-worn accelerometers can offer sensitive 
impact detection for heavy falls. Nevertheless, such an 
approach is limited by its usability and user acceptance.  

Some studies have combined accelerometers with other 
sensors to improve the reliability of fall detection. For example, 
Hwang et al. [8] introduced a three thresholds based algorithm 
for falls detection, using integrated accelerometer, gyroscope 
and tilt sensors, with a Bluetooth module for signals 
transmission. Their accuracy of fall detection was 96.7%. 
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province 2013, No. F2013106121 and the doctoral research launching fund 
programme of Shijiazhuang University, China, under grants No. 12BS011.  
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However, the range of users activities was limited only in the 
indoor. Bianchi et al. [9] used a heuristically trained decision 
tree to classify simulated falls based on integrated 
accelerometer with a barometric pressure sensor. Their 
experimental results demonstrated that the fall detection 
accuracy was considerably improved by using the barometric 
pressure sensor assisted system in comparison to using 
accelerometer data alone (96.9% vs. 85.3%), nevertheless, their 
decision tree algorithm was evaluated offline.  

In this work, a real-time algorithm is proposed to detect 
various falls situation based on posture classification and 
posture transition analysis. 

III. METHODOLOGY 
The fall detection algorithm was developed and evaluated 

within a HTC (Android based) smart phone in real-time, based 
on data acquired from the phone’s accelerometer and 
orientation sensors.    

A. System Configuration 
An HTC smart phone was used for data sensing and 

processing in this study. The phone embedded BMA150 3D 
accelerometer, orientation sensor, 3D Magnetic sensor, GPS 
and Wi-Fi. The phone’s processor operates at 600MHz, the 
memory capacity is 512MB with an additional 2GB memory 
card and the operating system is Android version 2.3.3. 

 

Figure 1.  System configuration; (a) the phone is belt-worn horizontally on 
the left side of the waist; (b) Y-axis up if the phone is vertical; (c) & (d) X-axis 
up/down if the phone is horizontal and facing backward/frontward. (e) the 
interface of system on the phone. 

The phone is belt-worn on the left side of the waist in a 
horizontal orientation as shown in Fig.1 (a). The sensor 
coordinate system is defined relative to the phone’s screen as 
shown in Fig.1 (b), (c) and (d). The system interface on the 
phone is shown in Fig.1 (e).   

B. The Sampling Frequency Setting 
A study by Zhang et al. [10] has compared the activity 

classification accuracy based on data collected from the 
GENEA accelerometer, with the sampling frequency ranging 
from 5Hz to 80 Hz for the four types of activities: sedentary, 
household, walking and running. Their experimental results 
illustrated that the classification accuracy did not change 
significantly for sampling rates down to 5Hz; 80Hz 
(96.9%±1%), 40Hz (97.4% ± 0.7%), 20Hz (96.9%±1.1%), 
10Hz (97%±1%) and 5Hz (95%±1.4%).  

Lower sampling rates result in a lower data load and higher 
efficiency of data processing. Therefore, the sampling 
frequency was set at 5Hz in this study, which is the default 
value on the sensor-changing event within the smart phone. 

Two data sets: 3D acceleration (t, Ax, Ay, Az) and 3D 
orientation angles (t, θx , θy, θz) were obtained at the same time 
by using the accelerometer and orientation sensor embedded in 
the smart phone. Subsequently, the two data sets were 
integrated as one data set (t, Ax, Ay, Az, θx, θy, θz), and used 
for the evaluation of the posture classification and fall detection 
algorithms. Additionally, the GPS and Wi-Fi signals were 
collected and used for outdoor and indoor localization. The 
recorded data and analyzed results were saved in the phone in 
text format in real-time.  

C. Existing Fall Detection Algorithms 
Falls can occur in various situations, during walking, during 

standing, or even during sitting. Existing algorithms for fall 
detection can be grouped into three categories:  

• Comparison with pre-defined thresholds [6]; a large 
acceleration change infers a fall. This approach is suitable 
when an impact shock occurs, and suffers false positives 
from similar events such as sitting down heavily.  

• Assumes that falls end with a posture of lying 
horizontally [11]. This assumption does not work when 
the user results in the sitting position after a fall. 

