
Autonomic Management of Cloud Neighborhoods through Pulse Monitoring

Trevor Lorimer
IBM United Kingdom Limited

Belfast
Northern Ireland

trevor.lorimer@uk.ibm.com

Roy Sterritt
Computer Science Research Institute

University of Ulster
Northern Ireland

r.sterritt@ulster.ac.uk

Abstract—This paper reports on autonomic computing
research, including the development of a self-* proof of
concept, for a cloud based environment. It monitors
administrative boundaries from within an autonomic manager,
with each manager operating in a peer-to-peer mode and
utilizing a pulse monitor. The prototype was developed in Java
utilizing SNMP to demonstrate the manager’s self-situation
and environment-awareness of the current state of the whole
neighborhood and proves the feasibility of communicating the
health of the neighborhood to peer managers using an XML
pulse concept. Each manager houses the functionality to enact
changes to their neighborhood using SNMP based rules. This
enables the capability to provide self-healing, self-configuring,
self-optimizing and self-protection to network neighborhoods
within cloud computing.

Keywords; Autonomic Computing; Cloud Computing; Pulse
Monitoring

I. INTRODUCTION
Autonomic computing as a concept, although still

relatively recent, has been researched and applied in
conjunction to other areas that include networking, personal
computing and grid frameworks [19][23]. The emergence of
cloud computing with its unpredictable demands and
complexity due to managing large amounts of resources, has
led to a requirement of rapid automatic adapting to changing
circumstances in the cloud with minimal human intervention
[14]. Cloud computing is a fairly new paradigm and seems to
be the current industry focus with the main issue being the
lack of defined standards, although this has started to be
addressed through the input of standards bodies being driven
by the large vendor enterprises. Yet to achieve the expected
level of heterogeneous automatic adaptive behavior, Cloud
Computing really requires self-management such as the
common four properties; self-configuration, self-healing,
self-optimization and self-protection; of Autonomic
Computing. The research challenge of creating a self-
managing adaptive Cloud is referred to as the Autonomic
Cloud with the vision to implement important decisions
regarding resource allocation and optimization making the
system more robust, adaptable and easier to manage with
minimal human intervention [3]. In some ways this research
challenge may be seen as the evolution of what was started
under Autonomic Grid [23] and Autonomic Business Grid
initiatives [24].

The autonomic initiative itself in 2001 had an initial
long-term vision of 20+ years; the vision could be interpreted

as extensively localized cooperative peer-to-peer self-
management. The practicalities of implementing a
revolution in an evolutionary fashion resulted in most cases
sticking with client-server style self-management (watchdog
or sentinel servers) since putting the self-* in and taking the
human out is such a difficult task in itself. There are
concerns that Cloud Computing even with Autonomicity
could go the same way. To achieve the truly flexible self-
adaptive, self-managing next generation Cloud will require
that extensively localized cooperative peer-to-peer self-
management. This research study aims to investigate the
relevant research efforts that have been carried out within
comms, personal and grid computing towards achieving this
and determine through a proof of concept its applicability to
Cloud Computing.

II. AUTONOMIC CLOUD & RELATED WORK
The large data centers of cloud computing providers must

be managed in an efficient way. In this sense, the concepts of
autonomic computing inspire software technologies for data
centre automation, which may perform tasks such as:
management of service levels of running applications;
management of data centre capacity; proactive disaster
recovery; and automation of VM provisioning [20].

Cloud computing is a model for providing on-demand
access to a wide variety of software applications, and to
configurable computing resources that can be deployed to
support whatever applications a user chooses to run. On-
demand access and self-provisioning are key characteristics
of cloud computing, and are one of the principal features that
distinguish cloud computing from other types of hosted
service.

Fundamental to the cloud model from the service
provider’s viewpoint is the pooling of resources to serve
many customers. This will mean the use of virtualized
computing and storage resources, and multi-tenant support
for applications. This is key to achieving efficient use of
resources and a low cost base, which means lower costs for
end users. The use of virtualized platforms and multi-tenancy
also enables another important aspect of cloud computing –
the idea of computing resources being scalable or elastic, so
that users can take as much or as little as they require and
change their requirements at any time. It is from the aspect of
flexibility that the authors’ believe Autonomic techniques of
self-configuration and self-optimization can be applied to
Cloud computing [6].

