
Innovations Syst Softw Eng (2009) 5:107–115
DOI 10.1007/s11334-009-0090-7

RESEARCH PAPER

Adaptive reflex autonomicity for real-time systems

Roy Sterritt · Mike Hinchey

Received: 15 March 2009 / Accepted: 20 April 2009 / Published online: 16 June 2009
© Springer-Verlag London Limited 2009

Abstract It may appear that for software systems
that require strict real-time behavior, the idea of incorporating
self-management (and specifically concepts from Autonomic
Computing) may add the burden of excessive additional func-
tionality and overhead. However, our experience is that, not
only does real-time software benefit from autonomicity, but
also the Autonomic Computing initiative (like other initia-
tives aiming at self-management) requires the expertise of
the real-time community in order to achieve its overarching
vision. In particular, there are emerging classes of real-time
systems for which incorporation of self-management is abso-
lutely essential in order to implement all of the requirements
of the system, and in particular the timing requirements.

1 Introduction

The term “Autonomic Computing” was coined by IBM in
their call to industry in 2001 [2] (although ‘Autonomic’ in
computing was initially used by DARPA under the Auto-
nomic Information Assurance program in late 1990s [13]).
The approach takes inspiration from the human and mamma-
lian nervous systems in an attempt to develop systems that
are self-managing and ultimately self-governing [1].

We have argued in a previous paper [3] that computer-
based systems should be autonomic. We stand by that belief,
in particular as software becomes more complex, while

R. Sterritt (B)
University of Ulster, Jordanstown, Belfast, Northern Ireland, UK
e-mail: r.sterritt@ulster.ac.uk

M. Hinchey
Lero-the Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland
e-mail: mike.hinchey@lero.ie

simultaneously more mobile, pervasive, embedded and ubiq-
uitous, with greater expectations in terms of functionality,
performance and real-time behavior. In this paper [3], we
were addressing a particular audience, viz. members of the
IEEE Technical Committee on Engineering Computer-Based
Systems (TC-ECBS). To this community, “computer-based
systems” typically means embedded systems involving both
hardware and software.

Like real-time software systems, such systems often have
strict constraints in terms of performance and timing require-
ments. Adding concepts from Autonomic Computing (AC)
might seem, at a first glance, to add complexity rather than
reduce it, clearly something that cannot be afforded in many
real-time software systems. We believe, however, that Auto-
nomic Computing has much to offer in terms of reducing,
or at least systematically coping with, complexity, and our
work over the last number of years has looked at how we
might exploit AC and other biologically inspired techniques
in classes of systems that would otherwise be infeasible.

We believe that Autonomic Computing is not achievable
without real-time systems (in particular at lower, implemen-
tation levels). Simultaneously, we believe that real-time soft-
ware systems can benefit much from AC, without significant
overhead, and that future advancements necessitate that we
move towards self-managing real-time software systems if
we are to be able to meet the strict timing constraints of
many new applications and environments.

2 Self-managing systems

A number of initiatives have emerged with the vision of
achieving self-management in our computing and communi-
cations systems. These include Autonomic Computing and
Autonomic Communications, and also Organic Computing,

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287019923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108 R. Sterritt, M. Hinchey

Adaptive Infrastructure, N1, Dynamic System Initiative,
Adaptive Network Care, Proactive Computing, Self-Orga-
nizing Systems, Self-*, Selfware, Biologically-Inspired
Computing [5].

Although these different initiatives may have different
academic specialties at their base, or were initiated by differ-
ent industrial organizations, often they are inspired by self-
management as exhibited in biology and nature. The IEEE
has formalized the community as a Technical Committee
on “Autonomous and Autonomic Systems” to underscore
the strategic aims of developing next generation self-orga-
nizing and self-managing computing and communications
infrastructures and systems.

2.1 Autonomic computing

The Autonomic Computing (AC) initiative focuses on man-
aging complexity with self-managing systems, taking inspi-
ration from the human autonomic nervous system (ANS)
[1–5].

