

 Int. J. Web Science, Vol. 1, No. 4, 2012 291

 Copyright © 2012 Inderscience Enterprises Ltd.

WS-I* compliant web service SOAP message security
performance

Gerard McHale and John O’Raw
Department of Computing,
Letterkenny Institute of Technology,
Letterkenny, Ireland
E-mail: gerardmchale1@gmail.com
E-mail: john.oraw@lyit.ie

Kevin Curran*
Faculty of Computing and Engineering,
University of Ulster,
BT48 7JK, Derry, Northern Ireland
E-mail: kj.curran@ulster.ac.uk
*Corresponding author

Abstract: The OASIS web services security (WSS) standard has been
developed to provide encryption and digital signing for SOAP messaging to
ensure the information in the message is confidential and that the sender and
receiver are who they say they are. It has also introduced interoperability and
performance problems. Interoperability has been improved with the
introduction of the WS-I* Basic and Basic Security Profiles. New web stacks
such as Apache CXF have attempted to address performance issues. The
purpose of this research is to investigate the performance impacts of securing
WS-I* compliant SOAP messages when using the Apache CXF web service
framework. We measured the performance impact of WS-Security and
WS-SecureConversation under different conditions and using various WS-I*
compliant cryptographic algorithms. We found that WS-SecureConversation is
the better option when sending a large number of messages but for a small
number of large messages WS-Security can sometimes be the better option.

Keywords: web services; WS-I* Basic; security; SOAP; WS-Security; Apache
CXF.

Reference to this paper should be made as follows: McHale, G., O’Raw, J. and
Curran, K. (2012) ‘WS-I* compliant web service SOAP message security
performance’, Int. J. Web Science, Vol. 1, No. 4, pp.291–314.

Biographical notes: Gerard McHale is a graduate in Computer Science of the
Letterkenny Institute of Technology. He is currently employed in the Irish IT
sector and his research interests include web service security.

John O’Raw is a Senior Lecturer in Computer Science at the Letterkenny
Institute of Technology. His research interests are in security and networks.

Kevin Curran is a Reader in Computer Science at the University of Ulster,
Northern Ireland. His research interests include indoor location navigation on
network security.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287020057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 292 G. McHale et al.

1 Introduction

The internet has become an invaluable tool, providing different applications for
e-commerce, entertainment, information, communication, etc. Details on the actual
number of active domains can vary but the number is somewhere between 124 million
and 200 million (Verisign, 2010; Domain Tools, 2010). The popularity of the internet has
led to an explosion in the number of malicious attacks against internet and web
applications. Statistics show that the number of defacement attacks alone has increased
from over 41,000 in April 2008 to over 60,000 in April 2009 up to over 95,000 in April
2010 (Almeida, 2010). Of more concern are malicious attacks on Enterprise IT
infrastructures which have become a more serious threat with the growing importance of
the internet to enterprise. These attacks can lead to monetary penalties and loss of
customer base and goodwill. An important area of web security is to protect the
information passed between web applications and web services. These messages are sent
across the internet so the information within the messages is accessible to anyone with
the knowledge to access it. The WS-Security OASIS standard has been developed to
provide encryption and digital signing for SOAP messaging to ensure the information in
the message is confidential and that the sender and receiver are who they say they are.
The use of web services has become increasing prevalent within enterprise application
development with a lot of the larger software companies hosting numerous web services
in the cloud. Examples of this are Amazon Web Services and Google Maps API Web
Services. Security is especially important when dealing with web services due to the fact
that information is being sent across the internet which is inherently unsecure. New
methods of securing information within messages have been developed specifically for
use with web services. The large number of approaches available for implementing
security has also led to interoperability issues between web services.

As yet there is no definitive solution to this problem. During development a balance
has to be reached between the level of security necessary to protect the information and
the performance requirements. These decisions must be made as part of the requirements
gathering phase of any development project. There have been tests and measurements
done over the last number of years which have shown the large impact of implementing
security in SOAP messaging however there have been advances in web service
frameworks and improved Java APIs since these tests. For example the results measured
by Liu et al. (2005) were achieved using Java 1.4.2. Apache Axis 1.3 and Java 1.5 were
used by Moralis et al. (2007, 2009).

There is a high performance overhead associated with the use of WS-Security in
SOAP messages (Liu et al., 2005; Tang et al., 2006; Chen et al., 2007; Van Engelen and
Zhang, 2008). The level of overhead depends on the security schemes chosen.
Van Engelen and Zhang (2008) determined that using WS Security within SOAP
messaging can be a factor of 100 slower than non-secured SOAP/XML messaging.
Implementing SOAP security consists of two main tasks which can be described as
cryptographic operations and XML processing (Liu et al., 2005). Cryptographic
operations can be broken down into signing/verification and encryption/decryption.
Signing refers to applying a digital signature to the SOAP message using XML-Signature
processing (Bartel et al., 2008) to prove the authenticity of the message. Verification is
the process of authenticating the sender of an already signed XML document. Encryption
on the other hand, is the process of encrypting the contents of the message so that it
cannot be read by anyone other than the intended recipient and is done using

 WS-I* compliant web service SOAP message security performance 293

XML-Encryption (Imamura et al., 2002). Decryption is then used to read the contents of
the encrypted SOAP message. Previous studies by Liu et al. (2005), Tang et al. (2006)
and Chen et al. (2007) have shown that XML signature and XML encryption add a
significant overhead to SOAP messages, as much as a 1,500% increase in the response
time in some cases. Both the CXF and Metro web service frameworks have been
developed since and based on measurements by Sosnoski (2010) should provide
improved performance handling. These studies demonstrated that signing was more
expensive than encryption, especially when dealing with large numbers of messages,
rather than fewer large messages. This is because the size of the message has no impact
when signing. Each message must be signed so more signing is done when more
messages are sent. They also demonstrated that both signing and encrypting a SOAP
message was two to seven times slower than signing alone.

There are significant performance improvements that can be achieved when using the
Apache CXF framework compared with the Apache Axis Framework (Sosnoski, 2010).
This study considered the affects of using the WS-I* Basic Profile and Basic Security
Profile on the performance of WS-Security. The aim in this research was to test the
performance impact of WS-Security when applied using the Apache CXF web service
framework and Java.

2 Web service security

Transport Layer Security (TLS) and its predecessor Security Socket Layer (SSL) are
cryptographic protocols that provide security between web applications across the
internet by using HTTP over TLS. TLS provides encryption, authentication and integrity
to enable secure point-to-point message exchange between the applications. The goals
of the TLS/SSL protocol, as described in RFC5246 are cryptographic security,
interoperability, extensibility and relative efficiency. The cryptographic security is
provided using a number of different protocols including the TLS Record Protocol, the
TLS Handshaking Protocols and encryption algorithms such as RSA and Diffie-Hellman.
Interoperability allows independent applications using TLS exchange security parameters
without knowledge of the code in other applications. Extensibility allows new encryption
methods to be incorporated easily into the framework without major re-work (Dierks and
Rescorla, 2008). The final goal of TLS/SSL is to provide relative efficiency. Due to the
extra computation associated with cryptography there is a performance cost when using
TLS/SSL. Due to this cost the use of TSL/SSL is limited to security critical domains. As
of January 2009, the number of TSL/SSL enabled websites was over one million
representing only 0.5% of the total domains on the internet today, based on domain
counts from Verisign (2010) and Domain Tools (2010). There is a relatively low uptake
on the use of TLS/SSL, mainly due to the associated performance overhead. A high end
CPU core can handle approximately 1,000 HTTPS transactions per second with 1,024-bit
RSA while the same core can handle 10,000 plain HTTP transactions per second (Jang
et al., 2010). The most expensive performance cost in TLS/SSL is the RSA computations
(Coarfa et al., 2006). Performance improvements can be gained by using Graphics
Performance Units (GPUs) to handle the RSA throughput (Jang et al., 2010) but this is
still in the initial research stages. The performance overhead associated with TLS/SSL is
still far lower than with WS-Security.