• Machine learning techniques based on a trained model 
[12]. These algorithms consume significant computational 
time for the model training. Additionally, the various fall 
activity situations are particularly difficult to predict by 
such supervised machine learning algorithms.  

In order to adapt to the various fall situations, 
understanding the principles of the data measuring devices is 
helpful for the purposes of algorithm design.  

D. Principles for Accelerometer and Orientation Sensor 
1)  Accelerometer 

We know that an accelerometer is a device that can 
measure the static acceleration due to gravity, and dynamic 
acceleration resulting from motion, shock, or vibration [13]. 

 

Figure 2.  Output of the stationary acceleration vs. orientation to gravity. (a) 
Ay=±1g when the phone is vertical; (b) Ax=±1g when the phone is horizontal; 

(c) Az=±1g when the phone’s screen is parallelized with the earth’s surface. 

An accelerometer will measure a value of ±1g (unit of 
gravity acceleration, which is 9.81m/s2) in the upward or 
downward direction if it remains stationary relative to the 
earth’s surface. If the accelerometer is embedded in a smart 
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phone, six 3D coordinate systems are apparent (vertical axis is 
X, Y or Z in upward or downward directions) according to the 
phone’s orientations, as shown in Fig.2 (a), (b) and (c). 

Fig.2 illustrates that the 3D stationary acceleration along 
the vertical-axis value will be ±9.81m/s2, and along the other 
two axes will be 0 in theory. In the real world,  the stationary 
acceleration (Ax, Ay, Az) during the motionless period of time 
(tml), must conform to equation (1).  

Avert (tml ) !Max Ax , Ay , Az
"
#
$

%
&
' ( g (1)  

The vertical-axis is always the axis, which has the 
maximum value among (|Ax|, |Ay|, |Az|) and is approximately 
equal to the gravity acceleration. The vertical-axis may be 
converted if the phone’s orientation changes, so some special 
postures (such as lying) can be inferred according to the 
vertical-axis shifts between (Ax, Ay, Az) as shown in Fig. 3. 

 
Figure 3.  The relationship between the body postures and maximum value of 
(|Ax|, |Ay|, |Az|). 

Fig.3 illustrates that if the body posture is upright such as 
stand, sit or walk, then the maximum absolute acceleration is 
Ax, and the X-axis is vertical; otherwise if the body posture is 
lying right (Lyi-R), back (Lyi-B), left (Lyi-L) and lying face 
down (Lyi-Fd), then the maximum value of (|Ax|, |Ay|, |Az|) is 
Ay or Az, so the vertical-axis will be Y or Z axis. 

2) Orientation Sensor 
The phone’s orientation (or position relative to the 

magnetic north) can be monitored using the orientation sensor, 
which provides 3D rotation angles along the three axes (pitch, 
roll, azimuth), denoted as (θx ,θy, θz), as shown in Fig.4 (a).  

• Pitch (θx) measures degrees of rotation around the X-axis; 
the range of values is -180° to 180°, with positive values 
when the positive z-axis moves toward the positive Y-axis. 
It is around 0° when the X-axis is vertical; it is around ±90° 
when the Y-axis is vertical; it is around ±180° when the top 
of the screen points towards the ground. 

• Roll (θy) measures degrees of rotation around the Y axis, -
90°<=θy <=90°, with positive values when the positive z-
axis moves towards the positive X-axis. It is around 0° 
when the Y-axis is vertical; it is around ±90° when the X-
axis is vertical.    

• Azimuth (θz) measures degrees of rotation around the Z 
axis, 0°<=θz<=360°. It is used to detect the compass 

direction. Such as θz =0° or 360°, North; θz =180°, South; 
θz =90°, East; θz =270°, West. 

According to the definition of the (θX ,θY, θZ) above, the 
three angles will vary according to the specific body postures 
as shown in Fig. 4 (b) ~ (f).  

 

Figure 4.  The orientation of the sensor coordinate system varies according to 
the body postures. (a) The orientation angles around 3-axis; (b) ~ (f) the 
vertical axis is different when the body posture is upright, tilted and lying. 

Case1: When the body is upright as shown in Fig.4 (b), the 
x-axis is vertical, then the |θX| must be around 0°, and |θY| must 
be around 90°,  in theory. 