The ANS is the part of the nervous system that controls
the vegetative functions of the body, such as circulation of
the blood, intestinal activity, and secretion and production
of chemical “messengers” (hormones) that circulate in the
blood. The sympathetic nervous system (SyNS) supports
“fight or flight”, providing various protection mechanisms to
ensure the safety and well-being of the body. The parasym-
pathetic nervous system (PaNS) supports “rest and digest”,
ensuring that the body performs necessary functions for
long-term health.

The general properties of an autonomic (self-managing)
system can be summarized by four objectives: being
self-configuring, self-healing, self-optimizing and self-pro-
tecting, and four attributes: self-awareness, self-situated,
self-monitoring and self-adjusting [7]. Essentially, the
objectives represent broad system requirements, while the
attributes identify basic implementation mechanisms.

Self-configuration represents a system’s ability to re-
adjust itself automatically; this may simply be in support
of changing circumstances, or to assist in self-healing,
self-optimization or self-protection.

Self-healing, in reactive mode, is a mechanism concerned
with ensuring effective recovery when a fault occurs, identi-
fying the fault, and then, where possible, repairing it.
In proactive mode, it monitors vital signs in an attempt to
predict and avoid “health” problems (reaching undesirable
situations).

Self-optimization means that a system is aware of its ideal
performance, can measure its current performance against
that ideal, and has defined policies for attempting improve-
ments. It may also react to policy changes within the sys-
tem as indicated by the users. A self-protecting system will

defend itself from accidental or malicious external attack.
This necessitates awareness of potential threats and a means
of handling those threats.

In achieving such self-managing objectives, a system must
be aware of its internal state (self-aware) and current exter-
nal operating conditions (self-situated). Changing circum-
stances are detected through self-monitoring and adaptations
are made accordingly (self-adjusting).

As such, a system must have knowledge of its available
resources, its components, their desired performance
characteristics, their current status, and the status of inter-
connections with other systems, along with rules and poli-
cies for how these may be adjusted. Such ability to operate
in a heterogeneous environment will require the use of open
standards to enable global understanding and communication
with other systems.

These mechanisms are not independent entities. For
instance, if an attack is successful, this will necessitate
self-healing actions, and a mix of self-configuration and self-
optimization, in the first instance to ensure dependability
and continued operation of the system, and later to increase
self-protection against similar future attacks. Finally, these
self-mechanisms should ensure that there is minimal disrup-
tion to users, avoiding significant delays in processing.

The architecture of Autonomic Systems (AS) essentially
consists of cooperating autonomic elements made up of the
component that is required to be managed, and the auto-
nomic manager [11,12]. It is assumed that an autonomic man-
ager (AM) is responsible for a managed component (MC)
within a self-contained autonomic element (AE). This auto-
nomic manager may be either designed as part of the compo-
nent or provided externally to the component, as an agent for
instance. To achieve self-management, AEs will cooperate
with remote autonomic managers through virtual, peer-to-
peer, client–server or grid configurations.

2.2 Aims of AC

In their 2001 call to industry, IBM set out eight overriding
objectives [2]. To the real-time systems (RTS) researcher or
practitioner, several of these will be characteristics that are
common to real-time systems, or at least very desirable:

1. To be autonomic, a computing system needs to “know
itself”—and comprise components that also possess a
system identity.

2. An Autonomic Computing System must configure and
reconfigure itself under varying and unpredictable con-
ditions.

3. An Autonomic Computing System never settles for
the status quo—it always looks for ways to optimize its
workings.

123

Adaptive reflex autonomicity for real-time systems 109

4. An Autonomic Computing System must perform some-
thing akin to healing—it must be able to recover from
routine and extraordinary events that might cause some
of its parts to malfunction.

5. A virtual world is no less dangerous than the physical
one, so an Autonomic Computing System must be an
expert in self-protection.