 294 G. McHale et al.

A web service is a unit of managed code that can be invoked using HTTP. Web
service frameworks have emerged as a means of publishing reusable functionality in
which applications are exposed as services or business processes both within a single
enterprise and across enterprise boundaries. With this approach applications can be
developed by combining the business processes provided by already existing web
services. This promotes the reuse of existing functionality and services when creating
new services. Applications in a service oriented architecture (SOA) must declare their
requirements and capabilities in an agreed, machine-readable format. Web services do
this using WSDL. This allows any web service to use the capabilities of any other web
service by binding the web services together. SOAP is the communication protocol used
for sending messages between web applications. SOAP messages are based on XML.
These specifications ensure that the web services architecture allows the integration of
distributed and heterogeneous web applications that are independent of programming
language, operating system and hardware. This architecture promotes loose coupling
between the service provider and the consumer. One of the core functionalities of SOAP
is to provide extensibility (Haas, 2003). This extensibility ensures that the SOAP protocol
is easily maintainable and can avoid becoming obsolete too quickly. Interoperability is an
essential part of enterprise web development. The Web Services Interoperability
Organisation (WS-I) was established to promote interoperability. The goal of the WS-I is
to establish best practices for web services interoperability, for selected groups of web
services standards, across platforms, OSs and programming languages (WS-I, 2010).
WS-I has produced a number of profiles to promote interoperability. The profile of
interest during this study was the WS-I Basic Security Profile 1.1 (WS-I, 2010) which is
specifically related to standardising the WS-Security protocol within SOAP messages to
improve interoperability between web services.

TLS and SSL provide very effective point-to-point message security. In the case of
web service communication where only one hop is required TLS/SSL can be used
effectively to provide confidentiality, authentication and integrity. Applying TLS/SSL as
opposed to WS-Security can also significantly reduce the complexity and the
performance overhead (Shirasuna et al., 2004). Web service messaging has the capability
to traverse multiple applications and intermediary nodes before reaching an end point.
TLS/SSL prevents message re-routing because the addressing information cannot be read
within the message header at the intermediary nodes (Moralis et al., 2009). WS-Security
on the other hand can provide end-to-end message level security (Web Services Security,
2006) and also allows cryptography to be applied to separate parts of the SOAP message.
Therefore different combinations of body blocks, header blocks, etc. can be encrypted
which allows intermediary nodes access certain parts of the message only (WSS, 2006).
The full message can then be decrypted at the final destination. This provides end-to-end
security which is not available when using TLS/SSL. SOAP was developed to exchange
messages over a variety of underlying protocols. TLS/SSL is based specifically on the
HTTP transport protocol. The capacity and application of web services would be limited
if its security relied solely on this transport dependant technology. The mechanisms
provided by WS-Security are applied directly to the SOAP message so the underlying
protocol used has no impact on the security of the SOAP message (WSS, 2006). The
release of SOAP version 1.2 further improved on the SOAP protocol. It was cleaner,
faster, and more versatile and provided better web integration than its predecessor (Haas,
2003).

 WS-I* compliant web service SOAP message security performance 295

There are 16 different algorithm suites supported by the WS-SecurityPolicy, all of
which can be used for the encryption and signing of SOAP messages. The use of these is
determined by the selection of a particular algorithm suite within the WSDL. However,
of these 16 possible suites only four are recommended by the WS-I* Basic Security
Profile (WS-I, 2010). Although the algorithm suites are not specifically mentioned in the
profile the recommended algorithms and message digests are included. This information
was used to determine the suites supported by WS-I*. The algorithm suites supported are
Basic256, Basic128, TripleDes and TripleDesRsa15. Ichikawa et al. (2000) demonstrated
that the RSA AES algorithm was faster than the DES algorithm and by extension also
faster than the TRIPLEDES algorithm. It also provided enhanced security over the
TRIPLEDES algorithm. Srirama et al. (2007) showed that there was only a slight
difference in the transmission latency when using the encryption algorithms
TRIPLEDES, AES128 and AES256, with TRIPLEDES providing the worst performance
in most cases. These measurements used the asymmetric RSA 1024 algorithm to
exchange the symmetric keys. These tests were done for mobile web service so this could
possible explain the different findings between the two studies.

2.1 Transport layer security and secure socket layer security

The WSS (2006) provides three main mechanisms for providing security within SOAP
messages. These mechanisms are Security Tokens, XML Signature (Bartel et al., 2008)
and XML Encryption (Imamura et al., 2002) which provide authentication, integrity,
non-repudiation and encryption. These mechanisms are the building blocks used to create
secure technologies. However, these mechanisms alone cannot guarantee security. The
intent of the Basic Security Profile is to promote interoperability. While it does not define
best security practices or guarantee security, it does use known security weaknesses to
reduce choice and thus improve interoperability and security. This has the effect of
improving message security if the standard is followed. In the end however, full security
can only be guaranteed by implementing the required security mechanisms in the correct
way. This handling is left to each particular application implementing web service
security.

SOAP messages can be signed and encrypted by multiple entities signing and
encrypting overlapping elements. A different processing order can give very different
results. For example, with signature before encryption the signer is known to have
created or vouched for the plain text but there is no way to know whether the signer
performed the encryption. Alternatively with encryption before signing, the signer is
known to have vouched for the cipher text but it is not known by the receiver if the signer
was aware of the plaintext. The Basic Security Profile defines the order for processing
elements within the security headers. This ensures the receiver of the message will
achieve the correct result during deciphering of the message if the order is followed.
Davis (2001) described security holes and potential solutions with both of these
approaches. In a production environment the recommendations by Davis should be
followed. However, it was decided that this was not necessary in this case. For a single
message that will be sent between a web service and a client, via a number of routers,
WS-Security is the best approach for implementing security. This allows the use of
numerous different security tokens including username, X.509 and Kerberos tokens for
the encryption and signing of the XML SOAP messages. The OASIS standard Web

 296 G. McHale et al.

Services Security: SOAP Message Security 1.1 (WSS, 2006) describes the format of
SOAP messages when using WS-Security. Although possible to handle the encryption
using synchronous keys it is recommended that asynchronous tokens such as X.509 or
Kerberos are used. For cases where multiple messages are expected between the client
and the web service, WS-SecureConversation 1.4 (2009) is the preferred approach. This
is because the asynchronous approach is only used to share a synchronous key between
the client and the server. After that the synchronous key is used for encryption of the
message. This produces less overhead than using asynchronous keys for all the messages
transmitted.

