

# **Predictive Indoor Tracking by the Probabilistic Modelling of Human Movement Habits** Eoghan Furey, Kevin Curran, Paul Mc Kevitt Intelligent Systems Research Centre (ISRC), University of Ulster, Magee Campus

### I. Research Aim

- The aim of this research is to create an algorithm that enhances Wi-Fi tracking capability in an indoor environment.
- The **HABITS** (History Aware Based wi-fi Indoor Tracking System) algorithm will allow for real-time continuous tracking in areas where this was not previously possible due to signal black spots. Historical movement patterns will be used to probabilistically facilitate this.

### **II. Positioning Systems**

### **IV. Multisensor data Fusion**

- Multi sensor data fusion can facilitate bringing together data from different sources.
- Using a combination of the live data from Ekahau, historical movement data and dead reckoning information, an enhanced live track may be produced which would be continuous (Ekahau has 5 sec updates at its fastest) and would continue to track when signals were poor - black spots.
- A number of filtering techniques may be used to produce a new estimate of the state of a system.

### **VII. Implementation Graphing/** Mapping



- Positioning is a process to obtain the spatial position of a target.
- In recent years the need has arisen for the development of Location Based Services (LBS) which work in an indoor Large public buildings; universities, environment. hospitals and shopping centres have become target areas.
- Due to the poor performance of Satellite and Cellular systems indoors, a separate system is required.
- 802.11 Wi-Fi networks as specified by the IEEE are available in many large buildings. The signals transmitted by the Access Points (APs) provide a readily available network of signals which may be used for positioning

## III. Ekahau

- The Ekahau RTLS (Real Time Location System) is used to provide the position of a Wi-Fi device.
- It does not rely on proprietary infrastructure or readers in order to track devices.
- The existing 802.11 Wi-Fi network is used for all tracking with signal strengths of the Access Points (APs) being recorded as shown in fig 1.

### V. Bayesian Filtering

- Bayes filter is commonly used in robotics as a method to infer the position of a robot.
- This recursive algorithm enables a position estimate to be continuously updated by including the most recent sensor readings.
- A general form of the Bayes filter, which may be used for a discrete case like this, is outlined in pseudo code below.

#### General Algorithm for Bayes Filtering

- Algorithm\_filter(bel( $x_{t-1}$ ),  $u_t$ ,  $z_t$ ):
- for all xt do
- $\overline{bel}(x_t) = \sum p(x_t | u_t, x_{t-1}) bel(x_{t-1})$  (**PREDICTION STEP**)
- bel ( $x_t$ ) =  $\eta p(z_t | x_t) bel (x_t)$  (UPDATE STEP) 4
- 5 end for
- return bel  $(x_t)$ 6

Inputs belief bel( $x_{t-1}$ ) at t-1; most recent control  $u_t$  + measurement  $z_t$ . Output is the belief bel  $(x_t)$  at time t.

#### Fig 6: Indoor map represented as a graph

- The test area would need to be mapped in a similar way to Ekahau. These maps would contain all the possible routes that a person may travel.
- A graph may be used as a means of representing the movement of people indoors (Fig 6).
- This graph of the area will be used along with the historical movement data of a person (Fig 7) in order to calculate the transition matrix

| Movement History of User 1 |         |           |         |  |  |  |  |  |
|----------------------------|---------|-----------|---------|--|--|--|--|--|
|                            | Morning | Afternoon | Evening |  |  |  |  |  |
| Day 1                      | 12467   | 5645,5467 | 76421   |  |  |  |  |  |
| Day 2                      | 12467   | 768,867   | 76421   |  |  |  |  |  |
| Day 3                      | 12467   | 768,867   | 76421   |  |  |  |  |  |
| Day 4                      | 12467   | 7645      | 5421    |  |  |  |  |  |

Fig 7: Historical movement sequences through the nodes.

## **VIII. Probablistic Matrices**

- The more HABITS is used the more accurate it should become.
- When a critical set of historical movement data has been gathered it can be analysed for patterns.



Fig 1: Heat Map showing areas of similar RSS values

- Ekahau Site Survey records RSSI data of the test area.
- This data is mapped to a model which shows the areas where a Wi-Fi enabled device may travel (Fig 2).



- Fig 2: Map showing areas where a user may travel
- The observed Wi-Fi signal strength data is recorded at each location. A probability is then assigned to each location based on this data as Fig 3 shows.

### **VI. HABITS Overview and Context**



Figure 4 gives the flow of data in HABITS.

- The Ekahau API enables a position estimate from the Ekahau system to be fed into the fusion algorithm.
- This information will then be compared to the data stored in the historical database.
- From this a prediction of the movement steps for the next 5 seconds will be calculated.

- Probabilistic functions can be calculated for the decision points. Fig 8 shows the initial probability of moving from one state to a neighbouring one.
- This data will then be used to update the various weights/inputs to the HABITS algorithm.
- Movement patterns of a particular user or type of user can facilitate profiling which can be used for a number of ambient intelligent applications.

**Prior State** 

|              |   | 1   | 2   | 3   | 4   | 5   | 6   | 7    | 8    |  |  |
|--------------|---|-----|-----|-----|-----|-----|-----|------|------|--|--|
| New<br>State | 1 | 0.5 | 0.5 | 0   | 0   | 0   | 0   | 0    | 0    |  |  |
|              | 2 | 0.2 | 0.5 | 0.1 | 0.2 | 0   | 0   | 0    | 0    |  |  |
|              | 3 | 0   | 0.5 | 0.5 | 0   | 0   | 0   | 0    | 0    |  |  |
|              | 4 | 0   | 0.2 | 0   | 0.5 | 0.1 | 0.2 | 0    | 0    |  |  |
|              | 5 | 0   | 0   | 0   | 0.5 | 0.5 | 0   | 0    | 0    |  |  |
|              | 6 | 0   | 0   | 0   | 0.2 | 0   | 0.5 | 0.15 | 0.15 |  |  |
|              | 7 | 0   | 0   | 0   | 0   | 0   | 0.5 | 0.5  | 0    |  |  |
|              | 8 | 0   | 0   | 0   | 0   | 0   | 0.5 | 0    | 0.5  |  |  |

#### Fig 8: Transition Matrix

•HABITS can be tested by comparing its tracking capability with the standard Ekahau system in terms of Accuracy, Precision, Yield and Latency.



Fig 3: Probabilistic estimation in Ekahau

• These predicted positions will be plotted on the map. Figure 5 shows the context in which HABITS will be used.



Fig 5: Context of HABITS

### **IX.** Publications

• Curran, K., Furey, E., (2007). "Pinpointing Users with Location Estimation Techniques and Wi-Fi Hotspot Technology". Int Journal of Network Management

• Furey, E., Curran, K., Mc Kevitt, P., (2008) "HABITS: A History Aware Based Wi-Fi Indoor Tracking System". PGNET 2008 The 9th Annual Postgraduate Symposium: The Convergence of Telecommunications, Networking and Broadcasting 2008. Liverpool, John Moores University, UK

• Petzold, J., Bagci, F., Trumler, W. And Ungerer, T., 2006. "Comparison of Different Methods for Next Location Prediction". Lecture Notes In Computer Science, pp. 909