6. An Autonomic Computing System knows its environ-
ment and the context surrounding its activity, and acts
accordingly.

7. An Autonomic Computing System cannot exist in a her-
metic environment.

8. Perhaps most critical for the user, an Autonomic Com-
puting System will anticipate the optimized resources
needed while keeping its complexity hidden.

This list of eight requirements, set out in [2] and [4], points
to the fact that to qualify as an Autonomic System, a system
has to have a degree of self-awareness and familiarization
with the components that compose it. It must know their
capabilities, if it is to be able to adapt to its environment
successfully, analogous to the way that dynamic scheduling
requires a knowledge of tasks, their periods and deadlines.

An AS must be able to adapt to unpredictable conditions
and adjust itself as necessary. This is something that is done,
almost routinely, in an RTS. Real-time systems are constantly
evolving. Their role is to adapt to changing environmental
circumstances or new inputs. The role of scheduling is to
optimize the use of resources and to make efficient use of
available processing power. An effective RTS is performing
this role.

A move towards management and reduction of inherent
complexity is a key focus of the list of essentials given above.
Complexity is a major issue for any large-scale system. Real-
time systems have the added difficulty of having to meet
strict timing-constraints and inputs from many sources, all
of which need to be met.

But surely adding self-managing abilities to an already
complex system, such as exhibited by an RTS, is only adding
to adherent complexity? The overhead of self-management
essentially adds an overhead to any system. Many RTSs are
already pushing the limits of their schedules and adding any
additional overhead is impossible. So is it even feasible to
talk of autonomic real-time systems?

It is our contention that sometimes adding this overhead
is justified. Indeed, there are times when it may even be
essential, in particular for particular classes of systems where
self-management, and even self-government, are vital. We
are thinking of systems for which timing constraints could
simply not be met any other way and for which the overhead
of AC is more than repaid by a corresponding reduction in
complexity.

2.3 Implementing AC

Handing over control that was previously held by a human to
the system itself, in principle will add additional functional-
ity, complexity and processing overhead to the system. This
fact will be obvious to any practitioner in the field. Experience
from AI, Expert Systems, and Machine Learning problems
has shown many how slow decision-making systems can be.
As such, it is vital to develop key principles and engineering
techniques for how self-managing systems should be created.

If we reconsider the meaning of the actual terms “Auto-
nomic” and “Autonomous” [6]:

au·to·nom·ic (àwt enómmik)
adj.

1. Physiology.

a. Of, relating to, or controlled by the autonomic ner-
vous system.

b. Occurring involuntarily; automatic: an autonomic
reflex.

2. Resulting from internal stimuli; spontaneous.

au·ton·o·mic·i·ty (àwt enóm i síttee)
n.

1. The state of being autonomic.

au·ton·o·mous (aw tónn em es)
adj.

1. Not controlled by others or by outside forces; indepen-
dent: an autonomous judiciary; an autonomous division
of a corporate conglomerate.

2. Independent in mind or judgment; self-directed.
3. a. Independent of the laws of another state or govern-

ment; self-governing.
b. Of or relating to a self-governing entity: an autono-

mous legislature.
c. Self-governing with respect to local or internal

affairs: an autonomous region of a country.
4. Autonomic.

[From Greek autonomos: auto-, auto- + nomos, law]
We note a difference in their intent: “Autonomic” is very

much concerned with spontaneous, reflex reactions while
“Autonomous” is a slower, high-level conscious decision-
making process.

The basic principles of Autonomic and Autonomous sys-
tems can be incorporated into the design of a system to
ensure that the correct response rate is achieved where it
is needed. This has resulted in us considering a simple

123

110 R. Sterritt, M. Hinchey

three-tiered abstract architecture in our designs of self-man-
aging systems:

• Autonomous layer
• Selfware layer
• Autonomic layer

The Autonomic layer is the bottom tier, closest to the hard-
ware, and operates with immediate reaction to situations to
ensure that system operations are maintained.

The Selfware layer incorporates day-to-day operations of
self-managing activity as and when needed, and as and when
the system has the processing capacity available.

