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Abstract 

Air source heat pumps have numerous advantages in many applications over other heating 

equipment in marine climates with regard to energy efficiency. The main concerns are based 

around maintaining a sufficiently high seasonal coefficient of performance (COP) when (a) 

utilising cold air as a heat source and (b) delivering hot water to a residential heating circuit 

originally designed for water temperatures of 60°C or more with oil heating. The Economised 

Vapour Injection (EVI) compressor has the capability of overcoming some of the difficulties of 

high temperature lift operation during cold ambient conditions. However it is not clear except 

ambient temperature how the other ambient factors may affect the performance of EVI air-

source heat pump in marine climates. This paper evaluates operating performance with the 

defrost effect for a retrofit residential EVI air-source heat pump in Belfast, UK. The ambient 

factors which affect the performance of the heat pump defrosting were studied. The 

investigation was to optimise the operation of an EVI air source heat pump operating under 

defrost conditions encountered in maritime climates.  

 

Key Words: Testing, Domestic heat pump, Thermal analysis, High temperature, COP, 

Efficiency.  

 

NOMENCLATURE 

ASHP  air source heat pump 
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COP  Coefficient of Performance 

Cp        Water specific heat       kJ kg-1 K-1 

EVI  Economised vapour injection 

i  Enthalpy of refrigerant      kJ kg-1 

m  Water volume flow rate      m3s-1 

  Evaporated refrigerant mass flow rate    kgs-1 

Qextract   Heating extract from the ambient     W 

h   Heating output rate from the condenser    W 

T  Temperature        °C 

Tair  Air Temperature       °C 

∆T  temperature difference between hot water inlet and outlet in the hot water 

cycling system          °C 

W  The electrical power consumption of running the heat pump  W 

 

Subscripts 

CondExit Location at the exit of condenser 

Discharge Location at the compressor discharge 

EvapInlet Location at the evaporator inlet 

EVI Inlet Location at the EVI heat exchanger inlet 

EVI Suct Location at the EVI suction inlet 

ExpanIn Location at the main expansion valve inlet 

Suction Location at the compressor suction 

WaterIn Hot water temperature at the water circuit cycle entrance point 

WaterRet Hot water temperature at the water circuit cycle return point 

 

Greek symbol 

ρ    Water Density        kgm-3 

η   Efficiency 
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1. INTRODUCTION 

 

Air source heat pumps (ASHP) are energy efficient space heating devices. They have a 

significant impact on carbon dioxide emissions and the potential to save on running costs 

when compared to oil-fired central heating. The challenge is how to utilise cold air as a heat 

source and maintain the desired levels of comfort whilst utilising an existing wet radiator oil/ 

fossil heating circuit system originally designed for water at temperatures of 60°C or more. 

European maritime island climates with the moderating influences of the sea in winter there 

are relatively few days below 0°C and, as a consequence, air source units may be viable 

(Hewitt et al, 2011). The heating capacity of ASHP decreases as outdoor air temperature 

drops, especially when there is frost formation on the outdoor heat exchanger surfaces in 

humid climates (Stoecker, 1957; Yasuda et al., 1990; Payne and O’Neal, 1995). Adopting an 

economised vapour injection (EVI) compressor into the ASHP allows it to overcome the high 

temperature lift operation (namely reduced capacity) which allows low temperature liquid 

refrigerant subcooling to be attained while maintaining high evaporator capacity in order to 

provide adequate heating during cold ambient air periods (Hewitt et al., 1991; O’Neal et al., 

1991; Beeton and Pham, 2003; Wang et al., 2009; Hu et al., 2011). During the refrigerant 

cycle in the EVI ASHP (shown in Figure 1) a small portion of the liquid refrigerant from the 

condenser (at state 3) passes through the EVI thermostatic expansion valve to an intermediate 

pressure. This expanded refrigerant exchanges heat with the remaining refrigerant from the 

condenser in the internal heat exchanger to subcool the main-stream refrigerant to state 5, At 

the same time the saturated vapour in the intermediate pressure is injected into the 

intermediate compression chamber through an injection port (at state 4). The subcooling 

refrigerant is expanded through the main expansion valve to the low pressure (state 6) and 

enters the evaporator with lower enthalpy. This therefore attains high evaporator capacity. 

