FlexTree: Visualising Large Quantities of Hierarchical Information

Hongzhi Song Edwin P.C urran

Roy Sterritt

Schaol of ISE,F aculty of [nfottnatics, U niversity of Ulster
Jordanstown, Newtownabbey,N orthern Ireland,B T37 0QB, UK

{gh.song,e p.curran,r _sterritt} @ulster.ac.uk

Absoract—Yisualising large quantities of hierarchical
information 1s a difficutit opic in Information Visualisation and
it has been stiracting much effort sincet hee mergence of this
research area. This paper presents the FlexTree, a novel
approach to visualising, navigating and analysing large
hierarchics. It is based on the focustcontext technique and
combines the power of histogram with traditional two
dimensional (2D) node-link diagrams. This approach maintains
the context of a large hierarchy while providing casy and
consistent access to details of multiple focal points. Simple
acsthetic rules and an interactive design were applied to the
system. As 3 demonstration of the approach a computer file
system hierarchy with 6351 file foldersa nd 130,404 fileso n a
personal puter has been fully visuzlised.

Keywords—Human-Machine Systems, Information
Visualisation, Hierarchy Visualisation, Focus+Context

L INTRODUCTION

One of the active fields in Information Visualisation research
is hierarchy visualisation. A hierarchy, mathematically
abstracteda s a tree, is a natural means of organising and
managing knowledge. Hierarchical structires are ubiquitous:
such as computer file system structures, organisatiomal
structures, family trees, catalogues, computer programs etc.
Thus it is widely used in human-machine systems. If a
hierarchy can be extracted from a certain knowledge domain,
the structure, patterns, and relationships may be easily seen,
and thus more insight into this domain can be acquired. The
number of nodes in a balanced tree increases exponentially
with the depth of the tree. Thisf eature makes it possible to
manage the increased information consistently in the same
manner and with a theoretically unlimited number of nodes
contained. However, the direct disadvantage of this feature is
that it makes it difficult to cope with using traditional
visualisation approaches (¢.g. node-link diagrams, indented
lists) when the amount of information becomes large.

FlexTree, an interactive visualisation approach to visualising

hierarchical information is proposed. The following aspects

are the aims of the design:

o Efficient space utilisation: in order to visualise a large
amount of information in a limited screen size; efficient
use of space is critical.

e [Inferactivity: easy to use and intuitive coatrols are
necessary to achieve a good user acceptance.

e Simplicity: a simple yet powerful system is always a
major aim of designers.

e Completeness: to keep a complete structure while
providing smooth access to details is essential to
focus+context based visualisations.

¢ Organisation: well-organised information is always
easier to understand.

e Dual Function: visual representation is easy to
understand whereas textual information is easy to
deliver. Providing both of these two forms of
information in parallel would improve usability.

Il. PROBLEMS AND CHALLENGES

Hierarchies contain two kinds of information: structural
(organisational) information associated with the hierarchy
and contenti nformation associated with individualn odes [7].
To represent both of these types of information for a farge
hierarchy is a non-trivial task. Johnson and Shneiderman [7]
highlight the weakness of traditional methods. They
classified traditional methods for presenting hierarchically
structured information into three categories: listings, outlines
(sometimes referred to as indented lists) and treed iagrams
(also called node-link diagrams). Due to user familiarity we
focus on the indented list to discuss some major problems, as
well as then ode-link diagrams, then atural ancestor to the
FlexTree approach.

