
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2011 Society for Industrial and Applied Mathematics
Vol. 10, No. 1, pp. 148–188

Dimension Reduction and Dynamics of a Spiking Neural Network Model for
Decision Making under Neuromodulation∗
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Abstract. Previous models of neuromodulation in cortical circuits have used either physiologically based net-
works of spiking neurons or simplified gain adjustments in low-dimensional connectionist models.
Here we reduce a high-dimensional spiking neuronal network model, first to a four-population mean-
field model and then to a two-population model. This provides a realistic implementation of neu-
romodulation in low-dimensional decision-making models, speeds up simulations by three orders
of magnitude, and allows bifurcation and phase-plane analyses of the reduced models that illumi-
nate neuromodulatory mechanisms. As modulation of excitation-inhibition varies, the network can
move from unaroused states, through optimal performance to impulsive states, and eventually lose
inhibition-driven winner-take-all behavior: all are clear outcomes of the bifurcation structure. We
illustrate the value of reduced models by a study of the speed-accuracy tradeoff in decision mak-
ing. The ability of such models to recreate neuromodulatory dynamics of the spiking network will
accelerate the pace of future experiments linking behavioral data to cellular neurophysiology.
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1. Introduction. Neuromodulation plays an important role in cognitive processes such as
decision making [17], but there is currently no direct connection between cellular-level effects
of neuromodulators and low-dimensional models of decision dynamics. This paper investigates
how neuromodulation at the synaptic level influences performance on a two-alternative, forced-
choice (2AFC) decision task. Such tasks are often modeled in cognitive psychology by leaky,
competing accumulators [46], each equipped with a decision variable representing the activity
of a neural population selective for one of the two stimuli. Choices are signaled when the
first of these variables crosses a fixed threshold. In this context, neuromodulation is typically
introduced at an abstract level by changing the slope and/or bias point in the functions that
characterize how the decision variables respond to stimulus inputs [39, 45, 24, 41, 42].

∗Received by the editors September 3, 2009; accepted for publication (in revised form) by B. Ermentrout Novem-
ber 11, 2010; published electronically February 22, 2011. This work was supported by the National Institute of
Mental Health (MH62196, Cognitive and Neural Mechanisms of Conflict and Control, Silvio M. Conte Center), and
by the Air Force Research Laboratory (FA9550-07-1-0537).

http://www.siam.org/journals/siads/10-1/77009.html
†Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (peckhoff@

princeton.edu). This author benefited from a Fannie and John Hertz and NSF coordinated graduate fellowship.
‡Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Princeton University,

Princeton, NJ 08544 (kfwong@princeton.edu).
§Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Department of Me-

chanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (pholmes@math.princeton.edu).

148

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/siads/10-1/77009.html
mailto:peckhoff@princeton.edu
mailto:peckhoff@princeton.edu
mailto:kfwong@princeton.edu
mailto:pholmes@math.princeton.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIMENSION REDUCTION OF A NEUROMODULATED SPIKING NETWORK 149

Such high-level models take the form of stochastic ordinary differential equations (ODEs).
These are attractive not only for their analytical and computational tractability but also
because, under suitable conditions, their behavior can be approximated by yet simpler one-
dimensional Ornstein–Uhlenbeck (OU) and drift-diffusion (DD) processes [25, 8, 18]. As
described in [26, 8], DD processes with constant drift rate are optimal in the sense that
they render a decision of guaranteed accuracy in the minimum possible time, allowing one to
test human and animal behavior against a normative theory, and, specifically, to compute a
speed-accuracy tradeoff that optimizes performance [8].

In [19] we began a larger scale computational study of norepinephrine (NE) modulation
on decision making. It is known that NE can change cellular excitability and synaptic efficacy,
thus altering performance in behavioral tasks [7, 5, 9, 38]. Adapting a spiking neuronal network
model from [47], we examined the effects of tonic and phasic NE release when glutamatergic
and GABA-ergic synapses are both simultaneously and separately modulated. The biophysical
detail in this 2000-neuron model allows comparison with both behavioral and physiological
experiments [48, 6], but it contains 9200 ODEs, rendering it computationally expensive and
analytically intractable. In order to better understand the underlying mechanisms and to
enable faster simulation studies, a low-dimensional reduction that preserves key physiological
details is desirable.

Drawing on the studies of [19], here we perform a reduction that includes neuromodulation
of synaptic conductances. Spiking networks have previously been reduced to four- and two-
population mean-field models for a fixed set of synaptic gains [49]. Here, we show that these
models cannot capture extended neuromodulatory effects. In contrast, the models developed
in this paper are designed to reproduce behavioral changes over a wide range of synaptic
gains. Careful matching of reward rates and analyses of bifurcation diagrams play central
roles in our analyses. The extended mean-field version of a working-memory model [13, 15]
can capture the effects of neuromodulation and find attractors and bifurcation structures, but
it is computationally intensive due to self-consistency calculations. It is therefore difficult to
simulate behavior in order to estimate subject reaction times, accuracies, and reward rates
under different gain conditions. The present reduced models overcome this problem, speeding
up simulations over the spiking model by O(103) for the four-population model and by 3600 for
the two-population model, and facilitating bifurcation and nullcline analyses. Moreover, while
slices of behavior can be studied and stable states can be determined in the full spiking model,
the reduced models allow complete bifurcation studies with computationally determined basins
of attraction.

In section 2 we extend the studies of [19] to better map the behavioral effects of differ-
ent synaptic changes in the original spiking neuronal network, examining task performance
metrics and network firing rate behaviors. Section 3 covers the four-population model, de-
scribing its derivation, simulated behavioral results, and bifurcation structures. In section 4
we perform the final reduction to a two-population model and compare its behavior to that
of the four-population and full spiking models. Bifurcation diagrams for the reduced mod-
els illuminate various phenomena of the spiking model, which its high-dimensionality renders
opaque. The transition from unarousal, through good performance, to impulsive behavior can
be understood from bifurcation diagrams, noise levels, and basins of attraction. The reduced
neuromodulation models are then used to implement a speed-accuracy tradeoff, described in
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section 5, which in principle links behavioral and neurophysiological experiments. The paper
closes with a discussion in section 6. Technical details of the reduction process are relegated
to appendices.

2. Neuromodulation in a spiking network model. In this section we extend the computa-
tional study of [19], which was motivated by perceptual choice experiments in which subjects
are under pressure to respond correctly to as many trials as possible, under a free-response
paradigm, in a session of fixed duration. The simplest choices are binary, and such tasks
are widely studied. In a visual instantiation, a coherent subset of random dots moves in one
of two target directions, which must be correctly signaled to gain a reward. Task difficulty
is adjusted by the stimulus strength E ∈ [0, 1], E = 0 indicating complete randomness and
E = 1 indicating 100% coherence [10, 11, 40].

Direct recordings in monkeys suggest that the lateral intraparietal area (LIP), among
others, integrates motion evidence from the middle temporal area (MT) of visual cortex [28,
29, 40, 31], and that its firing rates reach a threshold just prior to response [37]. We apply
a similar criterion in the spiking model, thus determining decision times (DT ) from stimulus
onset to threshold crossing, for each trial. The response-to-stimulus interval (RSI) imposed
by the experimenter is also important in defining performance; it will be studied in section 5.
Including nondecision latencies (NDL), such as signal processing and motor preparation, the
reward rate is defined as

(1) RR =
〈Acc〉

〈DT +NDL+RSI〉 :

this is the performance measure used below. In (1) 〈·〉 denote averages over trials and the
accuracy 〈Acc〉 is the fraction of rewarded trials in the session. If a threshold is crossed before
stimulus onset, the trial is defined as an impulsive choice or false alarm, and if no threshold
is crossed before 2000 ms, a no-choice trial is declared. No reward is given in either case.

2.1. The model structure. The spiking network of [47, 49, 19] was derived from earlier
studies [13] and specifically tuned to represent the MT-LIP system. It contains 2000 leaky
integrate-and-fire neurons divided into four groups: two stimulus-selective populations of N1 =
N2 = 240 pyramidal cells, a nonselective population of N3 = 1120 pyramidal cells, and a
population of NI = 400 inhibitory interneurons. The state variables are the (subthreshold)
transmembrane voltages Vj(t) (mV) of each cell j, the network’s internal gating variables
SAMPA,j(t), SNMDA,j(t), and SGABA,j(t), and gating variables SAMPA,ext,j(t) external to the
local circuit, which include noisy inputs from MT neurons as well as other brain areas, that
enter all 2000 cells. These Stype,j’s describe integrated presynaptic activities which are summed
and then multiplied by connection weights and synaptic conductances to yield an effective
conductance in units of nS: hence only NI SGABA,j’s are required for the interneurons, and
NE glutamatergic synaptic variables for the pyramidal cells. Connection weights ωj,k among
the cells depend on the identity of pre- and postsynaptic populations and are supposed to have
formed in a Hebbian context, with connections within each selective population enhanced and
connections to other excitatory populations suppressed [2, 3].
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The ODEs describing this leaky integrate-and-fire neuronal model take the form

Cj
dVj
dt

= −gL(Vj − VL) + Isyn,j(t),(2)

dStype,j
dt

= −Stype,j
Ttype

+
∑
l

δ(t− tlj),(3)

where type = AMPA or GABA, Ttype is the time constant for that synapse type, and the
summation of delta functions in (3) is over spikes in the presynaptic neuron. Here j ∈ [1, 2000]
identifies presynaptic cells with j ∈ [1, 1600] for pyramidal cells and j ∈ [1601, 2000] for
interneurons, with different cell types tracking their appropriate synaptic variables.

The slower NMDA synapses require two ODEs for each j ∈ [0, 1600] with separate time
constants describing the rise and fall of SNMDA,j:

dSNMDA,j(t)

dt
= − SNMDA,j(t)

τNMDA,decay
+ αxj(t)(1− SNMDA,j(t)),(4)

dxj(t)

dt
= − xj(t)

τNMDA,rise
+

∑
l

δ(t− tlj).(5)

When Vj(t) crosses a threshold Vthresh at time tlj the cell emits a delta function δ(t− tlj), after
which Vj is instantaneously reset and held at Vreset for an absolute refractory period τref .

Spikes from cells external to the local network, with a combined presynaptic firing rate
fext = 2.4 kHz due to a 3 Hz background firing rate of approximately 800 external presynaptic
connections, as described in [47, 49], and from upstream sensory neurons, are assumed to be
filtered by AMPA receptors, and their spike times tlj , which would normally be taken as
independently generated Poisson processes, are approximated by drawing from independent
Gaussian distributions with mean and variance

μS,AMPA,ext,j = 0.001 fext τAMPA,(6)

σS,AMPA,ext,j =
√

0.5μS,AMPA,ext,j,(7)

derived from the asymptotic values of the conductances. The factor 0.001 in (6) is due to the
conversion of τ from ms to s. Thus, the external conductances SAMPA,ext,j(t) are calculated
as
(8)

dSAMPA,ext,j(t) = −(SAMPA,ext,j − μS,AMPA,ext,j)
dt

τAMPA
+ σS,AMPA,ext,j

√
2dt

τAMPA
N (0, 1),

where N (0, 1) is a standard normal distribution. This is the source of variability and noise in
the simulation.
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The synaptic currents in (2) are given by

Isyn,k(t) = IAMPA,ext,k(t) + IAMPA,rec,k(t) + INMDA,rec,k(t) + IGABA,rec,k(t),

IAMPA,ext,k(t) = −gAMPA,ext,k(Vk − VE)SAMPA,ext,k(t),

IAMPA,rec,k(t) = −gAMPA,rec,k(Vk − VE)

NE∑
j=1

wj,kSAMPA,j(t),(9)

INMDA,rec,k(t) = − gNMDA,rec,k(Vk − VE)

(1 + [Mg2+] exp(−0.062Vk)/3.57)

NE∑
j=1

wj,kSNMDA,j(t),

IGABA,rec,k(t) = −gGABA,rec,k(Vk − VI)

NI∑
j=1

SGABA,j(t).

Here the subscript rec (henceforth omitted) indicates recurrent connections within the net-
work, VE and VI are the glutamatergic and GABA-ergic synaptic reversal potentials, gtype,k
are synaptic conductances, and gL in (2) denotes the leak conductance. For each synapse
type there are two conductance values: gtype,p for postsynaptic pyramidal neurons and gtype,I
for postsynaptic interneurons. Stimuli are included by adding terms of the form μ0(1±E) to
fext in (6) defining μS,AMPA,ext,k for the selective cells, where μ0 is a background input and
E ∈ [−1, 1] is the coherence defined above. These will be used as bifurcation parameters in
section 3.5. All parameter values for the model are listed in Appendix A.

