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In alkaline conditions, Listeria monocytogenes cells develop higher proportions of branched-chain fatty
acids (FAs), including more anteiso forms. In acid conditions, the opposite occurs. Reduced growth of
pH-sensitive mutants at adverse pH (5.0/9.0) was alleviated by the addition of 2-methylbutyrate (an
anteiso-FA precursor), suggesting that anteiso-FAs are important in adaptation to adverse pH. The
balance between anteiso- and iso-FAs may be more important than changes in the amounts and/or degrees
of saturation of FAs in pH adaptation.

Listeria monocytogenes can grow under a wide range of pH
stress, i.e., 4.1 to 9.0 (38, 46), increasing its abilities to persist
during food processing and attempts to decontaminate food-pro-
cessing environments (15, 42–45). It also has particularly impres-
sive capacities to modulate its membrane lipids to maintain mem-
brane fluidity and transport functions (10, 40, 41) in response to
temperature (1), salt (7), and CO2/anaerobiotic (21) stress. Such
capacities have been suggested to be related to its atypically high
iso and anteiso, odd-numbered, branched-chain fatty acid
(BCFA) content (1, 20) and its ability to modulate the overall
content and proportions of BCFAs, straight-chain FAs (SCFAs),
and unsaturated FAs (22, 23). For example, reductions in envi-
ronmental temperatures lead to increases in the amount of ai15:0
present in L. monocytogenes cell membranes, while increases in
environmental temperatures lead to reductions in the amounts of
ai15:0 and other BCFAs present in membranes (1, 14, 32).

Changes in FA profile have been associated with pH adap-
tation in Streptococcus mutans (16–18), Escherichia coli (5, 48),
and Salmonella (24), Pseudomonas (31), and Bacillus species
(23). However, little is known about pH stress-associated mod-
ulation of FAs in L. monocytogenes (21), the wider role of FA
modulation in its responses to nonthermal stresses, or the
cross-protection mechanisms which operate in this hardy
pathogen (19, 27, 35, 44).

The aims of this study were to investigate the modulation of
the FA profile of L. monocytogenes membranes in response to
changes in environmental pH, investigate the effects of an
exogenous BCFA precursor on the pH stress response of
BCFA-deficient mutants (1, 49), and examine possible links
between the prevalence of anteiso-BCFAs and the adaptation
mechanism(s) of L. monocytogenes under adverse pH conditions.

Modified brain heart infusion broth (MBHIB; Difco Labo-
ratories, Sparks, MD), suitable for adverse-pH studies, was
prepared to pH 5.0, 5.5, and 6.0 in 2 M disodium phosphate

(Sigma Chemical Company, St. Louis, MO) and 0.1 M citric
acid (Fisher Scientific, Fair Lawn, NJ) buffer or to pH 7.0, 8.0,
8.5, and 9.0 in 0.1 M solutions of Trizma-hydrochloride and
Trizma-base (Sigma) buffer (6). When required, cultures were
supplemented with filter-sterilized 100 �M 2-methylbutyric
acid (2MBA).

Washed cells from mid-exponential-phase cultures of L.
monocytogenes 10403S, an isogenic sigB null mutant (3), and
isogenic non-BCFA-producing cld-1 and cld-2 mutants (1, 49)
were inoculated into preheated (30°C) 100-ml volumes of the
buffered MBHIB and grown (30°C/200 rpm) to an optical
density at 600 nm of 0.5 to 0.6. Growth rates of cultures
(doubling times per hour of cultures in exponential growth)
were calculated (2). Mid-exponential-phase cells were recov-
ered by centrifugation at 8,000 � g for 10 min at 4°C and
washed three times with distilled water.

