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Abstract A real-time activity monitoring system within an
Android based smartphone is proposed and evaluated. Mo-
tion and motionless postures may be classified using prin-
ciples of kinematical theory, which underpins hierarchical
rule-based algorithms, based on accelerometer and orien-
tation data. Falls detection was implemented by analyzing
whether the postures classified as ‘lying’ or ‘sit-tilted’ pos-
ture are deemed normal or abnormal, based on the analysis
of time, users’ current position and posture transition. Ex-
perimental results demonstrate that the approach can detect
various types of falls efficiently (i.e., in real-time within a
smart phone processor) and also correctly (95 % and 93 %
true positives for falls ending with ‘lying’ and ‘sit-tilted’ re-
spectively). The approach is reliable for different subjects
and different situations, since it is not only based on em-
pirical thresholds and subject-based training models, but in
addition it is underpinned by theory.

Keywords Posture classification - Falls detection -
Backward reasoning - Smartphone - Real-time processing

1 Introduction

Automatic monitoring of daily activities can be used to en-

courage people to lead a healthier lifestyle, for example, to
promote regular exercise or maintain healthy postures, and
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can also assist elderly people living independently at home.
Therefore, daily activity monitoring with context-aware re-
minders/alert delivery has the potential to reduce the occur-
rence of chronic diseases and supply significant savings in
future healthcare costs especially for elderly people or those
suffering from a form of chronic disease.

Pervasive computing utilizes a large number of tiny com-
puters equipped with sensors that can communicate with
our living environment. Augusto et al. [1] discussed the ba-
sic features of intelligent environments. Pervasive comput-
ing requires applications that are able to operate in highly
dynamic environments and require minimal information
from and interaction with users. Context-aware applications
can meet these requirements by automatically adapting to
acquired context, such as location, environmental condi-
tions, and current activity. Howard & Cambria [2] discussed
that intention-aware based systems offer an advantage over
situation-aware based systems in that they reduce this infor-
mation burden.

Falls are the leading cause of injury and a major global
health problem, particularly for the elderly population and
those who are suffering from chronic disease. For example,
people with chronic heart failure or stroke may suffer a form
of abnormal heart rate and/or gait disorders; these symptoms
lead to the increased risk of falling during their daily activi-
ties. Approximately 3 % of all persons who experience a fall
will remain on the ground or floor for more than 20 minutes
prior to receiving assistance [3]. Reliable and timely detec-
tion of the fall is therefore important to ensure that the per-
son may receive assistance as necessary.

This research developed a smart phone based activity
monitoring system to classify motion and motionless daily
activities, enabling us to distinguish falls in various situa-
tions.
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The remainder of the paper is organized as follows. The
related work is discussed in Sect. 2. Methodologies for the
system configuration and activity classification algorithms
are described in Sect. 3. The experimental protocols and the
experimental results are presented in Sect. 4. Finally, Sect. 5
focuses on the discussion, conclusion and the future work.

2 Related work

Classification of human activities of daily living (ADLs) in-
volves several tasks: data sensing, feature extraction, and ac-
tivity classification.

Many studies have been focused on daily activity classi-
fication along with falls detection by using different devices
such as environment-embedded sensors and wearable sen-
sors. Sensors, e.g. cameras, can be embedded in a tracking
environment; however, they can only monitor fixed places
and there are privacy-protection issues to resolve, for com-
plete coverage, e.g. in the bathroom. Wearable sensors such
as gyroscopes, tilt sensors and accelerometers are more flex-
ible, allowing users to be monitored both within and outside
of their home environment [4].

Feature extraction aims to describe human ADLs us-
ing appropriate measures of activity discrimination (such
as spectral entropy or acceleration). The features are se-
lected for each activity by identifying one feature having
the best performance that distinguishes the required activity
from other activities. Features may either use the raw sens-
ing data directly or by performing calculations on the raw
sensing data. Many feature extraction techniques have been
used for activity classification; Gyorbiré et al. [5] discussed
the use of Fast Fourier Transform (FFT), Principal Compo-
nent Analysis (PCA), and Independent Component Analysis
(ICA) for pre-processing of data.

