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Investigating the Neural Correlates of Pathological
Cortical Networks in Alzheimer’s Disease Using

Heterogeneous Neuronal Models
Kamal Abuhassan∗, Damien Coyle, Member, IEEE, and Liam P. Maguire

Abstract—This paper describes an investigation into the
pathophysiological causes of abnormal cortical oscillations in
Alzheimer’s disease (AD) using two heterogeneous neuronal net-
work models. The effect of excitatory circuit disruption on the beta
band power (13–30 Hz) using a conductance-based network model
of 200 neurons is assessed. Then, the neural correlates of abnor-
mal cortical oscillations in different frequency bands based on a
larger network model of 1000 neurons consisting of different types
of cortical neurons are also analyzed. EEG studies in AD patients
have shown that beta band power (13–30 Hz) decreased in the early
stages of the disease with a parallel increase in theta band power
(4–7 Hz). This abnormal change progresses with the later stages
of the disease but with decreased power spectra in other fast fre-
quency bands plus an increase in delta band power (1–3 Hz). Our
results show that, despite the heterogeneity of the network models,
the beta band power is significantly affected by excitatory neu-
ral and synaptic loss. Second, the results of modeling a functional
impairment in the excitatory circuit shows that beta band power
exhibits the most decrease compared with other bands. Previous
biological experiments on different types of cultural excitatory neu-
rons show that cortical neuronal death is mediated by dysfunctional
ionic behavior that might specifically contribute to the pathogene-
sis of β-amyloid-peptide-induced neuronal death in AD. Our study
also shows that beta band power was the first affected component
when the modeled excitatory circuit begins to lose neurons and
synapses.

Index Terms—Alzheimer’s disease (AD), computational models,
EEG, functional deficits, structural impairment.

I. INTRODUCTION

A LZHEIMER’S disease (AD) is the most common neu-
rodegenerative disorder associated with progressive de-

mentia. The clinical symptoms of AD are cognitive and intel-
lectual deficits, and behavior dysfunction. In most instances,
symptoms develop gradually or precipitously. AD constitutes
approximately 70% of all dementia cases and is expected to
affect 1 in 85 people worldwide by 2050 [1]. It has a signifi-
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cant impact on patients and caregivers, and generates substan-
tial costs on health care providers in developed countries [2].
Clearly understanding the dynamics of neuronal networks in
healthy and dysfunctional cortices is important and could aid
in the development of effective diagnostic tools and prevention
measures.

For the last few decades, EEG has been utilized for diag-
nosing dementias. EEG is a measure of the electrical activity
along the scalp produced by a sufficiently large population of
neurons. There is a strong correlation between cognitive deficit
and the degree of the EEG abnormality. EEG spectral analysis in
AD patients has shown a decrease in the mean frequency, alpha
(8–12 Hz) and beta (13–30 Hz) band powers with a parallel
increase in delta (1–3 Hz) and theta (4–7 Hz) band powers com-
pared with those of healthy elderly subjects [3]. The attenuation
of alpha band power is associated with an increase in lower
alpha (8–10 Hz) band power and a parallel decrease in upper
alpha (10–12 Hz) band power [4].

The EEG abnormalities in AD indicate functional and
anatomical impairment of the cerebral cortex affected by the
disease. More investigations are needed to provide insights to
the underlying neurological basis of those abnormalities as well
as to couple those findings with the severity of the disease. This
study is targeted at investigating the relationship between AD
EEG abnormalities and some neuropathological changes during
AD using a conductance-based local neuronal network oscil-
lating in beta band [5] and a simple larger network model of
different types of cortical neurons that oscillates in different
frequency bands [6].

The neuropathology of AD is characterized by an enormous
neuronal and synaptic loss in the cerebral cortex and certain
subcortical regions, and the formation of both neurofibrillary
tangles (NFT) and neurotic plaques (NP) [7]. NFT are patho-
logical tangles of hyperphosphorylated tau protein accumulated
in the brains of AD patients; it is believed that the number of
NFT is directly correlated with neuronal dysfunction as well as
indicating the degree of dementia [8]. β-amyloid peptide (Aβ)
is the main component of NP observed in the brains of patients
with AD and has been suggested to contribute to the pathogen-
esis of neuronal degeneration [9].