The FAs in washed-cell pellets were saponified, methylated,
and extracted as described previously (1, 49, 50). Methyl ester
mixtures were separated using an Agilent 5890 dual-tower gas
chromatograph with split/splitless injector, flame ionization de-
tector, 25-m by 0.2-mm Ultra 2 capillary column (Hewlett-
Packard), and automatic sampler/integrator and analyzed us-
ing an FA identification program (MIDI; Sherlock 4.5
Microbial Identification System). Carrier gas (hydrogen) flow
was 80 ml/min. The injector and temperatures were main-
tained at 250 and 300°C, respectively. Samples (2 ml) were
injected into the split mode (ratio, 5:3), and the column tem-
perature was ramped from 170 to 270°C at 5°C/min. Individual
FAs comprising less than 1% of the FA content were ignored.
FA determination was conducted at Microbial ID Inc. (New-
ark, DE).

All results represent the average means from three indepen-
dent experiments. Student’s t test was used to make pairwise
comparisons between the acid- and alkaline-adapted cultures
and the corresponding controls for each condition tested. The
confidence interval for a difference in the mean was set at 95%
(P � 0.05) for all comparisons.

The study established that all samples in all pH conditions
contained ai15:0 � ai17:0 � i15:0 � i17:0. Incubation at different
pH values induced characteristic and consistent changes in the
relative proportions of the above-mentioned major FAs (Table
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1); i.e., higher-pH cultures had higher proportions of BCFAs and
lower-pH cultures had lower proportions of BCFAs. Figure 1
presents the relative amounts of individual major BCFAs (i15:0,
ai15:0, i17:0, and ai17:0) in cells grown at different pH values.
Percentages of ai15:0 ranged from 48% (at pH 7.0) to 53% (at pH
8.0 and 8.5) to 47% (at pH 9.0) (Fig. 1A), a pattern also observed
for the other three BCFAs examined (Fig. 1B). Cultures grown at
pH 8.0 and pH 8.5 (but not at pH 9.0) had higher anteiso/iso
ratios than those in control (pH 7.0) samples (Table 1).

FAs in cells grown at pH 5.0 contained significantly higher
proportions of ai17:0 (5%) and significantly lower proportions
of i15:0 than FAs from pH 7.0 (control) cells (Fig. 1A). This
pattern was also observed in relation to total anteiso-FAs; i.e.,
they were in significantly lower concentrations at pH 6.0 and
5.5. At pH 5.0, the total anteiso-FA content was significantly
higher than the control values, and the total iso-FA content
was significantly lower (P � 0.05) (Table 1). There were no
significant differences (P � 0.05) among the average lengths
(or degrees of saturation) of test and control samples at all pH
values examined. There were no significant differences be-
tween the results for L. monocytogenes 10403S and the isogenic
sigB null mutant (data not shown).

In the absence of 2MBA, BCFA-deficient mutants (cld-1

and cld-2 mutants) grew significantly more slowly (0.28 h�1

and 0.20 h�1 at pH 9.0 and 0.21 h�1 and 0.26 h�1 at pH 5.0,
respectively) than the parent strain (0.38 h�1 at pH 9.0 and
0.47 h�1 at pH 5.0) (Fig. 2A and B). In the presence of 2MBA,
the growth rates of these BCFA-deficient mutants were almost
identical with those of the parent strain.

In the absence of 2MBA at pH 5 or 9, the proportions of
anteiso-C17:0 and anteiso-C15:0 content were lower (Table 2)
(and the proportions of iso-C14:0, C14:0, iso-C16:0, and C16:0

higher [results not shown]) than in the parent strain. In the
presence of 2MBA, the proportions of anteiso-C17:0 and
anteiso-C15:0 were significantly higher than in the absence of
2MBA. In the presence of 2MBA, the proportions of SCFAs
were significantly lower (and the proportions of BCFAs were
significantly higher) than in the absence of 2MBA.