The Autonomous layer is the top tier where high-level stra-
tegic objectives of the system are directed and satisfied over
time. This often includes reflection.

As such, a key element that we have included in our
work in designing AS is that of the Autonomic Reflex, bor-
rowed from embedded and real-time systems and extended
to include active system health telemetry.

2.4 Autonomic reflex reactions: pulse monitoring

Essentially, the aim of Autonomic Computing is to create
robust, dependable self-managing systems [8] in an attempt
to deal with complexity.

At the heart of the architecture of any autonomic system
are sensors and effectors. A control loop is created by moni-
toring behavior through sensors, comparing this with expec-
tations (knowledge, as in historical and current data, rules
and beliefs), planning what action is necessary (if any), and
then executing that action through effectors. The closed loop
of feedback control provides the basic backbone structure
for each system component. There are two conceptual con-
trol loops in an Autonomic Element—one for self-awareness
and another for self-situation (environmental awareness and
context-awareness).

IBM represents this self-monitor/self-adjust control loop
as the monitor, analyze, plan and execute (MAPE) control
loop. The monitor-and-analyze parts of the structure process
information from the sensors to provide both self-awareness
and an awareness of the external environment. The plan-
and-execute parts decide on the necessary self-management
behavior that will be executed through the effectors. The
MAPE components use the correlations, rules, beliefs, expec-
tations, histories, and other information known to the auto-
nomic element, or available to it through the knowledge
repository within the Autonomic Manager (AM).

The autonomic environment requires that autonomic
elements and, in particular, autonomic managers communi-
cate with one another concerning self-*activities, in order to
ensure the robustness of the environment [9,10]. It is our
belief that the AM communications must also include a reflex
signal.

To facilitate this, fault-tolerant mechanisms such as a
heart-beat monitor (‘I am alive’ signals) and pulse monitor
(urgency/reflex signals) may be included within the auto-
nomic element [9,10]. See Fig. 1 for an illustration of our
autonomic environment.

The notion behind the pulse monitor (PBM) is to pro-
vide an early warning of an undesirable condition so that
preparations can be made to handle the processing load of
diagnosis and planning a response, including diversion of
load. Together with other forms of communications it creates
dynamics of autonomic responses [11]—the introduction of
multiple loops of control, some slow and precise, others fast
and possibly imprecise, fitting with the biological metaphors
of reflex and healing [9].

2.5 Reducing the monitoring workload through
collaboration

This reflex component (pulse monitor) may be used to safe-
guard the autonomic element by communicating its health to
another AE in a peer-to-peer fashion (Figs. 1, 2). The com-
ponent may also be utilized to communicate environmental
health information—i.e. how the AE perceived the health of
the environment at that moment in time.

To assist in realizing real-time requirements and in reduc-
ing the self-managing monitoring burden on all elements, the
pulse monitor can be utilized in a form of ‘neighbourhood
watch scheme’ [10]. For instance, in the situation where each
PC in a LAN is equipped with an autonomic manager, rather
than each of the individual PCs monitoring the same environ-
ment, a few PCs (likely the least busy machines) may take on
this role and alert the others via a change in pulse to indicate
changing circumstances (Fig. 3).

An important aspect concerning the reflex reaction and the
pulse monitor is the minimization of data sent—essentially
only a “signal” is transmitted. Strictly speaking, this is not
mandatory; more information may be sent, yet the additional
information must not compromise the reflex reaction and the
required real-time response of the system. For instance, in
the absence of bandwidth concerns, information that can be
acted upon quickly and will not incur processing delays can
be sent. The important aspect is that the information must
be in a form that can be acted upon immediately and does
not involve processing delays (such as is the case of event
correlation).

Just as the beat of the heart has a double beat (lub–dub) the
autonomic element’s pulse monitor may have a double beat
encoded as described above: a self-health/urgency measure
and an environment health/urgency measure. These match
directly with the two conceptual control loops within the
AE, and the self-awareness and environment awareness (self-
situation) properties.