2.2 WS security and SOAP messaging performance

Real world applications need to use both encryption and signing. However, there is a
performance cost associated with this as shown by Liu et al. (2005) and Tang et al.
(2006). If performance is an issue then possible options may be to keep the messages as
small as possible or only sign and encrypt the sensitive parts of the message. XML
processing is the second area that has a large impact on the performance of WS-Security.
This includes parsing, validation, transformation and document tree traversal of the XML
SOAP messages. Exclusive XML canonicalisation (Boyer et al., 2002) is the process of
converting an XML document into a standard form. This is particularly important for
XML-Signature because it removes issues caused by the flexibility of XML, which
allows a document to be changed in certain ways but still be considered the same. For
example, an XML document is still considered syntactically the same if additional white
spaces are added. However, this would change the signature of the document so would
affect the signing process in WS-Security. Van Engelen and Zhang (2008) show the
performance impact associated with XML canonicalisation in some detail. The impact of
XML processing and canonicalisation has not been considered for this research.

The use of different security tokens can have an impact on the performance overhead
of using WS-Security. Most of the studies done on this topic have based the
measurements around the username and X.509 tokens. The username token is a
symmetric key which provides a lower level of security than asymmetric keys such as
X.509. For that reason it was not considered during this research. Tests completed by
Moralis et al. (2007) compared the X.509 and Kerberos security tokens. The results
showed that Kerberos can handle approximately 15–20% more messages per second than
the X.509 certificate over a range of message sizes from 60 to 800 bytes. These tests also
showed that Kerberos displayed up to a 28% packet throughput improvement over X.509
under full load conditions on the server. Further studies by Moralis et al. (2009)
demonstrated that Kerberos consistently exhibited up to 50% message throughput
improvement over X.509. However, it was shown by Van Engelen and Zhang (2008) that
WS-Security message encryption and signing using HMAC symmetric keys can be an
order of magnitude faster than using Kerberos, assuming the X.509 token profile is used.
The disadvantage of using HMAC is that symmetric keys require a shared secret. This is
not simple with SOAP messaging because unlike TLS, there is no handshake protocol in
WS-Security. Van Engelen and Zhang (2008) showed how WS-SecureConversation
could be used to overcome this problem.

 WS-I* compliant web service SOAP message security performance 297

2.3 WS secure conversation and SOAP messaging performance

WS-SecureConversation is an OASIS specification which extends WS-Security
(WS-SecureConversation 1.4, 2009). It enables the exchange of a symmetric key between
a SOAP client and web service in an initial handshake message. This symmetric key
can then be used to secure ongoing web service message exchanges with less
processing overhead than WS-Security. It is a similar pattern to that used during a
TLS handshake. The disadvantage of using WS-SecureConversation is the extra
complexity and dependencies introduced into the system. Additional WS-Trust and
WS-SecureConversation elements must be included in the WSDL and the SOAP
messages to support the secure conversation. A decision on whether or not to use
WS-SecureConversation would have to weigh the performance benefits against this
additional complexity.

The initial handshake between the client and the web service is handled by WS-Trust
which also builds on top of WS-Security. It relies on a security token service (STS) to
evaluate requests and issue a security context token (SCT). The issued SCT is then used
to secure the messages during WS-SecureConversation. The most common usage of
WS-SecureConversation is for the client to communicate with a single server. In this
situation the STS and the web service can be co-located on the same server and therefore
both have access to the one security context (SC). This was the approach taken during
this research. The steps necessary for using WS-SecureConversation can be described
with the aid of the diagram shown in Figure 1 (Bhargavan et al., 2007). At step 1 the
client contacts the STS with a request security token (RST) message. At step 2 the STS
generates a new SC, caches it, and replies to the client with a new request security token
response (RSTR) message which includes an SCT. The SCT contains enough information
for the client to calculate the same SC. This allows the client and server to exchange
messages which are protected using the keys derived from the shared secret of the SC
(step 3). Although it is possible to use the SCT for signing and encryption, it is
recommended by the WS-SecureConversation 1.4 (2009) standard that “derived keys be
used for signing and encrypting messages associated only with the security context”.

Figure 1 Protocol using WS-Trust and WS-SecureConversation

 298 G. McHale et al.

Experiments by Liu et al. (2005) have determined that the use of WS-SecureConversation
is noticeably faster than using normal WS-Security. Further research by Van Engelen and
Zhang (2008) on the performance impact of using WS-Security to sign and verify SOAP
messages determined that the use of the symmetric HMAC algorithm was approximately
seven times faster than DSA and eight times faster than RSA which are both asymmetric
algorithms. The symmetric HMAC algorithm can only be used in conjunction with
WS-SecureConversation because the symmetric algorithm must be agreed between the
client and web service before use. This is done during the initial handshake. However,
once the handshake has been completed the results show an order of magnitude
performance improvement for all subsequent messages when using HMAC as opposed to
the public key algorithms DSA/RSA, which must be used when only using WS-Security.

3 Performance framework

Based on similar experiments in the past (Moralis et al., 2009; Tang et al., 2006; Liu
et al., 2005) it was decided that the use of a simple web service and client was the best
option for this research. This approach meant that other processing overheads that might
distort the performance measurements could be ignored. All the testing was completed on
a Pentium Dual Core 2.3GHz CPU with 4GB of RAM running a 32-bit Windows 7
Operating System. The Java version used was JDK 1.6.0_24. The Apache CXF web
service framework using JAX-WS was used to handle the communication between the
web service and the client. The BouncyCastle (2011) JCE provider was used to handle all
the cryptographic functions. The jar file needed for this (i.e., bcprov... .jar) was included
as part of the Apache CXF 2.3.3 installation. To remove the possible impact of results
being affected by network latency all the tests were run with both the client and the web
service hosted on the same machine. Both the web service and the client were kept small
to reduce the possible impact of reduced CPU processing available for XML encryption
and signing caused by the garbage collection of both the client and web service running
side-by-side. To add some complexity to the web service a database was initially
included as part of the web service. The MySQL database (version 5.5.8) was selected
because it is a very popular and well documented open source database. The database
was installed using the 32-bit .msi file. For initial development the standard configuration
was selected during the installation process. The database was divided into the three
tables. In each table the ID column was set as the primary key. The BOOKS table
contained a list of all the books available to the application. The AUTHORS table
contained all the authors used in the application and the PUBLISHERS table contained a
list of all the publishers.

A persistence layer was used to de-couple the persistent database of an application
from the business logic. The use of a good persistence layer makes an application more
maintainable. For example the database used in an application could be updated or
completely changed without an impact to the business logic of the application. Hibernate
is a popular and well documented open source persistence framework used primarily with
Java applications. It was chosen to handle the persistence layer and the object relational
mapping between the Java business logic and the relational database. For a description of
installing, configuring and using Hibernate see King et al. (2011). This allows Java
classes to be mapped to the different tables in a relational database. For this research
version 3.3.2 of Hibernate was used. Version 3.4.0 of hibernate annotations was also

 WS-I* compliant web service SOAP message security performance 299

used. A separate class was created to represent each of the tables within the database.
These classes were Book.java, Author.java and Publisher.java. Annotations were used
within each class to map the java classes to the corresponding database tables. To
promote loose coupling in the application the javax.persistence annotations were used,
rather than the Hibernate specific annotations. The benefit of this was that a different
persistence framework could be incorporated into the application without having to
change the java code. The @Entity annotation was used to signify each class as an entity
that would be mapped to the database and the @Table annotation was used to determine
the specific table in the database. The @Column annotation was used to provide the name
and other details of each column in the table. Note that in most cases each private field in
the Java classes corresponded to a column in the corresponding database. The @Id
annotation was used to determine the primary key for each table and the @Generated
annotation ensured that the primary key was incremented sequentially each time a new
record was added to the table. Finally, the @ManyToOne annotation was used to create
links between the different tables. For example, this annotation was used to associate
multiple books with a single author. It was also necessary to create a hibernate.cfg
configuration file which was used to configure hibernate. The database connection
settings such as the location of the database and the username password needed to access
the database were set here. All the relevant classes corresponding to the database tables
were mapped. The framework was also told which SQL language it should be using to
access the database.

