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Abstract The arrival of new devices and techniques has

brought tracking out of the investigational stage and into

the wider world. Using Wi-Fi signals is an attractive and

reasonably affordable option to deal with the currently

unsolved problem of widespread tracking in an indoor

environment. Here we present a system which aims at

overcoming weaknesses in existing real time location

systems (RTLS) by using the human approach of making

educated guesses about future location. The hypothesis of

this proposal is that knowledge of a person’s historical

movement habits allows for future location predictions to

be made in the short, medium and long term. The primary

research question that is foremost is whether the tracking

capabilities of existing real time locating systems can be

improved automatically by knowledge of previous move-

ment especially in the short term in the case of emergency

first responders by the application of a combination of

artificial intelligence approaches. We conclude that HAB-

ITS improves on the standard Ekahau RTLS in term of

accuracy (overcoming black spots), latency (giving posi-

tion fixes when Ekahau cannot), cost (less APs are required

than are recommended by Ekahau) and prediction (short

term predictions are available from HABITS). These are

features that no other indoor tracking system currently

provides and could prove crucial in future emergency first

responder incidents.

Keywords Real time locating systems � Location

determination � Emergency services � Wireless networks �

Bayesian networks

1 Introduction

First responders have to rapidly assess any new emergency

situation. Questions that need answered quickly include;

Who is in the building? How do we get to them? What

evacuation plan are they following? The answers to these

questions can be readily available thanks to the application

of integrated electronics and artificial intelligence (AI)

techniques (Furey et al. 2011). What is needed to achieve

such a system is some wearable device which will help

pinpoint the current location of each occupant of the

building. It turns out that to achieve tracking some sort of

frame of reference is normally required and a number of

waypoints need to be established. In satellite positioning

the satellites themselves provide these waypoints, their

position relative to each other and relative to the ground is

known, therefore then location of an unknown device can

be calculated relative to these. The same principle is used

in the majority of positioning systems. Problems arise

when these reference points are either too few in number,

or those that are there do not have a clear line of sight to the

object being tracked. One of the reasons for the success of

satellite positioning is that generally there is nothing of

substance between the satellites (waypoints) and the device

to be tracked. Consider the example of a sailor who was

trying to use a lighthouse as a way point for navigation but

the lighthouse could not be seen due to an obstacle such as

a mountain being in the way. In that case the lighthouse is

unusable as a reference point. With indoor positioning a

similar problem exists. If the exact distance, angle or signal

strength to a point cannot be established then localisation

will be difficult or impossible. Occlusion, attenuation,

reflection and refraction are the cause of many errors in

RTLS. Often these problems make it extremely difficult or

impossible to accurately establish location. For these
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reasons, intelligent techniques and ‘tricks’ are utilized in an

attempt to improve performance of the RTLS. In some

cases these have greatly improved accuracy and yield (the

ability to get position fixes in all environments) but the

improvements are accompanied by drawbacks in terms of

time and cost. While no solution works perfectly in all

environments, within reason, almost anything can be

tracked to any desired resolution if enough resources are

available. These resources can be quantified in terms of

financial cost and vastly reduce the scalability of the RTLS.

Innovative methods are required to improve accuracy lev-

els and to allow positioning to be achieved for a reasonable

cost in terms of time and infrastructure. The recent pro-

liferation of mobile communications devices is allowing

tracking and analysis of large groups of people to be car-

ried out. Where available, this data is being mined

searching for patterns and trends which facilitate prediction

(Petzold et al. 2005; Vintan et al. 2004; Gellert and Vintan

2006). This paper seeks to outline a system which aims at

overcoming weaknesses in existing RTLS by using the

human approach of making educated guesses about future

location. The hypothesis of this proposal is that knowledge

of a person’s historical movement habits allows for future

location predictions to be made in the short, medium and

long term. The research questions that are foremost are

whether the tracking capabilities of existing real time

locating systems can be improved automatically by

knowledge of historical movement and by the application

of a combination of artificial intelligence approaches. We

also consider whether this approach can allow for intelli-

gent prediction of future locations. A practical application

of our system would be for use by first-responders inside

buildings.