Equations (2)–(9) define a 9200-dimensional dynamical system. Specifically, k ranges
from 1 to 2000 for voltages Vk and external inputs SAMPA,ext,k, but j ranges only from 1 to
NE = 1600 for the excitatory variables SAMPA,j, SNMDA,j, and xj , and for SGABA,j.

Neuromodulation can be modeled by changing the leak gL and synaptic conductances
gtype,k. In [19], we showed that modulating gL has similar effects to gtype,k, and we shall not
vary gL here. Experiments have yet to distinguish any differential effects of NE on NMDA and
AMPA (glutamatergic) synapses, so we introduce two parameters, γE which scales gNMDA

and gAMPA equally, and γI which scales gGABA. These are allowed to vary separately, since
there is insufficient physiological data to determine them from NE concentrations [NE]. In [19]
both tonic and phasic (dynamic) NE release were modeled (cf. [45, 43]), but here we consider
only tonic NE levels. When a mapping from [NE] to (γE , γI) is determined experimentally,
it can be implemented in our model. Our approach may also be generalized to include other
neuromodulators which affect the same synapse types.

2.2. Model performance in conductance space. In [19] we showed that a ratio of GABA-
ergic to glutamatergic synaptic modulation of approximately 2:1 is optimal for robustness in
that reward rates remain at high levels over the widest range of γI , but only one-dimensional
slices of the neuromodulation plane were examined. In Figure 1 we extend those results over
the region (γE , γI) ∈ [0, 3]× [0, 3], plotting values of the performance measures that enter (1).

Figure 1(a) shows that no trials are rewarded for γE < 0.65, because low excitation cannot
overcome leak conductance, even without inhibition. For γE > 0.65 good performance exists
between the no-choice region on the left and the impulsive region on the right, with reward
rates gradually dropping along a line of slope γI/γE = 1. A line of slope 1 can remain in the
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Figure 1. Contour maps of network performance over the glutamatergic (γE) and GABA-ergic (γI) gain
modulation plane. (a) Reward rate RR: ridge of higher rewards has slope ≈ 2 near γE = γI = 1.0 that moderates
to ≈ 1 at higher gains. (b) Fraction of rewarded trials 〈Acc〉: note steeper drop above the ridge, where good
performance yields to no-choice trials, and shallower drop below, where impulsive trials begin. (c) Mean decision
time 〈DT 〉: inhibition dominates at upper left causing no-choices (aborted after 2000 ms, red shades); excitation
dominates at lower right causing fast impulsive trials (blue shades).

good region far to the right but quickly encounters no-choices to the left. This failure mode
is reversed for steeper slopes as no-choices appear for high γE, and impulsive choices as γE
drops below 1 (cf. the 3:1 ratio case [19]), and a slope γI : γE = 2 keeps performance above
the impulsive regime longest before reaching γE = 0.65.

Accuracy (Figure 1(b)) has a similar profile to reward rate, both falling more steeply
toward no-choice trials at the upper left than to impulsive ones at lower right (note fast
decision times in Figure 1(c)). The optimal reward rate ridge grows wider at higher gains,
curving over from a high initial slope to approach a slope of 1. We wish to preserve these key
features in our low-dimensional reductions, especially those of Figure 1(a), but, in addition
to gross behavioral measures, we also seek to understand the network dynamics that underlie
this behavior.

Supplementing Figure 1, Figure 2 delineates regions in the neuromodulation plane in which
distinct system behaviors are observed. We describe these moving from top left to bottom
right. In the region labeled “below threshold,” inhibition dominates excitation, and, even in
the presence of stimulus and noise, a unique stable steady state exists in which the firing rates
of both selective populations remain below the decision threshold (here 20 Hz): see the top
row of Figure 2(b). Prefiguring the bifurcation analyses in section 3.5, we refer to this as
a low-low attractor. As noted above, a certain degree of excitation, primarily from external
inputs, is required to overcome leak and allow response. Interneuronal capacitances also differ
from those of pyramidal cells, allowing them to spike at lower external currents. Hence as
recurrent inhibition γI rises, it takes more excitation γE to escape this regime, which extends
rightward at higher γI .

In the peak discriminability region, with stimulus present, the network acquires two ad-
ditional high-low attractors in which one selective pyramidal population fires above threshold
and the other selective and the nonselective populations are suppressed. There are two sepa-
rate subregions of interest, the first of which includes the high reward rate ridge of Figure 1(a);
here both selective populations remain near the low-low attractor with noise present and stim-
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Figure 2. (a) Behavior of the spiking model over an expanded neuromodulation plane visualized through
a plot of the relative separation between poststimulus firing rates of the two selective populations. In the be-
low threshold region both selective populations remain subthreshold. In the peak discriminability region neural
activities of the selective populations split, with one population crossing threshold and suppressing the other.
Moving right and downward, impulsivity rises as excitation increases and inhibition drops, and eventually both
populations approach high firing rates and pooled inhibition is insufficient to suppress any excitatory population,
leading to loss of discriminability. (b) Firing rate traces illustrating different outcomes: subthreshold activity
( (0.8,1), below threshold), optimal splitting ( (1,1), peak discriminability), impulsive but still splitting ( (2,2),
upper-right peak discriminability) behaviors, and partial failure of pooled inhibition ( (2,1.05), loss of discrim-
inability). In the no discriminability, both high region all excitatory firing rates are approximately equal and
very high (not shown in (b)). Traces show populations 1 (blue), 2 (red), 3 (black), and I (green); dashed lines
indicate decision thresholds; stimulus onset is at time zero; (γE, γI) values are given at top left.

ulus off, and both initially ramp up after stimulus onset until one suppresses the other and
crosses threshold to approach a high-low attractor: see the second row of Figure 2(b). Moving
to the lower right, the basin of attraction of the low-low stimulus-off state shrinks, and the
second subregion begins, where more impulsive choices occur due to noise-assisted threshold
crossing in the absence of stimulus. Eventually the low-low attractor’s basin shrinks enough
that noise rapidly perturbs solutions to one of the high-low attractors: see the third row of
Figure 2(b).

Throughout the peak discriminability region firing rates split, endowing one selective pop-
ulation with high activity and the other selective and the nonselective populations with low
activity in comparison to the winner, and leaving interneurons with sufficient activity to me-
diate the pooled inhibition. The winning population’s firing rates remain below 80 Hz, and
the nonselective population never wins, even in the impulsive subregion, because its relative
recurrent weight factor ωj,k = 1 is lower than ω+ = 1.7 within each selective population. This
region ends with loss of stability of the low-low state in the absence of stimulus, so that every
trial becomes impulsive.

The loss of discriminability region marks a transition from splitting to race model behav-
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ior [8], in which all three pyramidal populations exhibit increasing firing rates in the presence
of stimuli, although one selective population still wins: see the bottom row of Figure 2(b).
Moving downward, firing rates of the superthreshold attractors approach 70 Hz at the bound-
ary of the no discriminability, both high, region. Entering this region, pooled inhibition fails
to suppress the losing selective population and all pyramidal populations exceed threshold,
approaching their maxima at the inverse absolute refractory period 1/τref = 500 Hz (not
shown). Interneuronal firing rates are also high, but pooled inhibition is too weak to suppress
any pyramidal population.

In section 3.5 we will investigate the network stability underlying the above behavior by
computing bifurcation diagrams for a reduced model.

3. The four-population reduced models. We now derive a set of four-population models,
modifying the mean-field procedure of [49] to incorporate neuromodulation. This yields 11-
dimensional systems of stochastic ODEs in which populations become homogeneous units
described by average firing rates νj(t), j = 1, 2, 3, and νI(t) (four variables), the inhibitory
population carries one population-averaged synaptic variable SGABA(t), and each excitatory
population has two such variables SAMPA,j(t) and SNMDA,j(t) (six in all). The synaptic
variables will be determined by firing rates and firing rates by net input currents to each
population. We start by calculating these currents.

3.1. Derivation of input currents. Although the synaptic conductances and currents
depend on time-varying postsynaptic membrane potentials, we simplify the self-consistency
calculations of [13, 35] by employing a fixed average voltage V̄ = (Vreset+Vthresh)/2 to estimate
synaptic currents that enter each of the four cell populations as follows:

(10) Jtype,k = −gtype,k(V̄ − Vtype)/1000

(multiplication of gtype,k in (nS) and (V̄ −Vtype) in (mV ) requires division by 1000 to convert
Jtype,k to nA, the unit of choice for currents). These effective currents to populations replace
the currents into individual cells in (9). Different Jtype,k’s are used for pyramidal populations
(j = 1, 2, 3, also written Jtype,p) and interneurons (Jtype,I), because gtype,p �= gtype,I . Since
(V̄ − VGABA < 0) the inhibitory currents are negative, as expected. We include in JNMDA,k

the factor [1 + (1/3.57) exp(−0.062V̄ )]−1 ≈ 0.12 to incorporate the effects of Mg2+ block
(cf. (9)). Neuromodulation is now accomplished by γE and γI scaling the Jtype,k’s which
contain the gtype,k’s that were previously scaled in section 2.2.

Due to all-to-all connectivity, input currents are calculated by summing the presynaptic
contributions from each population multiplied by the number of cells in that population:

Isyn,k(t) = INMDA,k + IAMPA,k + IGABA,k + IAMPA,ext,k + Istim,k,(11)

IAMPA,k(t) =

3∑
j=1

NjJAMPA,kωj,kSAMPA,j(t),(12)

INMDA,k(t) =

3∑
j=1

NjJNMDA,kωj,kSNMDA,j(t),(13)

IGABA,I(t) = NIJGABA,kSGABA,I(t).(14)
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Here ωj,k is the weight from population j to population k, being ω+ for recurrent connections
within a selective population, ω− from one selective population to another excitatory popula-
tion, and ωj,k = 1 otherwise. Nj is the number of excitatory cells in population j and NI the
number of interneurons. External inputs IAMPA,ext,k are given by

(15) IAMPA,ext,k = JAMPA,ext,k
TAMPA

1000
Nextνext + Inoise,k,

where Next is the number of connections per cell from presynaptic neurons external to the
network (here 800), νext is their average firing rate (3 Hz), and conversion between time
constants (ms) and firing rates (Hz) requires division by 1000. Inoise,k is calculated below
in section 3.3 and Appendix B. Finally, Istim,k = JAMPA,ext,p μ0(1 ± E) for the selective
populations when stimuli are present.

Following [13, 49], we account for the rise in SNMDA,j due to presynaptic spikes by in-
cluding a term F (ψ(νj)) = ψj/[TNMDA(1 − ψj)], where ψj is the steady state of SNMDA,j.
For a Poisson spike train, this is well approximated by

(16) ψj = 〈SNMDA,j〉 = 0.641νjTNMDA

1000 + 0.641νjTNMDA

[49], which yields F (ψ(νj)) ≡ 0.641νj/1000.
Equipped with these definitions and the currents (11)–(15), we can now state the reduced

ODEs. The synaptic variables are determined by

dSNMDA,j

dt
= −SNMDA,j

TNMDA
+ 0.641(1 − SNMDA,j)

νj
1000

,(17)

dSAMPA,j

dt
= −SAMPA,j

TAMPA
+

νj
1000

,(18)

dSGABA,I

dt
= −SGABA,I

TGABA
+

νI
1000

,(19)

and the firing rates obey

(20)
dνj
dt

=
−(νj − φj(Isyn,j))

TAMPA
.

Here j = 1, 2, 3, I, and the input-output functions or f-I (firing rate-current) curves φj(Isyn,j)
model the relationships between input currents and quasi–steady-state firing rates for each
population, which all four νj’s approach with time constant TAMPA = 2 ms [12]. We next
describe several different f-I curves, distinguishing pyramidal cells and interneurons in each
case.

3.2. Single neuron input-output functions. We develop a variety of simple analytic ex-
pressions for the relationships between input currents and firing rates by following both a
semianalytical derivation and an empirical study that better matches the spiking network be-
havior. For a leaky integrate-and-fire model [14] such as (2), the expected average interspike
interval for solutions to travel from reset voltage Vreset to threshold Vthresh may be calculated
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analytically, given a mean input current Isyn with white noise fluctuations [36, 4, 35]. The
expected firing rate is the reciprocal of this interval plus the absolute refractory period τref :

(21) φLIF (Isyn) =

[
τref + τm

√
π

∫ Vthresh−Vss
σV

Vreset−Vss
σV

ex
2
[1 + erf(x)] dx

]−1

,

where Vss = VL + Isyn/gL and σV is the standard deviation in the membrane potential due
to the current fluctuations. Equation (21) is plotted in Figure 3(a) as the black curve labeled
Amit–Tsodyks.