3.1 Web service frameworks

Measuring the performance impact of using WS-Security and WS-SecureConversation
was the main objective of this research therefore a number of test scenarios were
developed to measure the performance impact. When developing the test scenarios a
number of issues were considered. The first question was whether the client and the web
service should both be run on the same machine. Liu et al. (2005) and Van Engelen and
Zhang (2008) performed all the tests with both the client and the web service running on
a single machine. Tang et al. (2006) and Chen et al. (2007) chose to host the client and
the web service on separate machines while Moralis et al. (2007) and Shirasuna et al.
(2004) had multiple clients, each located on a separate machine. These approaches
provided a more realistic real world scenario and affected the measurements due to
network latency. This approach also removed the potential impact of results being
affected due to increased garbage collection of both applications running simultaneously
on the one machine and allowed the client and server processing overhead to be evaluated
separately. However, the benefit of using one machine to host the client and the web
service was that it removed the issue of the performance results being affected by
network latency, thus generating more consistent results. Juric et al. (2006) showed that
performing the same WS-Security tests on a single machine or multiple machines can
have a large impact on the results. Therefore it was decided to run the tests with both the
client and the service on a single machine so that any measured differences could be
related directly to the CPU processing in the client and the web service due to the
selection of different web service security options.

Another question was the method that should be used while running the tests. One
approach by Shirasuna et al. (2004) was to send the message repeatedly for ten minutes.

 300 G. McHale et al.

The average response time of the invocations and the number of invocations per second
that the server processed were both measured. Liu et al. (2005), Juric et al. (2006) and
Van Engelen and Zhang (2008) chose to resend each message between 100 and 100,000
times and measure the average CPU time. In all cases the first invocation was ignored
from the measurements to omit one time initialisation costs. (Juric et al., 2006) also
included the additional step of repeating each test 12 times, discarding the maximal and
minimal times and taking the average of the remaining ten messages. It was decided that
the best approach was to repeat the same message a set number of times. The response
time for the first message was ignored so that the results would not be impacted by
initialisation costs. The best performance was taken as the final result. The type of
messages sent between the SOAP client and the web service provider was also an
important consideration for this research. Different approaches to this question were used
in previous performance evaluations of WS security. Van Engelen and Zhang (2008)
used EchoString and EchoStringArray SOAP RPC-encoded arrays, which meant that a
string or an array of strings was sent to the web service and simply echoed back to the
client. Moralis et al. (2007) and Shirasuna et al. (2004) employed a similar approach by
developing a web service that accepted a string and echoed the same string back to the
sending client. Tang et al. (2006) used an alternative approach where the client sent a
request and the web service responded by returning a specific amount of customer
records. The approach taken by Tang et al. (2006) was designed to mimic more real
world scenarios than that other approach which just echoed the received string back to the
client. A similar approach was used in this research where an array of book objects were
returned to the client based on the information contained in the request message.

The size and frequency of the response message will also have an impact on the
performance due to WS-Security (Sosnoski, 2010). When combining signing and
encryption in the SOAP messages Sosnoski showed that the performance impact by
WS-Security on a large number of small response messages was ~22 times larger than a
plain message. However, the performance impact when using a smaller number of large
messages was only ~13 times larger than the plain message. This was due to the overhead
included in the header, which was the same regardless of the size of the message body.
Due to these findings it was determined that the tests during this research would be
repeated for a large number of small messages and a smaller number of large messages.
The Java Cryptography Extension (JCE) (2002) provides a framework and
implementations for encryption, key generation and key agreement and is necessary to
provide security for SOAP messages. In a comparison done by Juric et al. (2006) between
three different JCE providers it was discovered that there was very little difference
between the performances of the three. The three JCE providers in question were
BouncyCastle, Wedgetail JCSI and OpenSource HBCI Toolkit. As Juric et al. (2006),
Liu et al. (2005), Moralis et al. (2009) all used the BouncyCastle JCE provider
(BouncyCastle, 2011), it was decided that this JCE would be used for this research as
well.

Three of the main open source Java web service frameworks available today are
Apache Axis2, Sun/Oracle Metro and Apache CXF. All of the web service frameworks
support WS-Security and WS-SecureConversation as required here. However,
performance tests have shown Apache CXF and Metro to be more than twice as fast as
Apache Axis2 when WS-Security is used with XML-signature and XML-encryption
(Sosnoski, 2010). These tests also demonstrated that Metro was slightly faster than
Apache CXF. Results of similar tests using WS-SecureConversation showed that Metro

 WS-I* compliant web service SOAP message security performance 301

provided the best performance (Sosnoski, 2010). Both Metro and Apache CXF were over
40% faster than Apache Axis2 across all the different configurations tested. Metro was
approximately 12–15% faster than Apache CXF. It should be noted that these tests were
carried out using Metro 2.0 and Apache CXF 2.1.7/2.1.8. The latest versions of Metro
and Apache CXF are 2.0.1 and 2.3.2 respectively so these results may not be completely
accurate any longer. Sosnoski determined that Apache CXF was the preferred framework
for use with WS-Security (2010). This decision was based on a number of experiments
where he compared the performance of the three main Java web service frameworks
mentioned above. He also considered other issues such as simplicity of configuration.
However, this decision was partially based on personal opinion and also considered
issues such as simplicity of configuration. In the end there was very little to choose
between Apache CXF and Metro. Due to the fact that the performance differences
between and Apache CXF were relatively small it was decided that a decision on which
framework to use would be made during implementation. During implementation it was
discovered that Apache CXF was easier to configure, especially considering that Apache
Tomcat was the application server that was being used. Due to this, CXF was chosen as
the web service framework for the research.

Version 2.0 of the WSDL standard was released in 2007. Despite the improvements
that it introduced over the WSDL 1.1 standard (Christensen et al., 2001) it is still not
widely used in the web services industry. As such there are no test tools available yet
from the WS-I* group for validating that a WSDL 2.0 conforms to the WS-I* Basic
Profile 2.0. A requirement of this research was that the WSDL and SOAP messages used
would be WS-I* compliant. While it would be possible to conform to the standards by
manually checking each WSDL and SOAP message it was not considered a viable
approach. Therefore it was decided that WSDL 1.1 would be used through this research.
It is possible to validate WSDL 1.1 using the WS-I* Basic Profile 1.1 profile tool which
is bundled with the soapUI test tool. The other issue found during the implementation
phase was that the existing test tools for validating WSDL 1.1 did not support the use of
SOAP 1.2. This was determined through testing despite the fact that the soapUI test tool
claims to support validation of SOAP 1.2. Therefore, for the validation the tool to be of
any use it was necessary to use SOAP 1.1 throughout this research. This was not an ideal
solution because of the advantages associated with SOAP 1.2 (Haas, 2003).

