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· Bayes filter is commonly used in robotics as a method to 

infer the position of a robot.  

· This recursive algorithm enables a position estimate to be 

continuously updated by including the most recent sensor 

readings.  

· A general form of the Bayes filter, which may be used for a 

discrete case like this, is outlined in pseudo code below.
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Fig 3: Probabilistic estimation in Ekahau

 Fig 2: Map showing areas where a user may travel

· Multi sensor data fusion can facilitate bringing together data 

from different sources. 

· Using a combination of the live data from Ekahau, historical 

movement data and dead reckoning information, an enhanced 

live track may be produced which would be continuous 

(Ekahau has 5 sec updates at its fastest) and would continue to 

track when signals were poor - black spots. 

· A number of filtering techniques may be used to produce a 

new estimate of the state of a system.  

· The more HABITS is used the more accurate it should 

become. 

· When a critical set of historical movement data has 

been gathered it can be analysed for patterns.

· Probabilistic functions can be calculated for the 

decision points. Fig 8 shows the initial probability of 

moving from one state to a neighbouring one.

· This data will then be used to update the various 

weights/inputs to the HABITS algorithm . 

· Movement patterns of a particular user or type of user 

can facilitate profiling which can be used for a number 

of ambient intelligent applications.

Figure 4 gives the flow of data in HABITS. 

· The Ekahau API enables a position estimate from the 

Ekahau system to be fed into the fusion algorithm. 

· This information will then be compared to the data stored 

in the historical database. 

· From this a prediction of the movement steps for the next 

5 seconds will be calculated.  

· These predicted positions will be plotted on the map.  

Figure 5 shows the context in which HABITS will be 

used.

Ekahau 

enhanced 

with HABITS

· Positioning is a process to obtain the spatial position of a 

target.  

· In recent years the need has arisen for the development of 

Location Based Services (LBS) which work in an indoor 

environment.  Large public buildings; universities, 

hospitals and shopping centres have become target areas.  

· Due to the poor performance of Satellite and Cellular 

systems indoors, a separate system is required. 

· 802.11 Wi-Fi networks as specified by the IEEE are 

available in many large buildings.  The signals transmitted 

by the Access Points (APs) provide a readily available 

network of signals which may be used for positioning

· HABITS can be tested by comparing its tracking 

capability with the standard Ekahau system in terms 

of Accuracy, Precision, Yield and Latency.

· The Ekahau RTLS (Real Time Location System) is used to 

provide the position of a Wi-Fi device.  

· It does not rely on proprietary infrastructure or readers in 

order to track devices. 

· The existing 802.11 Wi-Fi network is used for all tracking 

with signal strengths of the Access Points (APs) being 

recorded as shown in fig 1. 

· Ekahau Site Survey records RSSI data of the test area.  

· This data is mapped to a model which shows the areas 

where a Wi-Fi enabled device may travel (Fig 2). 

· The test area would need to be mapped in a similar way 

to Ekahau.  These maps would contain all the possible 

routes that a person may travel.  

· A graph may be used as a means of representing the 

movement of people indoors (Fig 6).

· This graph of the area will be used along with the 

historical movement data of a person (Fig 7) in order to 

calculate the transition matrix 

· The observed Wi-Fi signal strength data is recorded at 

each location. A probability is then assigned to each 

location based on this data as Fig 3 shows.  

· The aim of this research is to create an algorithm that 

enhances Wi-Fi tracking capability in an indoor 

environment.  

· The HABITS (History Aware Based wi-fi Indoor Tracking 

System) algorithm will allow for real-time continuous 

tracking in areas where this was not previously possible 

due to signal black spots.  Historical movement patterns 

will be used to probabilistically facilitate this.

Fig 1: Heat Map showing areas of similar RSS values
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Fig 4: HABITS overview
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Fig 5: Context of HABITS

VI.  HABITS Overview and Context 

 General Algorithm for Bayes Filtering 

1  Algorithm_filter(bel(xt-1), ut, zt): 

2    for all xt do 

3       bel (xt) =  p(xt | ut, xt-1) bel (xt – 1)  (PREDICTION STEP) 

4        bel (xt) =  p(zt | xt) bel (xt) (UPDATE STEP) 

5     end for 

6     return bel (xt) 

 

Inputs belief bel(xt-1) at t-1; most recent control ut + measurement zt.  

Output is the belief bel (xt) at time t. 
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Fig 7: Historical movement sequences through the nodes.
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Fig 6: Indoor map represented as a graph
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Fig 8: Transition Matrix
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