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Support Vector Machine and Probability Neural
Networks in a Device-free Passive Localisation

(DfPL) Scenario
Gabriel Deak, Kevin Curran, Senior Member, IEEE, Joan Condell, Daniel Deak, and Piotr Kiedrowski

Abstract—The holy grail of tracking people indoors is being
able to locate them when they are not carrying any wireless
tracking devices. The aim is to be able to track people just
through their physical body interfering with a standard wireless
network that would be in most peoples home. The human body
contains about 70% water which attenuates the wireless signal
reacting as an absorber. The changes in the signal along with
prior fingerprinting of a physical location allow identification of
a person’s location. This paper is focused on taking the principle
of Device-free Passive Localisation (DfPL) and applying it to be
able to actually distinguish if there is more than one person in the
environment. In order to solve this problem, we tested a Support
Vector Machine (SVM) classifier with kernel functions such as
Linear, Quadratic, Polynomial, Gaussian Radial Basis Function
(RBF) and Multilayer Perceptron (MLP), and a Probabilistic
Neural Network (PNN) in order to detect movement based on
changes in the wireless signal strength.

Index Terms—Device-free Passive Localisation, Support Vector
Machine, Neural Networks, Wireless Sensor Networks.

I. INTRODUCTION

Indoor location estimation is a crucial component in many
applications. Location estimation is important for many sce-
narios such as asset tracking, health care, location based
network access, games, manufacturing, government, logis-
tics, industry, shopping, security, tour guides, and conference
guides. Various localisation systems that can estimate the
position of a person or object exist. One can select the system
which offers the accuracy and precision required for a specific
application.

Indoor localisation systems can be classified into active
and passive systems. Location tracking techniques for active
localisation require the tracked people to participate actively.
The second class known as passive localisation is based on
monitoring changes of characteristics dependent on people’s
presence in an environment. By participating actively, we
mean that a person carries an electronic device which sends
information to a positioning system helping it to infer that
person’s position. In some cases the electronic devices can
also process recorded data and send the results for further
processing to an application server running the localisation
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algorithm. In the passive localisation case, the position is
estimated based on the variance of a measured signal or video
process. Thus the tracked person is not carrying any electronic
devices to infer the user’s position.

This work is focused on solving an extremely difficult task
that is multi-occupancy detection in a passive localisation
scenario. Thus the following sections will analyse one of the
techniques used to deploy indoor passive localisation systems.
Various DfPL systems will be presented as an introduction to
indoor passive localisation. Various techniques such as Ultra-
wideband (UWB), Physical Contact, Differential Air Pressure,
Computer Vision, and Device-free Passive Localisation (DfPL)
have been used in indoor passive localisation.

Ultra-wideband (UWB) is one of the first techniques used
to deploy passive localisation systems [1]. Through-the-wall
surveillance or through-wall imaging (TWI) are used to denote
UWB passive systems [2], [3]. This technique has been re-
cently used for both static and motion detection. UWB passive
localisation is considered to be an extension to a technique
called radio tomographic imaging due to its similarity to the
medical tomographic imaging. Through-wall imaging refers
to the ability of detecting and monitoring objects or people
through buildings walls. This can be very useful to law en-
forcement agencies and can have many applications in military
and civil scenarios [4]. UWB has the advantage of being able
to penetrate walls. Various implementations of UWB technique
have been proposed. A UWB system has the following two
main components: transmitters and receivers. Short pulses are
sent by a pulse generator via a horn antenna [5]. The receivers
wait and monitor echoes from various objects or people.

TileTrack represents a low cost two-dimensional location
estimation system based on physical contact [6]. Changes in
the capacitance between transmitting and receiving electrodes
(plate electrodes or wire electrodes) are monitored. The system
is based on 9 floor tiles with one transmitting electrode for
each tile. Each tile is 60 cm by 60 cm square-shaped made
from thick chip-board with thin steel coating. The prototype
used to deploy the TileTrack technique has a square tracking
area with a size of 3 x 3 tiles.

AirBus estimates location based on indoors airflow dis-
ruption caused by human movement [7]. An air pressure
sensor is placed within the central heating, ventilation, and
air conditioning (HVAC) unit. The sensor detects pressure
variations. AirBus can correctly identify an open or closed
door 80% of the cases with HVAC in operation and 68% with
HVAC unit switched off.
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Computer vision can be considered as a DfPL system
because the tracked people are not carrying any electronic
devices or tags [8]. The EasyLiving project [9] is a computer
vision based system which aims to transform any environment
in a smart environment dependent on location information.
Possible applications include switching on/off devices near to
the users location, monitoring peoples behaviour and many
others. The system architecture consists of three PCs (Personal
Computers) and two sets of colour cameras. Each camera is
connected to one PC, while the third PC is used for running
the person tracker algorithms. Video processing algorithms are
used to separate and track people. The system was tested with
a maximum of three people in the environment. The possibility
of obstructions depends on the behaviour and the number of
persons.