The reduced mass flow rate through the evaporator causes the temperature on evaporator 

drops which may sensitive to the ambient factor conditions. (**after EVI operating, the 

pressure there is a very little change compare with the evaporator inlet temperature dropped.) 

 

A research programme was developed to optimise the components and operating regime of 

such a heat pump (HP) and a number of component improvements were developed, 

particularly in the evaporator design for residential application (Hewitt et al., 2006 and 

Hewitt et al., 2011). The developed ASHP with EVI compressor has been tested in the 
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laboratory environmental chamber with EN14511 standards and thereafter a field trial unit 

was developed and installed. It was found that the EVI ASHP unit has a superior performance 

to an ASHP without EVI under test conditions (Huang et al., 2009). In order to achieve the 

best performance of the EVI ASHP, it is essential to understand the effect from the multiple 

ambient conditions. Frost on the outdoor heat exchanger coil reduces its ability to absorb heat 

from the outdoor heat exchanger coil and thus degrades the thermal performance of the 

ASHP. The layer of frost reduces the airflow area needed for heat exchange as a result of the 

blockage and in addition the frost that builds up over the coils acts as an insulating layer. The 

hot gas bypass defrost method can defrost the evaporator coil without utilising valuable space 

and hot water heating. However the study of the performance of hot gas bypass for defrosting 

in the residential ASHP system is limited. Stoecker (1957) analysed the size of pipes carrying 

hot gas to defrost evaporators. Using a photo-coupler for detecting frost formation in an air 

source heat pump and also for determining the initiation point of the defrost cycle has been 

experimentally studied (Byun et al, 2006; 2008). The performance of the hot-gas bypass 

defrosting test with a circular evaporator coil for EVI ASHP was tested in a laboratory 

simulated environment by Hewitt and Huang (2008). The conditions include the defrost 

initiation condition, defrost operating time and interval between defrosts.  However the 

performance evaluation under realistic conditions for this type of HP is essential before any 

optimised hot gas defrosting suggestions can be achieved. In this work a detailed 

performance analysis for EVI ASHP in a field trial with repeatable ambient conditions cases 

in Belfast, UK is presented. This paper presents the capacity of a high temperature ASHP 

with/without defrosting conditions to replace a fossil-fuel boiler in a conventional wet 

radiator system in a residential house in the coldest period of the year in Belfast. The main 

work of this paper is not only to study the EVI system with hot gas bypass defrosting, but 

also the ambient factors that affect the EVI system defrosting under freezing conditions. 

 

2. FIELD TRIAL UNIT DESCRIPTION AND EXPERIMENTAL PROCEDURE 

 

A semi-detached 3 bed-roomed family house with 105m2 in Carrickfergus, Northern Ireland 

was heated by an ASHP. The EVI ASHP was pretested in the laboratory before being fixed 

into the residential building to supply heat for hot water and space heating for the field trial. 

The system was operated and monitored in Belfast since 2007, N. Ireland. In this paper only 

the operations under repeatable freezing conditions have been selected and classified as seven 

cases for analysing to find the effect of ambient conditions on the system thermal 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 
 

performance. The field trial unit is developed around the ZH13-KVE series of economized 

vapour injection compressors (Copeland, 2009) delivering a nominal 11 kW heat to meet the 

heat requirement of the house with an outdoor winter design temperature of -3°C (Figure 2). 