3.2 Design approach for the WSDL

Java API for XML Web Services (JAX-WS) is a fundamental technology for developing
SOAP-based web services (Metro Web Services, 2010). The JAX-WS API was designed
to replace the JAX-RPC API and was introduced in JSR 224 (2007) and reflected the
move in the industry away from the RPC-style towards document style web services.
Therefore JAX-WS has been chosen for this research. JAX-WS uses Java annotations to
provide a detailed mapping from a service defined using a WSDL to the Java classes that
will implement that service. It allows for complex types defined in the WSDL to be
mapped to Java classes using the Java Architecture for XML Binding (JAXB). The
Service Endpoint Interface (SEI) is the java code that is exposed to the consumers of the
web service. There are a number of different WSDL styles that can be used with
JAX-WS web services. Butek (2005) provided a description of each of these styles and
when each style might be used. Due to the requirement to be WS-I* compliant the

 302 G. McHale et al.

document/literal wrapped WSDL style was chosen for this research. The recommended
approach for developing a new web service is referred to as the ‘top down’ approach.
This involves designing the services using WSDL first and then generating the code to
implement the designed services. The benefit of this approach is that the interface is well
defined before any development work begins. It also enforces the concept that the web
service is implementation neutral. The top down approach was used for developing the
web service and client during this research.

3.3 Implementing WS-security using Apache CXF

CXF implements WS-Security by integrating Apache WSS4J. Apache WSS4J
is an implementation of the OASIS WS-Security. Within CXF, WSS4J can be
configured using either interceptors or WS-SecurityPolicy. However, the use of the
WS-SecurityPolicy standard provided a method for configuring and controlling the
security requirements of the application using industry agreed standards. Due to the
requirement to follow the WS-I* standards it was decided that WS-SecurityPolicy should
be used. When implementing WS-Security there are multiple approaches which can be
used for authentication. Some of the approaches supported by Apache CXF are username
tokens, Kerberos and X.509 certificates. The security provided by username tokens is
limited so this authentication protocol was not used during the research. The token
analysed during this research was X.509.

The algorithm suite used by the WS-SecurityPolicy standard specified a number of
different algorithm combinations that could be used in conjunction with the WSDL.
The standard defines 16 supported suites, each offering different digest, encryption,
key-wrap and key derivation algorithms, which are described in the WS-SecurityPolicy
standard (WS-SecurityPolicy 1.3, 2009). Only some of the suites defined were valid for
this research because only certain algorithms are recommended by the WS-I* Basic
Security Profile. These were Basic256, Basic128 and TripleDes. Although the WS-I*
Basic Security Profile does support SHA256, it recommends the use of SHA1 unless it is
not suitable for some reason. Therefore it was decided not to use SHA256 in this
research. The WS-I* Basic Security Profile also states that RSA-OAEP must be used for
the transport of 128 and 256 bit keys. These recommendations meant that only Basic256,
Basic128, TripleDes and TripleDesRsa15were valid for this research. The X.509
standard uses a private key stored on the machine sending the message and a certificate
containing a public key which is stored on the machine receiving the message. The public
key is then used to decrypt and authenticate the received message. In a production
application this certificate would be provided by a certification authority. However, in
this research the private key and the certificate containing the public key were generated
using Java keytool which manages a keystore of cryptographic keys and trusted
certificates.

The first step was to create the private keys for the web service and for the client
using the commands shown in Figure 2. The command for the web service generated a
key pair and wrapped the public key in an X.509 version 3 self-signed certificate. The
certificate was stored in a single-element certificate chain. This certificate chain and the
private key were then stored in the new keystore servicekeystore.jks identified by the
alias myservicekey. The client’s private key and certificate chain containing the public
key certificate were stored in the keystore clientkeystore.jks which was identified by the
alias myclientkey.

 WS-I* compliant web service SOAP message security performance 303

Figure 2 Keytool command to create private key store in web service and client

• alias identified the created keystore.

• keyalg specified the algorithm used when generating the key pair. In this case the
RSA algorithm was used.

• sigalg specified the algorithm that was used to sign the self-signed certificate. The
algorithm used had to be compatible with keyalg so SHA1withRSA was selected.

• keypass denoted the password used to protect the private key. During this research a
simple password was selected. In production a more secure password should be
selected.

• storepass denoted the password used to protect the keystore. Again, a more secure
password should be selected for a production environment and it should be different
to the keypass value.

• keystore provided the location of the new keystore file that was created.

• dnames pecified the X.500 distinguished name that was associated with the alias.
This value was then used as the issuer and subject fields in the self-signed certificate.

To set up two way trust between the SOAP client and the web service, the public key
certificate of each was added to the keystore of the other. This was done using the
commands listed in Figures 3 and 4.

Figure 3 Add trusted certificate from client to service keystore

Figure 4 Add trusted certificate from service to client keystore

The attributes used for both the SOAP client and the service were rfc which ensured that
the certificate was output in the printable encoding format defined by Internet RFC 1421
and file which was used to specify the name of the file where the exported certificate was
stored temporarily. The keystore files containing the private key and the public certificate
were then added to the src/main/resources folder of each project. Adding the public key
certificate of both the SOAP client and the web service provider to the keystore of the
other meant that messages encrypted and signed using the private key could be decrypted
and authenticated in the receiving node using the appropriate public key. These
certificates were self-signed, which was sufficient for this local environment. However,
in a production environment it would be necessary to get the exported certificate signed
by a valid Certification Authority (CA). The signed certificate would then be added to the
keystore of the receiving node. This would ensure that the receiver could trust that the

 304 G. McHale et al.

public key was valid and authentic. When sending or receiving a SOAP message it was
necessary to access the private key contained in the keystore for decryption and signing.
It was not possible to access the private key from the keystore without providing a
password. The same rules apply for both the web service and the SOAP client.
This was done by creating a class in both the SOAP client and the web service
provider which implemented the CallBackHandler interface. The handle method was
called when a request was made to retrieve the password for the private key stored in the
keystore (i.e., when signing or decrypting a message). A check was made in the
WebServiceCallBackHandler object to determine whether the request was for signing or
decryption and if so the keystore password was then stored in the object so that it could
be used to access the private key. A similar class was created in the SOAP client. Note
that in this class the username and password for the private key were stored in a
HashMap object that was created when the class was initially instantiated. In a production
application this approach should not be used but it was considered sufficient for this
research where it was the performance impact that was important. A number of other
details such as correct error handling were also omitted for simplicity.

4 Performance results

We present here the results of the WS-Security and WS-SecureConversation performance
evaluation. All the testing was completed on a Pentium Dual Core 2.3GHz CPU with
4GB of RAM running a 32-bit Windows 7 Operating System. The Java version used was
JDK 1.6.0_24. The Apache CXF web service framework using JAX-WS was used to
handle the communication. The BouncyCastle (2011) JCE provider was used to handle
all the cryptographic functions. The jar file needed for this (i.e., bcprov... .jar) was
included as part of the Apache CXF 2.3.3 installation. To remove the possible impact of
results being affected by network latency all the tests were run with both the client and
the web service hosted on the same machine. Both the web service and the client were
kept small to reduce the possible impact of reduced CPU processing available for XML
encryption and signing caused by the garbage collection of both the client and web
service running side-by-side. All tests were run using signing and encryption because in a
real world scenario it is unlikely that one would be used without the other.

