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1 The spiking neuron model

Here we describe the architecture and specify parameters of the computational model
developed in [S1] and used in the present paper.

1.1 Integrate and fire dynamics

A leaky integrate-and-fire neuronal model is used to simulate the pyramidal cells and
interneurons. Each model neuron has a resting membrane potential of V;, = —70
mV, a firing threshold of V;;, = —50 mV, and a reset potential of V.cse; = —55 mV.
The membrane leak conductances for pyramidal cells and interneurons are gy, = 25
nS and 20 nS respectively, and the membrane time constants for pyramidal cells and
interneurons are 7, = 20 ms and 10 ms, respectively. The corresponding membrane
capacitances are given by Cp, = g1 /7.

Below the firing threshold of each cell, the dynamical equation for its cellular
membrane potential V,, is:

Vi, ()
dt

where I, is the total synaptic input current, as described below. When threshold
is reached (V,,,(t) = Vi), the cell fires an action potential that is approximated by
a Dirac delta function. V,, is then immediately reset to Vyeser and clamped for an
absolute refractory period of 2 ms for pyramidal cells and 1 ms for interneurons.

Cr = =90(Vin(t) = VL) = Lsyn(t),

1.2 Synapses

The synaptic current I, entering each cell consists of both external (ext) inputs
and recurrent (rec) synaptic connections. Recurrent inputs include both excitatory
and inhibitory currents. Excitatory inputs are made up of AMPA and NMDA
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receptor-mediated (glutamatergic) synapses, while inhibitory inputs are GABA 4
receptor-mediated. In all, the input currents are as follows:

Isyn(t) — Iemt,AMPA(t) + Irec,AMPA(t) + Irec,NMDA(t) + Irec,GABA(t)a
Ieat,amipaA(t) = Geat,apA(V(t) — VE)Sjeat,ampa(t),
Ng
Irec,AMPA(t) = grec,AMPA(V(t) - VE) Z ijj,rec,AMPA(t)y
j=1
Grec NMDA(V(t) - VE')
Irec t = ’ S t),
NDA() (1+¢A@f+kmmc—ooﬁzvayv357)2;““ supa(t)
Ny
Lree.aaBa(t) = gaapa(V(t) — Vi) Z Sjcapa(t).
j=1

Here, with appropriate subscripts, g denotes the peak synaptic conductance, S the
synaptic gating variable (fraction of open channels), Vy = 0 the reversal poten-
tial of excitatory connectivity, and V; = —70 mV the reversal potential for in-
hibitory synapses. The sum over j is a sum over presynaptic neurons. The voltage-
dependent NMDA current is controlled by extracellular magnesium concentration
[Mg**], which is set at 1 mM. The peak conductances for excitatory synapses
to pyramidal cells, in units of uS, are grec,anrpa = 0.0005, Gext,anrpa = 0.0021,
gnmpa = 0.000165, and they are grec,amrpa = 0.00004, gext,ampa = 0.00162,
gnmpAa = 0.00013 to the interneurons. Peak conductances ggapa for inhibitory
synapses to pyramidal cells and interneurons are 0.0013 S and 0.001 uS respec-
tively. All peak conductance values are comparable to experimental measurements.
A dimensionless potentiation factor w is included to represent the structure of
excitatory synapses. Those within the two selective populations are chosen to be
relatively stronger (w = w4 = 1.7 > 1) than excitatory synapses to cells outside the
selective populations or across populations. To ensure that all excitatory neurons
maintain the same spontaneous mean firing rate, compensation from unpotentiated
synapses is required such that w = w_ = 1 — f(wy —1)/(1 — f) < 1 for the
synapses between two different selective populations, and for synapses between the
nonselective population to selective ones [S2]. For all other connections, w = 1.
The dynamics of the synaptic gating variables are described by:

dSj anpa(t) Sjampa(t)
dt TAMPA Z
dSjcapa(t) Sjcaa(t)
dt TGABA Z
ds; t Sj ¢
JM%Q:_JM%QMWW%%WMW7
dt 7-NMDA decay
dxj (t)
— = T NS
dt 7'NMDA rise Z



where the summation of delta functions denotes the sum of presynaptic spikes. The
time constants are TAp pa = 2 MS, TNMDA,decay = 100 mS, TNpM DA rise = 2 msS,
TGABA = 5 ms, and a = 0.5 ms~!. The rise time for AMPA and GABA (< 1 ms)
are assumed to be instantaneous.

Spikes from cells external to the local network, with a combined presynaptic
mean firing rate fe;; = 2.4 kHz, and from upstream neurons (e.g. visual motion
stimulus via MT/V5 cells), are assumed to go through AMPA receptors. Follow-
ing [S1], we approximate the spike times té‘? by drawing independent samples from
Gaussian distributions with mean and variance

psext, AMPA = 0.001 fezt Geat, AMPATAMPA,

0Seat, AMPA = /0.5 Gext, AMPA [US,cat, AMPA;

which are derived from the asymptotic values of the conductances. This approxi-
mation is adequate for high spike rates, but we are currently developing a method
that applies over a broader range of firing rates. Finally, the external conductances
Sjext,AMPA(t) are calculated as

—Sjext, AMPA + S,ext, AMPA 2dt

dSj ext, anpa(t) = dt—= = + 0S,ext, AMPA N(0,1),
TAMPA TAMPA

where N(0,1) is a standard normal distribution. This is the source of variability

and noise in the simulation.

1.3 Simulations

The firing rate of each neural population is computed by averaging the total number
spikes over an exponentially decaying, sliding time window with a 20 ms decay
time constant. This computation is repeated every 2 ms. The Euler-Maruyama
method with fixed step size of 0.05 ms was used for numerical integration of all the
dynamical equations. For each selected parameter set, the neural and behavioral
data predicted by the model were averaged over 500 trials. Simulations were run on
a Linux workstation.

2 Linear approximation of NE concentration in terms
of tonic LC activity

Microdialysis measurements of NE concentrations in cortical cells resulting from a
range of LC discharge rates [S3| allow us to quantify this relationship. Supplemen-
tary Fig. 1 shows that a linear fit is acceptable, as noted in the main text. However,
as also noted there, data that would allow us to describe the relationship between
NE levels and synaptic conductances are lacking. In the absence of such data we
assume a linear relationship in that case also.
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Supplementary Figure 1: Linear fit to experimental data relating NE
concentration to tonic LC neuronal activity. Data adapted from [S3, Fig. §].