2 Predicting location using intelligent techniques

To accurately position an object in addition to the tech-

niques and technologies previously discussed, a certain

amount of intelligence is required. These methods allow

the accuracy levels of the estimates to be increased. When

a human makes estimation about where an object will be

located in the future, they automatically carry out the

complete calculation in their brains. To enable computers

to repeat these feats and to allow them to work with a

number of different objects requires a number of artificial

intelligence techniques. In an indoor environment this is a

largely under researched area. Being able to predict with

some degree of accuracy, the future location of a person or

thing has many applications. This seemingly magical

quality is one of the ‘holy grails’ of localisation. The

prediction does not need to be 100 % certain, and indeed

certainty is almost impossible to establish. Never the less,

the next location can be predicted with a certain degree of

accuracy as has been demonstrated in previous research

projects. Outdoors, using GPS traces to try and learn next

location has been attempted by Han (2004) for someone on

foot and in Froehlich and Krumm (2008) for vehicles on a

road. More recently data gathered from mobile phone

records has been mined to try and find patterns of move-

ment which could be used to try and make next location

predictions (González et al. 2008). Indoors, this is a largely

under researched area, however a number of ‘smart envi-

ronments’ have been set up such as the work Petzold et al.

(2005). Here specific sensors on doors were utilised to

provide movement patterns. A Hidden Markov Model

(HMM) and a Neutral Network (NN) were applied to the

data and successful predictions were made. Since around

2006, due to its commercial value, most of the leading

research in next location prediction is not being conducted

by academic institutions and therefore everything that has

been learnt may not be in the public domain. However, this

review covers all that has been published but research may

exist that has not been published, for instance, that which is

carried out by defence contracts or commercial entities.

Ashbrook and Starner (2002), used a Markov chain model

and K-means clustering algorithm to attempt to predict

future movement. They clustered GPS data to find signif-

icant locations and then built a first and second order

Markov models using location as state to try and predict

future movement. It is possible to create nth order Markov

model where probability of the next state is dependent not

only on the current state but on the previous n-1 states.

For some examples, considering the 2nd order can yield

more accurate results as in the case of probability of

transition from A ? B is 70 % but the probability of

transitioning from B ? A ? B is 81 %. This could be

explained by a situation where A was a shop and B was

home. If the shop was on the main road from home then the

probability of going from A to B (shop to home) is 70 %.

However, if the journey started at home and went to the

shop, return to home could be more probable (perhaps

getting something for dinner?). This demonstrates a situa-

tion when higher order models are useful and give extra

information. It raises the question of which order of model

is suitable for prediction. Ashbrook and Starner (2002)

conclude that this depends on the quantity of data avail-

able. Other factors affecting their probabilities were due to

the large distances travelled and the fact that their tests

took place outdoors. They also found that changes in rou-

tine would take a long time to show up in their model and

they suggested a possible method of weighting certain

updates, but warned that this could lead to model that was

somewhat skewed. Han (2004) attempts to build upon the

work of (Ashbrook and Starner 2002) by using a self

organising map (SOM) as a means of learning without pre-
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knowledge. To use a supervised learning method to learn

patterns of movements, pre-knowledge of the person is

required, however a SOM can overcome this. An SOM is

an ‘‘unsupervised learning neural network’’ which can

preserve the topology of a map as it creates it. Sang uses an

SOM to convert sequences of raw GPS data into mean-

ingful patterns which are in turn applied to a markov chain

approach. They used the output from the SOM to learn a

first order Markov model and to try and make predictions

of next location from it. Their data was gathered based on a

university campus. While their method looks promising,

their results are very sparse and their conclusion of

‘acceptable’ prediction accuracy is of little value.

In indoor localisation, the area of movement prediction

is sparsely researched. This is due to the fact that any sort

of indoor localisation is a relatively recent phenomenon,

however a number of research studies have been carried

out in this area. One of the first research projects that

considered future movement was Microsoft Research’s

RADAR project (Bahl and Padmanabhan 2000). This was

the first significant attempts to track indoors using 802.1

Wi-Fi signals. Due to the severe problem of signal atten-

uation it was difficult to get an accurate fix on position

using received signal strength (RSS) measurements alone.

Position was occasionally reported in locations that were

not possible or at least highly unlikely. An effort to over-

come these problems is described in Bahl et al. (2000).

They concluded that the next location position should be

close to the last reported one. Their Viterbi-like tracking

algorithm deals with a situation of when two physically

separate locations are close together in signal space (due to

aliasing). The shortest path is depicted in bold. The likely

trajectory is calculated based on the previous unambiguous

location and a guess of somewhere in between the two is

given. Between vertices i and j there is an edge dij whose

weight is calculated based on the Euclidian distance

between the locations i and j. This approach has been

shown to significantly reduce the accuracy error in locating

a user who is walking. They tested the Viterbi-like

approach against an nearest neighbour in signal space

(NNSS) and an NNSS-AVG (where the three nearest

neighbours in signal space were averaged to estimate

location) and it was found to significantly outperform the

others. Median distance error for NNSS (3.59 m) and

NNSS-AVG (3.32 m) are 51 and 40 % worse, respectively

compared with Viterbi (2.37 m) (Bahl et al. 2000).

