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Abstract— Braitenberg vehicles have attracted many students
to work in robotics because of their apparent simplicity as
control mechanisms. However, the lack of a formal theory
supporting them entails they are used by the robotic community
only as a teaching tool. This paper presents the first joint
theoretical and comprehensive analysis of the behaviour of
Braitenberg vehicles 2 and 3. The presented mathematical
model of the vehicles is a non-linear dynamical system which
is analysed for general conditions. This work paves the way to
a proper and complete understanding of Braitenberg vehicles
through a new theoretical framework. This framework allows
the exploration of new applications and shows the need of
stimulus analysis to drive its behaviour.

I. INTRODUCTION

Braitenberg vehicles [1] qualitatively model sensor based
animal steering and have long been used used on an empirical
basis in robotics, but also in other fields like Artificial Life
[2] [3]. In general, imitation of the natural world has provided
very interesting results in Artificial Intelligence like, Genetic
Algorithms, Artificial Neural Networks, Swarm Optimisation
and so on. In the case of the simplest Braitenberg vehicles,
what is modelled is the motion of animals towards, or
escaping from, a stimulus, known in biology as positive or
negative taxis behaviour [4]. Animals are very good at mov-
ing in the real world and, therefore, a good model to follow
when implementing robotic motion. While positive taxis is a
goal seeking technique, negative taxis implements avoidance
behaviours, very common tasks needed by mobile robots.
Moreover, as these models work at the steering or guidance
level they can be used with any locomotive configuration. On
the other hand, because of their simplicity, they are easily
understood without the need of a strong formal background.
In fact, as a control mechanism for wheeled robots, they
are easier to understand by the newcomer to robotics than
potential field approach based techniques. That is the reason
why they are so often used to teach [5] [6].

Different Braitenberg vehicles have been used to provide
robots with several abilities on an experimental basis. The
work in [7] implements target acquisition using vehicle 3a,
to perform phototaxis, in a combination with a modified
version of vehicle 2b, to avoid obstacles through infrared
sensors. Inspired by this work, [8] presents a wandering
mechanism based on a combination of vehicle 2b with an
artificial stimulus built up from laser and sonar proximity
readings. The stimulus to implement vehicle 2b is just a
weighted integration of the free area in front of the robot.
Using fuzzy controllers that generate offset velocities on each
wheel, Braitenberg vehicles 3a and 2b are used for local
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navigation in [9]. Goal seeking is implemented by vehicle 2b
while vehicles 3b and 2a are used to avoid obstacles in the
front and back of the robot respectively. A Lego vehicle with
a hardware implementation of the vehicle 3b for obstacle
avoidance and a wall following behaviour is presented in
[10]. The power supply of the wheels is connected in a
decreasing way to infrared sensors placed in the front of the
robot, which makes the vehicle to slow down when objects
are detected. An experimental analysis of vehicles 3a and 3b
for odour source localisation is presented in [11], where the
connection between sensors and motors is linear but sensor
readings are normalised and averaged. Due to the nature
of the stimulus and sensing hardware, there is a necessary
sensor preprocessing that introduces a dynamic component
on the connection, and, as we will see, it is not a 3 type
Braitenberg vehicle in a strict sense. A four neuron model
of cricket phonotaxis built with spiking units, comparable to
the combination of vehicles 2a and 3b, is presented in [12].
A neural network, following the inspiration of Braitenberg
vehicles 2a and 2b, was also used to implement several reflex
responses of arthropods to optical flow patterns [13]. Inspired
by Braitenberg’s work, [14] presents a foraging robot neural
controller with neuromodulation, a change on the behaviour
of neurons allowing a switch between vehicle types 2b and
3b.

Through the literature we find multiple empirical applica-
tions of Braitenberg vehicles, ranging from target seeking,
wandering, sound source localisation to obstacle avoidance.
Besides these empirical applications, some theoretical results
about Braitenberg vehicles have been already obtained. Some
stability conditions for vehicle 3a are presented in [15]. It has
been also proved that vehicle 2b, under some circumstances
densely covers some parts of its workspace [16] while some
times it also behaves as a billiard ball bouncing in a pool
table [17], even when there are obstacles inside. This paper
contributes to the general knowledge of Braitenberg vehicles
as it provides a join mathematical model of the control
mechanisms of vehicles 2 and 3. We analyse the dynamical
system describing them and show new theoretical results of
their behaviour. It is worth noting that all the results are
analytical and therefore they do not require any experimental
validation, however, simulations are presented to illustrate
the theoretical results.