The different technologies actually used in this research were Apache Ant version
1.8.2, Apache CXF version 2.3.3, Apache Tomcat version 6.0.29, BouncyCastle JCE
provider version 1.45, Eclipse Helios Java EE version 1.3.1, Eclipse WTP plugin version
3.3.2, Hibernate version 3.3, Hibernate Annotations version 3.4, Java JDK version
1.6.0_24, MySQL version 5.1.15, Java Architecture for XML Binding (JAXB) version
2.2.1, Java API for XML Web Services (JAX-WS) version 2.2, SOAP, Spring version
3.0.5, WS-SecureConversation, WS-Security, WS-SecurityPolicy and WS-Trust.

4.1 Analysis of WS-Security for different message sizes

The first test was designed to determine the performance impact of using WS-Security
with different message sizes. WSS Encryption and WSS Signature were both included in
the SOAP messages because of the necessity of using both in real world applications. All
the WSS messages were encrypted and signed using the Basic256 algorithm suite. The

 WS-I* compliant web service SOAP message security performance 305

different message sizes were achieved by returning a different number of books in the
response message (i.e., number of books = 1, 2,500, 5,000, 7,500, 10,000, 12,500,
15,000, 17,500, 20,000, 22,500, 25,000). Each message size sequence was run multiple
times with only the best time for each sequence kept. For each message sequence the
response time for the plain SOAP message and the WSS SOAP message were recorded.
The results can be seen in Figure 5. The performance impact of using WSS was
calculated using the formula:

*100wss

plain

SOAPPerformance impact
SOAP

=

Figure 5 WSS SOAP messages compared with plain SOAP messages

The performance impact results based on this calculation are displayed in Figure 6. It was
expected that the latency for the SOAP messages would be directly related to the message
size and that the latency would increase in a linear fashion as the message size increased.
The results from this test agreed with the expected results in almost all cases. The
percentage performance impact associated with signing and encrypting a SOAP message
containing only one book however was very large compared with the other results. This
anomaly can be accounted for by the latency of a single plain SOAP message which
came out at approximately 1ms. This low number was understandable considering the
small amount of data sent between the client and web service. However, it resulted in a
very low divisor in the formula which affected the result.

Figure 6 Percentage increase in latency when using WS-Security

 306 G. McHale et al.

As expected there was a large performance drop when using WS-Security. Ignoring the
anomaly with the measurement for one message the performance drop increased slowly
as the size of the message increased. The performance impact ranged from a factor of 10
(i.e., 1,000%) to a factor of 15 (i.e., 1,500%) as the message size increased. This can be
explained by the additional XML processing, XML canonicalisation and the increased
computationally intensive work of generating digests and encrypting data that must be
handled as the message size increases.

4.2 Analysis of algorithms supported by WS-I* Basic Security Profile

There are 16 algorithm suites supported by the WS-SecurityPolicy standard (WS-I,
2010). To encourage interoperability the WS-I* Basic Security Profile recommends the
use of only four of these suites. The purpose of these test cases was to measure the
performance impact of these algorithm suites on WS-Security. The recommended
algorithm suites are Basic256, Basic128, TripleDes and TripleDesRsa15.

Figure 7 Comparison of different algorithms when using WS-Security

Figure 8 Factor increase in latency compared with a non-secured SOAP message

The first test was designed to measure the impact of the different algorithm suites on the
performance impact caused by WS-Security. In this test each algorithm suite was used to
sign and encrypt a range of different sized messages. The size of each message was
determined by the number of books included in the response from the web service (i.e.,
number of books = 10, 5,000, 10,000, 15,000, 20,000). WS-Security was used to secure
the SOAP messages. For each combination of message size and suite a number of

 WS-I* compliant web service SOAP message security performance 307

requests were sent. Only the best result was recorded in each. The results of these
measurements can be seen in Figures 7 and 8.

These results show that there is a difference when using the different algorithm suites.
As expected, based on the study by Ichikawa et al. (2000) the Basic128 and Basic256
suites provided better performance than the TripleDes and TripleDesRsa15 suites. The
basic suites had a performance cost of that was a factor between 11 and 15 of a plain
SOAP message. The TripleDes algorithms on the other hand ranged between 14 and 19.
This is a major difference, especially considering the improved security provided by AES
(used in the Basic suites) over TRIPLEDES. The results of the comparison between the
Basic256 and Basic128 however were unexpected. The initial expectation was that
Basic128 would have less impact on performance than Basic256. The results show that
this is not the case with the impact of Basic256 actually less in some cases. This can be
explained by considering the algorithms included in the basic suites. The main difference
between Basic128 and Basic256 is the use of AES128 and AES256 respectively, both of
which are symmetric algorithms. However, both algorithm suites use the same
asymmetric algorithm (RSA) which was the algorithm used in WS-Security to wrap the
symmetric algorithms as they passed between web service and client. This explained the
similar results. The lower impact for Basci256 when sending 1,000 books was unknown.
It should be noted that in Figure 8 the results for ten books were not included due to the
skewed results caused by a latency of 1 ms (which gave an invalid result when used as
the divisor).

Figure 9 Latency due to each suite over a range of request sets

The second test in this section was designed to measure the performance impact of the
different algorithm suites when using WS-SecureConversation to secure the SOAP
message. In this case the message size was kept constant at 100 books. A small message
size was chosen because WS-SecureConversation performs better with small messages.
The different algorithm suites were tested against request sequences containing different
numbers of requests (i.e., 10, 250, 500, 750 and 1,000). The total time was measured in
this case, as opposed a single request/response in the previous test. Each sequence was
run a number of times and the best result was recorded.

The results of this test are shown in Figures 9 and 10. The results were as expected in
this test case with the Basic suites providing better performance than the TripleDes
suites. When comparing Basic128 and Basic256, the response time was 20% longer
with Basic256 than with Basic128. This was due to the use of WS-SecureConversation in
the second test case which uses symmetric encryption after the initial handshake.

 308 G. McHale et al.

This meant that the lower processing needed for AES128 over AES256 was visible in
this test. However, the difference between Basic128 and Basic256 was lower than
expected.

Figure 10 Factor increase of each suite over a plain SOAP message

4.3 Analysis of WS-Security versus WS-SecureConversation

This test was designed to compare the performance impact of WS-SecureConversation
against WS-Security. Encryption and signing were both included in the SOAP messages
for both. All the messages were encrypted and signed using the Basic256 algorithm suite.
A number of different request sequences were used and ranged from a large number of
small messages to a small number of larger messages. These were:

• 1,000 requests sent and 5 books in each response

• 750 requests sent and 100 books in each response

• 500 requests sent and 200 books in each response

• 50 requests sent and 3,000 books in each response

• 10 requests sent and 15,000 books in each response.

Each sequence was run multiple times with only the best time for each kept in the
results. The chosen sequences tested different performance characteristics of web
service stacks. The first determined how quickly web service stacks process
messages with small amounts of data. The last sequence measured the performance
when processing large amount of data. The security configurations tested were –
No security; WS-Security (signing and encryption using the Basic256 algorithm suite)
and WS-SecureConversation (signing and encryption using the Basic256 algorithm
suite).

The expectation was that WS-SecureConversation would reduce the performance
overhead associated with sending a number of secured messages and therefore reduce the
latency for those messages. It was also expected that the improvement would be greater
in the case where a large number of small messages was sent. The results in Figure 11
confirm the expected results. For the case of 1,000 small messages the performance due

 WS-I* compliant web service SOAP message security performance 309

to WS-SecureConversation was almost three times better than with WS-Security.
However, as the number of requests decreased the performance improvement also
decreased. This was also expected because of how WS-SecureConversation works.
Before any messaging can take place between the client and the web service there must
be a handshake where the symmetric key is shared. Although the use of the symmetric
key is faster for signing and encryption the initial handshake adds additional time that is
not needed when using WS-Security. When only a small number of requests were sent
the benefit of using the symmetric keys was counteracted by the additional time needed
for the handshake. This was shown in the final sequence where only ten messages were
sent and there was almost no performance gain from WS-SecureConversation.