A number of studies reported a deregulation of neuronal K+
channel function after exposure to Aβ peptide fragments, which
led to remarkable perturbations in neuronal behavior [10]– [12].
These channels provide a negative feedback to the membrane
potential of neurons. Thus, it regulates the neuronal dynam-
ics including the timing of interspike intervals (time between
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spikes), setting the resting potential, and keeping action poten-
tials short [13]. Therapeutic suggestions can be derived from
computational models of dysfunctional neural behavior to slow
down neural degeneration in AD.

The goal of this study is to elaborate and extend the findings in
[14] and [15]. A recent modeling study of the hippocampal CA1
and medial septal regions has proposed that hippocampal theta
band power is increased as a result of Aβ-induced reduction in
A-type potassium current IA in e-cells [16]. This suggests the
differential vulnerability of neurons and synapses in different
cortical and subcortical areas to Aβ fragments.

In this study, we examine the effects of neuronal/synaptic
loss and deregulation of negative feedback to the membrane
potential of cortical neurons (which mainly results from Aβ-
induced dysfunctional K+ channels) on the oscillatory activity
of cortical networks.

Firstly, the effect of excitatory circuit disruption on beta band
power (13–30 Hz) is investigated using a local network model.
Then, the investigation is extended to explore the underlying
neurological sources of abnormal dynamics in different fre-
quency bands based on a larger network model consisting of
different types of cortical neurons.

The paper is outlined as follows. The network models are
described in Section II. The results and analysis are provided in
Section III. Finally, discussions and conclusion are presented in
Sections IV and V, respectively.

II. NETWORK MODELS

A. Local Neuronal Network

We simulated a conductance-based neuronal network of
200 cells containing 160 excitatory (e-cells) and 40 inhibitory
(i-cells) neurons in the baseline (normal) case. The ratio of
e- to i-cells is 4 (80%) to 1 (20%) motivated by the anatomy of
the mammalian cortex [17]. The cells are connected all-to-all as-
suming that (e–e) synapses are weak within local networks [18].
Parameters and functional forms of the equations are adopted
from [5].

Neurons were modeled by Hodgkin–Huxley dynamics; i-cells
were of the form

C

(
dVi

dt

)
= −gL (Vi − VL ) − gK n4(V1 − VK )

− gNam
3h(Vi − VNa) − Isyn,i + I0 (1)

and the e-cells were modeled by the equations

C

(
dVe

dt

)
= −gL (Ve − VL ) − gK n4(Ve − VK )

− gNam
3h(Ve − VNa) − gAHPw(Ve − VK )

− Isyn,e + I0 . (2)

Both types of cells have a leak (L), transient sodium (Na), and
delayed rectifier potassium (K) current. The e-cells have an
additional after-depolarizing potential (AHP) resulting in a slow
outward potassium current.

The maximal conductances were gNa = 100 mS/cm2 ,
gK = 80 mS/cm2 , gL = 0.1 mS/cm2 , and gAHP = 0.3 mS/cm2 .
Reversal potentials were VL = −67 mV, VK = −100 mV,
and VNa = 50 mV. The capacitances for e- and i-cells were
1 AF/cm2 . Parameters for both the e- and i-cells were the same;
the only differences are in the synaptic currents and the driving
currents, I0 . The gating variables m, h, n satisfy equations of the
form

dx

dt
= ax(V )(1 − x) − bx(V )(x). (3)

For x = m, h, n where

am (V ) =
0.32(54 + V )

(1 − exp([−(V + 54)/4]))
(4)

bm (V ) =
0.28(V + 27)

(exp([(V + 27)/5]) − 1)
(5)

ah(V ) = 0.128 exp
[
−(V + 50)

18

]
(6)

bh(V ) =
4

(1 + exp([−(V + 27)/5]))
(7)

an (V ) =
0.032(V + 52)

(1 − exp([−(V + 52)/5]))
(8)

bn (V ) = 0.5 exp
[
−(57 + V )

40

)
. (9)

The gating variable w is represented by

dw

dt
=

(w∞(V ) − w)
τw (V )

(10)

w∞(V ) =
1

(1 + exp([−(V + 35)/10]))
(11)

τw (V ) =
400

(3.3 exp ([(V +35)/20])+exp([−(V + 35)/20]))
.