The rest of the paper is organised as follows. Section II
reviews qualitative models of Braitenberg vehicle 2 and 3,
states the working assumptions and presents the correspond-
ing mathematical models of the controllers. The results of
analysing the controllers is used to justify the qualitative
understanding which was the basis of all previous empirical
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works. Section III derives general properties of the behaviour
of the vehicles. As the assumptions on this section are also
general and the model of the vehicles is a set of non-
linear differential equations, the results are general and very
helpful for design purposes. The simulations to illustrate
the properties of the vehicle trajectories are presented in
Section IV. A summary of the results, their implications and
further working lines are presented in Section V.

II. ASSUMPTIONS AND MODELS OF VEHICLES 2 AND 3.

By building up vehicles with sensors wired to their
wheels, Braitenberg models complex behaviours with great
simplicity. Wheels abstract locomotion to focus on steering,
therefore, they model walking, swimming or crawling. This
simplifies the control and analysis of motion, and is a good
approximation as forward moving animals suffer from non-
holonomic restrictions to motion [18]. Therefore Braitenberg
vehicles can be used to design robotic controllers at the
steering level. The sensors used by Braitenberg perceive an
abstract stimulus at some point of the space, though it does
not need to be a real stimulus, as it can be artificially con-
structed. To simulate the omni-directionality of the sensors
many empirical applications of Braitenberg vehicles include
rings of sensors. The vehicles considered here simply consist
on direct or crossed connections between the sensors and
the motors. Some vehicles have increasing connections such
that the stronger the stimulus in the sensor gets the faster
the associated wheels turn, while others have a decreasing
connection. Figure 1 shows the various configurations these
vehicles can display, though what increasing or decreasing
connection means is not formally defined in [1].

A. A Quick Review of the Qualitative Behaviour

The vehicles, as animals, are immersed in environments
with non negative bounded stimuli they can perceive through
their sensors. For vehicles 2 and 3 a single stimulus is present
in their environment, which, on the one hand, simplifies the
analysis and, on the other hand, serves as building block for
more complex vehicles. The combination of direct, crossed,
increasing and decreasing connections between the sensors
and the wheels of the vehicles generates four different
vehicles as presented in Figure 1. When sensors on one side
are connected to the motors on the same side we will talk
about a-type vehicles, while b-type vehicles shown a crossed
connection as depicted in figures 1(b) and 1(d). Vehicles 2
have an increasing connection linking perception to action,
represented by the ‘+’ sign on figures 1(a) and 1(b), while
for vehicles 3 the connection is decreasing.

The behaviour of each vehicle can be analysed qualita-
tively by assuming a stimulus source, generating a distance
decreasing scalar field, is located next to it. Basically, intu-
ition indicates that vehicles 2b and 3a will move towards high
values of stimuli, while vehicles 2a and 3b will head towards
lower values. While vehicles 2 might move faster next to the
stimulus source, vehicles 3 will slow down when they get
close to high stimulus intensity because of the decreasing
connection. All these vehicles intuitively generate gradient

descent or hill climbing trajectories, while accounting for the
additional non-holonomic constrains to their trajectories. The
simplicity of the control mechanism makes it biologically
plausible, while at the same time produces quite complex
behaviours depending on the specific stimulus.

(a) Vehicle 2a (b) Vehicle 2b (c) Vehicle 3a (d) Vehicle 3b

Fig. 1. Schematics of Braitenberg Vehicles 2 and 3

Just as in the original work of Braitenberg we will assume
the environment consists on a single stimulus the vehicle can
measure without any disturbing noise, and therefore it can
be modelled as a smooth function, a two dimensional non-
negative C2 function S(x) of the position x ∈ D ⊂ <2,
where D is a simply connected subset of <2. The direct
relation between the perceived stimulus and the velocity of
the wheels can be modelled as a C2 function F (s) taking
non negative values. This function is increasing for vehicles
version 2 and decreasing for vehicles 3, which actually
implies it has positive or negative derivative respectively on
its domain, i.e. F ′(s) > 0 for vehicle 2 and F ′(s) < 0
for vehicle 3. Therefore, we can write vR/L = F (s) where
‘s’ is the stimulus value on the sensor and ‘vR/L’ is the
speed of the wheel. The restriction on the image of F (s)
being <+ ∪ {0} forbids the vehicle to move backward, a
biologically plausible assumption as animals do not walk
backwards.