At low firing rates φLIF (Isyn) approaches the reciprocal of the integral in (21) alone and
can be approximated by a simpler expression [1], except at asymptotically low input currents,
where the denominator changes sign:

(22) φAC(Isyn) ≈
cp/I(Isyn − Ithresh,p/I)

1− exp[−gp/I(cp/I(Isyn − Ithresh,p/I))]
.

This is plotted as the blue curve labeled Abbott–Chance. Here cp/I is the asymptotic slope,
Ithresh,p/I is the threshold for input current, and gp/I is the noise factor that creates nonzero
spontaneous activity; values for these parameters are listed in Appendix A. Equation (22)
can be improved to account for higher firing rates by including τref , as follows:

φE,a(Isyn) ≈
[
τref +

1− exp[−gp/I(cp/I(Isyn − Ithresh,p/I))]

cp/I(Isyn − Ithresh,p/I)

]−1

=
cp/I(Isyn − Ithresh,p/I)

1− exp[−gp/I(cp/I(Isyn − Ithresh,p/I))] + τrefcp/I(Isyn − Ithresh,p/I)
.(23)

Figures 3(a) and 3(b) show all these f-I curves for both pyramidal cells and interneurons,
with the function φE,a of (23) in green. With additional modifications to effective synaptic
currents Jtype,k, they can reasonably approximate the region of good performance in the
neuromodulation plane, but steady-state firing rates are too high because φAC(Isyn) from (22)
exceeds the limit 1/τref = 500 Hz in the upper-right part of the high reward rate region (left
part of the peak discriminability region in Figure 2), and φE,a only reduces firing rates of the
winning selective population in this region to 200 Hz. In addition, with constant synaptic
coupling these modifications can capture only a region near (γE , γI) = (1, 1). The full region
[0, 3] × [0, 3] of Figure 1 was reproduced only after rescaling the effective synaptic currents
Jtype derived from the spiking model (by just under 33% for glutamatergic currents).

To lower the excessive asymptotic firing rates while retaining currents originally derived
from the spiking model, we develop an empirical f-I curve for the pyramidal populations. The
full spiking model was simulated under different (γE , γI) conditions, and the firing rates for
each population were averaged over a 500 ms window once the system approached equilibrium.
The firing rates of the four populations in the spiking model were then used to compute
effective currents to each population using the reduced model currents (11)–(14) calculated
above. Comparing these currents to the population firing rates which generated them in the
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Figure 3. Input-output functions used in reduced models. (a) Pyramidal cell f-I curves: φLIF ( (21), black)
and φAC ( (22), blue, as used in [49]); note that curves almost coincide; φE,a ( (23), green) and the empirical
φE,b ( (24), red), compared with results from spiking model (blue dots). The empirical results shown (blue
dots) were obtained by simulation of the full spiking network under different (γE , γI) conditions and averaging
population firing rates over a 500 ms window once firing rates approached equilibrium. The average firing rates
were then input into (11)–(14) to calculate the effective input currents Isyn. (b) Inhibitory cell f-I curves: φI,a

(green, also given by (23); note saturation at 1/τref ) and φI,b ( (25), black). Parameter values are given in
Appendix A.

spiking model produces the following function:

φE,b(Isyn,p) = φp,0

+
cp(Isyn,p − Ithresh,p)

1− exp[−gp(cp(Isyn,p − Ithresh,p))] + cp(Isyn,p − Ithresh,p)/φp,max
,(24)

shown in red in Figure 3(a), compared with empirical results from the spiking model (blue
dots: the scatter is due to the fact that firing rates were only averaged over 500 ms windows).
While (24) approximates the relationship between the simulated firing rates and the reduced
model input currents Isyn which correspond to the simulated average population firing rates,
the function (24) is constrained to have the same initial slope as (23).

For the 2AFC application it is most important to reproduce firing rates up to the decision
threshold, i.e., φ(Isyn,p) ≤ 20 Hz. Several features of φE,b accomplish this. First, the sponta-
neous firing activity φp,0 is set to 1 Hz instead of 0. Second, Ithresh,p is reduced from 0.403 nA
to 0.384 nA to start the linear rise at a lower input current. In addition, cp is increased from
310 Hz/nA to 352 Hz/nA to produce a steeper initial slope. Noting that the parameter gp/I in
(22)–(23) sets the sharpness of the transition from zero firing rate to the rising portion, we set
gp = 1 for φE,b to create a sharper threshold. Finally, φE,b saturates at φp,0+φp,max = 101 Hz
as Isyn → ∞; cf. the red curve of Figure 3(a). This not only matches φE,a of (23) in the
relevant region below 20 Hz, but as shown in Figure 4(b), it also fits the spiking network neu-
romodulation data well, with all parameters within 6% of the values derived from that model.
The function φE,b allows us to capture global neuromodulatory behavior while retaining the
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synaptic couplings derived in section 3.1.
The f-I curve for the interneuronal population must rise sufficiently steeply for inhibition

to produce splitting behavior and correctly reproduce the no discriminability region of Fig-
ure 2. A piecewise-linear function φI,b(Isyn,I) with a spontaneous firing rate of 3 Hz, slope of
600 Hz/nA, and cutoff at Ithresh,i = 0.29 nA achieves this; see Figure 3(b) (black):

(25) φI,b(Isyn,I) = 3 + 600 θ(Isyn,I − Ithresh,I),

in which θ is a Heaviside function. The four-population models differ in their use of different
f-I curves.

Finally, the two-population model of section 4 is simplified by replacing the trivially linear
f-I curve for the nonselective population of [49] by a piecewise-linear function with the same
current threshold and initial slope as the selective populations, which will continue to use
φE,b:

(26) φTL,3(Isyn,3) = 1 + cp θ(Isyn,3 − Ithresh,p),

but this is not necessary in the four-population models, in which all three pyramidal popula-
tions share identical f-I curves.

3.3. Noise currents in the reduced models. In typical spiking models each cell receives
independent Poisson spike trains filtered through external or recurrent AMPA receptors, but in
the present reduced models (as in that of [49]), additive Gaussian noise is superimposed on the
external input current to each population. In Appendix B we derive an explicit description of
these inputs by converting a Poisson spike train of mean frequency f to fluctuations in a single
synaptic variable S about its average value fτ , where τ is the synaptic decay time constant.
(See (43): the derivation is done for the distribution of fluctuations in the quantity gS, but
the standard deviation is found to scale linearly with g, so it may be factored out as described
in Appendix B.) The distribution of interspike fluctuations is not normal (see Figure 16(b))
but has zero mean and variance

(27) Var(ΔS) =
fτ

fτ + 2
.

We then appeal to the Central Limit Theorem to argue that the summed effect of single
spikes in single neurons (of N total) on the population-averaged synaptic variable is approxi-
mately Gaussian with zero mean and variance

(28)
Var(η)

N2
=

fτ

N2(fτ + 2)
.

We can now calculate Inoise,k for inclusion in (15), which expresses IAMPA,ext,k as the sum of
a constant average current and Inoise,k (of mean zero). The fluctuations in S are multiplied by
JAMPA,ext,k to get the fluctuations in Inoise,k, and this relationship is maintained for varying
gains since the standard deviation of fluctuations in gS scales linearly with g (see Appendix B).
This is a population average of external inputs in the full model (cf. (8)). Summarizing, each
Inoise,k is a sample path of the OU process

(29) dInoise,k = −Inoise,k dt

TAMPA
+ JAMPA,ext,k

√
f2τ

N(fτ + 2)
dW.
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3.4. Neuromodulation in the reduced models. Equipped with the f-I curves and Gauss-
ian noise approximation described above, we can now implement neuromodulation in the
four-population model by scaling all glutamatergic synaptic currents by γE and all GABA-
ergic currents by γI . The model of [49] was fitted for a single point (γE , γI) = (1, 1) in the
neuromodulation plane by changing peak synaptic currents and weights from those of the
spiking network as follows: JGABA,p = 1.2JGABA,I instead of the full model’s 1.3JGABA,I and
ω+ = 1.8 instead of the full model’s 1.7. Here we wish to obtain a good fit over a broad
range of (γE , γI). Computing reward rates over [0, 3] × [0, 3] as in Figure 1, we found that
this model is overdominated by excitation: the ridge of optimal performance analogous to
that in Figure 1(a) rises too steeply in the (γE , γI) plane. Moreover, as noted in section 3.2,
population firing rates are too high in the upper part of this ridge (results not shown).

We next consider the model with f-I curve φE,a(Isyn,j) that saturates at 1/τref and with
Gaussian noise and synaptic currents derived above (results not shown). The slope of the ridge
is reduced but is still too high. In addition, the behavior at (γE , γI) = (1, 1) is characterized by
no-choice trials. This may be corrected by setting JGABA,p = 1.393JGABA,I to adjust the slope
and scaling glutamatergic currents by a factor in the range [1.3, 1.33]. (This adjustment is
perhaps required by our assumption of uniform V̄ = −52.5 mV (cf. (10)), which most strongly
affects GABA currents, since VE,GABA = −70 mV and VE,AMPA = VE,NMDA = 0 mV.) This
shifts the good performance region to include (1, 1), resulting in the reward rate contours of
Figure 4(a), which compare reasonably well with those of Figure 1(a). Steady-state population
firing rates can exceed those of the spiking network by 100%, but these are less critical for
our purposes, since the 2AFC protocol focuses on trajectories up to the 20 Hz threshold and
the model performs well in this region.

γ
E

γ I

 

 

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X (2.5,0.25)

X (0.5,1) X (1,1)

X (2,2)

(a)

γ
E

γ I

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 4. Contour maps of reward rate over the glutamatergic-GABA-ergic (γE, γI) gain modulation plane
for the four-population models with f-I curves φE,a(Isyn,j) (a), and φE,b(Isyn,p) and φI,b(Isyn,I) (b). Peak
synaptic currents are modified as described in text. Crosses identify gain pairs for which bifurcation diagrams
are shown in Figures 5–6. Compare with spiking model results in Figure 1(a). The box with traversing lines
in (b) illustrates (γE , γI) paths used to study speed-accuracy tradeoff in section 5.
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Thematch in reward rate contours can be further improved by using the function φE,b(Isyn,p)
of (24) for the three pyramidal populations and the piecewise-linear function φI,b(Isyn,I) of (25)
for the interneurons, as shown in Figure 4(b). For this final model, external AMPA, recurrent
AMPA and NMDA currents, and JGABA,I are exactly as derived from the spiking network,
and JGABA,p = 1.367JGABA,I is increased by slightly over 5% compared with the spiking
network value of 1.3JGABA,I . These modified f-I curves properly situate the region of good
behavior, moreover, and this model captures the concave curvature of the high reward rate
ridge. Moreover, it allows simulation of 500 trials over 900 gain conditions in the same time
as 500 trials of the spiking model for a single gain condition: this is a speed-up of O(103).

3.5. Bifurcation analyses. To better understand the behaviors seen in Figures 1 and 2, we
now study bifurcations of the four-population models as the average stimulus current μ0 and
coherence E vary. Computations are done without noise, using the software XPPAUT [20],
and to reveal the system’s full structure we explore μ0 values well beyond the physiologically
realistic range, including “negative stimuli” (μ0 < 0). Figures 5–8 show branches of equilibria
for characteristic points on the neuromodulation plane in terms of the synaptic variables
SNMDA,1 and SNMDA,2, written here and henceforth as S1 and S2 for brevity.

−150 −100 −50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ
0
 (Hz)

S
1

(a)

−400 −300 −200 −100 0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ
0
 (Hz)

S
1

(b)

Figure 5. Bifurcation diagrams for the four-population model with f-I curves φE,a(Isyn,j) for E = 0 at
(γE, γI) = (1, 1) (a) and (2, 2) (b); cf. Figure 4(a). Stable branches shown bold; branches for S2 are identical
due to symmetry.

We start with the f-I curve φE,a of Figure 4(a), with rescaled glutamatergic currents as
described in section 3.4, and at first set E = 0, so that the vectorfield of (17)–(20) is reflection-
symmetric about the Stype,1 = Stype,2 and ν1 = ν2 hyperplanes. Figure 5(a) shows branches of
fixed points at (γE , γI) = (1, 1) in the lower left of the peak discriminability region in Figure 2.
For μ0 = 0 the system is tristable: a state with the activities of both selective populations low
coexists with a symmetric pair of “memory” attractors [47, 49] corresponding to choices, each
with one population high and the other suppressed to zero. The low-low state loses stability
in a subcritical pitchfork bifurcation at μ0 ≈ 25, passes through two saddle-node bifurcations,
and restabilizes as a high-high state at μ0 ≈ −5, while the stable high-low states survive until
they vanish in saddle-nodes at μ0 ≈ 154. The low-low state persists for all μ0 < 0, and the
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high-low states vanish in saddle-nodes at μ ≈ −118, leaving the low-low state as the sole
attractor. Cycling μ0 therefore allows memories of choices to be set and cleared in successive
trials (e.g., by a strong inhibitory input).