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.60

269

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.60

295

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Administrative Boundaries
Within the area of resource management for cloud

computing the network nodes are provisioned statically, yet
cloud resources need the ability to be provisioned
dynamically on demand. There is also a requirement for
network resources to be provisioned away from application
resources, as is common in an enterprise environment there
are several administrative domains present on divided silos
and may operate in isolation. Due to the nature of
autonomous clouds, administrative boundaries are formed as
a collection of neighborhood nodes with the administrative
boundary limit being the number of nodes comprising the
neighborhood [4].

With an autonomic cloud instance created on demand
and forming inherent administrative boundaries with a quick
turn around time, collaboration between administrative
boundaries becomes much harder, this has the potential to
void an original benefit of grid and cloud computing
paradigms, that being collaborative resource sharing.

Autonomic cloud isolation principles with regards to
managing the different layers of an IaaS infrastructure have
been investigated, where devices on the physical layer are
grouped together with firewalls filtering desired packets to
the region [21].

B. Pulse Monitoring
Pulse Monitoring (PBM) is an evolution from the fault

tolerant mechanism of a heartbeat monitor (HBM) where an
“I am alive” signal is generated periodically to inform the
system that a component is still functioning and when no
signal is returned the system realizes there is a fault or
problem. Independent process monitoring through HBM
allows problem determination to become a proactive rather
than reactive endeavor. The concept of a beacon tone lends
itself to PBM where the tone of the heartbeat varies to
indicate the level of severity of the problem which can be
used to prioritize action on the most poorly component if
several are in difficulty and also gives greater advanced
warning on a potential fault. PBM is a hybrid of HBM and
NASA beacon monitor where instead of just checking for the
presence of a beat the rate of the beat is measured as well
[17][19].

In an Autonomic Element (AE) which is made up of a
managed component and Autonomic Manager (AM) the
component is actively self-monitored for its current state and
that of its external environment, with the information
gathered being analyzed with the system knowledge base
and adjustments made to the managed component if
necessary. The PBM can summarize the state of the managed
component and transmit this to all other connected AE’s so
they become self-aware of the health of the managed
component or the external environment as seen by that AM,
if there is no signal then there must be an issue with the AM.
As the beat of a heart has a double beat (lub-dub) the AE’s
PBM can have a double beat encoded with a self
health/urgency measure and an environment health/urgency
measure this maps to the self-awareness and environment
awareness properties in the AE.

To provide an element of system knowledge a database is
stored on each node and stores the pulse levels and
knowledge (which may adapt over time), monitoring logs
and the history of neighbor nodes. With a biological system
the reflex reaction is wired-in through genetic adaptation
over time, the autonomic PBM system requires an ability to
pre-configure the reflex reaction with examples being “pulse
sending interval” and “change pulse after three failed
process” properties.

C. Policy Based Compliance Management
IBM Tivoli provides an application called Policy Based

Compliance Management (PBCM) which is a network
compliance application and is a component of their Network
Automation Solutions [8]. The method of keeping networks
devices in compliance involves defining policies which
continually manage and validate device configurations and
intelligently resolve noncompliant conditions when they are
recognized. The complete network compliance life cycle is
automated to define policies, validate devices against
policies, resolve violations, and report results in a continuous
and closed-loop [5].

D. Dynamic Routing with DHT
Distributed Hash Table’s (DHT) are adaptive to topology

changes and are scalable and self-organizing which
compliments the principles of autonomic computing and
cloud computing. DHT however assumes the devices are
homogeneous but in a large scale network the devices are
most likely to be heterogeneous. This has been countered by
organizing devices into groups that allows routing control in
a DHT [22]. The grouping together of heterogeneous nodes
mentioned before allows flexible routing control to choose
new routing paths when regions are detected as being under
stress.

E. Cloud Bursting
Cloud Bursting integrates a private cloud with a public

cloud. Autonomic techniques are employed monitoring
network conditions and calibrating the cloud-burst engine’s
network activities [10]. An Autonomic Cloud virtualized
architecture proposed by Pujolle [13] uses agents distributed
throughout the network, monitoring their own local
neighborhood of devices and cooperating to characterize any
problems more precisely which are then reported to the
management center. Casalicchio [1] identified functional
requirements of an autonomic service provisioning system
and found that currently services such as auto-scaling and
advanced monitoring are not usually offered by public IaaS
(Infrastructure as a Service) providers. So there is a need for
the components responsible for the Monitor, Analyze and
Plan phases of the autonomic cycle to be implemented
independently.