B. Controller of Braitenberg Vehicles
Given the above assumptions we can now derive a mathe-

matical expression for the controller and compare its analysis
with what intuition says about Braitenberg vehicles. Figure 2
shows the configuration of the sensors in the front of the
vehicle. We will denote x the midpoint and δ the distance
between the sensors. Since the vehicle has a heading di-
rection θ, we can define a reference frame linked to the
front of the vehicle êT = [cos θ, sin θ] pointing in the
direction of the vehicle motion and êTp = [− sin θ, cos θ],
a unit vector orthogonal to ê, pointing to the left side of the
vehicle. Approximating the function composition F (S(x))
as a Taylor series around the mid point between the sensors
and transforming wheel velocities into global velocities, we
obtain:

v ≈ F (S(x)) +
δ2

4
êTpD

2F (S(x))êp (1)

ω ≈ ∓ δ
d
∇F (S(x))êp (2)

where d is the wheelbase, ∇F (S(x)) = dF
dS∇S(x) is

the gradient of the composite function, D2F (S(x)) =
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Fig. 2. Coordinate system at the Front of the vehicle

d2F
dS2∇S(x)∇TS(x)+ dF

dSD
2S(x) is the Hessian matrix, and

the different signs on equation (2) correspond a-type (minus)
and b-type (plus) vehicles. These equations are the result of
a second order Taylor approximation of the wheel velocities.

Equation (1) shows that the first order approximation of
the linear velocity of the vehicle depends on the value of
the function F (s) evaluated at the mid point between the
sensors. This matches our intuition on how the vehicle with
two sensors will behave as higher values of the stimulus
S(x) generate higher linear velocities for vehicles 2 and
lower ones for vehicles 3. It is worth noting the velocity
equation is independent on the type of vehicle ‘a’ or ‘b’, but
the properties of F (s) are very different for each vehicle.
The error on the approximation depends on second order
terms, i.e. on the Hessian of F (S(x)), evaluated at the
midpoint between the sensors. Therefore, the real vehicle
can be faster or slower than the approximated one depending
on the curvatures of the stimulus at the linearisation point.
However, for a planar stimulus the approximation of the
linear velocity will be exact.

The approximation for the angular velocity ω shows that
the turning rate depends on the directional derivative of
the stimulus along the direction of the sensors, orthogonal
to the vehicle heading. Equation (2) can be written as
ω = ∓ δ

d∂êpF (S(x)), where ∂êp represents the directional
derivative along the direction of êp and this velocity is
multiplied by the morphological scaling factor δ

d . This is
the result of sampling the stimulus at two different points.
Assuming, to simplify the analysis, the vehicle forward speed
is zero, the gradient at one point x0 will be a constant vector
we can write as F ′(S(x0))||∇S(x0)||êθ0 , where the sign of
F ′(S(x0)) is different for vehicles 2 and 3, ||∇S(x0)|| is the
module of the gradient at x0 and êθ0 = [cos θ0, sin θ0]

T is a
unit vector along the direction of the gradient. Since ω = θ̇,
we can rewrite the angular velocity equation for a vehicle
standing at a point as:

θ̇ = ∓ δ
d
F ′(S(x0))||∇S(x0)|| sin(θ0 − θ) (3)

The dynamical system (3) has two equilibrium points,
specifically θ = θ0 and θ = θ0 + π, which correspond to
the gradient and opposite directions. One equilibrium point
will be stable and one unstable, though to identify the stable
one we need to consider the sign of F ′(s). It can be seen
that vehicles with F ′(s) > 0 and minus sign (vehicle 2a) or
F ′(s) < 0 and plus sign (vehicle 3b) on equation (2) align
their heading with the gradient as the stable equilibrium point
is θ0. The other vehicles perform a gradient descent on the

stimulus. It is worth noting that the slope of F (s) has a direct
impact on the relaxation time of the angular controller, and
therefore to make the vehicle turn faster for a given stimulus
we need a steeper F (s) function.

The performed analysis is also valid for any C1 stimulus
and F (s) function regardless of whether they are positive or
whether S(x) has any extrema at all. Clearly, the smaller the
distance between the sensors the more accurate the approach
will be. Even though the analysis performed so far formally
explains our intuition on how Braitenberg vehicles work, it
is not enough, as the controlled variables are linked and,
therefore, a deeper analysis is needed.