The bifurcation diagram for (γE , γI) = (2, 2) is similar to that for (1, 1), but the two
pitchforks move to μ0 = 35 (low) and μ0 = −219 (high): see Figure 5(b). This implies that
both the low-low and high-high states coexist with the symmetric pair of high-low states over
the range μ0 ∈ (−219, 35), and that all four are stable (in this range there are nine fixed
points).

These results help explain the network dynamics responsible for the behavior mapped in
Figure 1. Prior to the start of a trial, μ0 = 0 and the state remains near the low-low attractor,
if it exists. In both panels of Figure 5 the pitchfork indicating loss of stability of this attractor
lies in the range 20–35 Hz, so that, when μ0 jumps to 40 Hz at stimulus onset, the system
state diverges toward a choice attractor. In [49], the third high-high attractor does not appear
until much larger μ0, creating a pure decision dynamic in which the high-low attractors are
the only stable states available. Due to the changes in synaptic currents made to match the
region of good performance in the present model, this high-high state is also stable for all
μ0 ∈ (0, 40) Hz, but its basin of attraction does not include the physiologically relevant region
in which both populations lie below threshold at stimulus onset, so the decision dynamics and
effective tristability remain intact. This is illustrated by phase portraits of the two-population
system in section 4.2.3.

The bifurcation diagrams also explain false alarm rates seen in the behavioral simulations.
At μ = 0 noise can take the place of stimulus by carrying the state outside the low-low
attractor’s basin. After crossing its boundary, the state moves toward a decision attractor,
causing more impulsive choices. This is representative of the upper range of good performance
in the peak discriminability region of Figure 2.

The diagrams of Figure 5 may seem confusing, because in the right panel, for (γE , γI) =
(2, 2), the loss of stability occurs at a higher value of μ0 than in the left panel, but the system
exhibits more impulsive trials for (γE , γI) = (2, 2) than for (1, 1). This occurs due to the linear
scaling of noise with γE , which doubles its magnitude at (2, 2).

For (γE , γI) = (0.5, 1) and (2.5, 0.25), in the blue and red regions of Figure 2, the system
has unique monotonic branches of fixed points at low and high Sj, respectively (not shown
here). In the latter case μ0 and E have little influence and both Sj’s remain near 1, because
both firing rates lie in the saturated part of the f-I curve where changes in input have little
effect relative to the overall strong excitation within the network. No decisions are made in
the blue region because there are no choice attractors, and splitting does not occur in the no
discriminability region because there is a single high-high attractor.

We now turn to an asymmetric case. Figures 6(a) and 6(b) show fixed point branches for
S1 and S2 at (γE , γI) = (1, 1) and E = 0.128 for comparison with Figure 5. The symmetric
branch is now perturbed and the pitchforks become saddle-node bifurcations at μ0 ≈ 20 and
μ0 ≈ 28, thus forcing decisions for μ0 > 20 as solutions approach one of the choice attractors.
The asymmetry due to nonzero coherence favors the state with larger S1 (choice 1 correct)
over that with larger S2 when noise is present, since the former has a larger basin of attraction.
These memory states persist for μ0 ∈ (−105, 183) and μ0 ∈ (−136, 133), respectively, termi-
nating in saddle-node bifurcations much as in Figure 5. For μ0 > 296 a unique high-high stable
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Figure 6. Bifurcation diagrams for the four-population model with f-I curves φE,a(Isyn,j) and E = 0.128
at (γE, γI) = (1, 1); cf. Figure 4(a). (a) S1 versus μ0; (b) S2 versus μ0. Stable branches are shown in bold.

state exists, analogous to the one in Figure 5(a). We also computed bifurcation diagrams for
(γE , γI) = (2, 2) and (0.5, 1), as for the E = 0 symmetric case above. At (2, 2) the result was
generally similar to Figure 6, with some reconnections among branches typical of codimen-
sion 2 bifurcations [27]; a single monotonic branch with S1 > S2 was evident at (0.5, 1).

We now consider the second four-population model that uses φE,b of (24) for pyramidal
cells and the threshold-linear f-I curve (25) for interneurons, again focusing on behavior in
the peak discriminability region of Figure 2(a). This model recreates the neuromodulation
plane even better than that with φE,a (Figure 4(b)), and the bifurcation diagrams, shown in
Figures 7 and 8, remain similar to those of Figures 5 and 6.
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Figure 7. Bifurcation diagrams for the four-population model with f-I curves φE,b(Isyn,p) and φI(Isyn,I)
and E = 0 at (γE, γI) = (1, 1) (a) and (γE, γI) = (2, 2) (b); cf. Figure 4(b). Stable branches are shown in
bold; branches for S2 are identical due to symmetry.

We again start with symmetric cases. Comparing Figures 7(a) and 5(a), we see that the
branch structures at (γE , γI) = (1, 1) are similar but that the higher Sj values, and hence
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steady-state firing rates, are substantially reduced. This is as expected, since φE,b saturates
at a lower value than φE,a (cf. Figure 3(a)). At (γE , γI) = (2, 2) (Figure 7(b)) the high-low
states extend over a wider range in μ0 and have higher firing rates, but the branches are much
like those for φE,a shown in Figure 5(b). For (γE , γI) = (0.5, 1) and (2.5, 0.25) this system
also has unique fixed point branches (not shown here), as in the φE,a case.
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Figure 8. Bifurcation diagrams for the four-population model with f-I curves φE,b(Isyn,p) and φI(Isyn,I)
and E = 0.128 at (γE, γI) = (1, 1); cf. Figure 4(b). (a) S1 versus μ0; (b) S2 versus μ0. Stable branches are
shown in bold.

Figure 8 shows an asymmetric case at (γE , γI) = (1, 1) with E = 0.128. Fixed point
branches are again similar to those of the analogous φE,a case (Figure 6), but the saddle-node
in which the low-low state loses stability now occurs at μ0 ≈ 44, higher than the 40 Hz value
used in spiking model simulations. The high-high state appears in a saddle-node at μ0 ≈ 20,
so that, as for the E = 0 cases of Figure 7, the low-low, high-high, and two high-low states
are all stable over a short range of μ0. Although the low-low state loses stability above the
stimulus-on condition μ0 = 40, decisions still occur because the noise suffices to perturb states
across the low-low basin boundary.

Figure 9 shows reaction time (RT ) distributions for the asymmetric (E = 0.128) condition
for both four-population models at (γE , γI) = (1, 1) and (2, 2). The reaction times measured
in behavioral experiments are sums of decision times DT and nondecision latencies (NDL =
250 ms; cf. (1)). The standard gain cases on the left both produce typical RT distributions
with longer tails to the right, while the high-gain conditions shown at right have tighter,
faster RT distributions. The lower-right panel (φE,b, (γE , γI) = (2, 2)) also has a long tail of
impulsive trials at the left, corresponding to the low-stimulus long exponential distribution
noted in [32]. In this condition, firing rates of the selective populations tend to start nearer
threshold and therefore to cross it sooner and with much less variance following stimulus onset.
There are more impulsive choices than for (γE , γI) = (1, 1), and there is no long tail to the
right. Changes in the RT distributions along with the corresponding changes in accuracy can
implement a speed-accuracy tradeoff, as described in section 5.

4. The two-population reduced model. The bifurcation studies of section 3.5 show that
the four-population, 11-dimensional system (17)–(20) preserves key behaviors of the spiking
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Figure 9. Reaction time distributions for the four-population models with φE,a (top) and φE,b (bottom)
and for (γE, γI) = (1, 1) (left) and (2, 2) (right); E = 0.128 in all cases.

model, but it is still too complex for full analytical study. Moreover, we wish to relate
the original spiking network to one- and two-dimensional OU and leaky accumulator models
[46, 8]. We therefore perform a further reduction to a two-population model, closely following
the methods of [49], but relaxing assumptions made in that work in order to accommodate
the wider range of synaptic currents due to NE modulation. This requires retaining two
additional dynamic equations, and our model is therefore four- instead of two-dimensional as
in [49]. The two-population model runs faster than the four-population models by a factor of
four and allows analysis in a lower-dimensional space.

4.1. Two-population model structure. Reduction to two populations is based on sep-
aration of time scales [30, 27]. The synaptic time constants for AMPA and GABA are
fast (TAMPA = 2 ms; TGABA = 5 ms), while that for NMDA decay is relatively slow
(TNMDA = 100 ms). SAMPA,j and SGABA,j therefore converge rapidly to quasi-steady states
that closely track the population firing rates in (18)–(19) so that Stype,j ≈ νjTtype/1000. This
eliminates three ODEs for the excitatory populations and one for the inhibitory population,
giving a seven-dimensional system.

We next recognize that firing rates also rapidly approach the values set by the f-I curves
in (20) since they too are dominated by TAMPA. We may therefore set νj(t) ≈ φj(Isyn,j(t))
for the nonselective and interneuron populations and remove two firing rate ODEs. Now only
three ODEs describing NMDA dynamics in the excitatory populations remain, along with
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the firing rate ODEs for populations 1 and 2. Finally, when stimuli are on, the nonselective
population j = 3 typically exhibits a lower and much less variable firing rate than the selective
populations so that SNMDA,3 can be replaced by its steady-state value and its ODE may also
be removed, leaving four ODEs for SNMDA,1, SNMDA,2, ν1, and ν2:

dS1
dt

= − S1
TNMDA

+ 0.641(1 − S1)
ν1

1000
,(30)

dS2
dt

= − S2
TNMDA

+ 0.641(1 − S2)
ν2

1000
,(31)

dν1
dt

= −ν1 − φE,b(Isyn,1)

Tpop2
,(32)

dν2
dt

= −ν2 − φE,b(Isyn,2)

Tpop2
(33)

(here, as in section 3.5, we drop the subscript NMDA in Sj). However, input currents, which
also include contributions due to nonselective and inhibitory neurons that no longer enter
the dynamical equations, must be approximated in a self-consistent manner. Specifically,
(30)–(33) are complicated by the fact that Isyn,j contains terms which depend on Sj and
φE,b(Isyn,j), so that its vectorfield is defined recursively. Ideally, we seek linear relationships
of the form

Isyn,1 = α1S1 + α2S2 + β1ν1 + β2ν2 + Iconst,1,(34)

Isyn,2 = α2S1 + α1S2 + β2ν1 + β1ν2 + Iconst,2,(35)

as in [49], where the parameter pairs αj , βj reflect the 1 ↔ 2 symmetry of the network.
Accounting for all the components of the currents in (34)–(35) is difficult. The firing rates for
the selective populations cannot be directly replaced by their steady states νj = φE,b(Isyn,j)
to yield a two-dimensional model, as in [49], since the nonlinearity of φE,b(Isyn,j) makes the
equations infinitely recursive. To close the system, (32)–(33) are therefore retained to track
the firing rates as they approach their steady states. The calculations are summarized below
and detailed in Appendix C. Given the other approximations, the rate of approach of νj to
its quasi-steady state φ(Isyn,j) also must be changed from TAMPA to Tpop2, as noted below in
section 4.2.1.

4.1.1. Separation and derivation of synaptic currents. The derivation begins with the
current equations (11)–(15) for the four-population model, which include synaptic variables
for populations 3 and I that do not appear explicitly in (30)–(33). To account for these we
break (11) into currents for each synapse type and population, expressing them as linear
functions of Sj, νj, and constants, and gather like terms to form (34)–(35). In this section we
calculate the coefficients of the input current to population 1 Isyn,1; those for population 2
follow by interchanging subscripts 1 ↔ 2 and replacing (1 + E) by (1 − E). From (11)–(15)
we have

Isyn,1 = INMDA,1,1 + INMDA,2,1 + INMDA,3,1 + IAMPA,1,1 + IAMPA,2,1

+ IAMPA,3,1 + IGABA,I,1 + IAMPA,ext,1 + Istim,1 + Inoise,1,(36)
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where Itype,j,k denotes the current from population j to population k due to the given synapse,

INMDA,1,1 = S1N1ω+JNMDA,p; INMDA,2,1 = S2N2ω−JNMDA,p;

INMDA,3,1 = ψ3N3ω−JNMDA,p; IAMPA,1,1 = ν1
TAMPA

1000
N1ω+JAMPA,p;

IAMPA,2,1 = ν2
TAMPA

1000
N2ω−JAMPA,p; IAMPA,3,1 = φ3

TAMPA

1000
N3ω−JAMPA,p;(37)

IGABA,I,1 = φI
TGABA

1000
NIJGABA,p; IAMPA,ext,1 = Nextφext

TAMPA

1000
JAMPA,p,ext;

Istim,1 = JAMPA,ext,pμ0(1 + E)
TAMPA

1000
,

and Inoise,1 is determined by (29) of section 3.3. As in the four-population model of section 3,
the parameters Jtype,k denote peak synaptic currents, and they retain the same values. The
factor ψ3 in INMDA,3,1 is the steady-state value of S3 from (16), but with ν3 replaced by φ3:

(38) ψ3 =
0.641φ3TNMDA

1000 + 0.641φ3TNMDA
.