This study observed that L. monocytogenes 10403S exhibited
qualitatively and quantitatively different membrane FA con-
tents at different pH values. Growth at pH 8.0 or 8.5 resulted
in higher proportions of BCFAs, especially anteiso forms,
changes that have been suggested to increase membrane flu-
idity (41) and limit alkali and detergent damage (30, 33, 34).
Increased BCFA content has been associated with alkali tol-
erance in alkalophilic species (9, 47). Growth at pH 5.5 or 6.0

TABLE 1. Effects of growth pH on the total fatty acid composition of L. monocytogenes 10403S

Growth
pH Buffer

% Total fatty acids (mean � SD)a
ACCLc

(mean � SD)Anteiso Iso Anteiso/iso Straight Branched

7.0 Tris 75.16 � 3.63 20.2 � 4.72 3.86 � 0.95 2.85 � 0.14 95.37 � 1.09 15.46 � 0.16
8.0 Tris 80.77b � 0.26 14.8b � 0.59 5.44b � 0.23 2.04b � 0.21 95.64 � 0.35 15.39 � 0.08
8.5 Tris 84.30b � 0.39 12.6b � 0.43 6.69b � 0.22 1.55b � 0.33 96.91b � 0.66 15.52 � 0.01
9.0 Tris 77.17 � 0.41 20.8 � 0.58 3.70 � 0.12 1.38b � 0.07 98.04b � 0.16 15.64 � 0.03
7.0 Phosphate 76.69 � 0.39 21.0 � 0.36 3.62 � 0.06 2.13 � 0.61 97.86 � 0.61 15.77 � 0.02
6.0 Phosphate 71.97b � 1.18 25b � 1.29 2.93b � 0.19 3.22b � 0.48 96.56 � 0.58 15.75 � 0.02
5.5 Phosphate 72.55b � 0.74 24b � 0.58 3.08b � 0.10 3.44b � 0.16 96.06b � 0.15 15.73 � 0.03
5.0 Phosphate 80.24b � 0.68 16b � 0.12 5.10b � 0.08 3.02 � 0.37 95.97 � 0.55 15.68 � 0.04

a Values are from three independent experiments.
b Statistically different (P � 0.05) from the control cultures (pH 7.0).
c ACCL, average carbon chain length, given by the equation [�(FAP � C)]/100, where FAP is the percentage of each fatty acid and C is the number of carbon atoms

in the chain.

FIG. 1. Effect of growth pH on fatty acid composition of L. monocytogenes 10403S cells grown in BHI broth at acid (A) and alkaline (B) pHs.
The data represent the means � standard deviations of three independent experiments. �, iso15:0; }, anteiso15:0; ‚, iso17:0; ƒ, anteiso17:0.

998 GIOTIS ET AL. APPL. ENVIRON. MICROBIOL.



resulted in higher proportions of SCFAs. This is different from
the patterns of change in other organisms, where such condi-
tions induce increases in monounsaturated long-chain FAs (5,
16–18) and alterations in cyclopropane FA content (11, 39).

pH stress did not induce gross changes in the total amounts
of unsaturated FAs. This is interesting because pH stress in-
duces considerable changes in total unsaturated FA content in
other bacteria, and L. monocytogenes does make such changes
in response to other environmental stresses (4, 13, 25, 26, 29,
32, 49). The absence of significant differences between the
responses of L. monocytogenes 10403S and the isogenic sigB
null mutant suggests that sigB does not have a major role in
pH-induced fatty acid modulation in L. monocytogenes.

The study observed clear and different patterns in L. mono-
cytogenes responses to moderate pH stress (pH 5.5, 6.0, 8.0, or
8.5), although these patterns were not observed at the most
extreme pH values studied (i.e., pH 5.0 and pH 9.0). Such
discontinuity may reflect a general disruption of membrane
fluidity as conditions move beyond the range of compensation

of FA modulation-based homeostasis to a state where the
imperative is to maintain cytoplasmic pH. Alternatively, more-
extreme stress may activate one or more additional “extreme”
stress responses, redirecting cellular investment away from
moderate stress adaptation mechanisms to more drastic emer-
gency responses.