Case2: When the body is tilted forward or backward as 
shown in Fig.4 (c) and (d), the x-axis and y-axis is rotated in a 
counter-clockwise or clockwise direction, then the |θY| must be 
less than 90°, and |θX| must be between 0° and 90° in theory. 

Case3: When the body is lying to the right as shown in 
Fig.4 (e), the z-axis is approximately vertical and the top of 
the phone screen points towards the sky, then the |θX| and |θY| 
must all be around 0° in theory. 

Case4: When the body is lying back or face down as 
shown in Fig.4 (f), the y-axis is approximately vertical, then 
the |θX| must be around 90°, and |θY| must be around 0° in 
theory. 

Case5: When the body is tilted left, the top of the screen 
points toward the ground, then the |θX| must be around 180°. 
When the body is tilted right, the top of the screen points 
toward the sky, the |θX| must be around 0°, and |θY| must be 
less than 90°,  in theory. 

Therefore, by combining the principles of acceleration and 
orientation angles it is possible to recognize the lying, tilted 
and upright postures, which will be discussed in the postures 
classification Section.    

E. Posture Transition Analysis for Falls Detection 
The various falls can be categorized into two cases:  

1)  Hard falls,  defined as hitting the ground or an 
obstacle heavily with the participant unexpected ending with a 
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lying or sitting tilted posture. In this case, a big impact force 
will lead to a large acceleration change. 

2) Soft falls,  defined as unintended lying or sitting tilted 
on a lower level (such as the ground or sofa); descent is  slow 
and gent. In this case, there is no big impact force to cause 
large acceleration change. 

The same endpoint for the two types of falls is an 
unintended lying or sitting tilted posture; the difference  can be 
inferred by the change of acceleration. So if a fall detection 
algorithm was only based on acceleration analysis, it is not 
possible to detect the soft falls; also if an algorithm was only 
based on the lying or sitting tilted postures to detect falls, it will 
cause many false positives due to normal lying or sitting 
activities such as lying on the bed for sleeping, sitting tilted on 
the chair for reading. 

Based on the hard falls and soft falls definition, we 
developed a fall detection algorithm to detect falls in two steps: 
1) recognize the lying or sitting tilted postures from daily 
activities; 2) analyze whether the current lying or sitting tilted 
postures are normal (intended) or abnormal (unintended). 

1. Postures classification 
The motion and motionless postures are classified using a 

hierarchal rule-based algorithm. First, a motionless rule (RML) 
was used to separate the motion and motionless postures in two 
arrays; next a lying rule (RLyi) was used to distinguish the lying 
postures from other motionless postures such as standing and 
sitting; then a tilted rule (RTil) was used to recognize the tilted 
postures from upright postures; finally, the motion postures 
were initially classified as a walk or posture transition (PT) 
according to the motion period of time. The posture 
classification procedure was shown in Fig. 5. 

Lying Sit-Up Sit-tilted   

Motionless postures 
Pos(TML) 

Data recording (t, Ax, Ay, Az, !x, !y, !z) 

Motionless rules (RML) 

Motion postures 
Pos(TM) 

 

Walking  PT 

RLyi  & Rtil  Motion rules (RM) 

Stand 
 

Figure 5.  Flowchart of posture classification. 

RML: consider a motionless period Tml from tm to tl, the RML 
was defined as: the motionless period Tml extends for 
more than a predefined period of motionless time (mlp) 
as expressed in (2); the change of acceleration (ΔAx) is 
less than an empirical threshold th1 as presented in (3). 

RML =
! ti, tl[ ]" Tml;    Tml #mlp     (2)

$Ax = Ax (ti+1)% Ax (ti ) & th1  (3)

'

(
)

*
)

  

where the motionless is defined as no motion for at least 2 
seconds (mlp = 2s), which provides appropriate details and 
reduces the posture fragments for long term daily activity 
monitoring; and th1=0.4m/s2; these values were determined 
empirically, it can guarantee that the motionless activities can 
be detected. 

RLyi: During a motionless period of time, if the maximum 
absolute value among (Ax, Ay, Az) is not Ax, and it 
approximately equal to g as expressed in (4) and (5), then 
the motionless posture must be lying. This lying rule is 
established based on the accelerometer principles. 