The refrigerant in the system is 407C. The heat supplied by the ASHP was delivered to the 

residential rooms by a conventional radiator system. The temperatures at different positions 

in the EVI ASHP cycle system, along with the ambient temperature and hot water heating 

system water inlet/outlet temperature, were monitored using T-type thermal couples (Figure 

1). The pressures at different positions in the cycle system were monitored by ALCO PT4-

30M pressure transducer as listed in Figure 1. A pulse power measurement ME4zrt with 

accuracy of ±0.05kWh was used to monitor the compressor power consuming, W. The 

measurement accuracy for the flow rate is ±2 percent. Data were recorded by an ∆T logger at 

30 second intervals for analysis.  

 

The ASHP unit was on-off controlled with the supplied hot water temperature at 63/50 °C. 

When the ambient temperature was below zero in Feb to March, which is the coldest months 

in N. Ireland, hot gas bypass was used for defrosting. To commence hot gas defrosting, a 

solenoid valve in the hot-gas bypass line was energized, connecting the compressor discharge 

with the evaporator inlet downstream of the expansion valve and upstream of the evaporator 

distributor, thus supplying the heat for defrosting. The evaporator fan shuts off during 

defrosting. At the termination of the two minutes defrost cycle, the ASHP and the evaporator 

axial fan are switched back to heating mode and resumes normal operation. Two defrosting 

strategies with an interval cycles at half hour and 45 minutes and lasting for a 2 minutes 

operation time were tested on the ASHP. In order to avoid becoming frozen during cold 

evenings the ASHP was operated at 3:00am for 10 minutes. The hot gas bypass defrost 

performance of the ASHP was analysed on those days. In the residential house the ASHP 

operated twice from 6:35am for 2 hours 10 minutes and from 18:10pm for 3 and half hours.  

 

The integrated cyclic Coefficient of Performance (COP) was used to evaluate the defrosting 

test which is defined as the ratio of the integrated heating output over the integrated energy 

consumption. The integration was carried out over some complete frost-defrost cycles under 

stable conditions. Assuming there is no heat loss from the condenser to heat up the water, the 

heating output h (a) was calculated using the water flow rate m and temperature difference 

∆T between water inlet and water outlet in the hot water cycling system as shown in Eqn. (1) 
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and (b) checked against condenser refrigerant mass flow and enthalpy balance.  Cp is water 

specific heat, ρ is water density. 

TcmQ Ph ∆= ρ&    (1) 

COP was calculated as: 

W

Q
COP h

&

=    (2) 

The heat extraction  from the ambient to the evaporator can be described as: 

)( 61 iimQextract −= &   (3) 

Where 1 and 6 represent the positions at entrance and exit the evaporator (see Figure 2).  

 

 

3. FIELD TRIAL RESULTS AND ANALYSIS 

 

3.1. The Performance of the EVI Compressor Air Source Heat Pump Unit at Freezing 

Ambient Conditions 

 

    The performance of the EVI ASHP with defrosting at freezing ambient conditions was 

studied. A typical morning heating operation from 6:35 am to 8:45 am period of 2 hours and 

10 minutes in a typical freezing ambient conditions Case II (2nd March) was selected for 

analysis. The supplied hot water temperature setting for on/off cycle was 50/63°C. The ASHP 

was energized until the hot water supply temperature rose to 63°C and then shut off until the 

temperature dropped to 50°C. The EVI was opened after 10 minutes system operating. The 

hot gas bypass defrosting was operated every each half hour and lasted for 2 minutes.   

The average ambient temperature was around -1.2°C within the operation (Figure 3). 

Although defrosting was operated at half hour intervals, the frost still accumulated during the 

morning operation (photo 1). Ice build-up on the evaporator was observed and resulted in 

reduction of the airflow area with time. During the 2 hours 10 minutes operation not enough 

heat was able to be moved from the surrounding air; thus the maximum temperature of 

supplied hot water was below 55°C.  

 

The supplied hot water temperatures in the inlet and outlet, refrigerant temperatures along the 

system cycle, super-heat/subcooling and the heat supply and power consumption along with 

COP are shown respectively in Figure 3(a), (b), (c) and (d). From Figure 3(a) it can be seen 
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that the hot water could quickly go to above 50°C, but was enable to reach the required 63°C. 