Classification aims to assign a class label to each of the
instances in a data set based on the values of the features us-
ing a trained model (classifier). A large number of machine
learning algorithms have been developed for model training
and testing. The choice of machine learning algorithm for
a classification problem is normally decided based on clas-
sification results. Commonly, a classifier’s performance is
evaluated using its prediction accuracy and computational
efficiency. The best-known algorithms in the literature for
activity classification are Support Vector Machine (SVM),
Naive Bayes (NB), C4.5 Decision Trees (DT), k-Nearest
Neighbour (kNN), Neural Networks, and Rule-based algo-
rithms [6]. For example, Yang [7] performed activity recog-
nition using mobile phones with built-in accelerometers. Six
daily activities: sitting, standing, walking, running, driving
and cycling were classified and the comparison based on
features such as mean and standard deviation acceleration
magnitudes, as well as the separate vertical and horizontal
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components. They evaluated and compared four classifiers,
namely C4.5, DT, NB, kNN and LibSVM, using the 10-fold
cross-validation method. Their experimental results showed
that a well-pruned DT model achieved the best performance
with acceptable computational complexity. kNN and SVM
achieved good classification performance based on the se-
lected magnitude features, but at cost of increased computa-
tional time. The computational efficiency of feature extrac-
tion is particularly important for a mobile of processor in
a smart phone, which is less powerful than a conventional
computer, although the performance gap is narrowing.

Namsrai et al. [8] proposed a method to build an en-
semble of classifiers by using a feature selection schema
(FSS) for analyzing the electrocardiogram. The FSS identi-
fies the best feature sets that affect the arrhythmia classifica-
tion. In their method, a number of classification models were
built based on each feature subset, and the classifiers were
combined by adopting a voting approach to form a classi-
fication ensemble. Experimental results illustrated that this
method can improve the classification accuracy in high di-
mensional datasets. Oh [9] introduced an additive training
method to construct a search tree for predicting the user’s
location based on the past movement patterns.

There are commercial products used for falls detection
and alert notification. For example, MCT-241MD PERS
[10] is a commercial fall detector consisting of a built-in
tilt sensor and a manual emergency alert button. It can au-
tomatically trigger a call to a remote monitoring station for
immediate help if a user wearing it tilts at more than a pre-
set angle for more than about a minute. Another product,
Medical Alert System [11], can transmit an alert to the mon-
itoring agents when a user presses the button on the pendant
to call for help. These kinds of products have been used suc-
cessfully for emergency monitoring and alert delivery, but
are limited to indoor monitoring, due to a dependence on
proximity to a land phone line.

Falls are normally characterized by a larger acceleration
change compared to the types of measurements associated
with normal daily living activities. Hence accelerometers are
the most common device used for fall detection, supported
by activity classification software. For example, Kangas et
al. [12] documented acceleration of falls from sensors at-
tached to the waist, wrist and head. Their experimental re-
sults demonstrated that measurements from the waist and
head were more useful for the purposes of fall detection.
Bourke et al. [13] mounted two tri-axial accelerometers on
the trunk and thigh, and derived two thresholds (upper and
lower) for each position. Finally, they indicated that the up-
per threshold gave higher specificity than the lower thresh-
old.

A method, which uses only the accelerometer with some
empirical threshold, can lead to many false positives from
other ‘fall-like’ activities such as sitting down quickly and
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jumping, which also feature a large acceleration change.
Chen et al. [14] used the lying posture to detect falls, how-
ever limiting the classification to detecting only the lying
posture does not work when the user is left in a sitting po-
sition after a fall. Machine-learning techniques have also
been used for the falls detection [15]. However, the machine-
learning algorithm normally has low computational effi-
ciency and it is also difficult to train algorithms for the vari-
ous fall situations.