RLyi =
Amax =Max AX , AY , AZ( ) ! g (4)

Amax " AX (5)

#

$
%

&
%

 

RTil: if (|θX| >= (0°+θCali) or |θY|<=(90°−θCali), then the 
motionless posture must be tilted. This tilted rule is 
established based on the orientation sensor principles. 

where the practical value θCali is used to calibrate the ideal 
value for θx and θy. Ideally, the θy is around ±90° and θx is 
around 0° when the X-axis is vertical, neverthless, it is 
difficult to guarantee that the belt-worn phone keeps ideally 
vertical when the body posture is upright (such as standing), 
so a practical value θcali = 20° is used to calibrate the ideal 
value for θx and θy respectively. 

2. Falls Analysis  
We know that the common features for all kinds of falls are 

that the body results in a lying or sit-tilted posture, however, 
not all lying or sit-tilted postures are falls. Based on the results 
of posture classification, the falls detection was implemented 
by analyzing whether the current lying and tilted sitting 
postures are normal or abnormal based on the posture transition 
and users’ current position. The flowchart of fall analysis is 
shown in Fig.6. Details of falls analysis are described in step1 
and step2.  

Pos TPre( ) ! walk?

Fall 
Normal 
activity 

No 
Yes 

No 
Yes 

Pos TML( ) = Lying || Sit tilted.

(TCurr ! TSleep "  LLyi ! {bed,  sofa})?

Is self response?  
No Yes 

Alert music 
with stop button 

 
Figure 6.  Flowchart of the fall analysis and determination. Notes: the 
location detection algorithms were not presented in this paper, since the 
limited pages.    

Step1: If the lying or sit-tilted posture was detected at the 
motionless period of time, then the previous activity posture 
Pos(TPre) will be checked using backward reasoning. If 
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Pos(TPre)=Walk, thus the posture transition from walking to 
lying or sit-tilted suddenly is determined as abnormal, 
especially for the elderly, a fall alert should be triggered 
immidiatly. 

Step2: If Pos(TPre) ≠ Walk, then check whether the lying or 
sit-tilted posture is at the right time and in the right place. If the 
current time Tcurr. is not within the prescheduled sleeping or 
nap period of time TSleep, or the lying position LLyi is not on 
the bed or sofa, then a possible fall is raised, so a music  alert 
starts playing. Finally, a fall or a normal activity will be 
determined according to whether the user stops the alert music. 

IV. EXPERIMENTS 
The proposed fall detection algorithm was evaluated in 

real-time using a smart phone, at a home environment by three 
healthy subjects (2 male and 1 female; aged 23, 48 and 50). 
The interface of the system is shown in Fig.1 (e). The 
experimental results were validated against notes recorded by 
two people at the same time following the experiments. The 
notes were pre-designed as a table that included three items 
(posture name, start time and end time) for each of the serial 
activities. For safety purposes, a mat was put on the ground for 
the falls experiments.  

Experiment 1: Various Falls 
Each of the three subjects performed the following 

activities in random order and random period of time, which 
includes various falls such as hard falls from walk to lying/sit-
tilted quickly on the ground, sofa, or bed, and soft falls from 
walk to lying/sit-tilted slowly on the ground, bed, or sofa. 

 

 
Figure 7.  Comparison of lying slowly and lying quickly. The left side figure 
shows the part of acceleration signals from standing to lying slowly; right side 
fiture shows the part of acceleration signals from walk to lying suddenly.    

1) From walking to lying right, back, left, and face down 
respectively, on the ground suddenly (quickly); 

2) From walking to sitting leaning right, back, left and 
forward respectively, on the ground suddenly; 

3) Repeat all activities in 1) and 2), however, the ground is 
changed to a bed or sofa; 

4)  From walking to standing, then from standing to lying 
and sit-tilted respectively, on the ground slowly. 

5) From walking to standing, then from standing to lying on 
a bed or a sofa slowly.  

Activities from walking to lying or sit-tilted suddenly are 
defined as abnormal posture transition, especially for elderly 
people. Falls should be detected in these cases, as shown in 
bottom of Fig.7. In step 4), although the posture transition 
from standing to lying or sit-tilted slowly is normal, however 
if the lying or sit-tilted posture is in a wrong place (ground), a 
possible fall alert music should be playing in this case, as 
shown in top of Fig.7. In step 5), the posture transition and 
lying position all are normal, hence the lying time will be the 
key element for the possible fall detection.      