The accumulated frost on the surface of the evaporator reduces the heat extraction  

from the ambient to the evaporator to such an extent that the refrigerant cannot be fully 

evaporated (see equation 3). This reduces the refrigerant mass flow rate  in the cycle and 

can contribute to expansion valve hunting which can explain the pressure fluctuation and 

therefore the temperature fluctuation along the ASHP system cycle (Figure. 3(b)). The 

continuing pressure decrease reflects the frosting on the evaporator, hence the temperature for 

evaporating is reduced. With the frost accumulating the discharge temperature is increasing 

thus leading to the compressor working under hard conditions. The super-heat and subcooling 

are obtained from REFPROP of NIST (2008) using the R407C and pressure as reference. The 

super-heating and subcooling have severe variations due to the lack of mass fluid in the cycle 

(Figure. 3(c)). If this condition was allowed to continue, it would result in compressor failure. 

The reduced heat supply with frost accumulation can be seen from Figure 3(d). The ice on the 

evaporator outside coil can’t be fully defrosted, hence the supplied heat is not only failing to 

provide the required heat but is also reducing with time progression in each defrosting cycle. 

The average COP is 2.67 which is calculated based on the European standard tests EN14511-

2 (Anon, 2004) for heat pumps. 

 

3.2. The Effect of Different Ambient Factors with Freezing Conditions on the Performance of 

the ASHP System with EVI Compressor  

 

    The field trial test has proved that the ambient temperature significantly affects the ASHP 

performance. However there are other factors that can affect the performance of the ASHP 

rather than just the ambient dry-bulb temperature. The morning operation records for 7 

consecutive days in March with variable humidity, wind speed and average operation dry-

bulb temperature between -1.2 to +1.9°C (except one day up to +6.8°C) were selected for 

analysis. The operation was started at 7:30am and lasted for two hours and 10 minutes. The 

ASHP was under 50/63°C on-off operation. The ASHP defrosting intervals were set at 30 

minutes and 45 minutes separately for comparison.  

 

Table 1 lists the detailed comparison for the system COPs with average and initial ambient 

temperatures, humidity, wind speed and the time taken to reach the maximum hot water 

supply temperature. The comparison of the effect of the ambient factors on the ASHP 
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performance is presented in Figure 4. From the test results the positive effect of ambient 

temperature on the performance of the ASHP can be seen, but often the supplied hot water 

cannot reach the required 63°C under freezing conditions, even when the average ambient 

temperature is above 0°C.  From I to III (1st to 3rd March) with similar average and initial 

ambient temperatures and the same defrosting interval in freezing conditions the system 

performance is different. On the Case I (1st March) the system can provide the hot water to 

the required level with COP of 3.13, while the water supply temperature could not reach the 

required 63°C on both Case II and Case III (2nd and 3rd March) with COPs of 2.67 and 2.79 

respectively. With the solar radiation effect being negligible during the test winter morning 

sessions; the humidity and the wind speed are the main factors contributing to the ASHP’s 

performance difference. On the Case I (1st March) the high wind chill (3.47m/s) with high 

relative humidity (97%) can improve the defrosting performance for the 30 minutes defrost 

interval with similar ambient conditions on Case II and III (2nd and 3rd March). The ambient 

temperatures along with the water inlet/outlet temperatures for the Case I and II (1st and 2nd 

March) are compared in Figure 5 respective to wind speed of 3.47 and 1.29 m/s. The high 

relative humidity of air in the maritime climate contains more latent heat which can moderate 

the frosting when ambient temperature is around -1°C. The comparison of the system 

performance under similar ambient temperature shows the wind speed has more effect on the 

ASHP performance than the relative humidity. The ASHP operated under higher wind speed 

can provide higher hot water temperature, although it is still under the required temperature 

(Case III and Case II; Case III and Case V) (3rd and 2nd days; 3rd and 5th days).  