III. DESIGN
The purpose behind the tool is that each node within an

administrative boundary contributes its health to the
neighborhood autonomic element which uses the collective
device input to monitor the health of the region, with many

270296

health indicators available on each device that can be
correlated and acted upon as necessary. The heart-beat
monitoring of the system is one of the component parts to the
tool and one basic indicator of a nodes health is whether or
not the device is up and functioning. This can be achieved
through pinging and this will return either true or false, if
multiple devices are recognized as down by the
neighborhood autonomic manager, this will signify poor
rudimentary health of the affected administrative boundary
and instantly alerts to a current issue.

Most devices also incorporate detailed system and traffic
information that will indicate an overborne or stressed node,
which points to a region that is experiencing a heavy
workload and an autonomic manager is alerted in advance to
an immanent danger, this would enable a proactive approach
to maintaining network health as active measures can then be
taken and creates further potential for autonomic techniques
to be employed. The communications channel that enacts the
required changes will be the same as the technique used to
gather the device information in the first place and will be
implemented using SNMP.

The tool operates in a peer-to-peer mode so each
manager has responsibility to monitor its neighbors so an
autonomic manager is connected to a peer autonomic
manager monitoring a separate region by registering with it,
because of the peer-to-peer architecture all managers have
the same capabilities and responsibilities. When an issue is
encountered in a region the corresponding manager will try
and fix locally and if the issue persists the manager will
notify its registered peers by sending a change of pulse via
an external monitor. This pulse information is generated
from an internal monitor that correlates the health of the
regions hosts and the pulse will take the form of a message
that will be interpreted by the main monitor within the
receiving peer manager and can then act appropriately by
using predefined knowledge rules. The rules that determine a
change of pulse will be adaptable and can be re-configured
over time. The pulse sent between peers is represented in an
XML message and transmitted using TCP as the messages
may become too large to be accommodated by UDP as they
were in previous pulse monitoring applications [17].

Figure 1. The Autonomic Pulse Monitoring Tool Environment

Information on manager properties, peer-to-peer
relationships, knowledge rules and logging will be kept on a
central database, but this is only used as a central repository
for use by the GUI to display an operational representation of
the tool. In a peer-to-peer system there needs to be

movement away from a central store of the whole systems
data, so all managers download the properties, relationships
and rules upon initialization, and keep these in memory
throughout their operation, though rules and relationships
can be downloaded from the GUI database as a reasonable
way to distribute new updates to the locally stored data.

A. SNMP
SNMP which stands for Simple Network Management

Protocol was designed by the Internet Engineering Task
Force (IETF) in the early 80s as a set of protocols for
managing complex networks. It is implemented by sending
messages called Protocol Data Units (PDUs) to specified
devices in a network. An SNMP compliant device is called
an agent and they store information about their configuration
and set-up in an arrangement specified by Management
Information Bases (MIBs), this data can be returned to the
SNMP requester that transmitted the PDU.

The management data for the device is exposed by
SNMP using variables called Object Identifiers (OIDs)
defined within the MIBs on the managed device [11].

This is a fundamental usage of SNMP and reverberates
well with the needs of the tool being developed as essentially
SNMP exposes management data that signifies traffic flows
and congestion across the device being monitored along with
physical and logical data that can help with inventory
management of a device. An example being if an interface
card is removed without authorization this seriously affects
the function and performance of the device and needs to be
escalated, an autonomic element will not be able to heal the
physical loss but logically it may be possible to recreate the
function of that card on any card not in use on the device.

SNMP operates in the application layer at layer 7 of the
OSI model and allows active management tasks to be
performed, such as modifying and applying a new
configuration by modifying OIDs on the managed device,
the OIDs are organised in the MIBs using hierarchies that
include metadata such as data type (integer/alphanumeric)
and description [12]. The SNMP agent receives requests on
UDP port 161, the agent response is then sent back on the
source port to the manager.

Two of the core PDUs intended to be utilised are:
� GetRequest – A manager-to-agent request that

retrieves a value of an OID or list of OIDs which are
specified in variable bindings. The response is
returned in an atomic operation by the agent. This
will be how the tool will gather information during
device monitoring.

� SetRequest – Is similar in operation to the
GetRequest, instead to change the value of an OID
or list of OIDs, the variable bindings need to have
the correct data value bound to the OID being
updated. This technique will allow the tool to update
the device as an actuator to any healing or
optimisation [11].

Some issues are connected with SNMP one is that the
installations can vary across devices, and the operations
available may not perfectly match the blueprint laid down in
the MIBs which can make data validation temperamental.