(12)

Synaptic currents were modeled as follows:

Isyn,α = giαsi,tot(Vα − Vin) + geαse,tot(Vα − Vex) (13)

for α = {e, i}.
Reversal potentials for AMPA and GABAA were Vex = 0 mV

and Vin = −80 mV, respectively. The synaptic gates satisfy:

sα,tot =
1

N∝

∑
∝−cells

s∝ (14)

dsα

dt
= aα

(
1 + tanh

(
Vα

4

))
(1 − sα ) −

(
sα

τα

)
(15)

where ae = 20/ms, ai = 1/ms, τe = 2.4 ms, and τ i = 12 ms.
The inhibitory GABAA conductances, gie and gii are 5 mS/cm2

and 10 mS/cm2 , respectively.
The excitatory conductances were gee = 0.01 mS/cm2 and

gei = 0.05 mS/cm2 . The model time was 2000 ms and spike
trains were assessed after 1000 ms allowing a settlement period
of 1000 ms. Gaussian noise generated by a wiener process was
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added to the voltages at each integration step. The magnitude of
the noise was 0.5 mV2 /ms for the e-cells. The equations were
integrated using Euler’s method with a time step of 0.025 ms.

To achieve heterogeneity, the input currents (I0) were varied
in the range from 0.6 to 2.0 μA/cm2 to the e-cells and from 1 to
1.1 μA/cm2 to the i-cells. The release of neuromodulators such
as Acetylcholine (ACh) in the rest state is lower than that in
the active states. Low ACh increases the AHP currents (IAHP ).
This motivates the choice of relatively strong AHP currents
(IAHP ) [5].

1) Hypothesis Testing: Based on the local network model,
we have investigated the effect of excitatory circuit disruption on
the beta band (13–30 Hz) power. To achieve our aim, we have
first run the model with physiological (normal) values of all
parameters for 25 trials. Then, we repeated the same procedure,
but with the loss rate of e-cells varied in the interval (6–19)%,
i.e., the number of e-cells (Ne ) varied in the interval (130–150).

The fast Fourier transform (FFT) technique has been applied
on the spiking train produced by each network setup to calculate
the power spectra within the beta frequency band (13–30 Hz).
One-way repeated measures ANOVA has been used to analyze
the significance of the difference in beta band power between
the physiological (baseline) case and cases with an abnormal
ratio of e- to i-cells (corresponding to the AD groups). P values
less than 0.05 indicate a significant difference.

B. Larger Network Model

Spiking dynamics of neurons were simulated based on
Izhikevich’s model of spiking neurons [6], which can reproduce
the firing patterns of all known types of hippocampal, cortical,
and thalamic neurons. The spiking neuron can be expressed in
the form of ordinary differential (16)–(18):

dV

dt
= 0.04V 2 + 5V + 140 − u + I (16)

du

dt
= a(bV − u) (17)

with the auxiliary after-spike resetting

If V ≥ 30 mV, then V ← c, u ← u + d (18)

where the dimensionless variables V and u represent the mem-
brane potential and the recovery variable of the neuron, re-
spectively. The recovery variable u provides negative feedback
to V, and it corresponds to the inactivation of Na+ ionic cur-
rents and activation of K+ ionic currents [6]. Dimensionless
parameters a, b, c, and d (illustrated in Fig. 1) can be tuned
to simulate the dynamics of inhibitory and excitatory neurons.
Parameter b describes the sensitivity of the recovery variable
u to the subthreshold fluctuations of the membrane potential
V. Greater values of b couple V and u more strongly resulting
in possible subthreshold oscillations and low-threshold spiking
dynamics [6].