123

Adaptive reflex autonomicity for real-time systems 111

Fig. 1 An autonomic environment

Fig. 2 An example autonomic
environment—LAN two
conceptual control loops—self
awareness and environment
awareness

2.6 Adaptive pulse monitoring (PaNS mode)

The standard heart-beat monitor (HBM) sends an ‘I am alive’
signal at constant static intervals. The extended version of
this, the Pulse monitor [8,9], encodes within its signal not
only a heartbeat but an ‘I am healthy/unhealthy’ signal in
reflex reaction to a change in vital signs. Under normal condi-
tions the pulse would act like the HBM, sending at regular
intervals, yet on encountering circumstances affecting the
system the pulse rate will increase to warn of the problem.
This dynamic pulse rate is consistent with the biological met-
aphor, but it is also desirable to ensure that information is
reported more frequently when operating conditions become

difficult (flight or fight, SyNS). To achieve the reflex reac-
tion a signal should be sent immediately, implying a change
in the pulse rate, which should then stay high, reporting state
information, until the situation is resolved.

Yet we are very aware of scenarios, for instance in the
telecommunications domain [17], where under fault condi-
tions a major fault can cause such a cascade of alarm event
messages that it affects the real-time operation of the sys-
tem and appears non-deterministic; under such management
event message flooding it can be difficult to even provide
adequate service [17].

Since the management event data flooding under fault
conditions can add to the degradation of the system, we

123

112 R. Sterritt, M. Hinchey

Fig. 3 Pervasive Autonomic Computing Monitoring Environment (PACMEn)—assisting with real-time constraints by reducing the monitoring
burden through neighbourhood watch scheme

have been working on another extension, the adaptive pulse
monitor, whereby the rate of the pulse will adapt to take into
consideration bandwidth concerns and the congestion on the
network. In effect, after the initial reflex reaction, the pulse
and other self-*event messages would actually decrease.
As such, upon detecting that the flood of management event
messaging, along with limited bandwidth and resulting con-
gestion, was adding to the system degradation, a specific
pulse signal would be sent to reduce the necessity of send-
ing the autonomic messages until the situation is resolved (in
effect putting the self-managing system into rest and digest,
parasympathetic (PaNS) mode). The key concept is that we
must actively reduce alerting so that achieving autonomicity
is not actually making the situation and response worse.

3 Next generation self-managing RTS example

3.1 NASA missions

NASA missions require the use of complex hardware and
software systems, and embedded systems, often with hard
real-time requirements [3]. Most of the missions involve
significant degrees of autonomous behavior, often over
significant periods of time. There are missions which are

intended only to survive for a short period, and others which
will continue for decades, with periodic updates to both hard-
ware and software. Some of these updates are pre-planned;
others, such as with the Hubble Space Telescope, were not
planned but have now been undertaken (with updates per-
formed by astronauts and via a robotic arm).

While missions typically have human monitors, many mis-
sions involve very little human intervention, and then often
only in extreme circumstances. It has been argued that NASA
systems should be autonomic [9,14], and that all autonomous
systems should be autonomic by necessity. Indeed, the trend
is in that direction in forthcoming NASA missions.

We take as our example, a NASA concept mission, ANTS,
which has been identified [15] as a prime example of an auto-
nomic system.

3.1.1 ANTS

ANTS is a concept mission that involves the use of intelli-
gent swarms of spacecraft. From a suitable point in space
(called a Lagrangian), 1,000 small spacecrafts will be
launched towards the asteroid belt.

As many as 60–70% of these will be destroyed immedi-
ately on reaching the asteroid belt. Those that survive will
coordinate into groups, under the control of a leader, which

123

Adaptive reflex autonomicity for real-time systems 113

will make decisions for future investigations of particular
asteroids based on the results returned to it by individual
craft which are equipped with various types of instruments.

Self-configuring ANTS will continue to prospect thousands
of asteroids per year with large but limited resources. It is
estimated that there will be approximately 1 month of opti-
mal science operations at each asteroid prospected. A full
suite of scientific instruments will be deployed at each aster-
oid. ANTS resources will be configured and re-configured to
support concurrent operations at hundreds of asteroids over
a period of time.