Anticipating or predicting a future situation has been

attempted through the use of a number of learning tech-

niques. Hidden Markov models (HMM) are a popular

technique which has been successfully applied in numerous

different fields. The application of HMM to speech rec-

ognition has been examined by Rabiner (1989). In speech

recognition predicting the next possible words can greatly

increase accuracy. Rabiner examined HMM from their

simplest form (discrete Markov chain) to more sophisti-

cated approaches such as continuous density models and

those of variable duration. These techniques have been in

widespread use for many years in speech recognition

software. Computational biology is another field that has

seen widespread application of predictive machine learn-

ing. Medical diagnosis, treatment and approaches to drug

design all require techniques that can predict sequences.

The use of HMM for gene prediction in sequences of DNA

has been reviewed by Birney (2001). A new method for

predicting the secondary structure of RNA using HMM

was proposed by Yoon and Vaidyanathan (2004). They

demonstrated very accurate, secondary structure prediction

using their proposed model with a low computational cost.

A study by Petzold et al. (2006) converted algorithms

normally used as ‘‘branch prediction techniques for current

high performance microprocessors’’ to handle next context

prediction of a person. These were applied to previously

gathered behaviour patterns. The predictors were stimu-

lated with patterns of behaviour of people walking indoors

as the workload. A study by Mozer (1999) proposed an

adaptive control of home environments (ACHE) project.

ACHE attempts to predict the next actions taken by the

inhabitants by observing their actions taken, monitoring the

environment and attempting to learn to anticipate their

needs. The next action is predicted by means of a feed

forward NN. They used these predictions to try and control

energy use in a prototype house.

3 Modelling an indoor tracking system

Past movement habits have been shown to be repeated by

humans, usually to do necessary tasks or just to take what is

felt to be the path of least resistance. These habits are often

linked to particular tasks that need to be done regularly.

Movement habits are the same as other types of habits in

that they tend to be regularly repeated. While each of us

has a number of habits or patterns that appear to be unique

to us, much more probable is that we share habits with

others. The acronym history aware based indoor tracking

system (HABITS), describes the approach of this research.

The past movement history of tracked humans is used to

enhance an existing tracking system. The technology of the

underlying tracking system or the positioning methods used

are not important. The HABITS approach can be designed

to be generic. The three main components of HABITS are a

connected graph, a discrete Bayesian filer and a set of logic

rules. One of the contributions in this work involves

combining these three methods in a novel way, allowing

for predictions of human movement habits. These predic-

tions overcome the latency of updates from currently
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available systems and enable them to make predictions of

likely future movement. The underlying principle of our

approach involves representing the movement areas as a

graph which in turn is represented by a number of matrices;

incidence, distance and transition. These constraints show

where it is possible for a user to go and where not, the

distance between points of interest (for our purposes) and

eventually represent the probability of going from one area

to another. The graph allows us to represent this informa-

tion in mathematical terms and as numbers which may then

be processed by a machine/computer. Methods of model-

ling the travel environment exist and of these, a graph

structure closely represents the travelable paths. The nodes

in the graph can be positioned to represent areas of interest,

decision points or places where the user stops. Only areas

that are in use and where access is unrestricted are repre-

sented. In between these locations are the paths that may be

travelled between. The paths may be considered as edges

and those locations of interest could be the nodes/vertices

of a connected graph. The graph structure clearly repre-

sents the connections between nodes and therefore areas in

the real building. It shows which locations are connected

either directly or indirectly. As one-way pedestrian systems

are uncommon indoors all the graphs used for this study are

undirected. When studying a building plan or road map this

information is normally clear to see however, in a new

location, different methods need to be used to identify

these areas of interest. Areas where a user stops for some

reason may be thought of as ‘base nodes’. Stopping for

reasons such as sleep, eating, call of nature or work are

some of the main reasons why humans would habitually

stop at the same location. While for many people these may

be in the same room or adjacent rooms, in the developed

world, relatively large houses exist and these functions

often occur in a number of rooms with travel paths

between. Examples of rooms could be bedroom, bathroom

and living room. Movement between rooms is often only

possible by one or two different routes.

The layout of a typical house (in the developed world)

may be represented as a connected graph. In Fig. 1 the

green nodes represent stopping locations and the blue

nodes represent decision points. A connected graph or

topological map of these nodes is shown in Fig. 2.

Learning the locations of these points can be done auto-

matically in a number of ways, all of which require an

underlying tracking system to be installed.