Spiking networks of 1000 neurons of different types, fully
and randomly connected to each other with no plasticity, were
simulated to investigate a number of hypotheses about the un-
derlying causes of abnormal cortical oscillations in AD patients.

Fig. 1. Graphical representation of the influence of parameters a, b, c, and
d on the spiking dynamics. (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.)

TABLE I
CASE STUDIES

The networks were stimulated by a random thalamic current at
each time step. We have used MATLAB to simulate the net-
works in real time (resolution 1 ms). Setting the parameters
of the model to physiological (normal) settings represents the
physiological case. The ratio of excitatory to inhibitory neurons
is 4 to 1 inspired by the anatomy of the mammalian cortex [6].
Model time was 30000 ms; spike trains were analyzed after
29000 ms allowing a settlement period (stability) of 29 s.

1) Hypothesis Testing: The model parameters are varied to
test two hypotheses. The different group comparisons and asso-
ciated parameter alterations have been categorized into the two
case studies described in Table I. The first hypothesis is related to
variations in the ratio of excitatory to inhibitory neurons in AD,
while the second hypothesis is derived from AD observations
of functional deficits in K+ ionic channels in cortical neurons.
Each hypothesis was investigated with a computational model,
as presented in Table I; each model has a different setup so that
we refer to these models as case studies, i.e., hypothesis 1 was
investigated in case study 1 and hypothesis 2 was investigated
in case study 2.

Hypothesis 1 relies on the loss of excitatory neurons that
affects the ratio of excitatory to inhibitory neurons in the cortical
network and decreases the excitatory current in the network as
a possible cause of abnormal network oscillations.

Hypothesis 2 links unbalanced cortical activity to an unbal-
anced negative feedback to the membrane potential. Specifically,
it might result from dysfunctional K+ channels in excitatory
neurons during AD. Hypothesis 2 suggests that the enhance-
ment of negative feedback in excitatory neurons can be involved
in abnormal oscillatory activity. This results in high-threshold
spiking dynamics and less spiking activity for excitatory
neurons.

To determine the overall rhythmic activity of the model in its
control (normal) context, 10 trials of the model are run, each
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Fig. 2. Mean beta band power (13–30 Hz) for a physiological case (baseline)
and cases with reduced e-cells. Differences (P values) measured by ANOVA
are presented in the figure. Black bars correspond to significant differences. The
number of trials is 25 for each setup.

with random input, therefore, representing 10 individuals; the
healthy control group. The model parameters are then modified
to test each hypothesis. Again the model is run 10 times for
each test, with each test representing a group with a certain
neuropathology.

The FFT tool has been applied on the spiking train produced
by each model to calculate the power spectra within the follow-
ing frequency bands: delta (1–3 Hz), theta (4–7 Hz), alpha (8–
12 Hz), beta1 (13–18 Hz), beta2 (19–21 Hz), beta3 (22–30 Hz),
gamma (30–50 Hz), and full (1–70 Hz) bands; the categorization
for the frequency bands is based on [19].

One-way repeated measures ANOVA has been used to an-
alyze statistical significance of the difference in band power
within each frequency band across the different groups, as out-
lined previously, P values smaller than 0.05 were considered
statistically significant.

III. RESULTS

A. Decrease in Beta Band Power Induced by Loss of Excitatory
Neurons and Synapses in the Local Network Model

A significant decrease in beta band power was observed after
the excitatory circuit looses more than 20 e-cells (number of
e-cells becomes ≤139, loss rate ≥13%, P < 0.05), as illustrated
in Fig. 2.

We refer to this point as a breakdown point since the power
spectra of beta rhythm exhibits a significant decrease after this
point. In the network model, the death of each e-cell is associated
with a synaptic loss of 319 excitatory synapses (1% loss of
excitatory synapses) since the network is fully connected (each
e-cell receives 159 e-synapses, innervates 159 e-cells, and has
one recurrent synapse with itself).

The same response point appears after varying the network
setup as follows: settlement period is increased to 2 s and power
spectra differences are assessed based on the spike trains col-
lected after second 2 until second 4. Thus, model time is 4 s.