271297

<message>
<host>9.180.191.77</host>
<status>0</status>
<issue>

<ip>172.25.0.12</ip>
 <oid>1.3.6.1.2.1.6.0</oid>
 <fail>101</fail>
</issue>

</message>

Also processing SNMP queries on certain data sets (large
routing tables) may require higher than normal CPU
utilisation because of SNMPs structure not being well
understood by a platforms internal data structures.

An alternate to using SNMP to monitor and respond to
managed device issues would be to upload the entire device
CLI as a text file and parse the entire configuration for the
relevant information, make the change to the CLI and push
the text file back down to the device. The benefits of this
would be increased power to implement changes to the
device, but the added complexity and the fact there is no
common configuration layout between device manufacturers
means SNMP is ideal as it is simple and is common on
almost all network devices.

B. XML Messages
With prior PBM implementations and research for inter-

process communication between autonomic managers,
messages have been sent between managers using UDP [17],
this is fine for small messages relating to a single device but
in the monitoring of a region of devices the messages need to
be larger as more content is required to capture the overall
state of the neighborhood if multiple devices are
experiencing issues. A message in regards to the tool is an
idiom for representing information packaged for distribution
between autonomic managers, to implement a message that
can vary in size and support hierarchical information then
XML is a good choice to represent this. XML can provide a
standard, agreed upon format for data transfer between
applications running on separate Java processes. However
one issue is that XML conversion can be very resource
intensive with large data sets, other possible options
considered where Java RMI and SOAP. SOAP (Simple
Object Access Protocol) was dissuaded for use in the tool as
it requires a web server and has a verbose XML format that
adds to complexity. Java RMI (Remote Method Invocation)
was a viable option but the easy layout, simplicity and
flexibility of sending XML messages over a socket was the
most attractive.

For the tool each manager will be able to connect to
multiple managers to broadcast their pulse message, with
UDP multicast is an intrinsic part of the protocol, however to
implement this functionality using TCP each subscribing
manager’s IP address will have an accompanying port. With
TCP it is a benefit for the tool for messages to arrive in order
as the health of the transmitting manager can conceivably
change between messages being received by the subscribing
manager, which could result in the subscribing manager
actuating a non-required remedy that would undo the work
already carried out by the transmitting manager.

The format of the XML message will contain the overall
status of the neighborhood being monitored and one or more
issues that are of interest to the peer group of managers of
the transmitting manager. There are three elements with the
issue element consisting of three sub elements.

Host – The IP address of the transmitting manager.
Status – The overall health of the manager neighborhood.

Issue – Consists of 3 elements:
Ip – The IP address of the device pertinent to the issue.

Oid – The affected SNMP OID that was not compliant with the
predetermined rules supplied to the manager.
Fail – The nature of the non-compliance of the OID.

Figure 2. Example XML message

IV. IMPLEMENTATION

A. Initial Setup
The class from where most of the tool behavior is

controlled is AutonomicManager, its main purpose is to act
as a controller to the monitoring threads and setup data from
the database into local memory, this object is instantiated on
a server by using a batch startup batch file to call the main
method of AutonomicManager. The main method is passed a
properties file which contains the database connection
properties and the hostname for the AutonomicManager
instance. The startup() method of the class then connects to
and interrogates the database for all data pertinent to the
autonomic manger instance and stores in local memory, this
is the only call to the database that is of critical use, all
subsequent database interaction is for demonstration
purposes linked with the GUI. The database connection uses
standard JDBC calls that are encapsulated within the
DatabaseAccess class which handles connecting and
disconnecting to database, all database queries, updates and
inserts, and converts all data retrieved into modeled classes
for each database table.

There are three model class views Manager,
ManagedDevice and OidRule that map more of less directly
to the database tables of the same name, and have separate
private methods for retrieving and building the data, this
technique helps enable the use of Java generics which moves
the responsibility of type safety to the compiler. So there is
no need to write code to test the correct data type because it
is enforced at compile time, and iterating through a list of
generic types using a for loop becomes very clean and
simple as there are no casts or primitive-to-object
conversions. In addition to type safety generic collection
types generally provide better performance for storing and
manipulating value types as there is no need to box the value
types.

272298

Figure 3. System Architecture

When the local data models are populated the two
monitoring threads for external and internal monitoring are
started using the implements Runnable interface technique.
The AutonomicManager instance is passed to both threads to
share the populated model information which requires the
accessor methods to have the synchronized keyword to avoid
concurrency issues. This applies most relevantly to the
logger method. Local memory models can be updated from
the database by calling the refresh() method in
AutonomicManager this can be performed periodically and
uses a refresh flag to indicate the local data has been
changed. The shutdown() method closes down the
AutonomicManager in a graceful way by finishing up work
started by threads and is initiated by the user via a batch file.