Finally, φ3 and φI are the steady-state firing rates of the rapidly equilibrating populations 3
and I, which are calculated as described below and in Appendix C.

4.1.2. Self-consistency of populations 3 and I. The currents of (37) are problematic in
that they contain the quantities φ3, ψ3(φ3), and φI , which do not appear explicitly in (34)–(35).
These quantities must be expressed in terms of S1, S2, ν1, ν2, and constant currents Iconst,j.
The calculation employs the piecewise-linear f-I functions of (25) and (26), and one must
determine regions of the parameter space in which the input currents exceed threshold, so
that these functions are purely linear.

The main idea is to show that the firing rate φ3 of population 3 can be approximated at
a constant value φ3,0 throughout the region of good performance. Self-consistency between
populations 3 and I is then relatively easy to establish, and the coefficients αj and βj and
constant currents Iconst,j in (34)–(35) can be computed. This calculation is carried out in
several stages, as detailed in Appendix C.

In Appendix C.1 we linearize ψ3(φ3) about an appropriate baseline value φ3,0 and calculate
consistent baseline firing rates φ∗3 and φ∗I for populations 3 and I. In Appendices C.2–C.3
we consider the effects of Sj and νj on all four populations and calculate expressions for
αj and βj , assuming pure linearity. We then check, in Appendix C.4, if the input currents do
in fact remain above threshold throughout the relevant part of the (γE , γI)-neuromodulation
plane. We find that the current due to the nonselective cells (population 3) does not satisfy
this condition. We then use the self-consistency results again to show that the relationship
between the currents of populations 3 and I implies that φ3 can be held constant at φ∗3. This
necessitates resolving for φ∗I and recomputing some components of the coefficients αj and βj ,
which is done in Appendix C.5. The resulting values for the constant coefficients in (34)–(35)
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are as follows (cf. (79)–(85) and (91)):

α1 = Njω+JNMDA,p +NIJGABA,p

(
TGABA

1000

)
cIN1JNMDA,I

ΓI
,

α2 = Njω−JNMDA,p +NIJGABA,p

(
TGABA

1000

)
cIN1JNMDA,I

ΓI
,(39)

β1 = Njω+JAMPA,p
TAMPA

1000
+NIJGABA,p

(
TGABA

1000

)
cIN1JAMPA,I

TAMPA
1000

ΓI
,

β2 = Njω−JAMPA,p
TAMPA

1000
+NIJGABA,p

(
TGABA

1000

)
cIN1JAMPA,I

TAMPA
1000

ΓI
,

with ΓI = 1− cINIJGABA,I
TGABA
1000 . The constant currents are (cf. (85))

Iconst,j = IAMPA,ext,j + Istim,j + INoise,j + I∗NMDA,3,j + I∗AMPA,3,j + I∗GABA,I,j,

IAMPA,ext,j = Nextφext
TAMPA

1000
JAMPA,ext,p,

Istim,1 = JAMPA,ext,pμ0(1 + E/100)
TAMPA

1000
,

Istim,2 = JAMPA,ext,pμ0(1− E/100)
TAMPA

1000
,(40)

I∗NMDA,3,j = N3ω−JNMDA,p(KNMDA(φ
∗
3 − φ3,0) + ψ(φ3,0)),

I∗AMPA,3,j = N3ω−JAMPA,p
TAMPA

1000
φ∗3,

I∗GABA,3,I = NIJGABA,p
TGABA

1000
φ∗I .

The noise currents are the same as those derived in section 3.3. The baseline firing rates are
φ∗3 = φ3,0 = 1 Hz, and φ∗I is calculated in section C.5 as

(41) φ∗I =
φI,0 + cI(IAMPA,ext,I + INMDA,3,I + IAMPA,3,I − Ithresh,I)

ΓI
.

Finally, recall that the gains γE and γI enter the glutamatergic- and GABA-ergic currents as
multiplicative factors in JNMDA,p/I , JAMPA,p/I , and JGABA,p/I , respectively.

4.2. Two-population neuromodulation results. We now explore the effects of neuromod-
ulation on the two-population model, ending with a bifurcation analysis under various gain
conditions to compare with the spiking network and four-population models.

4.2.1. Simulation studies. We numerically integrate the system defined in (30)–(33),
with currents as in (34)–(35), using a timestep Δt = 0.2 ms. The system behaves poorly with
Tpop2 = TAMPA in (32)–(33), because inhibition due to the interneurons changes with each
timestep and Δt  TAMPA = 2 ms. Recurrent excitation due to AMPA currents depending
on νj therefore takes longer to reach quasi-equilibrium, while the inhibitory current increases
immediately. This affects the quasi-equilibrium values for νj, and the system is incorrectly
dominated by inhibition. If we instead set Tpop2 = Δt, the solution remains numerically
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Figure 10. Contour map of reward rate over the glutamatergic-GABA-ergic (γE, γI) gain modulation plane
for the two-population model with f-I curve φE,b for selective populations and φ3 = const over part of the region
and linearly varying over the rest, as described in text. Remaining parameters are as in the four-population
model with φE,b, and original derived currents are retained. Crosses identify gain pairs for which bifurcation
diagrams are shown in Figures 11–12. Compare with Figures 1(a) and 4(b). The chain of islands in the lower
right is due to the determinant Γ, defined in Appendix C.2, passing through 0 as explained in Appendix C.4.

stable without overshoot, and the neuromodulation results of Figure 10 closely match those
for the corresponding four-population model. In this condition, the model is effectively two-
dimensional.

Simulating the system as described above, we explore the neuromodulation plane using the
same parameters as the four-population model with the f-I curve φE,b of (24), obtaining the
results shown in Figure 10. The location and curvature of the high reward rate ridge compare
well with both Figures 1(a) and 4(b): that this match with the spiking network results is
achieved with the same parameters for the two- and four-population models is a particularly
good feature of φE,b. We henceforth consider only φE,b. We have already noted that φE,a

gives unrealistically high firing rates in the four-population model; used in the two-population
model it fails catastrophically at high gains (results not shown).

4.2.2. Bifurcation analysis. Figures 11–12 show bifurcation diagrams for (γE , γI) = (1, 1)
and (2, 2) for both symmetric (E = 0) and asymmetric (E = 0.128) cases, done by determin-
ing the coefficients in the current equations from αj ’s and βj ’s appropriate to these specific
locations in the modulation plane. (Note that the change in timescale for Tpop2 is irrelevant
in determining fixed points of the noise-free system.) Fixed point branches are very similar to
those of the corresponding four-population models (Figures 5–8): all bifurcations are of the
same types, and occur within μ0 = 1− 2 Hz of their locations in that system. Interpretation
of system behaviors and dynamics is therefore the same as in section 3.5, and we find that
the two-population reduction successfully captures behavior over a substantial part of the
neuromodulation plane.
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Figure 11. Bifurcation diagrams for the two-population model at E = 0 and (γE, γI) = (1, 1) (a) and
(2, 2) (b); cf. Figure 10. Stable branches are shown in bold; all branches for S2 are identical due to symmetry.
Compare with the four-population case of Figures 5 and 7.
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Figure 12. Bifurcation diagrams for the two-population model with E = 0.128 at (γE, γI) = (1, 1); cf.
Figure 10. (a) S1 versus μ0; (b) S2 versus μ0. Stable branches are shown in bold.

4.2.3. Two-dimensional projections. Since the dynamics of the firing rates (ν1, ν2) are
much faster than the NMDA synaptic variables (S1, S2), the two-population system can be
studied through its dynamics projected onto the (S1, S2)-plane. Nullclines for S1 and S2 can
be determined by fixing S1 and S2, allowing the firing rates ν1 and ν2 to rapidly equilibrate,
and finding conditions for which dS1/dt = 0 and dS2/dt = 0 in (30)–(31). Figure 13 shows
these nullclines, the fixed points with their stability types, and sample noisy trajectories
of the four-dimensional flow projected on the (S1, S2)-plane. The two components of each
nullcline—a line parallel to an axis and an approximate parabola—derive from the threshold
in the f-I curve φE,b: the latter result from substitution of (34)–(35) into (30)–(33), and the
lines correspond to states with synaptic currents that remain below threshold. Note that, for
sufficiently large gp, νj = φE,b(Isyn,j) ≈ φp,0 for Isyn,j < Ithresh,p, so that (30)–(31) become
linear. Above threshold φE,b rises monotonically, behaving qualitatively like a threshold-linear



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIMENSION REDUCTION OF A NEUROMODULATED SPIKING NETWORK 171

S
1

S
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
1

S
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
1

S
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
1

S
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E = 0, stim off
(γ

E
, γ

I
) = (1,1)

E = 0, stim on
(γ

E
, γ

I
) = (1,1)

E = 0, stim off
(γ

E
, γ

I
) = (2,1.2)

E = 0.128, stim on
(γ

E
, γ

I
) = (1,1)

Figure 13. Dynamics of two-population model projected onto the (S1, S2)-plane, with nullclines for S1

shown in orange and nullclines for S2 shown in green. Stable points are shown as filled circles, saddles with
one-dimensional stable manifolds as open triangles, and saddles with two-dimensional stable manifolds as open
circles. From top left clockwise, nullclines, fixed points, and sample trial paths are shown without stimulus at
(γE, γI) = (1, 1), with stimulus and E = 0 (symmetric) at (γE, γI) = (1, 1), without stimulus at (γE, γI) =
(2, 1.2), and with stimulus for E = 0.128 at (γE, γI) = (1, 1).

function and producing the parabola-like curves when νj = φE,b(Isyn,j) is solved for νj in terms
of Sj and substituted into (30)–(31).

We consider the standard gains (γE , γI) = (1, 1) without stimulus (top left), with sym-
metric stimuli (top right), and with asymmetric stimuli with E = 0.128 (lower left). Without
stimulus, all trials remain near the low-low fixed point, even in the presence of noise, and both
choice attractors persist, representing memory states. With stimulus (top right and bottom
left), the low saddles and unstable fixed point approach the low-low stable fixed point, de-
creasing its basin of attraction and allowing more noisy trials to escape. Although the low-low
attractor persists in this model due to the form of the modified f-I curve, it has only a small
basin of attraction and the choice attractors dominate the dynamics, as in [49]. The nullclines
in the lower-left panel illustrate the effects of asymmetric stimuli, and it is also clear that the
high-high state does not significantly influence the dynamics.

Impulsive trials occur without stimulus for (γE , γI) = (2, 1.2), as in the lower right panel.
The two low saddles and the unstable fixed point again lie near the low-low attractor, decreas-
ing its basin of attraction, and since noise is twice as large as before, essentially all trials are
impulsive. Similar phase-plane structures for two-dimensional neural systems appear in [21].
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5. A speed-accuracy tradeoff via neuromodulation. The model of neuromodulation de-
veloped in [19] and reduced to lower dimensions above can implement a speed-accuracy trade-
off to optimize performance in 2AFC decision tasks. Reward rates can be maximized by
appropriately balancing speed with accuracy [44], and subjects can modulate this balance in
response to specific task instructions [33]. Changing task conditions such as stimulus strength
or RSI can change the speed-accuracy tradeoff that maximizes the reward rate (see (1)),
e.g., decreasing RSI shifts optima toward faster, less accurate performance. The models for
speed-accuracy tradeoff in [39, 45, 24, 41, 42] modulate the gain of an input-output relation-
ship or the drift rate of a DD model, and others [44, 8] implement threshold modulation,
although these strategies are interchangeable in some models and both can simulate behavior
very well. From a basic physiological perspective, however, identical motor responses should
correspond to a similar level of firing in motor cortex, and thus threshold modulation may
not be plausible.

Tonic (steady) locus coeruleus (LC) activity is known to affect cognitive performance via
NE levels [5]. Experiments in a target-detection task found an inverse relationship between
interstimulus interval and tonic LC firing rate [34], the latter changing from 3 to 5 Hz as
the stimulus presentation frequency increased from 0.6/s to 1.0/s. Motivated by this, here
we examine the ability of tonic NE levels, as represented in the four-population model of
section 3 with f-I curve φE,b, to implement a physiologically derived speed-accuracy tradeoff.
Such an investigation with a spiking model would be prohibitively time-consuming, and here
the reduced model demonstrates its usefulness.