III. GENERAL ANALYSIS OF THE VEHICLES BEHAVIOUR

To analyse the general trajectories of the vehicles we
will substitute the first term approximation of the velocities,
equations (1) and (2), in the unicycle motion model to obtain:

ẋ = F (S(x)) cos θ (4)
ẏ = F (S(x)) sin θ (5)

θ̇ = ∓ δ
d
∇F (S(x)) · êp (6)

where x = [x, y]T . Even though these equations model
simultaneously vehicles 2 and 3 the actual shape of F (S(x))
is very different for each vehicle, and we have to analyse
each case separately. The general analysis of such a non
linear dynamical system can be very complex even when
equilibrium points or limit cycles can be found which is not
usually the case.

To begin with the analysis we will assume the value of
the stimulus falls between two values s0 and s1, i.e. s0 ≤
S(x) ≤ s1 for all x ∈ D, such that S(x) = s0 ⇐⇒ x ∈
∂D, the lowest value appears at the workspace boundary. So
far we assumed F (s) is non-negative but we will impose
the additional constraint of F (s0) = 0 for vehicles 2, and
F (s1) = 0 for vehicles 3, while the function value at the
other end is bounded. These conditions are imposed to obtain
equilibrium points in the corresponding dynamical system as
this is the only way of having the two equations (4) and (5)
become zero simultaneously. In fact, these conditions should
be imposed to empirical applications of Braitenberg vehicles.

A common technique to analyse the stability of an equi-
librium point is the linear stability test, i.e. to analyse the
eigenvalues of the Jacobian matrix. In our case the Jacobian
matrix can be stated as:

J =

[
∇F (S(x))êT F (S(x))êp

∓ δ
d∇Fx|y(S(x))

T êp ± δ
d∂êF (S(x))

]
(7)

where ∇Fx|y(S(x))T êp is a row sub-matrix containing
the partial derivatives of the gradient w.r.t. x and y, and
∂êF (S(x)) is the directional derivative of F (S(x)) along
ê = [cos θ, sin θ]T . This matrix can be evaluated at the
equilibrium points and the corresponding controller will have
a stable equilibrium point if all the eigenvalues are negative
and an unstable one otherwise.
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A. Vehicles 2

Under the assumption that the stimulus takes its minimum
value on the boundary ∂D, it can be proved that the
trajectories of the vehicles 2 are actually bounded by ∂D, and
therefore their motion is restricted to D. As the trajectories
are the integral lines of the flow defined by the dynamical
system given by equations (4), (5) and (6), to test whether
the vehicle crosses an orientable surface we need to check
if the flow has any non tangent component to the surface.
In the case at hand, as the state space of the vehicle is
(x, y, θ), the surface will be defined by the Cartesian product
∂D × S1. The first two components of the vector field
defined by the dynamical system vanish at the boundary,
while the third one will only vanish for angles θ orthogonal
to the surface. If we define the normal vectors to the surface
∂D × S1, we can see they have no angular component and
therefore the dot product of the surface normal and the flow
defining the vehicle motion is zero, either because they are
orthogonal to each other or because the flow completely
vanishes. This effectively means no flow comes out of the
surface and, therefore, vehicle 2 motion will be bounded by
the contour ∂D in the workspace. We can restrict the motion
of a Braitenberg vehicle on a stimulus field S(x) by selecting
a level curve with a value s0 and a controller function F (s)
such that F (s0) = 0. This design criterion is derived from
the presented theoretical model and has not been explicitly
identify before.

Since F (S(x)) 6= 0 in the interior of D the equilibrium
points of both vehicle types, a and b, lay in the workspace
boundary ∂D, the only points where equations (4) and (5)
vanish simultaneously. Moreover, the equilibrium points can
be obtained by solving ∇S(x)T êp = 0 for any x ∈ ∂D,
which gives at least two solutions for θ, as for each point
x ∈ ∂D we can find two complementary angular values
which make θ̇ = 0. If the gradient of S(x) vanishes at some
points of ∂D, these points will belong to the equilibrium set.
If the functions F (s) and S(x) are C2, the gradient will be
continuous along the boundary and, therefore, two closed
curves formed by equilibrium points exist on the surface
∂D × S1 for vehicles 2.