Shifts between moderate and extreme stress responses have
been associated with shifts between metabolic pathways and
changes in the concentrations of key enzymes such as 	-keto-
acyl-acyl carrier protein synthases (32). In L. monocytogenes
(49, 50) (and also in Bacillus subtilis [12]), such enzymes and
their products have vital roles in membrane adaptation to high-
and low-temperature stress. BCFA synthesis involves the
transamination of branched-chain amino acids such as isoleu-
cine, valine, and leucine by a branched-chain amino acid
transaminase (BcaT) (12, 23) and subsequent oxidative decar-
boxylation by the branched-chain 
-keto acid dehydrogenase
(Bkd) (8, 28, 36, 37). Thus, these two enzymes, BcaT and Bkd,
are critical for BCFA biosynthesis in L. monocytogenes and

FIG. 2. Influence of 2-methylbutyric acid on growth of the cld mutants at pH 5.0 (A) and pH 9.0 (B). Cultures were grown at 30°C in the absence
and presence of 2MBA in MBHIB. OD600, optical density at 600 nm; }, 10403S; ■ , cld-1 mutant; F, cld-1 mutant in the presence of 2MBA; Œ,
cld-2 mutant; �, cld-2 mutant in the presence of 2MBA.

TABLE 2. Fatty acid compositions of parent strain 10403S and cld-1 and cld-2 Bkd mutants in BHIB with or without 2-methylbutyrate at 30°Ca

Strain and growth
conditions

% Total fatty acidsb

ACCLd

i15:0 ai15:0 i17:0 ai17:0 Ante Iso Ante/iso Straight-
chain

Branched-
chain

10403S; pH 9.0 13.94 46.73 3.53 30.4 77.17 20.87 3.70 1.463 98.04 15.680
cld-1; pH 9.0 8.10c 27.17c 5.36c 9.11c 39.33c 29.81c 1.32c 30.85c 69.14c 16.279
clc-1; pH 9.0, 2MBA 1.26c 40.84 NDc 25.84 66.68 15.45 4.32 17.88c 82.13c 15.702
cld-2; pH 9.0 3.63c 17.55c 1.40c 7.75c 25.30c 29.74c 0.85c 44.98c 55.04c 15.454
cld-2; pH 9.0, 2MBA 1.22 39.54 NDc 26.84 66.38 16.19 4.10 17.36c 82.57c 15.712
10403S; pH 5.0 8.11 43.12 3.18 37.12 80.24 16.00 5.10 3.02 95.97 15.68
cld-2; pH 5.0 4.12c 15.66c NDc 5.70c 21.36c 35.52c 0.60c 43.12c 56.88c 15.285
cld-2; pH 5.0, 2MBA 1.33c 40.03 NDc 33.02 73.05 10.41c 7.01 16.53c 83.46 15.759
cld-2; pH 5.0 3.24c 15.57c 0.93c 5.30c 20.87c 35.91c 0.58c 43.22c 56.78c 15.307
cld-2; pH 5.0, 2MBA 1.79c 39.12 NDc 35.25 74.37 13.52c 5.50 12.10c 87.89 15.765

a Minor fatty acid components are not included in this table.
b Values are from three independent experiments. ND, not detected.
c Statistically different (P � 0.05) from the control cultures (10403S; pH 9.0 and pH 5.0)
d ACCL, average carbon chain length, given by the equation [�(FAP � C)]/100, where FAP is the percentage of each fatty acid and C is the number of carbon atoms

in the chain.
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represent a possible mechanism for stress regulation and mod-
ification of FA profiles in this pathogen (8, 28, 36, 37).

The differences between the growth rates of BCFA-deficient
mutants and the BCFA-competent parent strain under pH
stress and the resolution of such differences by the provision of
exogenous 2MBA, bypassing the branched-chain 
-keto acid
dehydrogenase step in the biosynthesis of BCFA (49, 50), dem-
onstrated the close correlation between membrane BCFA con-
tent and the ability of L. monocytogenes to grow under such
adverse environmental conditions.

The results of this study suggest that L. monocytogenes uses
subtle manipulation of BCFA content, and of the relative pro-
portions of anteiso and iso FAs, as a very sensitive and effective
means of adaptation to mild or moderate pH stress.
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