The Device-free Passive Localisation (DfPL) [10], [11] is
based on monitoring the variances of the signal strength in a
wireless network. The human body contains about 70% water
and it is known that waters resonance frequency is 2.4 GHz.
The frequency of the most common wireless networks is 2.4
GHZ, thus the human body behaves as an absorber attenuating
the wireless signal [2], [4], [12]–[15]. This technique is the
focus of our research and the remainder of the paper is based
on DfPL using Wireless Sensor Networks (WSNs).

The paper is organised as follows: Section II introduces
Support Vector Machine Classification with various kernel
functions, Section III discusses Probabilistic Neural Network
technique, Section IV presents the test bed and motion de-
tection technique using the classifier introduced in Section II.
Section IV concludes the paper.

II. SUPORT VECTOR MACHINE (SVM) CLASSIFICATION

SVM is a supervised learning method for data analysis, pat-
tern recognition, classification and regression analysis. SVM
uses training vectors, pairs of inputs-outputs, to build a model
that is used afterwards to predict classes that new data belongs
to. For our tests we used two Matlab functions svmtrain and
svmclassify defined by:

SVMStruct = svmtrain(Training, Targets,Name, V alue)

PredClass = svmclassify(SVMStruct, TestData)
(1)

Training and Targets represent the input-output pairs used
for training. Name-Value pair specify optional arguments.
svmclassify uses the obtained model to classify new data.
One can find more details about SVM classification in Matlab
including all the optional parameters in [16]. We tested various
kernel functions as follows:

SVMStruct =svmtrain(Training, Targets,
′kernel function′,′ polynomial′)

(2)

where ’kernel functions’ is an optional argument and ’poly-
nomial’ represents the type of kernel function used for training.
The training process can use kernel functions such as Linear,
Quadratic, Polynomial, Gaussian RBF and MLP. SVMStruct
represent the model obtained after training. This is a structure

containing information about the trained SVM classifier. A
field of interest in this structure/model is GroupNames which
returns the predicted classes for the data represented by
TestData, a parameter of svmclassify function.

Section III of this paper presents results obtained with SVM
classifier in a DfPL scenario.

III. PROBABILITY NEURAL NETWORK (PNN)

The main application area of Probability Neural Networks
(PNN) is pattern classification. PNN is based on Bayes theory
which requires probability density functions (PDF). The PDFs
are constructed using Parzen Windows [17]. PNN uses a
supervised learning process and develops distribution func-
tions within a pattern layer. The distribution functions are
responsible for estimating the likeliness for an input vector.
Further, priori probabilities (relative frequencies) are used to
group learned patterns and to determine the class a given
input vector belongs to. The input vector is classified based on
the shortest Euclidian distance between inputs and distribution
functions specific to a class. PNN architecture consists of three
layers: input layer, pattern layer and output layer. A fourth
layer can be used in order to normalise the input vector if this
was not normalised previously.

Parzen estimator approximates the Probability Distribution
Functions (PDF) for each class. The Parzen estimator can
accurately classify inputs if the training set is large enough.
The distribution functions are estimated in the pattern layer
where a neural Bayes classifier is implemented. Each input
vector of a training set has a processing element allocated
in the pattern layer and the output should have an equal
number of elements. Otherwise the network can poorly classify
the input vectors. Based on the training set, the patterns are
programmed in the pattern layer. One output will be generated
for each input vector with the highest match between inputs
and the programmed patterns. Otherwise no output will be
generated.

The training of a PNN is simpler compared to the feedfor-
ward back propagation network. The pattern layer can be very
large if there are various values that classify each category. In
order to solve a problem where we need to classify the input
vectors in two classes A and B, we consider the Bayes rule
that classifies an input belonging to class A is considered as:

PACAfA(x) > PBCBfB(x) (3)

where, PA is the priori probability of instances of patterns
in class A, CA is the cost associated with classifying vectors
and fA(x ) is the PDF of class A.

The PDF is estimated in a Probability Neural Network by
the equation:

fA(x) =
1

(2π)n/2σn

1

mn

mA∑
i=1

exp[−2
(x− xA)

r(x− xAi)

σ2
]

(4)
where xAi represents ith training pattern from class A, n

is the dimension of input vectors and σ is the smoothing
parameter (standard deviations of Gaussian distribution)
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Considering the previous problem where we try to assign
an input vector to one of two classes, A or B, the architec-
ture of the PNN is showed in Figure [fig:Probability-Neural-
Network].

Fig. 1. Probability Neural Network classifier

Thus PNN can be used for classification of patterns. The
structure in Figure [fig:Probability-Neural-Network] is an ex-
ample of probabilistic neural networks that can be used to clas-
sify inputs such as WiFi signal strength. The Received Signal
Strength Indicator (RSSI), used in wireless communications
to represent signal strength, can be classified for example into
one of the two classes: motion or no motion.