Combining accelerometers with other sensors can im-
prove the reliability of activity classification. Bianchi et
al. [16] integrated an accelerometer with a barometric pres-
sure sensor into a wearable device to improve upon existing
accelerometer-only approaches. Li et al. [17] proposed a fall
detection framework that attached two tri-axial accelerome-
ters with gyroscopes on the chest and thigh respectively, and
evaluated that the fall detection accuracy was improved by
coupling accelerometers and gyroscopes. Sinha et al. [18]
demonstrated a clustering protocol for data aggregation in
a wireless sensor network, based on the entropy of the sen-
sors. Their experimental results have shown that the entropy
measurement makes more accurate aggregation at the clus-
ter head and performs in an energy efficient manner.

Smart phone based context-aware applications have been
widely used in many areas of our daily life. For example,
Gallego & Huecas [19] presented a context-aware mobile
personalized recommender system based on multiple bank-
ing data such as customer profiles, credit card transactions
and locations. Werth et al. [20] presented the architecture of
an ecosystem of mobile-services generated by users them-
selves. Tsai et al. [21] developed a trusted M-banking sys-
tem that can provide secure banking services based on the
combination of a one-time password and persona biomet-
ric based on mobile phones. Hoang et al. [22] introduced
adaptive cross-device gait recognition using accelerometers
embedded in a smart phone.

A smartphone based real-time daily activity monitoring
with falls detection system is proposed in this paper. Firstly,
a hierarchal rule-based algorithm is used to classify the mo-
tion and motionless postures respectively; then a rule-based
backward reasoning algorithm is used to detect certain cate-
gories of falls, possible falls or normal lying. Algorithms de-
veloped in this study are based on principles of accelerome-
ter and orientation sensors as well as the kinematical theory,
so it is reliable for different subjects and different situations.

3 Methodology

This study developed and evaluated a real-time activity clas-
sification along with fall detection system within a HTC
(Android operating system) smart phone.

b. Orientation coordinate (6y,0,, 6,)

a. Accelerometer coordinate (Ax, Ay, Az)

Fig. 1 System configuration; data sets acquired from the phone’s sen-
sors: (a) acceleration, (b) orientation angles

3.1 System configuration

An HTC Wildfire S A510e phone was used for data sensing
and processing in this study. This phone includes an em-
bedded BMA150 3D accelerometer, AK8973 3D Magnetic
sensor, AK8973 orientation sensor, GPS and Wi-Fi sensors.
The phone’s processor operates at 600 MHz, the memory ca-
pacity is 512 MB with an additional 2 GB memory card and
the operating system is Android version 2.3.3. In this study,
the phone is belt-worn on the left side of the waist in a hori-
zontal orientation. In this case, the accelerometer coordinate
system 1is that the x-axis is vertical, the y-axis is horizon-
tal and the z-axis is orthogonal to the screen, as shown in
Fig. 1(a).

The phone’s orientation (or position relative to the mag-
netic north) can be monitored using the orientation sensor.
This sensor provides 3D rotation angles along the three axes
(pitch, roll, azimuth), denoted as (O, fy, 67), as depicted in
Fig. 1(b).

Two raw data sets: 3D acceleration (¢, Ay, Ay, A;) and
3D orientation angles (¢, 0y, 6y, 0z) were obtained at the
same time. Subsequently, the two data sets were used for the
features extraction as well as evaluation of the posture clas-
sification and fall detection algorithms. The recorded data
and analyzed results were saved in the phone in a text file.