B. Monitoring
The monitoring of the neighborhood involves two phases

with the first phase being where each device in the
neighborhood is pinged to check that it is up. Pinging a small
number of devices is not very challenging, but if there are
many devices this may cause problems. If the polling interval
is too short a problem can emerge where the nth poll hasn’t
finished before the nth+1 poll begins [11]. Once a device has
been confirmed as up the gathering of pertinent network data
can be performed through SNMP

With regards to monitoring the region to collect system
performance metrics [1] there are two possible techniques to
obtain management data stored on a device through SNMP
these are by using an SNMP GetRequest or SNMP Trap.

SNMP provides the ability to send traps, or notifications,
to advise an administrator when one or more conditions have
been met. SNMP traps are alerts generated when a condition
has been met, by agents on a managed device, the alerts may
contain data that is statistical or status related. These
conditions are defined in the MIB provided by the device
vendor. The network administrator defines thresholds, or
limits to the conditions, that are to generate a trap.
Conditions range from preset thresholds to a restart. After the
condition has been met the SNMP agent then forms an

SNMP packet that is returned to the manager used to monitor
the network [2].

Though the use of SNMP traps is beneficial and the alert
is generated to the manager as soon as a predefined condition
is met, this requires setup on the managed device that would
add additional setup and extra domain knowledge for the
tool. To bypass those issues the same benefits can be
achieved by using an SNMP GetResponse with a list of
pertinent OIDs to return the value, this makes the tool device
independent and flexible with no additional setup steps. The
OIDs relating to a particular device are stored in an OidRule
class that contains, the OID to be retrieved, the Rule or
condition that the value on the device must comply with, and
whether to apply the resolution to by the manager that
discovered the issue or send it to its neighbor manager to
enact the resolution. The OidRule class also contains a
FailureCategory field that specifies the resolution that should
be applied on failure of the condition.

The SnmpComms class connects to the device and
performs the SNMP GetRequest this is facilitated by the
third party software SNMP4J [15] which provides classes
and interfaces for creating sending and receiving SNMP
messages, it uses a SNMP security that is SNMPv1,
SNMPv2c and SNMPv3 compliant though the tool only
supports SNMPv1 and SNMPv2c through the building up of
a SnmpCredentialSet that is uniquely stored for each device.
Results of the GetRequest are returned in a Map, these
results are used by the SNMPEvaluator class which
evaluates the management data returned with the rules stored
in the OidRule objects for each device.

As each OID value is evaluated when an incompliant
value is detected it can either be addressed locally or can be
broadcast to the managers subscribing neighbors, this means
the issue will be added to the pulse message that is
transmitted from the manager. The issue is added to an XML
document is built up using JDOM where all issues are
collated under the manager hostname. The tool uses JDOM
as an alternative to DOM (Document Object Model) which is
an API that allows programs to store an entire XML
document in memory and access it like a tree structure [9].
JDOM only requires one third of the equivalent DOM code
to perform the same function and is much cleaner. Another
option for parsing XML would have been SAX (Simple API
for XML) which is platform independent and is efficient at
parsing very large XML files, as the XML messages used
should not be extremely large JDOM was chosen as the
preferred method for XML manipulation.

The monitoring process from checking the devices
availability through to evaluating the SNMP GetRequset is
repeated for each managed device in the manager’s
neighborhood. The JDOM document is then converted to a
String and is ready to be broadcast across the socket from the
internal monitor to all subscribing peer managers.

The subscribing autonomic manager has an inbound
monitor that sits waiting for messages from the transmitting
managers by using the traditional client-sever technique of
running inside a separate thread from the main thread of
execution. When a message is received the concept of an
actuator [16] updating the monitored entity is enacted using

273299

SNMPActuator and called to process the message string by
cleaning it up and converting it again using JDOM into an
XML document. The XML document is then turned into an
object using the AutonomicMessage class that makes it
simpler in Java to process the issues delivered in the
message. When the message object is created, the message
receipt and transmitting managers’ status is logged, then the
issues are examined and using the FailureCategory
resolutions are attempted to be applied if the resolution string
in prefixed with #set, otherwise a string message is logged.