The overall ANTS mission architecture calls for special-
ized spacecraft that support division of labor (rulers, mes-
sengers) and optimal operations by specialists (workers). A
major feature of the architecture is support for cooperation
among the spacecraft to achieve mission goals. The architec-
ture supports swarm-level mission-directed behaviors, sub-
swarm levels for regional coverage and resource-sharing,
team/worker groups for coordinated science operations and
individual autonomous behaviors. These organizational lev-
els are not static but evolve and self-configure as the need
arises. As asteroids of interest are identified, appropriate
teams of spacecraft are configured to realize optimal science
operations at the asteroids. When the science operations are
completed, the team disperses for possible reconfiguration at
another asteroid site. This process of configuring and recon-
figuring continues throughout the life of the ANTS mission.

Reconfiguring may also be required as the result of a fail-
ure, such as the loss of, or damage to, a worker due to collision
with an asteroid (in which case the role may be assumed by
another worker, which will be allocated the task and resources
of the original).

Self-healing ANTS is self-healing not only in that it can
recover from mistakes, but self-healing in that it can recover
from failure, including damage from outside forces. In the
case of ANTS, these are non-malicious sources: collision
with an asteroid, or another spacecraft, etc.

ANTS mission self-healing scenarios span the range from
negligible to severe. A negligible example would be where
an instrument is damaged due to a collision or malfunction-
ing. In such a scenario, the self-healing behavior would be
the simple action of deleting the instrument from the list of
functioning instruments. A severe example would arise when
the team loses so many workers it can no longer conduct sci-
ence operations. In this case, the self-healing behavior would
include advising the mission control center and requesting
the launch of replacement spacecraft, which would be
incorporated into the team, which in turn would initiate nec-
essary self-configuration and self-optimization.

Individual ANTS spacecraft will have self-healing
capabilities also. For example, an individual may have the

capability of detecting corrupted code (software), causing
it to request a copy of the affected software from another
individual in the team, enabling the corrupted spacecraft to
restore itself to a known operational state.

Self-optimizing Optimization of ANTS is performed at the
individual level as well as at the system level.

Optimization at the ruler level is primarily through learn-
ing. Over time, rulers will collect data on different types of
asteroids and will be able to determine which asteroids are
of interest, and which are too difficult to orbit or collect data
from. This provides optimization in that the system will not
waste time on asteroids that are not of interest, or endan-
ger spacecraft examining asteroids that are too dangerous to
orbit.

Optimization for messengers is achieved through posi-
tioning, in that messengers may constantly adjust their posi-
tioning in order to provide reliable communications between
rulers and workers, as well as with mission control back on
Earth.

Optimization at the worker level is again achieved through
learning, as workers may automatically skip over asteroids
that it can determine will not be of interest.

Self-protecting The significant causes of failure in ANTS
will be collisions (with both asteroids and other spacecraft),
and solar storms.

Collision avoidance through maneuvering is a major chal-
lenge for the ANTS mission, and is still under development.
Clearly there will be opportunity for individual ANTS space-
craft to coordinate with other spacecraft to adjust their orbits
and trajectories as appropriate. Avoiding asteroids is a more
significant problem due to the highly dynamic trajectories of
the objects in the asteroid belt. Significant planning will be
required to avoid putting spacecraft in the path of asteroids
and other spacecraft.

In addition, charged particles from solar storms could sub-
ject spacecraft to degradation of sensors and electronic com-
ponents. The increased solar wind from solar storms could
also affect the orbits and trajectories of the ANTS individu-
als and thereby could jeopardize the mission. One possible
self-protection mechanism would involve a capability of the
ruler to receive a warning message from the mission con-
trol center on Earth. An alternative mechanism would be
to provide the ruler with a solar storm sensing capability
through on-board, direct observation of the solar disk. When
the ruler recognizes that a solar storm threat exists, the ruler
would invoke its goal to protect the mission from harm from
the effects of the solar storm, and issue instructions for each
spacecraft to “fold” the solar sail (panel) is uses to charge its
power sources.