3.2 The sampling frequency

Signals should be samples at twice the hightest frequency
of interest. With the phone it is possible to sample between
5 Hz and 80 Hz. In theory, with a low sampling rate is pos-
sible to miss some of the higherfrequency values for motion
activities (such as walking). Although the missed higher val-
ues can influence the detailed analysis for motion activities,
such as walking speed, but it does not influence the classi-
fication accuracy for the simpler task of distinguishing mo-
tion and motionless postures. A study by Zhang et al. [23]
has compared the activity classification accuracy based on
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data collected from GENEA accelerometer, with sampling
frequency ranging from 5 Hz to 80 Hz for the four types of
activities: sedentary, household, walking and running. Their
experimental results illustrated that the classification accu-
racy was greater than 95 % irrespectively with the sampling
rate at 80 Hz (96.9 % =1 %), 40 Hz (97.4 % £+ 0.7 %),
20 Hz (969 % £ 1.1 %), 10 Hz (97 % £+ 1 %) and 5 Hz
(95 % + 1.4 %). Thus higher sampling frequencies were
not associated with greater classification accuracy for these
daily activities. Lower sampling rates result in a lower data
load and higher efficiency of data processing.

Therefore, in order to reduce the data load and improve
the performance of the smart phone, the sampling frequency
was set at 5 Hz in this study.

3.3 Data sensing
3.3.1 Acceleration

We know that acceleration is a physical characteristic of a
subject in motion. An accelerometer is a device that can
measure the static acceleration due to gravity, and dynamic
acceleration resulting from motion, shock, or vibration [24].

An accelerometer will measure a value of +1g (unit of
gravity acceleration, which is 9.81 m/s?) in the upward or
downward direction if it remains stationary relative to the
earth’s surface. If a tri-axis accelerometer is embedded in a
smart phone, six 3D coordinate systems are apparent (ver-
tical axis is X, Y or Z in upward or downward directions)
according to the phone’s orientations, as shown in the fol-
lowing three cases.

e A, =+1g when the phone is vertical, the y-axis is verti-
cal in this case;

e A, = £1g when the phone is horizontal, the x-axis is ver-
tical in this case;

e A, = +1g when the phone’s screen is parallelized with
the earth’s surface, the z-axis is vertical in this case.

In theory, the vertical-axis value will be g = £9.81m/s?,
and along the other two axes will be 0. In the real world, al-
though the stationary acceleration is difficult to exactly keep
the theoretic values 9.81 or 0 along 3-axis, but the absolute
value of vertical acceleration is always equal to the maxi-
mum stationary value among (|Ax|, |[Ay[, |[AZ]).

3.3.2 Orientation angles
The orientation sensor provides 3D rotation angles along the

three axes (pitch, roll, azimuth), denoted as (fx, Oy, 67).

e Pitch (fy), degrees of rotation around the x-axis, Oy =
[—180°, 180°], with positive values when the positive z-
axis moves toward the positive y-axis. 0° = horizontal;
+180° = upside down; £90° = left/right.
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e Roll (fy), degrees of rotation around the y-axis, Oy =
[—90°,90°]. 0° = horizontal; 90° = upward; —90° =
downward.

e Azimuth (67), degrees of rotation around the z-axis, 07 =
[0°,360°]. 0°/360° = North; 180° = South; 90° = East;
270° = West.

According to the definition of the (A, Oy, 67) above, the
three angles will vary according to the specific body pos-
tures. Especially, the angle 67 can be used as a compass, and
the angles of (fx, fy) can be used to recognize the upright
and tilted postures.

3.4 Posture classification

The high level contexts of activity posture and the body
orientation are classified at the same time, using hier-
archal rule-based algorithms, based on integrated data
set (it includes raw data and extracted features) such as
(t,id, Ax, Ay, A, AA, Ox,0y,07z). Where ¢ is the time
stamp, id is the calculated sample number, A4 is the cal-
culated acceleration change.

3.4.1 Motionless postures classification

On a general level, human daily activities can be divided
into motion and motionlessness. If a subject is motionless,
his/her acceleration and velocity should, in theory, be zero.
Nevertheless, the signal measured by an accelerometer in
practice always contains some noise and is therefore usu-
ally never exactly zero. Accordingly, the motionless features
were defined by the changes of three dimensional acceler-
ation (AA) and the period of motionless time. The three-
dimensional acceleration A,,, can be calculated by sensed
data (Ay, Ay, A;) as shown in Eq. (1). Then the AA is cal-
culated using Axyz, as shown in Eq. (2).