Figure 11 WS-Security vs. WS-SecureConversation

0

10000

20000

30000

40000

50000

60000

10 50 500 750 1000

No of messages

La
te
nc
y
(m
s)

Plain

WS‐Security

WS‐SecureConversation

A second test of WS-SecureConversation was designed to measure the impact of the
message size on the performance. In this test the size of the response message was
changed but the number of requests remained constant. 500 requests were sent to the web
service and the responses returned from the web service contained 50, 200, 400 or 600
books. Each sequence of requests was run with no security, WS-Security and
WS-SecureConversation on the SOAP message. The results are shown in Figures 12 and
13.

Figure 12 Impact of message size on WS-SecureConversation

0

20000

40000

60000

80000

100000

120000

140000

50 200 400 600

Message size (books)

La
te
nc
y
(m
s)

Plain

WS‐Security

WS‐SecureConversation

 310 G. McHale et al.

Figure 13 Factor of performance improvement of WS-SecureConversation over WS-Security
(see online version for colours)

These results show a direct correlation between the size of the message and the
performance gain achieved with WS-SecureConversation over WS-Security. This is
irrespective of the number of messages sent. As the size of the response messages
increased, the performance gain fell from a factor of 2 down to 1.2. This result can be
explained by the processes used for the encryption and signing of XML messages. During
the encryption stage it is encrypted using the chosen algorithm. Therefore the symmetric
key used with WS-SecureConversation will perform better than the asymmetric key used
with WS-security. However, signing an XML message involves a number of steps. The
first is to convert the XML message into a canonical form. Once done the XML is
digested to generate the hash value. This hash value is the value included in the actual
signature. Generating the signature is the only step where either a symmetric or
asymmetric key is used. As the message size increases the processing needed to
canonicalise the XML message also increases but the time taken for generating the
signature remains relatively constant. Therefore the increased canonicalisation limits the
performance gain provided by the symmetric key during encryption and generation of the
signature.

4.4 Impact of WS-Security when accessing a database in the web service

The inclusion of a database in the web service had a large impact on the WS-Security
performance measurements due to the time spent accessing the database. This meant that
any results measured when accessing a database did not give a true measure of the impact
caused by the use of WS-Security to secure the SOAP messages. However, most
enterprise applications use a database. Therefore, a simple test was prepared to determine
the effects on WS-Security and WS-SecureConversation performance compared with no
security when database processing was included. The MySQL 5.5 database was used in
the web service and the persistence layer was implemented using Hibernate 3.3.
Annotations were used to link the java objects to the database tables. X.509 certificates
and the Basic256 algorithm suite were used for the encryption. The first test was
designed to measure the impact of a database on the performance comparison between a
SOAP message with no security and one that was signed and encrypted using
WS-Security. A range of message sizes were chosen from very small to large (i.e., 1,

 WS-I* compliant web service SOAP message security performance 311

2501, 5094 and 20000). The same number of books was returned for the results retrieved
from the DB and those generated in memory. For each sequence the best response time
was selected and recorded (in ms). The results of these measurements are shown in
Table 1. A comparison of the performance impact between plain and WSS messages (for
both the database and non-database web service) can be seen in Figure 14. The vertical
axis displays the factor increase due to WS-Security.

Table 1 Impact of DB on performance results

 1 book 2493 books 5034 books 20000 books

Database (plain) 109 124 296 1,109

Database (WS-Security) 93 985 1,593 8,832

No database (plain) 1 47 109 390

No database (WS-Security) 62 735 1,203 6,523

Figure 14 Performance impact due to WSS for database and non-database web service (see online
version for colours)

As expected the results from this test show that the performance impact of using
WS-Security to sign and encrypt SOAP messages was less when the additional database
processing was included in the web service. This was due to the additional processing
time of accessing the DB being included in the latency measurement irrespective of WSS.
This had a larger impact on overall latency when no security was used but a smaller
impact when WS-Security was used. Therefore, the overall performance impact was
reduced. As can be seen from Figure 14 the performance impact was reduced from a
factor of between 11 and 15 to a factor between 3 and 8. This was a substantial reduction
in the impact of using WS-Security and would make its use far more favourable for
enterprise applications. Note that the impact associated with a response message
containing one book was ignored for the non-database case because the factor cannot be
calculated accurately when the divisor is a value of 1. It should also be noted that these
results would be valid regardless of the reason for the increased processing time in the
web service. Any additional web service processing that increased the latency of a
response from the web service would result in similar results. Therefore, the
measurements for WSS impact represent more closely the actual performance impact of
WSS. All the other WSS tests during this research have very little processing as part of
the web service which explains the large difference in measured results in this case.

 312 G. McHale et al.

5 Conclusions

As expected the results proved that there is a large performance impact when using
WS-Security. The measurements taken during this research demonstrated that the
performance impact of using WS-Security for a simple web service was between 1,000
and 1,500%. This was higher than expected compared with other studies but could
possibly be explained by the low processing required in the web service. As can be seen
from the fourth set of tests the inclusion of the database processing in the web service
resulted in an impact of between 300 and 800%. The use of the Basic256 suite may also
have increased the impact but as can be seen from the results of test two this would
possibly have been negligible. These results show that when dealing with a large volume
of messages between a web service and a single client WS-SecureConversation provides
greater performance than WS-Security. In the case of 1,000 small messages the
impact of using WS-Security was a factor of 13. However, the impact of using
WS-SecureConversation was only a factor of 4.5. Moreover, the performance gain over
WS-Security will improve further as the number of messages increases. However, for a
small number of messages the performance impact of WS-SecureConversation can be
greater than that of WS-Security due to the additional cost associated with the initial
handshake. The other interesting feature is the fact that the performance gain is more
pronounced when signing and encrypting small messages. Therefore large performance
improvements from WS-SecureConversation over WS-Security can only be achieved
when messages are kept small and there are large numbers of messages expected.

When a database was queried as part of the web service the performance impact
associated with WS-Security was reduced from a factor of between 11 and 15 to a factor
of between 3 and 8. The reason for this was the latency impact of accessing the database,
which remained relatively constant regardless of whether WS-Security was used. This
reduced the factor difference between plain and WSS messages. An enterprise level web
service would also have significantly increased processing requirements compared with
the web service in this research. Therefore, although the use of WS-Security in an
enterprise application would have an impact on performance, the effect would be less
pronounced than the suggested by the results attained during this research.

As was shown in test two, the cost of using the Basic256 algorithm suite compared to
the Basic128 suite is negligible when using WS-Security. Therefore, due to the increased
security provided by the Basic256 suite there would seem to be no reason to use the
Basic128 suite at all. This is not the case when using WS-SecureConversation where the
trade off from the improved security is an increased performance overhead. In all cases
the better performance and security provided by the basic suites would suggest that the
TripleDes suites should not be used, unless there is an underlying reason which means
they must be used.