Simulations were done for gains lying along four line segments in a box of side length
0.6 around the point (γE , γI) = (1, 1) in the neuromodulation plane (see Figure 4(b)), and
locations that maximize reward rate were determined for RSIs in a given range. Figures 14
and 15 show the results. Each curve in the upper-left panel of Figure 14 plots the reward rate
at the optimal gain location (along its segment) for the RSIs specified along the horizontal
axis. Continuing clockwise in Figure 14, we show the optimal γE’s, 〈RT 〉’s, and accuracies for
the same range of RSIs.

The results for fixed gains at (γE , γI) = (1, 1) without neuromodulation are shown in
dashed black at the bottom of the reward rate plot. Not surprisingly, this produces the worst
overall performance, although decreasing RSI does increase reward rate (see (1)). The most
robust case of [19], ΔγI = 2ΔγE (magenta curve), does only marginally better, showing
that robustness and the ability of neuromodulation to adapt performance under changing
conditions are inversely related. Moreover, optimal γ’s (and therefore optimal LC firing rates)
decrease with decreasing RSI for this gain modulation ratio (Figure 14, top right), opposite to
what is seen experimentally. The other ratios, including those exhibiting the best performance,
match the experimental results of [34].

Performances for γE = γI (solid black) and ΔγE = 4ΔγI (green) successively improve on
both the previous cases. The blue curve (overlapping the green) shows the result for gluta-
matergic modulation alone, with γI ≡ 1. Both excitation-dominated slices (blue and green
curves) reach the fast impulsive regime at low RSIs and can therefore achieve the sharp up-
turn in reward rate that more robust ratios cannot. Finally, when neuromodulation conditions
are allowed to vary over the entire region γE , γI ∈ [0.8, 1.4], further small improvements are
obtained over the best “linear slice” results (red curve in Figure 15(a)). The optimal path
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Figure 14. Results for linear slices through neuromodulation plane, for fixed gains (dotted black), 2ΔγE =
ΔγI (magenta), ΔγE = ΔγI (black), ΔγE = 4ΔγI (green), and glutamatergic modulation γI = const (blue).
The four panels (clockwise from top left) show the reward rate at the optimal gain, the optimal γE, the mean
RT at optimal γE, and the accuracy at optimal γE. The jumps seen in the plots of optimal gain, RT , and
accuracy are due to the small but not negligible random fluctuations in performance for the simulated sets of
trials. An above average set may then optimize performance over a range of RSI before the solution jumps
toward its expected value. Performance fluctuations are small enough with 20000 trials in each set, however,
that the reward rates vary smoothly.

through the (γE , γI)-neuromodulation plane which produces the red reward rate curve as RSI
changes is shown in Figure 15(b). It rises with slope less than 1 over most of the range before
plunging toward (γE , γI) = (1.4, 0.8) as RSIs fall below 300 ms. This sharply negative slope
may not occur physiologically due to NE, but other cognitive mechanisms such as a switch
to automatic responding can achieve similar effects (cf. the right-hand end of the optimal
performance curve in [8]).

The ability of NE modulation in the present models to implement a speed-accuracy tradeoff
as seen in experiments [34] suggests new experiments relating tonic LC firing rate to changes
in RSI, with more RSI values tested than the two of [34]. With a linear mapping from tonic
LC to NE levels [6], and assuming a linear mapping from NE to synaptic gains, our models
could be fit to this data. This would inform the mapping from LC to synaptic gains, and
factoring out the tonic LC to NE part would produce estimates of NE effects on synaptic
gains in the full spiking model.

The optimal speed-accuracy tradeoff strategy in these models corresponds to a neuromod-
ulation ratio with the highest slope that preserves robustness but still achieves fast, impulsive
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Figure 15. (a) Optimal reward rates as a function of RSI for each set of combinations of (γE, γI) shown
in Figure 4(b). (b) Optimal gain path in neuromodulation plane; arrows denote decreasing RSIs.

performance before the phasic response is disrupted [5]. For the limited gain range explored
here, the slice ΔγE = 4ΔγI (green line in Figure 4) achieves this. The more GABA-ergic
modulation, the more stable the system to changes in NE concentration, and adding modu-
lation of GABA-ergic synapses does not prevent optimal performance as long as the ratio is
dominated by excitation. These results may differ in multilayer decision models [42], but that
case is not examined here.

The actual path of NE effects through the neuromodulation plane may vary across brain
regions, possibly due to different distributions of NE receptors. For instance, effects of NE have
been found to be similar but with different frequencies of occurrence in thalamus and whisker
barrel cortex of rats [16]. Effects of NE may also depend on phasic LC and the time course
of NE concentration changes. Extending our models to different tasks and brain regions may
require modifying basic model parameters such as the relative synaptic strength ω+. These
parameters can be fit to behavioral data under fixed task conditions, and task conditions can
then be varied with these parameters fixed and changes in performance determined in terms
of γE and γI .

6. Discussion. This study of physiologically realistic models of neuromodulation builds
on the spiking neuronal network simulations of [19], extending from linear slices to the two-
dimensional neuromodulation plane mapped in section 2.2. Many different system behaviors
are observed in the spiking model, but it is difficult to understand underlying mechanisms in
such a high-dimensional setting. The low-dimensional models developed in sections 3–4 facili-
tate this investigation: their bifurcation diagrams, in particular, are helpful in interpreting the
results of Figure 2 in terms of population dynamics of cells correlated with the two choices. In
the region where the full model exhibits failure of pooled inhibition, only a high-high attrac-
tor exists without stable states to which either selective population could be suppressed. In
the below threshold region only low-low stable states exist and decision thresholds are never
reached. In the peak discriminability region, stimulus-induced loss of stability of the low-low



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIMENSION REDUCTION OF A NEUROMODULATED SPIKING NETWORK 175

state can force decisions. Impulsive choices can also occur due to noise perturbing the state
across a basin boundary toward a choice attractor, and higher noise levels at high excitatory
gains make such jumps more likely. At still higher gains, the low-low state is unstable in the
absence of stimuli, and all trials are impulsive. However, firing rates of the selective popula-
tions continue to split until the high-low choice attractors disappear in the no discriminability
region.

Unlike earlier models that were tuned to fit reaction time distributions for a fixed set of
synaptic gains [49], the present low-dimensional models were developed to match the global
neuromodulation results of Figures 1–2. Such models cannot accurately describe all aspects
of neural systems, but they do allow the study of specific behaviors in analytically tractable
settings. Indeed, knowledge of the underlying neurophysiology is currently insufficient to for-
mulate detailed models, as in the present case of NE modulation. Low-dimensional models
should then be judged by their ability to increase the understanding of basic system phenom-
ena and to suggest further experiments. In this regard our two- and four-population models
are ready to incorporate physiological mappings from LC activity via NE concentration to
synaptic gains, once such mappings are experimentally determined.

The main purpose of these models is to link physiological effects of NE and other neu-
romodulators to behaviors in decision-making tasks, as illustrated in section 5. Different
locations in the neuromodulation plane correspond to different levels of subject performance.
High-dimensional, cellular-level models obviously permit better representations of neurophys-
iology, but they are difficult to parameterize and computationally intensive. As demonstrated
in [47, 19], such models can include the cellular and synaptic detail needed to relate neuromod-
ulator effects to behavioral outcomes, but many trials must be simulated to amass reliable data
and fit multiple experimental conditions, which demands extensive computational resources.

In contrast, one-dimensional DD and OU models and two-dimensional leaky accumula-
tors, with appropriate parameterization, can describe behavioral aspects of two-alternative
decisions remarkably well [46, 25, 26, 8, 18]. They are not only fast and simple to simulate,
but they admit analytical investigation. Our reduction from 9200 to 11 and finally 4 variables
provides a bridge across this dimensional divide that promises to better relate neuromodula-
tion at the cellular scale to bifurcation of attractors and low-dimensional models in cognitive
psychology. For the computational cost of simulating 500 trials in a single gain condition in
the spiking model, it is possible to simulate 500 four-population or 2000 two-population trials
over a grid of 900 gain conditions. This enables studies such as that of section 5, which are
not computationally feasible in the spiking model. Moreover, as more neurophysiological data
become available, the low-dimensional models can be improved.

In summary, this set of physiologically inspired models provides a bridge from neuromod-
ulation at the single-cell level to decision-making behavior and thereby allows improvements
in knowledge in each area to increase understanding in the other. The spiking model of
neuromodulation provides a map from neurophysiology to behavior, but many of the neuro-
physiological details have yet to be experimentally determined, especially for NE dynamics
under phasic LC activity. Model simulations raise important questions and suggest new ex-
periments, as described here and in [19], but there is a limit to how far the spiking model can
be taken at this time. In contrast, the reduced models are computationally efficient enough
to allow data-fitting in LC-recording experiments with varying RSIs, creating a map from
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behavior back to neurophysiology.

Appendices: Proofs and mathematical details.

Appendix A. Parameter values for spiking and reduced models.
Task parameters. E = 0.128, μ0 = 40 Hz, threshold = 20 Hz.
Leaky integrate-and-fire model neuron parameters. Vthresh = −50 mV, Vreset = −55 mV,

VL = −70 mV, gL,p = 25 nS, gL,I = 20 nS, Cp = 0.5 nF, CI = 0.2 nF, τm,p = 20 ms,
τm,I = 10 ms, τref,p = 2 ms, τref,I = 1 ms.

Synaptic time constants. TAMPA = 2 ms, TNMDA = 100 ms, TNMDA,rise = 2 ms, TGABA =
5 ms.

Peak synaptic conductances for spiking neuronal network. gAMPA,ext,p = 2.1 nS, gAMPA,ext,I

= 1.65 nS, gAMPA,p = 0.05 nS, gAMPA,I = 0.04 nS, gNMDA,p = 0.165 nS, gNMDA,I = 0.13 nS,
gGABA,p = 1.0 ∗ 1.3 nS, gGABA,I = 1.0 nS.

Other parameters for spiking neuronal network. VE,AMPA = 0 mV, VE,NMDA = 0 mV,
VE,GABA = −70 mV, ω+ = 1.7, ω− = 0.877, [Mg2+] = 1 mM, fext = 2.4 kHz. μS,AMPA,ext,j

and σS,AMPA,ext,j are computed as in (6)–(7).
Derived synaptic currents for four-population model. JAMPA,ext,p = 0.11025 nA, JAMPA,ext,I

= 0.08505 nA, JAMPA,p = 0.002625 nA, JAMPA,I = 0.0021, JNMDA,p = 0.0010487, JNMDA,I

= 0.0008262, JGABA,p = −0.0175 ∗ 1.3, JGABA,I = −0.0175.
Parameters for f-I curve φE,a. cp = 310 Hz/nA, Ithresh,p = 0.403 nA, gp = 0.16; cI =

615 Hz/nA, Ithresh,I = 0.289 nA, gI = 0.087.
Parameters for f-I curve φE,b. φp,max = 100 Hz, φp,0 = 1 Hz, gp = 1, cp = 352 Hz/nA,

Ithresh,p = 0.384 nA; φI,0 = 3 Hz, Ithresh,I = 0.29 nA, cI = 600 Hz/nA.

Appendix B. Gaussian noise derivation for the reduced models. In order to calculate
the effect of neuromodulation on the noise current, we include the synaptic conductance
gAMPA,ext,k in the synaptic variables SAMPA,ext,k for this derivation. We first consider a simple
case of periodic spike inputs. The values of SNMDA, SAMPA, SAMPA,ext, and SGABA for each
population are averages of the Stype,k values for each neuron in the population. For a single
cell with an input of frequency f , this approaches a periodic oscillation. Each spike increases
Stype,k by the peak synaptic conductance g; it then decays exponentially with synaptic time
constant τ , so periodicity is achieved when the decay between input spikes equals g. Letting
Speak denote the value immediately after the spike input, we therefore require

(42) Speak exp(−1/fτ) = Speak − g or Speak =
g

1− exp(−1/fτ)
.

The average is computed by integrating over the interspike interval:

(43) Savg = f

∫ 1/f

0
Speake

−t/τdt = fτg.

For a Poisson spike train of mean frequency f interspike intervals ξ are exponentially
distributed with density

(44) fe−fξdξ,
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Figure 16. (a) Each incoming spike, with interspike intervals exponentially distributed with average 1/f ,
raises S(t) by g, after which it decays with time constant τ . (b) Probability distributions of ξ (left) and η (right);
note flipped distribution. Simulation in (a) and distributions in (b) are both taken from IAMPA,ext for spiking
neuron model with g = 2.1, τ = TAMPA = 2 ms, and f = 2400 Hz.

so that the jumps in Stype,k are also exponentially distributed; see Figure 16(a). If S > gfτ ,
it decays faster than at its average value, and if S < gfτ , the decay is slower, and the average
is stable. To get the true diffusive noise for use in (29), we consider fluctuations from the
average. Setting Speak ≈ Savg + g, we compute the change in S from immediately before one
input spike to immediately before the next as

(45) η = g − (gfτ + g)(1 − e−ξ/τ ).