Axyz=‘/A%+A§+Ag (D
AA = |Axyz(ti+l) - Axyz(ti)| @)

In this study, the motion and motionless postures are clas-
sified using a hierarchal rule-based algorithm. First, a mo-
tionless rule R;;; as shown in Eq. (3) and (4) was used to
separate the motion and motionless postures into two arrays;
then the motionless postures (lying, sit, stand, sit-tilted and
stand-tilted) were classified by combined lying rule Ryy; as
shown in Eq. (5) and (6) and a tilted rule R;;. The details of
three rules (R, Ry, and Ryy) are described as below.

Y(tm, ul € Tini;
) 1a4] <1h1 )

Tint = mlp 3

R

where the motionless period of time 7;,; is for more than
a predefined period of time mlp (such as mip = 2 s), which
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provides appropriate details and reduces the posture frag-
ments for long term daily activity monitoring; the value
th1 = 0.4 m/s> was determined based on kinematical theory
and empirical data, as described in Experiments section.

Ryy;: During a motionless period of time 7, if the max-
imum absolute value among (|Ax|[, |Ayl, |A;]) is not
Ax, and it approximately equal to g as expressed in
Egs. (5) and (6), then the motionless posture must be
lying. This lying rule is established based on the ac-
celerometer principles.

R Amax =Max(|Axl, [Ayl, [A:]) = g )
lyi =
Amax # Ay (6)
if (160x] = (0° + Ocqii) V |6y| < (90° — Ocali))
Riip = { {til = upright}

else{til = tilted}

where the practical value 6,,; is used to calibrate the ideal
value for Ox and fy. Ideally, the 0y is around £90° and 6x
is around 0° when the x-axis is vertical, nevertheless, it is
difficult to guarantee that the belt-worn phone keeps ideally
vertical when the body posture is upright (such as standing),
so a practical value 0.4, = 20° is used to calibrate the ideal
value for 6x and 0y respectively.

The motionless postures were classified as {lying, sit,
stand, sit-tilted, stand-tilted } by combing the rules R;;, Ry,
and Ry;.

3.4.2 Motion postures classification

It is similar with the motionless definition above, the mo-
tion postures also defined as the motion period of time (7j,,)
is for more than a predefined period of time mp (such as
mp = 1 s), as shown in Eq. (7). This definition can ignore
the short periods of motion or slight motion during a mo-
tionless period of time.

The motion postures were initially classified as walk, run,
Jjump, and posture transition (PT) according to the T, and
the AA as expressed in the motion rule R, below.

R Yitm1, tm2] € Tin; Ty > mp @)
" i (T < smp){pos = (AA > th2)%jump : PT}

else{pos = (AA > th2)run : walk}

where the value of short motion period of time (smp) is
2 seconds (smp = 2 s) and th2 = 3.5 m/s2 were determined
empirically using the collected data, as described in Experi-
ments section.

Combining the above rules Ry, Ryyi, Rij and Ry, has the
ability to separate the entire signal into several motion and

10 T T T T T T
r%‘ s &t f13 t, ts ts t;
I otionless || Motionless | Motionless |
£ ol el Y SRS ] W1
Y
5 motionJ motion Jmotlml 1 | ) I‘HOJZMJFI
~o 20 40 60 80 100 120 140 160 180

Time(Second)

Fig. 2 The data signal is separated into several motion and motionless
time sequences

motionless time sequences and saved corresponding clas-
sification result in a posture array. For example, the signal
shown in Fig. 2 will be expressed as four motion and three
motionlessness periods as below, and the posture array saved
as

Motion periods: < tg, 1] >; <, 13 >; <t4,t5 >€ Tp,

Motionless periods: < t,t) >; < 13,t4 >; < t5,16 >€
T

Posture array: {pos(ty), pos(t1), ..., pos(t7)}
3.5 Falls detection analysis

Based on the results of postures and orientation classifi-
cation, the falls detection was implemented by analyzing
whether the current lying or tilted postures are normal or
abnormal, based on the falls characteristics and posture tran-
sition analysis, using rule-based backward reasoning.