References
Almeida, M. (2010) Defacements Statistics 2008–2009–2010, Zone-H.org [online]

http://www.zone-h.org/news/id/4735 (accessed 27 May 2010).
Bartel, M., Boyer, J., Fox, B., LaMacchia, B. and Simon, E. (2008) XML Signature Syntax and

Processing, 2nd ed. [online] http://www.w3.org/TR/xmldsig-core/ (accessed 8 January 2011).

 WS-I* compliant web service SOAP message security performance 313

Bhargavan, K., Corin, R., Fournet, C. and Gordon, A.D. (2007) ‘Secure sessions for web services’,
ACM Transactions on Information and System Security, Vol. 10, No. 8, pp.36–52,
doi:10.1145/1237500.1237504.

BouncyCastle (2011) [online] http://www.bouncycastle.org/ (accessed 8 January 201).
Boyer, J., Eastlake, D.E. and Reagle, J. (2002) Exclusive XML Canonicalization, Version 1.0

[online] http://www.w3.org/TR/xml-exc-c14n/ (accessed 21 February 2011).
Butek, R. (2005) ‘Which style of WSDL should I use?’[online]

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/#N1021A (accessed
19 March 2011).

Chen, S., Zic, J., Tang, K. and Levy, D. (2007) ‘Performance evaluation and modeling of
web services security’. Paper appears in IEEE International Conference on Web Services,
pp.431–438, doi:10.1109/ICWS.2007.139.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. (2001) Web Services Description
Language (WSDL) 1.1, 15 March, W3C website [online] http://www.w3.org/TR/wsdl
(accessed 2 November 2011).

Coarfa, C., Drushcel, P. and Wallach, D. (2006) ‘Performance analysis of TLS web servers’, ACM
Transactions on Computer Systems, Vol. 24, No. 1, pp.39–69.

Davis, D. (2001) ‘Defective sign and encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP and XML’,
Proceedings of the General Track: 2002 USENIX Annual Technical Conference, pp.65–78.

Dierks, T. and Rescorla, E. (2008) The Transport Layer Security (TLS) Protocol, Request for
Comments: 5246 [online] http://www.ietf.org/rfc/rfc5246.txt (accessed 8 January 2011).

Discover Metro – Project Kenai (2010) [online] http://metro.java.net/discover/ (accessed
1 February 2011).

Domain Tools (2010) Domain Counts & Internet Statistics [online] http://www.domaintools.com/
internet-statistics/ (accessed 1 February 2011)

Haas, H. (2003) From SOAP/1.1 to SOAP version 1.2 in 9 points, W3 [online] http://www.w3.org/
2003/06/soap11-soap12.html (accessed 8 January 2011).

Ichikawa, T., Kasuya, T. and Matsui, M. (2000) ‘Hardware evaluation of the AES finalists’,
Proc. Third Advanced Encryption Standard Candidate Conference, April, New York, USA,
pp.24–32 [online] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.6049&rep
=rep1&type=pdf.

Imamura, T., Dillaway, B. and Simon, E. (2002) XML Encryption Syntax and Processing [online]
http://www.w3.org/TR/xmlenc-core/ (accessed 21 February 2011).

Jang, K., Han, S., Han, S., Moon, S. and Park, K. (2010) ‘Accelerating SSL with GPUs [electronic
version]’, ACM SIGCOMM Computer Communication Review, October, Vol. 40, No. 4,
pp.437–438.

Java Cryptography Extension (JCE) (2002) http://docs.oracle.com/javase/1.4.2/docs/guide/security/
jce/JCERefGuide.html.

JSR 224: Java API for XML Based Web Services (JAX-WS) 2.0 (2007) Java Community Process
website [online] http://jcp.org/en/jsr/detail?id=224 (accessed 3 January 2011).

Juric, M.B., Rozman, I., Brumen, B. Colnaric, M. and Hericko, M. (2006) ‘Comparison of
performance of web services, WS-Security, RMI, and RMI–SSL’, Journal of Systems and
Software, Vol. 79, No. 5, pp.689–700, doi:10.1016/j.jss.2005.08.006.

King, G., Bauer, C., Anderson, M.R., Bernard, E., Ebersole, S. and Ferentschik, H. (2011)
Hibernate Reference Documentation, Hibernate website [online] http://docs.jboss.org/
hibernate/orm/3.6/reference/en-US/pdf/hibernate_reference.pdf (accessed 17 March 2011).

Liu, H., Pallickara, S. and Fox, G. (2005) ‘Performance of web services security’, Proceedings
of 13th Annual Mardi Gras Conference – Frontiers of Grid Applications and Technologies,
3–5 February 2005, Baton Rouge, Louisiana [online] http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.66.3064&rep=rep1&type=pdf.

 314 G. McHale et al.

Metro Web Services (2010) Metro Web Services Technologies at a Glance, Oracle website [online]
http://www.oracle.com/technetwork/java/index-jsp-137051.html (accessed 3 January 2011).

Moralis, A., Pouli, V., Grammatikou, S., Papavassiliou, S. and Maglaris, V. (2007) ‘Performance
comparison of web services security: Kerberos token profile against X.509 token profile’,
ICNS ‘07 Proceedings of the Third International Conference on Networking and Services,
p.28, doi:10.1109/ICNS.2007.93.

Moralis, A., Pouli, V., Papavassiliou, S. and Maglaris, V. (2009) ‘A Kerberos security architecture
for web services based instrumentation grids’, Future Generation Computer Systems, Vol. 25,
No. 7, pp.804–818, doi:10.1016/j.future.2008.11.004.

Shirasuna, S., Slominski, A., Fang, L. and Gannon, D. (2004) ‘Performance comparison of security
mechanisms for grid services’, Proceedings of the 5th IEEE/ACM International Workshop on
Grid Computing, pp.360–364, doi:10.1109/GRID.2004.50.

Sosnoski, D. (2010) ‘Java web services: WS-SecureConversation performance’, IBM Developers
Works Series [online] http://www.ibm.com/developerworks/java/library/j-jws16/index.html,
(accessed 1 March 2011).

Srirama, S.N., Jarke, M. and Prinz, W. (2007) ‘A performance evaluation of mobile web services
security’, 3rd International Conference on Web Information Systems and Technologies,
pp.386–392, doi:arXiv:1007.3644v1.

Tang, K., Chen, S., Levy, D., Zic, J. and Bo, Y. (2006) ‘A performance evaluation of web services
security’, Proceedings of the 10th IEEE International Enterprise Distributed Object
Computing Conference, October, pp.67–74, doi:10.1109/EDOC.2006.12.

Van Engelen, R.A. and Zhang, W. (2008) ‘An overview and evaluation of web services security
performance optimizations’, Proceedings of the 2008 IEEE International Conference on Web
Services, pp.137–144, doi:10.1109/ICWS.2008.102.

Verisign (2010) Verisign 8-K Current Report [online] https://investor.verisign.com/secfiling.cfm?
filingID=1193125-10-213453 (accessed 1 February 2011).

WS-I (2010) WS-I Basic Security Profile Version 1.1. [online] http://www.ws-i.org/deliverables/
workinggroup.aspx?wg=basicsecurity (accessed 8 January 2011).

WSS (2006) Web Services Security: SOAP Message Security 1.1 [online] http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
(accessed 1 March 2011).

WS-SecureConversation 1.4 (2009) [online] http://docs.oasis-open.org/ws-sx/ws-
secureconversation/v1.4/ws-secureconversation.html (accessed 8 January 2011).

WS-SecurityPolicy 1.3 (2009) OASIS website [online] http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf (accessed 5 January 2011).