 

The performance of the EVI ASHP can be judged by COP and also the time to get to the 

required hot water temperature. For the 45 minute defrost interval, when the average ambient 

temperatures are higher than 1.4°C (Case IV, VI and VII in Table 1) (4th, 6th and 7th March in 

Table 1), the wind chill can improve the ASHP performance with COP higher than 3.12 and 

the time for the supplied hot water to 63°C can be shortened from 90 to 45 minutes with wind 

speeds respectively of 0.9 m/s on Case IV (4th ) and 2.44 m/s on Case VI (6th March). When 

the surrounding air temperature is around freezing point (Case V (5th March) with initial air 

temperature at 0°C) the highest possible hot water temperature is 54°C under defrosting 

operation with wind chill of 1.8 m/s therefore it has low COP 2.63. Comparing the HP 

performance with COP and the time to get the required hot water temperature, when the 

ambient temperature is above 1.4°C the 45 minutes defrost interval can meet the requirement. 
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Thus when the average ambient temperature is around to the freezing point during the ASHP 

operation, the 30 minutes defrost interval will be suitable for the climate similar to N. Ireland 

ambient conditions. 

 

3.3. The Effect of Sharp Rising Ambient Temperature on the ASHP Performance with 

Defrosting Operated 

 

    The EVI ASHP performance is affected by the ambient temperature. During the early 

spring season there is a significant rise in the ambient temperature from freezing to a warm 

on a sunny morning. The defrosting is needed when the ambient temperature is below 2°C 

from all of the recorded trials. In the warm climate the ASHP will be operated using the heat 

pump on-off control and not the defrosting dominant control. The effect of the variable 

ambient on the ASHP performance has been studied with the field trial data. A typical 

morning operation with initial temperature at -1.1°C and reaching 6°C by the end of the 2 

hours and half hours was studied on Case IV (4th March) (Figure 6 and 7). The defrost 

interval was 45 minutes. After the initial defrosting the hot water supply temperature can 

reach 63°C in 1.5 hours and this is then followed by the on-off cycle control. This is due to 

the increased ambient temperature which increases the ASHP capacity and therefore switches 

the system to the 53/63°C on-off control.  The ASHP is energized until the hot water supply 

temperature rises to 63°C and then shuts off until the temperature dropped to 53°C in this 

case. The interval time for the on/off 53/63°C heating cycle was decreasing when the ambient 

temperature raised, the period of on/off cycle was reduced from 20 minutes to 15 minutes. 

Another reason which caused the cycle reduction is the frost formed on the evaporator which 

reduced the refrigerant mass flow rate in the refrigeration cycle. The performance of the 

ASHP with temperatures along the cycle line is presented on Figure 7 which reflects the hot 

water supply pattern. The accumulated frost on the surface of evaporator can be seen as the 

evaporating temperature is dropping with time progression. 

  

3.4. Field Trial Unit Performance with Ambient Temperature above 5°C 

 

    With ambient temperature increasing the required heating load is declined, so the setting 

temperature changed to 60/50°C on/off cycle control. The requirement for defrosting when 

the ambient temperature is above 2°C depends on the operation time and other ambient 
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conditions. This section is to study the EVI ASHP performance with long operation hours 

when the ambient temperature is above 5°C (Figure 8). Figure 9 shows the ASHP 

performance for ambient temperature around 7°C at the beginning of operation and around 

5°C at the end. The average COP for ramp up is 4.55, but beyond the full heat supply. After 

the full heat supply stage, the average COP can reach up to 4.06. With 3.5 hrs of operation, 

the heat supply reduces and therefore the COP decreases from 4.06 to 3.66. One reason for 

this is the drop in ambient temperature from 7.5°C to 5.2°C. However this appears to be an 

insufficient explanation.  With time progression although the ambient temperature is 5°C at 

the end, the surface temperature on the outside coil is below zero hence the frost is 

accumulated with continuing operation. The regular on-off cycle can regulate the frost 

accumulation, but for the unit operating for more than 2 two hours the performance will be 

adversely affected until beyond the acceptable range. 