Self-aware Clearly, the above properties require the ANTS
mission to be both aware of its environment and self-aware.

123

114 R. Sterritt, M. Hinchey

The system must be aware of the positions and trajectories
of other spacecraft in the mission, of positions of asteroids
and their trajectories, as well as of the status of instruments
and solar sails.

3.2 Real time issues

The swarm-based concepts of ANTS (or its submission,
Prospecting Asteroid Mission, PAM, as described above)
enable exploration missions that never before would be pos-
sible. Such concept missions are clearly real-time systems.
ANTS must be survivable in a harsh environment (space)
over multiple years. The mission must be able to protect itself
and to recover from collisions, threats from solar storms, and
other problematic issues.

This must all be considered in the context of significant
transmission delays. Round-trip delays between Earth and
the mission exceed 40 min. The result is that exceptional
events cannot be dealt with from Earth. Even anticipated
events cannot be dealt with from Earth, as catastrophic dam-
age could have occurred before ground control had even
received notification.

The result is that the system must be self-managing.
In order for its real-time behavior to be realized, the mission
must exhibit the properties of an Autonomic System, which
(as we pointed out in Sect. 2.2) are desirable properties of a
RTS in any case.

4 Conclusion

What is clear, is that applications based on such paradigms as
we have described, and many envisioned for the future (and
certainly not limited to the telecommunications, aerospace
or space exploration domain) will be far too complex for
humans to address all issues. Moreover, many issues will
not be foreseeable, and much behavior will require hard
real-time deadlines that can never be met with more tradi-
tional approaches.

While there is an overhead to achieving autonomicity, we
believe that this overhead comes with significant benefit for
RTS. We do not believe that it is too “costly”1 for real-time
systems, but rather that in the future it will prove to be essen-
tial for developing effective RTS. Moreover, there are tech-
niques that may help to mitigate that overhead and reduce
the number of signals that need to be sent.

Simultaneously, Autonomic Computing, and related areas,
draw on much of the excellent research produced by the RTS
community, a significant proportion of which was essential
in making the AC initiative feasible.

1 We mean in non-financial terms.

In short, we believe that we are moving swiftly towards a
time when it will be imperative to have self-managing Real-
Time Systems.

Acknowledgments This work was supported in part by Science
Foundation Ireland grant 03/CE2/I303_1 to Lero-the Irish Software
Engineering Research Centre (www.lero.ie). This research is partly
supported at University of Ulster by the Computer Science Research
Institute (CSRI) and the Centre for Software Process Technologies
(CSPT) which was funded by Invest NI through the Centres of Excel-
lence Programme, under the EU Peace II initiative. This paper is based
substantially on a keynote address [16]. Several of the technologies
described in this paper were developed with NASA and are patent-
pending and assigned to the United States Government.

References

1. Hinchey MG, Sterritt R (2006) Self-managing software. Computer
39(2):107–109

2. Horn P (2001) Autonomic computing: IBM perspective on the state
of information technology. IBM T.J. Watson Labs, NY

3. Sterritt R, Hinchey MG (2005) Why computer-based systems
should be autonomic. In: Proceedings of 12th annual IEEE inter-
national conference and workshop on the engineering of computer
based systems (ECBS 2005), 3–8 April 2005, Greenbelt, MD,
USA, pp 406–414

4. Kephart JO, Chess DM (2003) The vision of autonomic comput-
ing. Computer 36(1):41–52

5. Sterritt R (2005) Autonomic computing. Innovations in systems
and software engineering, vol 1(1). ISSN 1614–5046, Springer,
Berlin, pp 79–88

6. Sterritt R, Hinchey MG (2005) Birds of a feather session: “auto-
nomic computing: panacea or poppycock?”. In: Proceedings of
IEEE workshop on the engineering of autonomic systems (EASe
2005) at 12th annual IEEE international conference and workshop
on the engineering of computer based systems (ECBS 2005), 3–8
April 2005, Greenbelt, MD, USA, pp 335–341