Within the SNMPActuator object the SnmpComms class
has the capability to issue SNMP SetRequest’s to resolve
specific issues, setting SNMP OIDs in the environment of
the tool is best suited to issues where the OID result does not
match the expected value in the OIDRule and need to be set
back to a specified value. When making an SNMP
SetRequest a pair of values is required in the PDU, the OID
that is to be changed, and the value to change it to. In the
following format:

#set oid_to_update oid_type new_oid_value

The OID needs to be read-write which can be found out
from the OID access value in the MIB, also the type of value
the OID accepts is required, it is important to send the
correct type of value to the agent because if the wrong type
of value is sent to perform the Set operation the agent will
return a WrongType error in the response PDU.

C. GUI

Figure 4. The Autonomic Cluster Graph Visualization

The GUI for the tool is developed using JAVA Swing
libraries and the user is able to administer and view the
health of the autonomic system through a visual and colour
coded environment. The various Autonomic Manager inter-
relationship linkages are displayed in a diagram on the first
presentation screen. Each node contains the given name for
the AM region and the colours of Green, Amber and Red to
generally indicate the health of the AM and its region. Green
represents a fully functioning region, amber is a state where
one or more devices are in difficulty and red means all
devices are not responding or a critical issue has been

detected. The colour coding is also extended to the tree view
down the left hand side.

The GUI is launched through the ACAdmn which
extends JFrame, this is a key class and links together various
models, views and controllers conforming to the MVC
design methodology. Each of the tables in the database
populates its contents into a data model which is used within
in the GUI to display the relationships between managers
and the devices monitored by the managers.

When an autonomic manager in the tree view is selected
an additional visual representation of the linkage between the
manager and the devices it is responsible for are displayed in
a cluster graph, the relationship between other manager’s is
also presented visually again in a cluster graph. It is on this
screen that devices under an autonomic manager’s
administrative boundary can be added or removed. In
addition to the cluster graphs there is a tab present for each
of the tables in the database which represent an interface for
quickly adding data into the system, using a built in widget.

The GUI is affected by data that is periodically updated
into the central monitoring database (Oracle XE) from the
information held in memory on each autonomic manager.
The data transfer is bi-directional with the GUI and
autonomic managers needing to re-sync periodically.

V. EVALUATIONS

A. Self-Healing Scenario
This evaluation follows a scenario where an autonomic

manager detects an anomaly from an SNMP GetRequest on
one of the managed devices within its administrative
boundary, the rule it breaks changes the health of the AM to
amber and the fix is required to be administered by a
neighbouring AM. This is highlighted in the XML message
received by the neighbouring AM and enacted upon but
using an SNMP SetRequest.

Figure 5. Updating the Database using the Admin Tool

The test system consists of two managers (9.180.191.77
& 9.180.191.78) with two devices (172.25.0.12 &
172.25.0.15) in a region assigned to 9.180.191.77.

The device 172.25.0.12 has an OIDRule assigned to it in
relation to sysLocation that it must be equal to “Belfast”
however in this instance it happens to be “London”. So in the

274300

GUI the device shows up red and the manger is colored
amber.

Figure 6. The Manager relationship cluster graph

As the local flag is set to false in the OIDRule therefore
the execution of the resolution must be carried out on another
autonomic manager other than its neighborhood manager.
An xml message is sent to 9.180.191.78 containing the
device affected and fail category.

Figure 7. Visualisation of anomaly found on 172.25.0.12

When 9.180.191.78 receives the message it uses an
SNMP SetRequest to update the sysLocation on 172.25.0.12
using the FailResolution command in the FailResolution
object. It takes the format OID, OID type (in this case
OctetString) and value to update.

B. Performance Evaluations
The performance evaluation of the system focused on the

implementation surrounding the SNMP scalability relating to
the GetRequests and SetRequests. For these tests six
different models of device were employed to demonstrate if
there is any differentiation in the speeds displayed for the
same action performed on the exact same OIDs for each
device. The six device VTMOS are displayed in TABLE I. .

GetRequests
The devices were all located in the IBM Titanic Quarter

Belfast Lab and were located within a similar distance to the
manager server running on RedHat Enterprise Linux version
5.0 administering the tests.