These fluctuations can be positive or negative, depending upon the interspike interval.
Solving (45) for ξ in terms of η and differentiating, we obtain

(46) ξ = −τ log
(
1− g − η

gfτ + g

)
and dξ =

−τdη
(1− g−η

gfτ+g )(gfτ + g)
,

and substituting (45) into (44) yields the distribution for the fluctuations in η:

(47)
fτ

gfτ + g

(
gfτ + η

gfτ + g

)fτ−1

dη.

Here η varies from g to −gfτ as ξ varies in (0,∞); see Figure 16(b). Reversing the limits of
integration so that η varies from −gfτ to g adds the extra negative sign which makes (47) a
proper nonnegative probability distribution. At the end of this appendix we check that this
distribution has zero mean and show that its variance is

(48) Var(η) =
fg2τ

fτ + 2
.

Hence, as noted in section 3.3, the standard deviation varies linearly with g, and g may be
factored out in (27)–(29). The fluctuations in current input to neuron j in the spiking neuronal
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model are equal to Δ(gS)(Vj−VE) (cf. (9)), and once g is factored out of Δ(gS) it is multiplied
by (Vj − VE). Once fluctuations are averaged over a population, this product must use the
population average voltage V̄ , and Δ(S) is multiplied by gAMPA,ext,k(V̄ − VE) = JAMPA,ext,k

(cf. (10)) as seen in (29).
The Central Limit Theorem [22] implies that the distribution of a sum of n independent,

identically distributed random variables, with mean a and variance b, converges to a normal
distribution with mean na and variance nb as n→ ∞. We now appeal to this to argue that the
Poisson spike trains entering individual cells in the spiking model can be replaced by additive
Gaussian noise in the averaged synaptic variable ODEs (17)–(19) of the population model.

For a single cell with input frequency f = 2.4 kHz and timesteps Δt = 0.1 ms (appropriate
for numerical integration of (17)–(19)), n = fΔt = 0.24 is small, and so the argument does not
apply. However, the variables Stype,j/I in (17)–(19) are obtained by averaging over populations
of Nj and NI cells. The result of n fluctuations drawn from the zero-mean distribution of
Figure 16(b) (right) entering each cell has variance nV ar(η), so that, summing over N cells,

the population average S =
∑

i Si

N changes by a random quantity with zero mean and variance
nVar(η)/N2. Since n = NfΔt, the Gaussian approximation is much better justified, and we
may model the effect of a single fluctuation on the population-averaged synaptic variable as
a zero mean Gaussian with variance

(49)
nVar(η)

nN2
=

Var(η)

N2
.

For large N this is small, so that Savg for a single cell will be close to gfτ , justifying our
assumption prior to (45).

We now consider changes S(t+ s)− S(s) due to fluctuations from time s to s+ t (t ≥ 0).
These have expected value 0 since all increments have expected value zero, and since ≈ Nft
incoming spikes occur in (s, s + t), the variance of their summed effect is

(50) Var(S(t+ s)− S(s)) =
NftVar(η)

N2
=
ftVar(η)

N

def
= σ2t.

From the previous paragraph, this summed noise is normally distributed, so it satisfies the
requirements of a Wiener process [23]. We may therefore model the noise current I by a
stochastic differential equation with additive Gaussian noise, as in (29).

Finally we check that the mean and variance of the distribution (47) are as stated above.
The mean is given by

(51) μ(η) =

∫ g

−gfτ

fτ

g + gfτ

(
gfτ + η

gfτ + g

)fτ−1

η dη,

which may be integrated by parts to give
(52)[
η

(
gfτ + η

gfτ + g

)fτ
]g

−gfτ

−
∫ g

−gfτ

(
gfτ + η

gfτ + g

)fτ

dη = g −
[(

gfτ + η

gfτ + g

)fτ+1 gfτ + g

fτ + 1

]g

−gfτ

= 0.

The expression for variance,

(53)

∫ g

−gfτ

fτ

g + gfτ

(
gfτ + η

gfτ + g

)fτ−1

η2 dη,
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is integrated by parts twice, first to yield

Var(η) = g2 − 2

(gfτ + g)fτ

∫ g

−gfτ
η(gfτ + η)fτdη,

and then finally

Var(η) = g2 − 2

(gfτ + g)fτ

[
η
(gfτ + η)fτ+1

fτ + 1

]g
−gfτ

− 1

fτ + 1

∫ g

−gfτ
(gfτ + η)fτ+1dη

= g2 − 2g2 +
2(gfτ + g)fτ+2

(fτ + 1)(fτ + 2)(gfτ + g)fτ
=

fg2τ

fτ + 2
.(54)

Appendix C. Details of the two-population derivation. In Appendices C.1–C.5 we pro-
vide details of the self-consistency calculations, sketched in section 4.1.2, that close the ODEs
(34)–(35).

C.1. Self-consistency calculation for populations 3 and I. The firing rates of populations
3 and I must be expressed as functions of Sj, νj , and constant input currents. This is done
by separating the inputs to these populations, calculating the output corresponding to each
input, and summing them. For such a linear superposition to work, the f-I curves must also
be linear (or piecewise-linear with fluctuations confined to a single linear piece). We use the
form

(55) φj(Isyn,j) = φj,0 + cjθ(Isyn,j − Ithresh,j), j = 3, I,

where φj,0 is the minimum firing rate for Isyn,j < Ithresh,j and Ithresh,j is the threshold current
for population j.

To match the f-I curve φE,b in the critical region below the decision threshold (20 Hz), we
set Ithresh,p = 0.384 nA for pyramidal cells and Ithresh,I = 0.29 nA for interneurons (see black
curves in Figures 3(a) and 3(b)). We approximate ψ3(φ3) by linearizing (38) about a value
φ3,0:

(56) ψ3(φ3) ≈ ψ∗
3 +KKMDAφ3,

where

(57) ψ∗
3 = −KNMDAφ3,0 + ψ3(φ3,0) and KNMDA =

0.641TNMDA

(1000 + 0.641TNMDAφ3,0)2
.

(Here we use φ3,0 = 1 Hz as for φE,b in the four-population model, but the derivation is
general.) If Isyn,3 > Ithresh,p, then φ3 and the approximation (56) both vary linearly with
changes in Isyn,3, and the same is true for φI , so if both input currents are above their
respective thresholds, increments in current and firing rate are related by

(58) Δφ3 = c3ΔIsyn,3 and ΔφI = cIΔIsyn,I .
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To begin to separate φ3 and φI , we ignore inputs from populations 1 and 2 and focus on
the external currents to populations 3 and I and recurrent connections in populations 3 and I.
For Isyn,j > Ithresh,j, the step function θ disappears and (55) simplifies to

(59) φj(Isyn,j) = φj,0 + cj(Isyn,j − Ithresh,j), j = 3, I.

Define φ∗3 and φ∗I as the solutions to this linear system. If φ∗3 > φ3,0 and φ∗I > φI,0, then the
system is in the purely linear range and (58) applies. If either condition fails, φ3 and φI must
be treated otherwise, as described in sections C.4–C.5.

We solve for the baseline firing rates φ∗3 and φ∗I from (55), using the components of the
currents Isyn,3 and Isyn,I , except for the inputs from populations 1 and 2:

φ∗3 = φ3,0 + c3(IAMPA,ext,3 + INMDA,3,3 + IAMPA,3,3 + IGABA,I,3 − Ithresh,p),(60)

φ∗I = φI,0 + cI(IAMPA,ext,I + INMDA,3,I + IAMPA,3,I + IGABA,I,I − Ithresh,I),(61)

in which

INMDA,3,3 = N3JNMDA,pψ3(φ
∗
3); INMDA,3,I = N3JNMDA,Iψ3(φ

∗
3);

IAMPA,3,3 = N3JAMPA,p
TAMPA

1000
φ∗3; IAMPA,3,I = N3JAMPA,I

TAMPA

1000
φ∗3;

IGABA,I,3 = NIJGABA,p
TGABA

1000
φ∗I ; IGABA,I,I = NIJGABA,I

TGABA

1000
φ∗I ,(62)

IAMPA,ext,3 = Nextφext
TAMPA

1000
JAMPA,ext,p,

IAMPA,ext,I = Nextφext
TAMPA

1000
JAMPA,ext,I .

Substituting the expressions (62) into (60)–(61), using (56), and collecting terms yields a
linear system of the form

a1φ
∗
3 + b1φ

∗
I + d1 = 0,(63)

a2φ
∗
3 + b2φ

∗
I + d2 = 0,(64)

where

a1 = c3N3

(
JAMPA,p

TAMPA

1000
+ JNMDA,pKNMDA

)
− 1,

b1 = c3NIJGABA,p
TGABA

1000
,

d1 = φ3,0 + c3[IAMPA,ext,3 +N3JNMDA,p(−KNMDAφ3,0 + ψ3,0)− Ithresh,p],

a2 = cIN3

(
JAMPA,I

TAMPA

1000
+ JNMDA,IKNMDA

)
,(65)

b2 = cINIJGABA,I
TGABA

1000
− 1,

d2 = φI,0 + cI [IAMPA,ext,I +N3JNMDA,I(−KNMDAφ3,0 + ψ3,0)− Ithresh,i].
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Equations (63)–(64) have the solution

(66) φ∗3 =
−d1b2 + d2b1

Γ
, φ∗I =

d1a2 − d2a1
Γ

,

where Γ = a1b2−a2b1. If (58) holds, the effects of Sj and νj can be calculated separately and
then summed. The base currents to populations 1 and 2 due to φ∗3 and φ∗I are then constant
and can be calculated as

I∗NMDA,3,j = N3ω−JNMDA,p(KNMDA(φ
∗
3 − φ3,0) + ψ(φ3,0)),(67)

I∗AMPA,3,j = N3ω−JAMPA,p
TAMPA

1000
φ∗3,(68)

I∗GABA,3,I = NIJGABA,p
TGABA

1000
φ∗I .(69)

These currents (67)–(69) become the part of the constant terms of (34) due to populations
3 and I. The currents into populations 3 and I due to Sj and νj affect the currents from
populations 3 and I to each other and back to populations 1 and 2 as calculated in the next
section.

C.2. Effects of Sj and νj on the four populations. Each of the four state variables
that remain in the ODEs (34)–(35) affects the four-population system through a similar set of
currents: the current back to its own population, the current to the other selective population,
the current to the nonselective population, and the current to the interneuron population.
Those to populations 3 and I are especially difficult to estimate because increasing the input
to each population changes the currents of populations 3 and I among themselves. To show
how these currents affect the system, we first describe the effects of S1, which influence the
four populations through the following NMDA currents:

INMDA,1,1 = N1ω+JNMDA,pS1, INMDA,1,2 = N1ω−JNMDA,pS1;(70)

INMDA,1,3 = N11JNMDA,pS1, INMDA,1,I = N11JNMDA,IS1.(71)

Since populations 1 and 2 are explicitly tracked in (30)–(33), we need only calculate the
changes in φ3 and φI due to S1 and the resulting currents back to populations 1 and 2.
Setting Δφ3(S1) to be the change in φ3 as a function of S1 and similarly for φI , we get

(72) Δφ3(S1) = c3ΔIsyn,3(S1) and ΔφI(S1) = cIΔIsyn,I(S1),

which imply that

Δφ3(S1) = c3

[
INMDA,1,3 +N3

(
TAMPA

1000
JAMPA,p +KNMDAJNMDA,p

)
Δφ3

+ NI
TGABA

1000
JGABA,pΔφI

]
,(73)

ΔφI(S1) = cI

[
INMDA,1,I +N3

(
TAMPA

1000
JAMPA,I +KNMDAJNMDA,I

)
Δφ3

+ NI
TGABA

1000
JGABA,IΔφI

]
.(74)
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Collecting terms, (73)–(74) have the same form as (63)–(64), with a1, b1, a2, and b2 as in (65)
and

(75) d1 = c3INMDA,1,3, d2 = cIINMDA,1,I ,

so that the solution to (73)–(74) is

Δφ3(S1) =
−c3b2N1JNMDA,p + cIb1N1JNMDA,I

Γ
S1,(76)

ΔφI(S1) =
c3a2N1JNMDA,p − cIa1N1JNMDA,I

Γ
S1,(77)

where Γ = a1b2 − a2b1. The effects on population 1 are now calculated as follows, starting
with INMDA,3,1:

INMDA,3,1 = I∗NMDA,3,1 +ΔINMDA,3,1,(78)

ΔINMDA,3,1(S1) = N3ω−JNMDA,pKNMDAΔφ3(S1)

= N3ω−JNMDA,pKNMDA
−c3b2N1JNMDA,p + cIb1N1JNMDA,I

Γ
S1.