Learning these significant locations can be carried out

automatically by computers. One methods of achieving

this is to plot the locations where there was a significant

delay between movements. These would indicate the

areas where a person was stationary. Even within the

same room these points are not all likely to be in the

exact same location.

To extract wait nodes from a large number of estimates,

clustering techniques are used to group the updates toge-

ther, revealing the main stopping locations. When the

nodes have been discovered and coded with numbers for

names (Fig. 3) they may be represented as an n 9 n

adjacency matrix where n is the number of nodes and the

matrix details specific information about the graph. Fig-

ure 4 shows the adjacency matrix corresponding to the

connected graph which in turn corresponds to the node

positions in the sample house (Fig. 2). If a connection

exists between the nodes then in the matrix location ij

which represents the connection from i to j place a 1, if no

connection exists then place a zero. This enables the paths

between nodes to be represented mathematically and the

matrix can easily be processed by a computer program.

When the node locations have been discovered and the

distance between two nodes is known, travel time between

nodes may also be calculated automatically by the under-

lying tracking system. Average walking or travelling speed

for each user is estimated by using speed = distance/time.

Knowledge of the relative travel times between nodes is

then used to generate a distance matrix with distances

between each node being calculated based on average user

Kitchen

Bathroom

Living Room

Bedroom

Front Door

Fig. 1 Node positions in house

Kitchen

Bathroom

Living Room

Bedroom

DP1

DP2

DP3

Front Door

Fig. 2 Connected graph with node connections
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speed. The distance matrix values are in the same positions

in the matrix as the 1’s are in the adjacency matrix. A

transition matrix showing the probabilities of travelling

from one node to the other is built up by monitoring the

persons travel through the nodes. Again, a number of

methods exist to do this, but a straight forward one is to use

the sequence of all nodes traversed through for a day, a

week or all travel time (depending on the application).

String identification tools can be used giving the sequences

of nodes and from this mathematical functions can generate

a transition matrix. As before, the size of the matrix cor-

responds to n 9 n and at each location (node) a count is

kept of the movement through it and where it goes to next.

In the sample house scenario, consider movement from the

kitchen, through a decision point to either the bedroom or

another decision point. Hypothetically, it could be found

that the probability of going from the kitchen to the bed-

room was 12/50. This would equate to a situation where out

of 50 times leaving the kitchen, 12 of these journeys were

to the bedroom. 12/50 would give a probability of 0.2 of

travelling to the bedroom meaning that 0.8 or 38 journeys

went the other way to the next decision point. This is how

transition matrices are created and knowledge of them

gives a first order Markov chain.

At any time along the chain, only the current location

gives the probability of going to the next location. A simple

Markov chain like this gives some idea of the next node but

alone it would not be enough to model real human move-

ment habits. Raising the order of the model to consider the

previous two nodes would help in some locations but

Froehlich and Krumm (2008) proved this needs to be done

with a large dataset which takes a long time to generate.

Maintaining a separate transition matrix for each day and/

or each time period would improve the accuracy slightly

but the system would not be expandable to a large area due

to becoming overly complex. To predict the most likely

next location with a useful degree of accuracy requires

more than just a simple one state Markov chain. The

movement habits of people are dependent on a variety of

factors and to improve the accuracy of any model requires

that more of these factors to be considered. A discrete

Bayesian filter had been shown to work well for data fusion

(Fox et al. 2003). The underlying tracking system gives the

initial location, bel(xt-1). The transition matrix provides

the belief, bel(xt) when combined with the information in

the Perceptual model and the system dynamics. This out-

puts the probability of moving to the next node when given

just the previous one and no other information. HABITS

uses more information than just that provided by the first

order Markov chain. As a Bayesian filter only works for

instances that hold to the Markov assumption (meaning

only a single order model), a great deal of information is

being left out about commonly travelled paths or sequences

of nodes. Froehlich and Krumm (2008) found that the more

nodes they had information about, (previously travelled)

the higher the chances of predicting their final location. If

an order (3 for example) Markov model was used, then for

some paths, the predicted location probability would be

much higher, however it would also take into account

shorter journeys and could have sequences like 2–4–2

which would include changing direction completely.

Taking into account higher order models makes the cal-

culations overcomplicated. The notion of ‘preferred paths’

(PP), however allows for the same information to be

gathered without keeping track of every path. As part of the

definition of a habit, it states that they are routines of

behaviour that are repeated regularly. An approach to

viewing habits could be that they take places between

distinct locations, but it does not mean that those locations

a necessarily adjacent locations. The paths may go through

a number of intermediate nodes and a common journey

could be kitchen to toilet. This would involve travelling

through four different nodes but may be repeated a number

of times a day. If a pattern occurred more often than a set

number of times then it could be considered habitual.