IV. EVALUATION

This section presents the experiment we conducted in order
to detect motion in a DfPL scenario. First, the test bed shown
in Figure 2 will be described and then Support Vector Machine
classifier will be used to analyse/classify motion. Finally, we
compare the classification errors for various kernel functions
in Table I.

The project focuses on deploying a DfPL system on top
of a Wireless Sensor Network (WSN). The first step towards
implementing such a system is filtering data using a selected
smoothing algorithm, SavitzkyGolay smoothing filter in this
case. The filtered data is fed to a SVM classifier in order
to detect movement. The next step is using classified data,
timestamps and links affected as parameters in a decision
making algorithm that will compute a person’s location or
return the number of people detected. The project aims towards
multi-occupancy detection in a DfPL scenario.

Fig. 2. The test bed with bidirectional link selected.

We have collected the data in a room of size 3.6m by
3.4m. A Wireless Sensor Network (WSN) based on four
IEEE 802.14.5 Java Sun SPOT nodes and a base station was
deployed in the environment. The data was recorded using a
single thread collection over a period of approximately two
hours. The data sets were obtained by observing Received
Signal Strength Indicator (RSSI) levels when movements took
place. We use two data sets containing 800 values (see Figure
3) selected from the two hours recordings. The first data set
represents the training data while the second one is the test
data. The nodes are broadcasting messages every 200 ms.
When the messages are received, Received Signal Strength
Indicator (RSSI) is added and then the messages are forwarded
to the base station. However, working with a single collection
thread can cause delays as the base station collects data from
one node at a time.

In the case of four nodes, considering that we collect data
from 12 links, we experienced delays in the collection speed.
However the delays were not large enough to affect our tests.
For larger test beds, multiple collection threads or more than
one base station will improve the collection speed.

We have selected one bidirectional link between nodes A
and B as shown in Figure 2. Both links are considered to be
independent. Figure 3 shows the raw data collected from the
selected links. We do not use data collected from all 12 links
as the scope of the paper is to classify motion on two selected
links (bidirectional communication between nodes A and B).
SVM classification will perform in a similar manner on any
selected link.

Both data sets are smoothed in order to filter noise. The
derivative of the signal is used to normalise the data. Figure
4 shows the smoothing and derivative on one of the links.
Data from the second link is processed in a similar manner.
It is necessary to normalise the data in order to train and use
classifiers.

Fig. 3. Raw data from two selected links.

Figure 5 shows the threshold selection considering the
normalised data. The value used in this case was ±2. Any
other value above or below this threshold is considered an
event which will be classified as motion. The threshold is
dependent on the environment. In very noisy environments we
need to modify this threshold. Thus a calibration depending
on the level of noise in the environment is required.

Figure 6 shows targets vector and predicted classes using
SVM with the Polynomial kernel function. One link is used
to train the classifiers while the data recorded on the second
link represents the test vector. The targets vector is obtained
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Fig. 4. Smoothing and derivative of one link.

Fig. 5. Threshold selection on the derivative of the data.

by analysing the data based on the threshold chosen above.
Afterwards the test data is fed to the classifier and the output
is compared with the targets vector. Due to the limited space
available, targets and predicted class for other kernel functions
will not be added. Figure 6 represents an example of SVM
classification. As one may notice the data is classified into
two classes: ’No motion’ (value 1) and ’Motion’ (value 2).

Fig. 6. Targets and predicted classes using SVM with Polynomial kernel
function.

Table I shows the errors obtained in the classification
process. Considering the number of values we have used for
training, we can conclude that the SVM classifier performed
well.

The Polynomial kernel function performed better for RSSI
measurements compared to other functions and to PNN. The
Mean Square Error (MSE) was used to calculate the error
between targets and predicted classes. The MSE obtained for
SVM with Polynomial function was 0.0201.

V. CONCLUSION

In this paper we presented Support Vector Machine and
Probabilistic Neural Network classifiers that enable motion

TABLE I
CLASSIFICATION ERRORS FOR TEST DATA

SVM Kernel Function Error
Linear 0.1635

Quadratic 0.0226
Polynomial 0.0201

RBF 0.0252
MLP 0.1686

Probabilistic Neural Network Error
PNN 0.1736

detection in a DfPL scenario. Various SVM kernel functions
such as Linear, Quadratic, Polynomial, Gaussian Radial Basis
Function and Multilayer Perceptron, and an implementation
of PNN were used to process wireless signal strengths in
order to detect motion. The results showed the possibility
of using classifiers in order to detect multi-occupancy using
DfPL considering the timestamps and links affected by human
presence as parameters. The usage of timestamps and links
in order to decide upon the number of people in the mon-
itored environment is considered as future work. A person
cannot affect wireless links covering different areas in the
environment at the same time. We analysed a bidirectional
communication between two nodes in the deployed WSN.
Further, more complex classifiers will be analysed in order
to obtain a high accuracy motion detection.
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