TABLE I. DEVICES USED IN PERFORMANCE TEST

Device

VTMOS

Vendor Type Model OS

10 Cisco Router 3825 12.4(19b)

11 Cisco Router 7200 12.3(12a)

12 Cisco Router 3640 12.3(6a)

13 Cisco Router 2600 12.1(2)T

14 Cisco Router 2500 12.2(28)

18 Juniper Router M5 JUNOS
10.1

TABLE II. RESULTS FOR GETREQUEST PERFORMANCE TEST

Device
Type

SNMP GetRequests (Milliseconds)

1 2 5 10 20

Cisco 3800 2 3 5 12 22

Cisco 7200 1 2 5 13 22

Cisco 3600 7 12 31 62 124

Cisco 2600 6 12 30 60 118

Cisco 2500 25 49 124 250 497

Juniper M5 2 4 10 19 34

TABLE III. RESULTS FROM SETREQUEST PERFORMANCE TEST

Device
Type

SNMP SetRequests
(Milliseconds)

1 2

Cisco 3800 4 5

Cisco 7200 4 6

Cisco 3600 16 30

Cisco 2600 8 15

Cisco 2500 30 60

Juniper M5 4 7

The tests took the form of loading the PDU with OIDs

present in the IF-MIB which were ifIndex, ifMtu, ifSpeed,
ifInOctets, ifInUcastPkts, ifInNUcastPkts, ifInDiscards,
ifInErrors, ifInUnknownProtos, ifOutOctets these are OIDs
associated with traffic monitoring and are all numeric and
common to each device. There were two values for each OID
relating to two different interfaces, bringing the total possible
number of OIDs to 20. The experiment involved running a
GetRequest for a PDU of OIDs numbering in increments of
1, 2, 5, 10, 20, and for each of these runs an average time
was recorded by iterating five times over each increment.
The results are shown in TABLE II.

275301

SetRequests
The tests used the same six devices from the GetRequest

evaluation and the experiment followed a similar structure
only this time the PDU applied an SNMP Set to sysContact
and sysLocation which are both strings. Only two OIDs
where used during this evaluation because the devices were
the property of IBM and could not afford to have the device
placed into an unusable state, the updating of sysContact and
sysLocation are actions that are somewhat safe-TABLE III.

VI. CONCLUSIONS
This research involved developing a prototype that

incorporated peer-to-peer autonomic Pulse Monitoring
(PBM) and applied to a cloud based system. PBM has been
demonstrated within Personal Autonomic Computing (PAC)
[18] and Grid Computing [23] but the relevance to cloud
computing had not been sufficiently explored. The system
involved moving the Autonomic Manager away from the
device on the physical layer and placed it on a virtualized
server to monitor several devices in a neighborhood similar
to what Pujolle [13] described. Each manager collates and
sends the health of its monitored neighborhood to its
subscribed neighboring autonomic manager in a message i.e.
pulse, using a peer-to-peer structure. Aspects of Policy Based
Management were used to evaluate the state of the system
against predefined rules and actuate self-healing to return the
system to the desired state. The focus of the evaluation was
to investigate the capability of the system to recognize a fault
and react to it in a positive manner by altering the pulse
message in the appropriate way. The approach to evaluating
the prototype was achieved using real devices in the IBM
lab. Relevant performance metrics were gathered to illustrate
the overheads that may come into consideration with regards
to scalability. The results of the investigation highlight what
features need to be improved or added for a fuller scale
version of the prototype, yet demonstrate the promise of
extensively localized cooperative peer-to-peer self-
management for the Cloud.

ACKNOWLEDGEMENTS
IBM, Tivoli, and Netcool are trademarks of International

Business Machines Corporation. Oracle, Java, and all Java-
based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

REFERENCES
[1] Casalicchio, E.; Silvestri, L.;, "Architectures for autonomic service

management in cloud-based systems," 2011 IEEE Sym Computers
and Communications (ISCC), pp.161-166, Jun 28 -Jul 1

[2] Cisco, Understanding Simple Network Management Protocol
(SNMP) Traps [Online] [Accessed 26 April 2012] Available at
http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094aa5.shtml

[3] Endo, P.T.; Sadok, D.; Kelner, J.;"Autonomic Cloud Computing:
Giving Intelligence to Simpleton Nodes," 2011 IEEE 3rd Int. Conf.
Cloud Comp. Technology and Science, pp.502-505, Nov. 29-Dec. 1

[4] Erdil, D.C.; "Dependable Autonomic Cloud Computing with
Information Proxies," 2011 IEEE Int. Sym Parallel and Dist.
Processing Workshops and Phd Forum, pp.1518-1524, 16-20 May.

[5] ETSI ES 282 003: Telecoms and Internet converged Services and
Protocols for Advanced Networking (TISPAN); Resource and
Admission Control Subsystem (RACS); Functional Architecture,
June 2006.