Habitual journeys of this sort we call ‘preferred paths’ and

they can be mined from the string of all nodes visited.

There could also be a temporal link between taking these

preferred paths and a certain time period. This information

2
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1

3
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Fig. 3 Node names replaced with numbers
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Fig. 4 Adjacency matrix for nodes in sample house

Probabilistic indoor human movement

123



can be used to adjust the output of HABITS prediction. It

can also help with the identification of final destination

which is another aim of HABITS. Preferred paths are also

stored as a vectors and may be temporally linked to a

specific time period if required (some would be more fre-

quently travelled at particular times than others). When on

a preferred path, the information is used to increase the

accuracy of the future location estimate. If we assume it is

known that Node 1 was the node visited at time, t3. This

would now give a sequence of nodes 1–3–4 leading up to

the decision point. The preferred path vector for that par-

ticular sequence would be the probability of going to node

5 or 6 from that point. We assume that preferred paths only

consider movement to new nodes and do not consider

backward movement. We now have a vector showing

PP Node4 ¼

0:66

0:33

" #

This tells us that when the sequence of nodes visited

was 1–3–4, the likelihood of being on the preferred path

1–3–4–5 is 0.66 and the likelihood of being on the

preferred path 1–3–4–6 is 0.33. The method used to

combine these two probabilities multiplies them together

and adds the results to the initial belief from the Bayesian

filter (Table 1).

The new belief gives a much higher probability of going

to node 5 next than of going to node 6. A last influencing

factor to be considered in some instances is a rule that takes

into account when people change their habits depending on

who they were with. In largely populated environments

certain people’s movements have an influence on other

peoples. If, for example, going for lunch it may be that a

particular person is a common factor in most locations.

This is discovered by checking to see if people travel routes

matched up temporally and if so, was one dominant over

the other? When this is the case, a rule is applied in the

same manner as the preferred paths, influencing the pre-

diction. HABITS combines a number of different elements

to produce future location predictions. The inputs to the

Bayesian filter include the Motion model showing where it

is possible to go in the next step, the Sensor model giving

the accuracy of the updates from the underlying tracking

system, the learnt Historical belief and the location updates

from the base system. When the filter has all the necessary

information to give a prediction, it is run through a set of

rules to improve the accuracy of its estimates. The HAB-

ITS approach described in this paper is designed to be able

to operate on any type of tracking system to allow it to

track between its updates and to give future predictions.

When a mobile device is tracked by the Ekahau RTLS

and the HABITS algorithm is applied, it can still be

tracked when it is no longer within line of sight (LOS) of

three or more access points (AP). This is normally the

minimum required for accurate localisation. The highest

frequency rate of position updates from the Ekahau RTLS

has been found to be 5 s (Furey et al. 2008). These

updates are often up to 15 s apart. Each update is sent to

HABITS along with the learnt historical movement data

and from this an intelligent prediction of the next likely

location is given. Short term predictions effectively fill in

the blanks in between updates from the Ekahau system.

HABITS does not try and improve on the RSS positioning

methods currently in use, but instead uses knowledge of

the movement habits of users as a means of adding

intelligence to existing tracking systems. This knowledge

is then used to overcome signal black spots where

existing systems fail (Fig. 5) and to predict where the

tracked user will travel to next. At time, t1 the Ekahau

RTLS can give a position estimate that is close to the true

position. At time t2 both the standard Ekahau RTLS and

the HABITS system also give a good estimate. However,

at time t3, the Ekahau system is no longer accurate due

the user travelling through a signal black spot. This is

where HABITS can dramatically improve standard loca-

tion tracking systems and provide accurate updates of

where the user is located.

4 Human movement indoors with habits

Ekahau RTLS is a commercial off the shelf (Cots) piece of

software which was developed by a Finnish company for

Wi-Fi localisation in an indoor environment. For Ekahau to

work, an existing 802.11 wireless network must be in place

in the test area. Ekahau contains a number of components.

The Ekahau positioning engine (EPE acts as a server

controlling all location updates. It needs to be located on a

server which has access to the existing WLAN. Once the

server is in place, the Ekahau Site Survey (ESS) model

must be created. A number of steps are required for this.

First, a map (JPEG) of each floor is uploaded to the ESS

application. Figure 5 shows a signal strength map for the

ISRC. The dark green indicates areas of good signal

strength where tracking capability should be good. These

Table 1 Addition of

probabilities from Bayes filter

and preferred paths

Next node Initial belief Preferred path belief Product of two beliefs New belief

5 0.45 0.66 0.297 0.747

6 0.35 0.33 0.116 0.466
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heat maps also show areas signal strength is weak. These

are target areas for HABITS.