Experiment 2: Normal lying in two ways  
The normal lying in two ways: sitting for more than 2 

seconds and sitting for less than 2 seconds before they are lying 
on a bed or a sofa. Each of the three subjects undertook the 
following series of activities in random order and random 
period of time. Fig. 8 shows the part of acceleration signals 
collected from subject1. 

walk! sit on a bed for more than 2s! lying on the bed!
get  up!walk ! sit on the bed < 2s! lying on the bed!
get up!walk! sit on a sofa >2s! lying on the sofa !
get up!walk ! sit on the sofa <2s! lying on the sofa . 

 

 

Figure 8.  The part of acceleration signals collected from subject1, who did 
the normal lying in two ways.    

In these experiments, there were 24 (=8×3) falls ending 
with  lying (in this case, the acceleration changing is large); 24 
falls ending with sitting tilted (in this case, the acceleration 
changing is small); 9 (=3×3) possible falls; and 12 (=4×3) 
normal lying or sit-tilted activities performed in total. The falls 
were distinguished using two algorithms (‘posture transition’  
and ‘thresholds’  described below) respectivley, the 
experimental results were evaluated in real-time according to 
the alert music and presented in Table I.  
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Algorithm1(posture transition): falls were detected based 
on the posture transition analysis and current position, as 
proposed on this paper. 

Algorighm2(thresholds): falls were detected only using 
acceleration changing with pre-defined threshold, as described 
on our previous work [14]. 

Table I has demonstrated that the algorithm1 can improve 
falls detection accuracy significantly in both aspects: true 
positives (real falls) and true negatives (non-falls) compared to 
algorithm2. Algorithm1 was able to correctly detect 48/48 of 
falls ending with lying or sit-tilted, and 6/12 of non-fall 
(normal lying). It is limited for the normal lying analysis when 
the sitting period of time is less than 2 seconds before the lying. 
Additionally, it can trigger the alert music with a stop butter for 
the 9 possible falls, and determin whether it is a real fall 
occurred according to the user’s response (whether he/she stops 
the alert music).  

Algorithm2(theshold) was able to detect the 24/24 of falls 
ending with lying correctly. It recognized 0/24 of falls ending 
with sit-tilted and 0/12 of normal lying (non-fall), since the 
normal lying posture also causes a large acceleration changing. 
For the 9 possible falls, it only can detect the falls correctely 
when users were lying on the ground. 

TABLE I.  COMPARISON OF EXPERIMENTAL RESULTS BETWEEN TWO 
ALGORITHMS 

Algorithms 
Falls Normal 

Lying 
Possible 

Falls 
Total 

(Accuracy) Lying Sit-tilted 

Algorithm1  24/24 24/24 6/12 9/9 63/69 

Algorithm2  24/24 0/24 0/12 3/9 27/69 

A limitation for algorithm1 proposed in this paper is caused 
by the motionless definition. In this study, the motionless 
postures were defined as no motion for at least 2 seconds. In 
this case, if the sitting period of time is less than 2 seconds 
before the lying (such as 1.5 seconds as shown in Fig.8), then 
this sitting posture will be ignored based on the motionless 
rule. Thus the normal posture transition from sitting to lying 
was analyzed as from walk to lying (wrong posture transition 
order), hence it was detected as a fall.  

V. CONCLUSION AND FUTURE WORK 
The main contributions of this paper are: 1) the posture 

classification algorithms were developed based on the 
principles of accelerometer and orientation sensors, it is 
reliable for different subjects and different situations, since it 
is not only based on empirical thresholds or subject-based 
training models; 2) the fall detection algorithm was designed 
based on the posture transition analysis and current position, it 
can correctly detect various falls efficiently (real-time within a 
smart phone) and also avoid the most false positives and false 
negatives. Experiments were performed in various situations 
such as hard falls on the ground, soft falls on the bed, falls 

ending with a lying or sit-tilted posture, in addition to the 
normal lying, at a real home environment.  

More activity postures and falls situations such as up/down 
stairs, cycling, and driving and running will be addressed in the 
future work. An open question may be raised from this study: 
for the motionless definition, whether the 2 seconds should be 
as a necessary condition? According to our experience, this 
condition can reduce the posture fragments for a long term 
daily activity monitioring, since the short time (less than 2 
seconds) motionless period will be ignored during the motion 
period.   
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