The other currents due to S1 are calculated similarly, yielding IAMPA,3,1 = I∗AMPA,3,1 +
ΔIAMPA,3,1 and IGABA,I,1 = I∗GABA,I,1 +ΔIGABA,I,1, with

ΔIAMPA,3,1(S1) = N3ω−JAMPA,p

(
TAMPA

1000

) −c3b2N1JNMDA,p + cIb1N1JNMDA,I

Γ
S1,

ΔIGABA,I,1(S1) = NIJGABA,p
TGABA

1000

c3a2N1JNMDA,p − cIa1N1JNMDA,I

Γ
S1.

Due to symmetry, the currents to population 2 from populations 3 and I are identical to
those to population 1 and the effect of S2 can be determined by interchanging subscripts 1
and 2 in the above formulae. The effects of ν1 and ν2 collected in the β’s are similar to the
effects of Sj in the α’s, but with JNMDA,p/IS1 replaced by TAMPA

1000 JAMPA,p/Iν1.

C.3. Calculation of αj , βj , and Iconst,j . We are now in a position to compute the
coefficients αj , βj , and Iconst,j in (34)–(35). We start by writing α1 = α1a + α1b + α1c, in
which α1a is the effect of Si directly on itself, α1b is the effect of Si on itself through the
change in the AMPA and NMDA currents of population 3, and α1c is the effect of S1 on itself
through the GABA-mediation of population I.

α1 = α1a + α1b + α1c, where α1a =
INMDA,j,j

Sj
,(79)

α1b =
ΔINMDA,3,j(Sj) + ΔIAMPA,3,j(Sj)

Sj
, and α1c =

ΔIGABA,I,j(Sj)

Sj
,

which imply

α1a = Njω+JNMDA,p,(80)

α1b = N3ω−
(
TAMPA

1000
JAMPA,p +KNMDAJNMDA,p

)(
c3b2NjJNMDA,p − cIb1NjJNMDA,I

Γ

)
,

α1c = NI
TGABA

1000
JGABA,p

(
c3b2NjJNMDA,p − cIb1NjJNMDA,I

Γ

)
.
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The coefficient α2 is computed in the same manner:

α2 = α2a + α2b + α2c, where α2a =
INMDA,2,1

S2
= N2ω−JNMDA,p,(81)

α2b =
ΔINMDA,3,1(S2) + ΔIAMPA,3,1(S2)

S2
= α1b, and α2c =

ΔIGABA,I,1(S2)

S2
= α1c.

The last two equalities hold because the currents to populations 1 and 2 from populations 3 and
I are the same. We have already noted the symmetry S1 ↔ S2 inherent in the reduced system.

We next calculate the βj ’s, which capture the effect of the currents mediated by the AMPA
synapses of populations 1 and 2 through their firing rates νj . These are similar to the αj ’s,
but with JNMDA,p/I replaced by JAMPA,p/ITAMPA/1000 where appropriate. We find

β1 = β1a + β1b + β1c, where β1a =
IAMPA,j,j

νj
,(82)

β1b =
ΔINMDA,3,j(νj) + ΔIAMPA,3,j(νj)

νj
, and β1c =

ΔIGABA,I,j(νj)

νj
,

which imply

β1a = Njω+JAMPA,p
TAMPA

1000
,(83)

β1b = N3ω−
(
TAMPA

1000
JAMPA,p +KNMDAJNMDA,p

)
NjTAMPA

(
c3b2JAMPA,p − cIb1JAMPA,I

1000Γ

)
,

β1c = NI
TGABA

1000
JGABA,p

(
c3b2NjJAMPA,pTAMPA − cIb1NjJAMPA,ITAMPA

1000Γ

)
;

and

β2 = β2a + β2b + β2c, where β2a =
IAMPA,2,1

ν2
= Njω−JAMPA,p

TAMPA

1000
,(84)

β2b =
ΔINMDA,3,1(ν2) + ΔIAMPA,3,1(ν2)

ν2
= β1b, and β2c =

ΔIGABA,I,1(ν2)

ν2
= β1c.

Finally, we enumerate the constant currents in (34)–(35):

Iconst,j = IAMPA,ext,j + Istim,j + INoise,j + I∗NMDA,3,j + I∗AMPA,3,j + I∗GABA,I,j,

IAMPA,ext,j = Nextφext
TAMPA

1000
Jp,AMPA,ext,

Istim,1 = JAMPA,ext,pμ0(1 + E/100)
TAMPA

1000
,

Istim,2 = JAMPA,ext,pμ0(1− E/100)
TAMPA

1000
,(85)

I∗NMDA,3,j = N3ω−JNMDA,p(KNMDA(φ
∗
3 − φ3,0) + ψ(φ3,0)),

I∗AMPA,3,j = N3ω−JAMPA,p
TAMPA

1000
φ∗3,

I∗GABA,3,I = NIJGABA,p
TGABA

1000
φ∗I .

The noise currents are the same as in the four-population model.
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C.4. Validity of pure linearity conditions. Currents of the form in (34)–(35) can be
calculated provided that φI and φ3 each stay on a single side of the thresholds in their f-I
curves. For example, provided Isyn,3 < Ithresh,p for all time (at a given location in the
neuromodulation plane), regardless of inputs from populations 1 and 2, φ3 remains in its
constant regime and can be fixed at φ3,0. If Isyn,3 > Ithresh,p for all time, regardless of inputs
from populations 1 and 2, φ3 remains in its purely linear regime and the approximations of
sections C.1–C.3 hold. Similar conditions apply for φI , and there are then four possibilities
for which the parameters of (34)–(35) can be calculated: (A) Isyn,I and Isyn,3 above threshold
for all time, (B) Isyn,I above threshold and Isyn,3 below threshold for all time, (C) Isyn,I and
Isyn,3 below threshold for all time, and (D) Isyn,I below threshold and Isyn,3 above threshold
for all time (this turns out to be impossible in the present network structure). The derivation
in sections C.1–C.3 assumes case (A), and three requirements must be met for this assumption
to hold, which then implies linearity in (60)–(61):

(86) φ∗3 > φ3,0, φ
∗
I > φI,0, Γ �= 0

(the latter must hold if φ3 and φI are to be well defined). The values for φ∗I and φ∗3 are
calculated in section C.1 as they vary with γE and γI scaling the effective currents Jtype,k,
and the left panel of Figure 17 shows the regions in the neuromodulation plane over which
these inequalities are satisfied. The red curve defines the boundary to the right of which φ∗I
crosses φI,0 and enters its linear regime, and φ∗3 enters its linear regime below the black curve.
These constraints are stricter than Γ �= 0, which is defined by the thick blue curve. The φ∗3
condition (black curve) is the strictest constraint, and case (A) applies only below this curve.
The region of validity for case (A), then, does not overlap with any part of the region of
interest in which RR > 0, and the α’s and β’s derived in section C.3 do not apply in the
region of good behavior of the higher-dimensional models.

Above the black curve, φ∗3 is fixed at φ3,0 and φ
∗
I is recalculated as described in section C.5,

and the results are examined to verify if case (B) applies. The thick magenta curve denotes
the new linear regime for φ∗I , which now includes the region of good performance. The α’s, β’s,
and constant currents for fixed φ3 can therefore be recalculated as described in section C.5.
This requires Isyn,3 to remain below threshold (region above black curve) for all time in the
presence of inputs from populations 1 and 2. This assumption is now tested.

Above the black curve φ∗3 = φ3,0, but if Isyn,3 were to increase above Ithresh,p due to
inputs from populations 1 and 2, the assumption of constant φ3 corresponding to case (B)
would fail. An input to population 3 from the selective populations corresponds to an input
to the interneurons in the ratio JNMDA,p : JNMDA,I ≈ 1.3 : 1, and we can therefore estimate
their effects via the derivative

(87)
dφ3
dI

=
d

dI

(
c3b2I − cIb1I/1.3

Γ

)
=
c3b2 − cIb1/1.3

Γ
;

cf. (76). The right panel of Figure 17 shows that dφ3/dI < 0 for γE >≈ 0.9, which covers
much of the region of interest. If dφ3/dI < 0 and φ∗3 = φ3,0, φ3 will remain at this value,
regardless of the inputs from the selective populations, which have a net suppressive effect,
and case (B) holds for all time. Thus, in the region above the black curve in the right panel
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Figure 17. (Left panel) Two-population linearity conditions: the red curve marks the boundary of φ∗
I > φI,0

for case (A), which fails to its upper left, the thick blue curve shows Γ = 0, and the black curve shows that
Isyn,3 > Ithresh,p holds over very little of the plane. The magenta curve shows the boundary of the linear
approximation for population I for case (B) parameters calculated in section C.5, which sets φ3 = φ3,0. Failure
of this approximation to the left of the magenta curve is unimportant, since there is insufficient excitation to
drive populations 1 and 2 above their base levels in this region and case (C) applies trivially. (Right panel)
Signs of dφ3/dI (see (87)) indicating changes in φ3 with input.

of Figure 17 and right of the magenta curve in the left panel, which contains most of the
region of good performance, case (B) applies and we may repeat the two-population model
derivation with φ3 = φ3,0 held constant, as described in section C.5.

For the small portion of the region of good performance in which dφ3/dI > 0, Isyn,3 is
far enough below threshold that although Isyn,3 increases with the net effect of populations
1 and 2, their limited firing rates in the green region of Figure 2 do not allow Isyn,3 to
reach Ithresh,p. Applying case (B) parameters to the entire region between the magenta and
black curves in the left panel has the effect of eliminating the loss of discriminability region
from Figure 2 and extending “peak discriminability region” performance all the way to the
boundary of the no discriminability region. This is a shortcoming of this assumption but does
not critically affect the model.

Below the black curve in the left panel of Figure 17, the case (A) model parameters from
section C.3 apply. To the left of the magenta curve, which is fully in the blue region, there
are insufficient external inputs to any population, all firing rates remain at their minimum
values (case C), and the model is trivial. Case (D) never occurs because Isyn,3 > Ithresh,p =⇒
Isyn,I > Ithresh,I , as Ithresh,p > 1.32Ithresh,I and Isyn,3 < 1.32Isyn,I due to network parameters.

The lower-right transition from dφ3

dI > 0 to < 0 occurs as Γ = 0. This zero of the determinant
Γ is responsible for the chain of erratic model behaviors seen in the lower right region of
Figure 10.

C.5. Rederivation with constant φ3. We now solve for φ∗I , the baseline value of φI , in
case (B) of section C.4 (Isyn,I > Ithresh,I and Isyn,3 < Ithresh,p). This is done by computing the
firing rate given the constant inputs, including the now-constant inputs from population 3:
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(88)

φ∗I = φI,0 + cI

(
IAMPA,ext,I + INMDA,3,I + IAMPA,3,I +NIJGABA,I

TGABA

1000
φ∗I − Ithresh,i

)
,

where

(89) INMDA,3,I = N3JNMDA,pψ(φ3,0), IAMPA,3,I = N3JAMPA,p
TAMPA

1000
φ3,0,

and IAMPA,ext,I is the same as in the last equation of (62). Setting ΓI = 1−cINIJGABA,I
TGABA
1000 ,

we obtain

(90) φ∗I =
φI,0 + cI(IAMPA,ext,I + INMDA,3,I + IAMPA,3,I − Ithresh,I)

ΓI
.

Here α1a, α2a, β1a, and β2a are the same as under case (A) in section C.3, (79)–(84), and
since φ3 is constant, α1b = α2b = β1b = β2b = 0.

The effect of population I can be calculated as follows:

ΔφI =
cIIsyn,I

ΓI
, ΔIGABA,I,j = NIJGABA,p

(
TGABA

1000

)(
cI
ΓI

)
ΔIsyn,I ,

and α1c = NIJGABA,p

(
TGABA

1000

)
cIN1JNMDA,I

ΓI
, α2c = α1c,(91)

β1c = NIJGABA,p

(
TGABA

1000

)
cIN1JAMPA,I

TAMPA
1000

ΓI
, β2c = β1c.

The constant currents are the same as in (85) but with φ∗3 = φ3,0 and φ∗I as calculated in (90).
These new parameter values then define the model for the case (B) condition.

To the left of the magenta curve in Figure 17, the firing rates trivially remain at the values
φ1 = φ2 = φ3 = φp,0 and φI = φI,0 for all time, and every trial is a no-choice trial.
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