In order to collect historical movement data a topolog-

ical map of the test area is created. A topological map is

one which consists of a number of nodes representing

places of interest which are connected by edges repre-

senting paths where a user may travel. These areas are

covered by zones in Ekahau which allow for reporting of

when a person carrying a mobile Wi-Fi device enters or

leaves them. The zones represent areas that are passed

through frequently on the ground and first floors in the

ISRC. Each of these zones can be considered to be a node

in a connected graph. The positioning of these zones is a

manual process based on expert knowledge of where a user

is likely to stop and areas where they would pass through

often. Also used are locations where a user has a number of

options of where next to travel. The locations of these

zones relative to one another can now be represented as an

adjacency matrix and hence a connected graph. To do this

each node in the graph representing a zone is given a

unique ID between 1 and n, were n is the number of zones.

By querying the EPE the list of zones is retrieved and each

zone is allocated a unique ID. For the two floors in the MS

building there are 19 zones in total. Using the zone map, an

adjacency matrix of size n 9 n is manually created. The

corresponding zone-node list allows all zone data from the

EPE to be manipulated as if each zone was the node in the

connected graph. Figure 5 shows a connected graph rep-

resentation of the two floors in the ISRC. The edges

between nodes show paths that may be travelled and rep-

resent the movements of Wi-Fi tracked people in the

building. The numbers on the nodes are those used by the

zone to node conversion table. Knowledge of where the

user is, whether they are in motion or not and the exact

time are essential for HABITS to function. This is the only

live information that HABITS processes.

Once the live user information is received, HABITS

checks the matrices to see what constraints on movement

exist. Combining these constraints with the data from

Ekahau allows an initial probability prediction to be made

from the transition matrix. Information about node types

and preferred paths is now added to HABITS to further

improve the accuracy of the predictions. Predictions from

HABITS depend on the time scale required and may be

short term, (a few seconds), medium term, (a few minutes–

end of current journey) or longer term, (later that day or

week). The last stage of the operation of HABITS involves

taking a particular action based on the predictions provided

if the probability confidence is high enough or plotting

these future locations on a map. The following is a sample

scenario taken for real movement data within the ISRC.

The user has left his desk. HABITS is attempting to predict

where he will go to next. The pseudo code and associated

explain the scenario and the steps HABITS takes in order

to make a prediction follow.

1. If tag = Eoghan

2. Node = 5 and previous node = 4

3. Node 5 NOT = wait node

4. Action = calc next node,

5. On preferred path–NO

6. Next node = Either 2, 3, 6, 7, 8 %, all have non-zero

probability

7. Check time period = Lunch

8. If time = Lunch THEN next node is 6 or 3 %.

Probability > 80 %

9. Check other users in area

10. If with John THEN next node = 6 %. John doesn’t

go to the canteen

11. If with Mary THEN next node = 3 %. Mary

usually goes to the canteen

12. If alone then next node = 6 (40 %) OR 3 (40 %) %

wait for more info

13. Use speed and distance to calculate position at time t

14. Calculate and show positions at t 1 1, t 1 2���t 1 n

An update is now received from the Ekahau RTLS. This

update is not in a zone so using the nearest neighbour

search the closest node is found to be node 16. Given that

the last zone entered update was from the wait node 18,

HABITS now possesses three bits of new information.

xt = node 16, xt-1 = node 18 and user Eoghan is

‘in-motion’.

Fig. 5 First floor plan—signal

strength map
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From this new information HABITS can offer only a

general prediction of the next possible node that will be

visited. Eight different options are possible at this stage.

Node 16 is not a ‘wait node’ therefore HABITS does not

consider this to be the end of the current journey. The

options at node 16 are listed in Table 2.

While node 15 is given as having a much higher prob-

ability that the other possible next nodes, 0.27 is too low to

make any kind of reasonable prediction so HABITS must

wait for more information from Ekahau. If another location

update is received between nodes 15 and 4. HABITS

knows from the previous bel(xt) that node 15 was one of

the last possible nodes, therefore, even though node 15 is

slightly closer to the update than node 4 (from the k nearest

neighbours search, 15 closest, followed by 4), it chooses

node 4 as the next node from which to make a calculation.

At this point due to a lack of other options and the fact that

HABITS has information about the previous four nodes

18–16–15–4, a fairly confident prediction can be made that

the next node to be visited is will be node 5.