We know equilibrium points exist for these systems and
we can use the Jacobian matrix to perform a linear sta-
bility test of all those points. In the case of the gradi-
ent vanishing in ∂D, if we substitute F (S(x)) = 0 and
∇S(x) = 0 in (7) we obtain only zero eigenvalues and
therefore this test gives no information about the stability
of the equilibrium set ∂D × S1. We need to apply more
sophisticated methods as presented for the two dimensional
case in [19]. However, if the gradient of the stimulus is
not zero at the boundary, the eigenvalues of the Jacobian
matrix can be computed and they indicate the stability of
the equilibrium points. While one of them will always be
zero, for the vehicle 2a the other two eigenvalues are λ2a ={
±||∇F (S(x0))||,± δ

d ||∇F (S(x0))||
}

and for vehicle 2b
λ2b =

{
±||∇F (S(x0))||,∓ δ

d ||∇F (S(x0))||
}

. The sign of
the eigenvalues depends on the heading of the vehicle relative

to the gradient as the vehicle can point in the same or the
opposite direction of the gradient. On the one hand, the
sign of the two eigenvalues for vehicle 2a is the same for
a given heading solution of ∇S(x)T êp = 0 meaning one
of the solutions will be an attractor while the other will
be a repellor. Specifically, the attractor corresponds to the
situation when the vehicle heads the opposite direction of the
gradient, and the unstable equilibrium to the vehicle heading
the gradient. This means vehicle 2a will move towards the
boundary ∂D if it points towards it and will escape if it
points in the opposite direction. Eventually vehicle 2a will
always reach the boundary of the stimulus and will stay there
as stable equilibria exist. This result matches our intuitive
understanding of how this vehicle works. On the other hand,
vehicle 2b always has eigenvalues with opposite signs and
therefore both existing equilibrium points on the state space
corresponding to one x ∈ ∂D are unstable equilibria. There
is no way (but from the stable manifold) the vehicle 2b will
reach the boundary ∂D and it will wander around D as there
is no other equilibrium point. Braitenberg vehicle 2b can
therefore be used to implement wandering behaviour in a
bounded workspace.

B. Vehicles 3

The analysis of vehicles 3 shows that equilibrium points
can only appear at the maximum of the stimulus since
F (s1) = 0. Moreover, if the point is a maximum of the
stimulus and the derivative of F (s) is bounded, a set of points
on the state space becomes an equilibrium set, as the gradient
also vanishes. In this case for any heading, any êp, the last
equation vanishes θ̇ = 0. Unless F (s) is designed to vanish
for some stimulus value (s1 in our case) the behaviour of
Braitenberg vehicles 3 will have no equilibrium point and it
will move around without stopping, which is not a desirable
behaviour for target reaching robots. If, instead of a point,
the set of x such that S(x) = s1 is a level curve but not
a maximum of S(x), preferred equilibrium directions will
appear as for vehicles 2 in the previous section.

The linear analysis of the equilibrium point brings no
information about the stability if the points where S(x) = s1
are also maxima of S(x), though intuitively it should be
stable for vehicle 3a and unstable for vehicle 3b, but formal
tests require again more sophisticated techniques [19]. If
the gradient does not vanish when S(x) = s1 (or F ′(s) is
not bounded) there are at least two headings of the vehicle
where equation (6) also vanishes, and therefore there are
equilibrium points of the whole system. The linear stability
test can be used again in this case. The result is that vehicle
3a will have at least one angular attractor for the level
curve, while vehicle 3b will always move away from it.
This theoretically obtained result matches our intuition of
how Braitenberg vehicles 3 work, as they model positive and
negative animal taxis respectively. Consequently Braitenberg
vehicle 3a can in principle be used for target reaching, while
vehicle 3b seems appropriate for avoidance tasks.
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(a) Stimulus function S(x)

(b) Simulated trajectories

Fig. 3. Simulation of vehicle 2a

IV. SIMULATIONS

In order to illustrate the behaviour of the Braitenberg
vehicles we performed different simulations by integrating
equations (4), (5) and (6) with different stimuli S(x) and
functions F (s). Figure 3, for instance, presents the sim-
ulations performed for vehicle 2a. The specific stimulus
function is the plot on figure 3(a), the non-negative part of the
product of two parabolic functions with positive and negative
Hessian matrices. The level set S(x) = 0 of the stimulus
is formed by the two parabolas with different orientations
drawn in figure 3(b). The function F (s) was chosen to be a
linear function with positive slope going through the origin
(F (s) = ms). Figure 3(b) presents the trajectories obtained
from simulating vehicle 2a with 60 different headings at
position xT = [−3, 1]. As expected, all the trajectories end at
some point where the stimulus takes a zero value, moreover
the tangent to the trajectory at these points corresponds to
the opposite direction of the gradient as deduced from the
formulation.