B. Effects of Varying the Number of Excitatory Neurons on the
Oscillatory Activity of the Larger Network Model

In case study 1, the power spectrum averages of alpha and
beta3 bands are significantly decreased when decreasing the
number of e-cells (Ne ) from 794 to 764 (loss% of e-cells is

TABLE II
MEAN POWER SPECTRA IN CASE STUDY 1

increased from 0.75% to 4.5%). It is expected that reducing
Ne increases the amount of inhibition in the network and slows
down the spiking activity, which explains the significant changes
in the full band. From Table II, we can see that delta (slow
rhythm) was not significantly affected, in contrast to the higher
frequency bands.

Decrease percentage is calculated according to the following
formula:

Decrease%=
(

([Control value]−[Minimum value])
[Control value]

)
100%.

(19)
The minimum mean value was calculated by comparing the
mean value of the power spectrum in the corresponding fre-
quency band across all groups (each group contains 10 trials) in
case study 1. We speculate that the power spectrum is shifted
to lower frequencies with a parallel decrease in the coherence
of fast rhythms, see Fig. 3(a). The statistical analyses show that
the significant decrease started in beta3 band power (Ne = 782,
2.25% loss in e-cells).

This observation can be further explained by inspecting the
minimum values of the power spectrum averages for slower and
faster frequency bands, as given in Table II. The mean values of
power spectrum for alpha and delta frequency band power for
the groups in case study 1 are also presented in Fig. 3(b) and
(c), respectively. The analyses show that the power spectrum
in delta, theta, beta1, and beta2 bands was not significantly
decreased.

C. Effects of Varying Parameter b for e-Cells on the Oscillatory
Activity of the Larger Network Model

The datasets in case study 2 contained important information
about the magnitude of mean power ranges in high frequency
bands. As presented in Table III, there are higher shifts from
alpha, beta1, beta2, and beta3 band powers than slower fre-
quency bands similar to previous observations for case study 1
outlined previously. The beta2 band is the most affected one.
Again, decreasing parameter b (17) for e-cells upregulates the
negative feedback u to the membrane potential V (16), which
results in high-threshold spiking dynamics and decreases the
spiking activity of e-cells. This accounts for the activation of
K+ ionic currents and inactivation of Na+ ionic currents [6].

Values of parameter b (17) for e-cells were decreased from
0.1995 (group 1) to 0.195 (group 10). The length of decreasing



894 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 3, MARCH 2012

Fig. 3. Effects of increasing the loss rate of e-cells on the mean power spec-
trum. (a) Power spectrum is shifted to lower frequencies as more e-cells loss
occurs. (b) and (c) Tracking the changes in alpha and delta band powers, respec-
tively, as the number of e-cells is gradually decreased. The normal value (when
Ne = 800 and the ratio of e- to i-cells is 4 to 1) of the mean power spectrum
for delta and alpha frequency bands (control group) is indicated by a horizontal
line.

step for b (17) between the groups in case study 2 is 0.0005, i.e.,
value of parameter b for the second group is 0.199. Control (nor-
mal) value of parameter b (17) for e-cells is 0.2. The total number
of groups in case study 2 is 11 ([(0.1995 − 0.195)/0.0005] + 1
+ control group). The number of trials is 10 for each setup.

In Fig. 4, we demonstrate the simulated EEG signal for three
groups with different values of parameter b.

IV. DISCUSSION

A. Structural Changes

It is commonly thought that an increase in theta band activity
appears in the early stages of AD with a parallel decrease in beta
activity; delta activity increases later during the course of the
disease [3]. However, the underlying neural causes of abnormal
EEG dynamics in AD are still poorly understood.

This research is concerned with developing a better under-
standing of the pathophysiological causes of abnormal cortical
oscillations in AD based on a computational modeling approach.

TABLE III
MEAN POWER SPECTRA AFTER VARYING PARAMETER b for e-CELLS

(CASE STUDY 2)

Fig. 4. Effect of decreasing parameter b for e-cells on the mean power
spectrum.