When a third update is received which is very close to

node 5, given the previous nodes sequence, the distance

from the third update to node 5 and the previous prediction,

HABITS carries out the next prediction based on node 5 as

its current node. As node 5 is also a transition node, pos-

sible predictions from the transition matrix give five pos-

sible next nodes as Table 3 shows. At this stage no

prediction can be made as node next node has a clear

higher probability. Probabilities change when the preferred

paths for the current time period are checked. Here, as the

time period is equal to ‘lunch’ and the previous node

sequence is quite extensive at this stage, two nodes, 3 and 6

now possess a significantly higher probability that the other

possible nodes. The preferred path statistics are shown in

Table 4.

HABITS can now say with over 80 % confidence that

the next node to be visited will be either node 3 or node 6.

To further increase the accuracy of the predictions, HAB-

ITS checks to see if there are any other users in the area.

Figure 6 depicts a position update being received from

John. Examining the preferred path of John reveals that

John does not go to node 3. As the paths of Eoghan and

John are regularly together, combining John’s ‘preferred

path’ probability with Eoghan’s gives a new prediction that

Eoghan will go to node 6 with 80 % confidence.

5 Overcoming signal black spots

With the predictions available from HABITS, the location

of a tracked person can be intelligently guessed when

Ekahau loses it in a signal black spot. Table 5 shows the

improvements due to HABITS at particular black spots.

The three black spots tested below are the three stairwells

in the research centre. When using Ekahau alone the

accuracy of a position estimates is very low in these areas.

However, on journeys through the building, HABITS was

able to more than half the error in estimate of location

within these black spots. While a subject is travelling

through a black spot, HABITS estimates were within the

figures listed 95 % of the time. It was concluded that the

5 % of the time the estimate were above the stated accu-

racy were due to stopping and turning around or just

stopping midway through the journey.

Table 6 describes the difference between Ekahau when

set up with a low number of APs (the amount required for

data communication), the same setup with the addition of

HABITS and Ekahau alone but with many more APs

installed. The extra APs were installed to test the

improvements to Ekahau when many extra APs where

available. For the purposes of these tests, an extra 5 APs

were temporally installed and a number of calibration and

test surveys were conducted. These did improve the

accuracy of the Ekahau RTLS to almost 2 m which is

comparable to the overall average accuracy achievable

when HABITS is in operation. The yield of the Ekahau

Table 2 Probabilities from the transition matrix at node 16

Node no 15 13 12 11 14 17 19 5

Bel(xt) 0.27 0.05 0.05 0.01 0.05 0.05 0.01 0.01

Table 3 Probabilities from the transition matrix at node 5

Node Number 3 2 6 7 8

Bel(xt) 0.17 0.02 0.31 0.15 0.02

Table 4 Preferred Path options

at node 5
1st

node

2nd

node

3rd

node

4th

node

5th

node

6th

node

No. of times

repeated

Time

period

Probability

18 16 15 4 5 3 2 Lunch 0.25

18 16 15 4 5 6 6 Lunch 0.75
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RTLS is also increased by HABITS to a level that is

comparable with doubling the amount of APs.

These results show that when implementing a system

such as Ekahau without redesigning the AP layout, the

average accuracy achieved of 4 m is well below the level

of 1 m which is claimed by Ekahau. Adding substantially

more APs (five per floor) did improve the average accuracy

to approximately 2 m in our test area. However, this

improvement came with a significant extra cost in terms of:

installation, calibration time and deployment cost as each

AP is around €100. Application of HABITS showed a

marked improvement compared to just using the Ekahau

system by itself.

Overall HABITS improves on the standard Ekahau

RTLS in terms of: Accuracy, Yield, Latency, Cost and

Predictive ability. Accuracy is improved as HABITS is

able to overcome signal black spots and give higher loca-

tion accuracy than Ekahau alone. The Yield is improved as

HABITS enables positioning to be carried out in locations

where Ekahau previously failed or gave low levels of

accuracy. Signal black spots are overcome by the operation

of HABITS. Latency is improved as HABITS predictions

allow for continuous location updates. Savings are made in

terms of Cost as when employing HABITS, fewer extra

APs are required to give improved accuracy levels. HAB-

ITS improves overall positioning accuracy to a level that is

normally achievable only by investment in extra infra-

structure. Finally, HABITS provides a predictive ability

which is not available in any existing RTLS. These pre-

dictions are available in the short term and medium and

long term behaviour suggestions are also available.

A number of future opportunities exist to enhance

HABITS. If a large scale deployment of HABITS was to be

created then issues relating to scalability and algorithm

complexity and efficiency would need to be addressed.