 

4. CONCLUSIONS 

 

    The field trial performance of defrost for an economised vapour injection (EVI) 

compressor utilised in an ASHP was ascertained and evaluated. It was found that the ambient 

temperature significantly affected the performance of the ASHP unit with defrosting. The 

frost that formed on the outdoor coil is not just dependant upon the ambient temperature but a 

combination of different factors: solar intensity, humidity, wind speed and operation 

strategies along with defrosting control. By operating a 30 minutes defrost interval and with 

increased air flow around the evaporator the EVI ASHP can satisfy the requirements for daily 

heating demand under freezing conditions in the similar maritime island climates. Therefore 

an air source heat pump is capable of direct retrofit into an existing home originally heated by 

an oil boiler with added ventilation around the evaporator even in when the ambient 

temperature was below -1°C. 

 

 the conditions need defrosting. 

 

For the extremely cold day in March, , the ASHP with the half hour interval and 2 minutes 

hot gas bypass defrosting cycle cannot provide enough heat for residential space heating with 

low wind speed in N. Ireland, UK. 

REFERENCES 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

 Beeton W.L. and Pham HM, 2003. Vapour Injected Scroll Compressors, ASHRAE Journal 

45 (4), pp.22-27. 

Byun J.S., Jeon C.D., Jung J., Lee J., 2006, The application of photo-coupler for frost 

detecting in an air-source heat pump, Int. J. Refrigeration,  29, pp.191-198.  

Byun J. S., Lee J. and Jeon C. D., 2008. Frost retardation of an air-source heat pump by the 

hot gas bypass method, Int. J. Refrigeration, 31, pp. 328-334. 

Copeland, 2009, http://www.emersonclimate.eu/products.cfm,  access in 2009.  

Anon. EN14511: Air conditioners, liquid chilling packages and heat pumps with electrically 

driven compressors for space heating and cooling (Parts 1-4), 2004. 

 Hewitt NJ; McMullan JT and Murphy NE, 1991. Development of an Alternative 

Refrigeration Cycle.  International Journal of Energy Research.  Wileys, Chichester, Vol 15, 

pp731-745. 

 Hewitt N. J., Huang M. J. and Nugyen M., 2006. The Development of an Air Source Heat 

Pump. The 2nd International Conference of Renewable Energy in Maritime Island Climates, 

April 2006, Dublin, Ireland, pp. 113-118. 

 Hewitt N. J. and Huang M.J., 2008. Defrost cycle performance for a circular shape 

evaporator air source heat pump. Int. J. Refrigeration. 31 (3), pp. 444-452. 

Hewitt N. J., Huang M.J. Anderson M. and Quinn M., 2011. Advanced air source heat pumps 

for UK and European domestic buildings, J. Applied Thermal Engineering. 

Doi:10.1016/j.applthermaleng.2011.02.005. 

Hu Wenju, Jiang Yiqiang, Qu Minglu, Ni Long, Yao Yang, Deng Shiming. 2011. An 

experimental study on the operating performance of a novel reverse-cycle hot gas defrosting 

method for air source heat pumps. Applied Thermal Engineering 31, pp363-369. 

Huang M.J., Hewitt N.J. and N. Minh. 2007. Field Testing of an economised vapour injection 

heat pump: ICR07-E2-1108, 22nd International congress of refrigeration, Aug 21-26th, 

Beijing, China. 

NIST, 2008. Thermodynamic and Transport Properties of Refrigerant and Refrigerant 

Mixtures (REFPROP). 2008, NIST, Gaithersburg, MD. 

Stoecker W.F., 1957. How frost formation on coils affects refrigeration systems, Refrig Eng,  

pp. 42-46. 