In the current study, the effect of excitatory neural and synap-
tic loss on beta band power has been evaluated with two net-
work models (along with other rhythms using the larger network
model). Despite the heterogeneity of the network models, we
show that the power spectrum of beta rhythm is significantly
affected by excitatory neural and synaptic loss. In case study 1
(the large network model), we find that the significant decrease
begins in the beta3 band (upper beta) when Ne was 782 (2.25%
loss in e-cells).

The sequence of gradual changes in faster bands is compatible
with EEG studies [3]. Although the mean power spectrum of
the full band is significantly decreased, slow bands (delta and
theta) are only slightly affected by the decrease and most of the
signal power was shifted from fast bands toward slow bands.

The decreased activity in alpha, beta, and gamma waves is
related to changes in excitatory circuit activity [20]. The study
involved the analysis of a large EEG dataset using global field
synchronization (GFS), a novel measure to quantify global EEG
synchronization [20]. A high GFS index for a certain frequency
band reflects increased functional connectivity between brain
processes. The patient’s results showed increased GFS values
in the delta band, and decreased GFS values in alpha, beta,
and gamma frequency bands, supporting the disconnection syn-
drome hypothesis [20] and [21].

Other AD studies have reported decreased synchronization
of alpha band in the early stages of AD [22]. In a previous
study [4], we utilized a classical computational model of alpha
rhythm proposed by [23] to explore the relationship between
synaptic activities in a thalamocortical circuitry and diminished
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Fig. 5. Upregulation of IK by β-amyloid 25–35 in cortical e-cells [24].
(Reproduced with permission from S.P. Yu.)

alpha power. In [4], it was found that the deterioration in ex-
citatory synaptic pathways during AD biased the dynamics to-
ward increased inhibitory activity and affected alpha rhythmic
activity.

In this study, we first traced the changes in alpha band power
after the structural impairments in the excitatory circuit (case
study 1). We observe similar changes in alpha band power, as
proposed in [4]; see Fig. 3(a). Then, we further explored the
consequences of functional deficits in excitatory circuits (case
study 2) on alpha band power, see Fig. 4.

According to the simulation results, we speculate that the
functional deficits of ionic channels contribute to abnormal al-
pha band power in AD.

B. Functional Changes

It was demonstrated that cortical neuronal death is mediated
by the enhancement of outward K+ current and such enhance-
ment might specifically contribute to the pathogenesis of Aβ-
induced neuronal death [24].

The results in [24] showed that Aβ fragment 1–42 or 25–35
exposure induce an upregulation in the delayed rectifier K+
current IK , an increase in maximal conductance, and a shift in
its activation voltage relationship toward hyperpolarized levels,
see Fig. 5.

Cortical neuronal cultures that contained cells from differ-
ent layers of cortex were used in the experiments. The cells
were excitatory because they responded to N-methyl D-aspartate
(NMDA) or glutamate stimulation [24].

The upregulation of this type of K+ currents provides a more
negative feedback to the membrane potential of e-cells followed
by neuronal death. We speculate that the neural mechanism that
underlies the sequence of abnormal changes into EEG of AD
can be described by inspecting the results in case study 2, which
showed a parallel significant decrease in different bands with a
higher shift from upper frequency band powers, in particular,
the power spectrum of beta2 and alpha rhythms. The significant
decrease within beta band power appears also (before other
rhythms) when decreasing Ne , followed by a breakdown in other
frequency bands when Ne decreases more and more (increased
rate of neuronal and synaptic death).

V. CONCLUSION

The impairment of excitatory circuitry appears to play an
important role in abnormal oscillatory activity of the neuronal
networks and this is supported by our study, which uses simple
network models. Furthermore, the observation that the death
of e-cells is preceded by dysfunctional behavior and changes
in the ionic channels has been investigated in the study. The
dynamical changes of the rhythmicity in the network as a result
of alterations in the negative feedback for membrane potential in
e-cells have been focused on. Future investigations will be based
on a network consisting of 100 000 cortical neurons, distribution
of axonal conduction delays, long-term spike-timing-dependent
synaptic plasticity, receptor kinetics, and short-term plasticity.
The network structure will be informed by the organization of
the cerebral cortex [25].
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