7. Sterritt R, Bustard DW (2003) Autonomic computing: a means
of achieving dependability? In: Proceedings of IEEE international
conference on the engineering of computer based systems
(ECBS’03), 7–11 April 2003, Huntsville, AL, USA, pp 247–251

8. Sterritt R (2003) Pulse monitoring: extending the health-check for
the autonomic GRID. In: Proceedings of IEEE workshop on auto-
nomic computing principles and architectures (AUCOPA 2003) at
INDIN 2003, 22–23 August 2003, Banff, AB, Canada, pp 433–440

9. Sterritt R (2002) Towards autonomic computing: effective event
management. In: Proceedings of 27th annual IEEE/NASA soft-
ware engineering workshop (SEW), 3–5 December 2002, Mary-
land, USA. IEEE Computer Society Press, pp 40–47

10. Sterritt R, Bantz DF (2004) PAC-MEN: personal autonomic com-
puting monitoring environments. In: Proceedings of IEEE DEXA
2004 workshops—2nd international workshop on self-adaptive and
autonomic computing systems (SAACS 04), 30 August–3 Septem-
ber 2004. Zaragoza, Spain

11. Sterritt R, Bustard DW (2003) Towards an autonomic computing
environment. In: Proceedings of IEEE DEXA 2003 workshops—
1st international workshop on autonomic computing systems, 1–5
September 2003, Prague, Czech Republic, pp 694–698

12. Sterritt R, Hinchey MG (2005) From here to autonomicity:
self-managing agents and the biological metaphors that inspire
them. In: Proceedings of integrated design and process technology
symposium (IDPT 2005), 13–17 June, Beijing, China, pp 143–150

123

www.lero.ie

Adaptive reflex autonomicity for real-time systems 115

13. Lewandowski SM, Van Hook DJ, O’Leary GC, Haines JW, Rossey
LM (2001) SARA: survivable autonomic response architecture. In:
Proceedings of the DARPA information survivability conference
and exposition II, vol 1. June 2001, pp 77–88

14. Truszkowski WF, Hinchey MG, Rash JL, Rouff CA (2006) Auton-
omous and autonomic systems: a paradigm for future space explo-
ration missions. IEEE Trans Syst Man Cybern C

15. Truszkowski WF, Rash JL, Rouff CA, Hinchey MG (2004) Aster-
oid exploration with autonomic systems. In: Proceedings 11th
IEEE international conference on engineering computer-based
systems (ECBS), workshop on engineering autonomic systems
(EASe), 24–27 May 2004, Brno, Czech Republic. IEEE Computer
Society Press, pp 484–489

16. Sterritt R, Hinchey M (2008) Towards self-managing real-time
systems, keynote address. In: Proceedings of the international
workshop on real-time software 2008 (RTS 2008) at international
multiconference on computer science and information technology,
20–22 October 2008, Wisla, Poland

17. Sterritt R, Gunning D, Meban A, Henning P (2004) Exploring auto-
nomic options in an unified fault management architecture through
reflex reactions via pulse monitoring. In: Proceedings of IEEE
workshop on the engineering of autonomic systems (EASe 2004)
at the 11th annual IEEE international conference and workshop on
the engineering of computer based systems (ECBS 2004), 24–27
May 2004, Brno, Czech Republic, pp 449–455

123

	Adaptive reflex autonomicity for real-time systems
	Abstract
	1 Introduction
	2 Self-managing systems
	2.1 Autonomic computing
	2.2 Aims of AC
	2.3 Implementing AC
	2.4 Autonomic reflex reactions: pulse monitoring
	2.5 Reducing the monitoring workload through collaboration
	2.6 Adaptive pulse monitoring (PaNS mode)

	3 Next generation self-managing RTS example
	3.1 NASA missions
	3.2 Real time issues

	4 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