O’Neal D.L., Peterson K.T., Anand N.K., 1991. Effect of short-tube orifice size on the 

performance of an air source heat pump during the reverse-cycle defrost, Int. J. Refrigeration, 

14, pp. 52-57. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

 Payne V. and O’Neal D. L., 1995. Defrost cycle performance for an air-source heat pump 

with a scroll and a reciprocating compressor, Int. J. Refrigeration, 18, pp. 107-112. 

Wang X., Hwang Y. and Radermacher R., 2009. Two-stage heat pump system with vapor-

injected scroll compressor using R410A as a refrigerant. Int. J. Refrigeration, 32, pp. 1442-

1451. 

Yasuda Y., Senshu T., Kuroda S., Atsumi T. and Oguni K., 1990. Heat pump performance 

under frosting conditions: Part II – Simulation of heat pump cycle characteristics under 

frosting conditions, ASHRAE Transactions, vol. 96, part 1, pp. 330-336. 

 

Figure captions and table: 

 

Figure 1. A schematic of the system with thermocouple locations 

Figure 2. Air source heat pump for field trial in Carrickfergus, N. Ireland UK 

Figure 3. Performance of heat pump with wind speed of 1.29 m/s and freezing conditions 

Figure 4. Comparison of the effect of ambient temperature, wind speed and humidity on EVI 
ASHP performance with 30 and 45 minutes’ defrosting interval 
 

Figure 5. Hot water supply temperature comparison for Case I and Case II (1st and 2nd March 

) respective to wind speed 3.47 and 1.29 m/s 

Figure 6. Ambient temperature and water supply temperature variation for system with 45 

minutes’ defrost interval (Case IV (4th March)) 

Figure 7. Temperature variation along the heat pump cycle with 45 minutes’ defrosting 

interval (Case IV (4th March)) 

Figure 8. EVI ASHP hot water supply performance with ambient temperature above 5°C 
 
Figure 9. EVI ASHP energy performance with COP for ambient temperature above 5°C 
 

 

Photo 1. HP evaporator with frost on a morning session operation 
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Table 1. Effect comparison of ambient factors on ASHP performance  
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Table 1. Effect comparison of ambient factors on EVI ASHP performance  
 

Humidity Amb temp (°°°°C) Wind Peak state Defrost 
interval 

time 
% AV Initial (m s-1) Temp (°C) Time (mins) 

COP 

1st  (I) 97 -1.1 -1.3 3.47 63 100 3.13 
2nd (II) 94 -1.2 -1.5 1.29 54 120 2.67 

30 mins 

3rd (III) 88 -1.1 -2.0 2.32 60 120 2.79 
4th (IV) 93 1.4 -1.1 0.90 63 90 3.12 
5th (V) 89 0.8 0 1.80 54 45 2.63 

45 mins 

6th (VI) 
7th (VII) 

98 
97 

1.9 
6.8 

0.9 
6.4 

2.44 
3.60 

63 
63 

45 
30 

3.25 
3.73 
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Figure 1. A schematic of the system with thermocouple locations 
 
 
 

    
 
 
Figure 2. Air source heat pump for field trial in Carrickfergus, N. Ireland UK 
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Photo 1. HP evaporator with frost on a morning session operation 
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Figure 3. Performance of ASHP with wind speed of 1.29 m/s and freezing conditions (Case II, 
2nd March) 
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Figure 4. Comparison of the effect of ambient temperature, wind speed and humidity on EVI 
ASHP performance with 30 and 45 minutes’ defrosting interval 
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Figure 5 Hot water supply temperature comparison for Case I and II (1st and 2nd March) 
respective to wind speed 3.47 and 1.29 m/s 
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Figure 6. Ambient temperature and water supply temperature variation for system with 45 
minutes’ defrost interval (Case IV) (4th March) 
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Figure 7. Temperature variation along the heat pump cycle with 45 minutes’ defrosting interval 
(Case IV) (4th March) 
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Figure 8. EVI ASHP hot water supply performance with ambient temperature above 5°C 
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Figure 9. EVI ASHP energy performance with COP for ambient temperature above 5°C 

 
 
 
 
 
 
 
 
 