[6] Hall, Peter. "What is Cloud Computing?". The Role for Telcos in
Cloud Computing. Ovum Summit. 2010.

[7] International Business Machines Corp., An architectural blueprint
for autonomic computing, White Paper Fourth Edition, 2006.

[8] IBM, IBM Tivoli Netcool Configuration Manager - Compliance
System Admin Guide [Online] [Accessed 26 April 2012] Available at
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_configurationmgr.doc_6.1.0/ncm_pdf_comp_sysadm_61.pdf

[9] JDOM [Online] Available at http://www.jdom.org/index.html
[Accessed 26 April 2012]

[10] Kailasam, S.; Gnanasambandam, N.; Dharanipragada, J.; Sharma, N.;
, "Optimizing Service Level Agreements for Autonomic Cloud
Bursting Schedulers," 39th Int. Conf. Parallel Processing Workshops
(ICPPW), 2010 pp.285-294, 13-16 Sept. 2010

[11] Mauro, D; Schmit, K (2005). Essential SNMP (2nd Ed). O’Reilly.
[12] Perkins, D; McGinnis, E (1997). Understanding SNMP MIBs. NJ:

Prentice Hall.
[13] Pujolle, G. "An autonomic virtualized architecture for clouds and

sky," 2010 IEEE GLOBECOM Workshops. pp.1644-1647, 6-10 Dec.
[14] Russell, D. M.; Maglio, P. P.; Dordick, R.; Neti, C.; , "Dealing with

ghosts: Managing the user experience of autonomic computing," IBM
Systems Journal , vol.42, no.1, pp.177-188, 2003

[15] SNMP4J, SNMP4J -The Object Oriented SNMP API for Java
Managers and Agents [Online] Available at http://www.snmp4j.org/
[Accessed 26 April 2012]

[16] Solomon, B.; Ionescu, D.; Litoiu, M.; Iszlai, G.; , "Designing
autonomic management systems for cloud computing,"
Computational Cybernetics and Technical Informatics (ICCC-
CONTI), 2010 International Joint Conference on , vol., no., pp.631-
636, 27-29 May 2010

[17] Sterritt, R.; Chung, S.; , "Personal autonomic computing self-healing
tool," Engineering of Computer-Based Systems, 2004. Proceedings.
11th IEEE International Conference and Workshop on the , vol., no.,
pp. 513- 520, 24-27 May 2004, doi: 10.1109/ECBS.2004.1316741.

[18] Sterritt, R.; Bantz, D.F.; , "PAC-MEN: personal autonomic
computing monitoring environment," Database and Expert Systems
Applications, 2004. Proceedings. 15th International Workshop on ,
vol., no., pp. 737- 741, 30 Aug.-3 Sept. 2004, doi:
10.1109/DEXA.2004.1333562

[19] Sterritt, R.; Bantz, D.F.; , "Personal autonomic computing reflex
reactions and self-healing," Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on , vol.36, no.3,
pp.304-314, May 2006, doi: 10.1109/TSMCC.2006.871592

[20] R. Tolksdorf and D. Glaubitz, Coordinating web-based systems with
documents in xmlspaces, in Proc 6th IFCIS Int. Conf. Cooperative
Information Systems, Springer-Verlag, 2001, pp. 356–370.

[21] Wailly, A.; Lacoste, M.; Debar, H.; , "Towards Multi-Layer
Autonomic Isolation of Cloud Computing and Networking
Resources," Network and Information Systems Security (SAR-SSI),
2011 Conference on , vol., no., pp.1-9, 18-21 May 2011

[22] Yiming Zhang; Lei Chen; Xicheng Lu; Dongsheng Li; , "Enabling
routing control in a DHT," IEEE J. Selected Areas in
Communications, vol.28, no.1, pp.28-38, January 2010

[23] Sterritt, R.; , "Pulse monitoring: extending the health-check for the
autonomic grid," Industrial Informatics, 2003. INDIN 2003.
Proceedings. IEEE International Conference on , vol., no., pp. 433-
440, 21-24 Aug. 2003, doi: 10.1109/INDIN.2003.1300375

[24] Franke, Carsten; Theilmann, Wolfgang; Zhang, Yi; Sterritt, Roy; ,
"Towards the Autonomic Business Grid," Engineering of Autonomic
and Autonomous Systems, 2007. EASe '07. Fourth IEEE
International Workshop on , vol., no., pp.107-112, 26-29 March 2007,
doi: 10.1109/EASE.2007.27

276302