It is well known that the common features for all kinds
of falls are that the body results in a lying or sitting tilted
posture, however, not all lying or sitting tilted postures are
falls. The fall detection rule (Ry,) was defined as:

Vlti, tit1] € T if (pos(ti)
= lying||sit — tilted){
(pos(ti—1) = walk||run||jump)all :
V(t, ti+1) € Trest) Tnormal : possible fall}

Rfan =

According to the Ry, a certain fall or a possible fall will
be detected in the different situations, as depicted below.

Certain Falls: if a lying or sit-tilted posture was detected
during the motionless period of time 7, at the time #;,
then a backward reasoning algorithm will be used to check
the saved previous posture Pos(t;—1). If Pos(t;—1) = walk,
run or jump, then the posture transition is analysed as ab-
normal, so a certain fall alert will be delivered immediately.

Possible Falls: otherwise, if the Pos(tj—1) = standing or
sitting, then analyse whether the lying period of time
(ti, tiy1) 1s within the user’s prescheduled rest (such as
sleeping or nap) period of time T.. If so, the current ly-
ing will be analysed as normal; if it is not, a possible fall is
raised, so a music based alert starts playing, and finally, a
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fall or a normal lying/sit-tilted will be determined accord-
ing to whether the user stops the alert music.

The postures and orientations classification were per-
formed point by point in real-time and the sensing data with
the classification results saved in a multi-dimensional ar-
ray as (¢, Ax, Ay, Az, AA,0x,0y,07), posture, orientation,
status), whilst the abstracted information for the period of
maintaining the same posture was saved in another array.
Finally, all results were stored in corresponding text files
within the phone.

4 Experiments

The proposed activity postures classification along with falls
detection system was evaluated at an indoor (a real home)
environment in real-time using a HTC smart phone. Six
healthy people (5 male and 1 female, age range 20-52 years)
simulated various falls and a set of normal daily activities.
For the purposes of safety, a mat was put on the ground for
the falls experiment.

The experimental results were validated against notes
recorded by two independent observers following the exper-
iments. The experimental results, especially the falls detec-
tion results were compared to using an accelerometer with
a pre-defined threshold method described in our previous
work [25]. The two algorithms were named as PosTra and
AccThr, depicted as below.

PosTra: falls were detected based on the integration of
posture transition and the current time as well as the user’s
current position, as proposed in this paper (the position was
discussed in our previous work [26]).

AccThr: only using the acceleration change with pre-
defined threshold to detect falls, as described in our previous
work [25].

4.1 Data sensing
4.1.1 Data sensing and the system interface

The sensed raw data (¢, Ay, Ay, Az, 0x, 0y, 0z) with ana-
lyzed results (¢, posture, location, status) were saved point
by point in a text file within the phone in real-time, and dis-
played on the phone as Fig. 3 shown. A fall alert will be
delivered immediately if a fall is detected; additionally, if a
possible fall is detected, a music alert will sound and a stop
button will appear on the smartphone’s screen, waiting for
user’s response. This allows a user to override an alert situ-
ation, which could have been a false positive.

4.1.2 Parameter thl and th2 determination

The parameter th] was used to separate motion and motion-
less postures in the motionless rule Rys;. The parameter
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4

Fig. 3 Interface of the monitoring system on the phone

th2 was used to classify different motion postures in motion
rule R,,. Experimental protocol for determining thl and th2
value is shown below.

1. Six subjects wore the HTC phone on their waist and car-
ried out three motionless activities of sitting, standing
and lying for 1 minute respectively, 900 motionless sam-
ples (z, Ay, Ay, A;) were collected from each subject.

2. Data collected from six subjects were mixed together.

3. Three dimensional acceleration (Axyz) and the change of
three dimensional acceleration (AA) were calculated ac-
cording to Eq. (1) and Eq. (2).