Figure 4(b) shows the simulated trajectory for Braitenberg
vehicle 2b with the function composition F (S(x)) shown in
figure 4(a). Instead of selecting a linear F (s) we used the
hyperbolic tangent that introduces saturation in the perceived
stimulus, as it can also be the case in animal sensors. The
level set where the stimulus takes zero value is also shown
in figure 4(b) and it is the same as the compound function
since F (0) = 0. The simulation was stopped at some point
since any equilibrium point on the equations describing the
behaviour of this vehicle, occurring on the zero level set
of the stimulus, is unstable. This can be observed in the
trajectory, as when the vehicle approaches the boundary
of positive stimulus it turns to come back to points of
high stimulus value. Moreover, it has been found through
simulations that the vehicle “bounces” against the zero level-

(a) Function composition F (S(x))

(b) Simulated trajectory

Fig. 4. Simulation of vehicle 2b

(a) Function composition F (S(x))

(b) Simulated trajectories

Fig. 5. Simulations of vehicle 3a

set following similar laws as a billiard ball bouncing in a
billiard table [17].

Figure 5(b) shows 20 simulated trajectories with random
initial conditions withing the 2× 2 square around the max-
imum of the stimulus function in Figure 5(a). Even though
the motion of the vehicles goes on, only the parts of the
trajectories inside the 8 × 8 square around the stimulus are
plotted. As it can be seen there is a preferred escaping
direction almost all the simulated vehicles follow, this is
the result of the stimulus not being circularly symmetric but
ellipsoidal.

We show in figure 6 ten simulated trajectories starting
from random poses of Braitenberg vehicle 3b. The corre-
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Fig. 6. Simulated trajectories for the vehicle 3b

sponding stimulus functions is the same as for the previous
case, figure 5(a), and the connection function F (s) is just a
linear function vanishing at the maximum of the stimulus.
Since the stimulus has no circular symmetry a preferred
direction to reach the maximum and oscillatory behaviour
appear in the trajectories as already proven in [20].

V. DISCUSSION AND FURTHER WORK

This paper presents the first formal joint analysis of
Braitenberg vehicles 2 and 3 modelled as systems of non
linear differential equations. Besides being used nowadays
on an empirical basis for research, Braitenberg vehicles
are widely used for teaching purposes. Even though their
behaviour can be easily understood in an intuitive basis,
applications for robotics mainly rely on educated guesses
and empirical parameter adjustment. In this paper we show
that the expected behaviour of these vehicles, as intuitively
understood, can be explained using the theoretical model
and dynamical systems analysis. New conditions to properly
implement Braitenberg vehicles have been identified through
the analysis of the model, and former applications justified.
Specifically, Braitenberg vehicle 2b can be used for wan-
dering, vehicle 3a for goal seeking and 2a for avoidance,
by using the appropriate stimuli. This work paves the way
for formal robotic applications of Braitenberg vehicles, while
supporting and explaining through a mathematical formula-
tion existing empirical works. However, to make sure the
presented results apply, the right stimulus must be used,
and therefore properties of the stimulus functions have to
be tested beforehand. An example of a potential stimulus
in mobile robotics can be the distance to some target or to
the closest obstacle. However, they are C1 functions on the
workspace. In sum, finding the right stimulus is an important
issue for future works.

Real world applications of Braitenberg vehicles are mainly
related to navigations tasks on robotics. This paper deals only
with the simplest theoretical configuration, a single stimulus
but the environments can have different sources of several
kinds. This will produce a richer behaviour and very complex
equations that probably cannot be understood analytically,
but numerical methods can be used for specific stimulus
settings. This is part of the evolution of Braitenberg vehicles,
specifically vehicle 3c, although no specification is given
[1] on how to solve the motor fusion problem. Tasks like
obstacle avoidance can be implemented using a combination

of vehicles 2a (fear to obstacles, for instance) and 3a (taxis
towards a target). According to [1], if restrictions on the
function connecting perception and action are relaxed more
complex behaviours can appear, these are type 4 vehicles.
However, theoretical results already point that even under
the simple assumptions presented in this paper, behaviour is
very rich and complex. Another interesting extension to this
work is to include the effect of noisy sensors on the vehicle
that will produce a stochastic Braitenberg vehicle model.
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