Methods dealing with the changing of subject’s habits and

MS Ground Floor

MS First Floor

1

2

3

6

4

5

7

8

9
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14 17

15

19

16

18
13

11

12

Wait Ekahau

E1

E3

E2

p5=0.02

p4=0.10
p3=0.8

p2=0.02

p1=0.06

Ekahau Update

Standard Node

Possible next node

Decision Node

Node passed through

Ekahau Update

Standard Node

Possible next node

Decision Node

Node passed through

John

Fig. 6 Checking other users rule, John does not go to the canteen so node 6 becomes most probable

Table 5 Accuracy of HABITS in signal black spots

Accuracy (95 %)

Ekahau (m) HABITS (m)

Black spot 1 (left stairwell) 5.0 2.2

Black spot 2 (centre stairwell) 4.6 2.1

Black spot 3 (right stairwell) 6.1 3.0

Table 6 Results of testing

HABITS
Accuracy

(m) approx

Yield (%) Latency (s) Cost

Ekahau (APs configured for data

communication)

4 84 5–15 Ekahau RTLS

Ekahau plus HABITS 2 97 1 Ekahau RTLS

Ekahau with 5 extra APs per floor 2 100 5–15 Ekahau RTLS plus €100

per AP

Probabilistic indoor human movement
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how the underlying graph and matrices are updated and

modified over a long period of time could also be exam-

ined. Considerations of the social and ethical implications

of movement data collection are obviously important to the

success of the HABITS approach. Options available could

include either forcing people (as happens in the army or in

areas where security is paramount) or encourage them by

offering them some form of reward or benefit in return for

their location data (as is currently used by many social

networks). Questions’ regarding the right and wrong of

people tracking is another subject in itself, however,

HABITS is envisaged initially as being used in areas where

the benefits outweigh the drawbacks.

A potential useful area of application for HABITS could

be in control systems, specifically those that are dependent

on the movement of people. Bolick (2010) reports that

Lighting and Heating, Ventilation and Air Conditioning

(HVAC) account for approximately 60 % of a buildings

energy costs. HABITS gives short (\15 s), medium (15 s–

a few minutes) and long (a few hours or days) term pre-

dictions on the general movement habits of people in a

work environment. Knowledge of where people will travel

within a building and when, also gives information

regarding where they are not likely to go! This knowledge

could be used as input to an intelligent control system for

heating and lighting in a large building. In the short term, if

a system knew what room or area a person would travel to

next, then the lights could already be on or in some standby

mode to facilitate quick power up. This way they would not

have to stay on standby continuously. Areas which were

infrequently travelled could be put into low energy mode or

switched off completely, thereby saving energy consump-

tion costs.

With heating systems a similar but longer term approach

could be applied. If the automatically controlled heating

system knew that at a certain time of day, e.g., lunch, many

people stood in the canteen or corridor then the heat could

be adjusted up or down depending on the outside temper-

ature and number of people. Conversely, if the system

knew areas were people rarely travelled, then the heating

could be turned off and would not be wasted while the area

was vacant. While various sensors can currently control

this, they only work when activated, i.e., when someone

walks past them. HABITS could control the system in

advance and could learn when the movement patterns

changed. Existing sensors (motion) on doors could either

be used in conjunction with HABITS or could be replaced

by HABITS.

If a long term study was carried out or was simulated

then the number of kilowatt hours saved could be calcu-

lated and this should prove to be substantial. The system

could also be linked into controlling air conditioning sys-

tems in areas with hot climates. HABITS is suitable for

such an application as it gives predictions of varying

degree of accuracy and would not be suitable for life

critical applications as there is a large element of proba-

bility involved. However, in building automation control

systems a certain degree of inaccuracy would be acceptable

if the overall energy savings were significant.

6 Conclusion

This paper has outlined the HABITS approach to the

tracking and modeling of people’s movement patterns in an

indoor environment. HABITS aims to overcome weak-

nesses in existing RTLS by using the human approach of

making educated guesses about future location. We con-

clude that HABITS improves on the standard Ekahau

RTLS in term of accuracy (overcoming black spots),

latency (giving position fixes when Ekahau cannot), cost

(less APs are required than are recommended by Ekahau)

and prediction (short term predictions are available from

HABITS). These are features that no other indoor tracking

system currently provides and could provide crucial in

future emergency first responder incidents.

Knowledge of who is where within a building could

potentially provide emergency first responders with

information that could save lives. Quickly finding casu-

alties and rapid but safe evacuation of a building are

primary aims for emergency services and HABITS offers

a new approach that could significantly reduce the time

required to carry out these tasks. Integrating HABITS into

the alarm systems could provide emergency services with

the locations of people within a building even before

those people knew there was an emergency. This could

allow for greater control of the situation and could help

avoid panic.
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