4. Values of AA were sorted from highest to lowest, and the
distribution of the AA values was analyzed.

The experimental result shows that the AA was dis-
tributed as: highest value 0.798 m/s?, six sample values be-
tween 0.5 m/s> and 0.67 m/s?, eight sample values between
0.41 m/s* and 0.49 m/s?, and the remaining 98.6 % samples
were less than 0.4 m/s>. Figure 4 shows part of the sorted
AA samples. Therefore, the motionless postures can be sep-
arated from the motion postures correctly by using the mo-
tionless rule Ry with proper parameters.

The parameter th2 = 3.5 m/s> was determined empiri-
cally using the collected motion data. The experiments of
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Fig. 4 Sorted motionless AA 0.9
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a PT 4.2.2 Falls and fall-like activities
10n
5 WVW e Fall-lying: falls ending with lying. From walk, run, or
jump to lying on the mat covered ground and bed sud-
or :
denly (quickly).
-5 Samples ° Fal'l—sitTiltec'l: falls ending with sit-tilted. From walk, run
- ! ! ! ! or jump to sit-tilted on the ground and bed slowly.
0 50 100 200 25 e Normal lying: From walk to stand or sit and then lying on
AA the bed or sofa slowly in two ways: Sit > 2 s before lying;
25 R and Sit < 2 s before lying.
sob un e Bending: From standing to bending more than 30°.
Jump e Jump and Sit-heavily: From Standing to jump and then
19 sitting down heavily on a chair.
107 . .
Walk Some of the ending postures following a fall from these
51 PT experiments are shown in Fig. 6. The left single column
0 e shows the system configuration that a belt-worn smart phone
0 50 100 150 200samples25 was used for daily activity monitoring with fall alert deliv-

Fig.5 A, and AA signals for the four motion postures

motion (walking, running, jump and PT) data collecting for
the th2 setting was similar to the thl approach. Figure 5
shows the part of A, signal for the four motion postures and
corresponding AA signal.

4.2 Normal and abnormal daily activities

Each of the 6 subjects performed several series of activities,
described below, in a random order and random period of
time for 2 times for each of the groups activity postures. On
another day, 3 of the 6 subjects performed the same activities
in prescript order for another 8 times respectively at a home
environment.

4.2.1 Normal daily activities

e Walk — Stand — Run — Stand forward — Jump — Sit
on a chair.

ery; the top of row shows 3 subjects fell down ending with
different lying postures on the (mat covered) floor; the bot-
tom row shows another 3 subjects fell down ending with
different sitting postures. For privacy protection, images in
Fig. 6 have been recolored.

Activities from motion posture (such as walking, run-
ning, or jumping) to lying or sit-tilted suddenly are defined
as abnormal posture transition, especially for elderly peo-
ple. Falls should be detected in these cases. For example,
Fig. 7 illustrated the comparison of normal and abnormal
lying, using the part of acceleration signals from standing to
lying slowly (as shown in the top of figure, it is a normal
lying), and from walking to lying suddenly (as shown in the
bottom of figure, it is a fall).

In addition, although the posture transition from sitting
or standing to lying slowly is normal, however if the lying
posture is in a wrong place (such as the ground outside, as
determined by location detection), or at an implausible time
(such as not the scheduled nap or sleeping time), then a pos-
sible fall alert should be playing in this case.
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Fig. 6 Falls ending with
different postures for different
subjects and different situations;
(1) the left single column shows
the system configuration; (2) the
top of row shows 3 subjects fell
down ending with different
lying postures; (3) the bottom
row shows another 3 subjects
fell down ending with different
sitting postures. Note: in order
to protect personal privacy, all
images have been recolored

> -
System configuration

Fig. 7 Comparison of normal 15
and abnormal lying; the top of
figure shows the part of
acceleration signal from
standing to lying slowly; the
bottom of figure shows from
walking to lying suddenly
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4.3 Experimental results

In these experiments, there were 72 (=6 x2 x2+3 x 8 x 2)
falls ending with lying (Fall-lying, in this case, the ac-
celeration changing is large); 72 falls ending with sitting
tilted (Fall-sitTilted, in this case, the acceleration chang-
ing is small); 72 normal lying, 36 bending and a number
of standing, walking, sitting and fall-like (such as jumping
and sitting down heavily) activities recorded in total.

The normal and abnormal daily activities were classified
using the two algorithms PosTra and AccThr respectively.
The experimental results (shown in Fig. 8) were compared
between both algorithms from 4 aspects:

(1) True positive: recognize real falls correctly.

(2) False negative: recognize real falls as non-fall.

(3) True negative: recognize non-fall activities correctly.
(4) False positive: recognize non-falls as a fall.

Figure 8 demonstrated that the algorithm PosTra can
improve the falls detection accuracy significantly in both
aspects: true positives (real falls) and true negatives (non
falls) compared to the algorithm AccThr. For example, Pos-
Tra was able to correctly recognize the two types of falls:
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Fall-lying and Fall-sitTilted (95 % and 93 % true posi-
tives respectively). Nevertheless, AccThr was only able to
detect the Fall-lying correctly (92 % true positive), it is
false for the Fall-sitTilted (96 % false negatives), since
no large acceleration occurred when falls ending with sit-
tilted.

For the fall-like activities, compared to AccThr, PosTra
can exclude most of the jumping (90 % vs. 50 % true neg-
ative), sit down heavily (96 % vs. 15 % true negative), and
normal lying (87.5 % vs. 4 % true negative), however the
true negative for bending was 50 % vs. 75 %.

The algorithm PosTra will trigger the music alert (pos-
sible falls) to wait for users pressing the stop button in the
below cases:

e When the sitting period of time is less than 2 seconds be-
fore the normal lying.

e When bending is more than 70°. Since the phone’s orien-
tation (or the features of the acceleration and orientation
angles) is similar for both postures “deep waist bend” and
lying.

e When the posture is keeping sit-tilt on a chair after the
jumping.
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Fig. 8 Comparison of experimental results between algorithms PosTra and AccThr

Fig. 9 Comparison of two
normal lying, one is sitting more Ny B
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Figure 9 illustrates the limitations for algorithms PosTra
and AccThr for the two ways normal lying. Whatever lying
posture all will cause a large acceleration changing, hence
AccThr got 4 % true negative for all normal lying. PosTra
detect falls based on the posture transition and current time
as well as position, however, if the sit period of time is less
than 2 seconds (such as 1.5 s as shown in Fig. 9) before the
lying, then this sit posture will be ignored based on the mo-
tionless rule Ry, defined in this study. Thus the normal pos-
ture transition from sit to lying was analyzed as from walk
to lying (abnormal posture transition), hence it was detected
as a fall.

5 Conclusion and future work

The innovations in this paper are: (1) the motion and motion-
less postures were classified using a hierarchal rule-based
algorithm, based on principles of accelerometer and orien-
tation sensors as well as the kinematical theory, it is reliable
for different subjects and different situations, and also trust-
worthy for elder daily activity monitoring in real life, since
it is not only based on empirical thresholds or subject-based
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training models; (2) the fall detection was implemented by
analyzing whether the current lying and sit-tilted posture are
normal or abnormal, based on the posture transition analy-
sis with current time and users’ current position; (3) a music
based alert with a stop button will appear if a possible fall
is raised (unexpected lying or sit-tilted), and finally, a fall
or a normal lying/sit-tilted will be determined according to
whether the user stops the alert music.

Experimental results demonstrate that the approach can
correctly detect various falls efficiently (real-time within a
smart phone) and also avoid most false positives and false
negatives. Experiments were performed in various situations
such as fall quickly on the ground, fall slowly onto the bed,
falls ending with a lying or sit-tilted posture, in addition to
the normal lying, at a real home environment. More activity
postures and falls situations such as moving up/down stairs,
cycling, and driving and running will be addressed in the
future work.
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