A. Indented lists

One oft he traditional methods used to represent hierarchies
is the populart echnique of indented lists. A typical example
is the Windows Explorer shown in Figure 1 (other file
management tools haves imilar functionality). It presents a
computer file system hierarchy using the overview-detail
technique with file folders or directories listed on the left
panel as the overview and files containedi nside a certain
folder listed on the right panel as detail. A fil¢ can be
accessed after locating its folder. However, to find a file
located in a further level oft he hierarchy, the user needs to
traverse all the intermediate folders unless the search
facilities areb eing used. Certainly, search is an altemnative
way to perform thes amet ask. Nonctheless, searching is a
direct-to-point strategy with very little or no contextual
information. Nowadays, a personal computer normally has a
10~30 GB disk, so that the file system hierarchy often has
10~20 levels. Furthermore, users tend to store their files into
sub-level folders since rearrangement usually happens in the
bottoml evel folders. This makes the hierarchy more
complex,a nd thus imposes on the daily file operations a large
amount of overhead. Albeit shortcuts are provided to reduce

© 2002 IEEE SMC

WP1J6

https://core.ac.uk/display/287019473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:stemtt)@lster.ac.uk

such overhead for frequently accessed files, it may be
considered as compensation rather than a radical solution.

562 System (C2)

Figure 1. An indented list (Snapshot of Windows Explorer)

Another problem is, when the hierarchy is large, it is note asy
for users to keep the structural information in mind. For
instance, how could one point out which folders are in the
same level and how many folders are int hat level? How
many levels are contained in this hierarchy?

B. Node-link diagrams

Aib 53

Figure 2. Traditional node-link diagrams

Traditionaln ode-link diagrams (Figure 2) are generally taken
as excellent visualisation tools for small trees [12]. However
these diagrams make poor use of display space because large
percentages of space are used as background. This is
acceptable for small trees, and such diagrams produce
excellent results due to their intuitive perceptibility. But for
large trees, they are hard to navigate by virtue oft heir large
sizes. Another problem with node-link diagrams is the lack of
content information sincep resenting additional information
will quickly overwhelm the display space [7].

C. Novel systems

Novel systems were designed to provide alternstive solutions
to hierarchy visualisation.

Cone Trees {12] represent large hierarchiesi n 3D spacesi n
an attempt to increase the number of nodes that could be
represented on screen. The Hyperbolic Browser [8] combines
the focustcontext technique with hyperbolic geometry. A
hierarchy is drawn uniformly on the hyperbolic plane.
Cheops [2] uses a small amount of reusable triangles to
represent a large amount of nodes of a hierarchy with
triangles lower than the secondl evel overloaded. The H3
browser [10] optimises the layout algorithm of Cone Trees to
3D hyperbolic space by placing children on a hemisphere
around the cone mouth instead of on its perimeter. It claimed
to be able to visualise a huge graph with over 20,000 nodes.
NicheWorks [14] is a recent node-link based system, which

claims to be capable of visualising 100,000 nodes on
persenal computers and one million nodes on powerful
graphits worksiations. Other excellent systems include
Treemaps [7], and fsvis [4]. However, most of these systems
emphasise one aspect of a hierarchy, “which is structural
information. One exception is Treernaps as stated by Johnson
"our approach is best suited to hierarchies in which the
content of the leaf nodes and the structure of the hierarchy
are of primary importance...". Treemaps concentrate on the
content information of the leaf nodes. Albeit its ability to
depict structural information, it has tob e parsedb y users
themselves with cognitive overhead.

Visual analysis is an important task in the area of Information
Visualisation. As indicated by Card, Mackinlay and
Shneiderman {3], the perceptual analysis of dynamic
information displays is an unsolved problem. "It is as
important to understand the nature of information-intensive
tasks as it is to understand the details of information
visualisation technology. Otherwise, the field will evolve into
a set of techniques for making pretty picturesl ooking for a
use”.

The new FlexTree approach aims to effectively provide both
structural information of the whole hierarchy and dynamic
access to content information of any node in the same view,
and be able to scale to handle large hierarchies. As such, it is
hoped that FlexTree will be the basis of an effective visual
analysis tool for hierarchies.

M. FLEXTREE APPROACH

This sectiong ives a description on how to view 2D tree
representations, how the FlexTree is constructed and what
functionality it can provide.

A. Perspectives of 2D trees

Hierarchies ¢can be drawn entirely in 3D graphics, liket he
Cone Trees, but in2 D graphics, different views of a tree
could generate different presentations. Generally speaking, a
real tree may be viewed from three perspectives, bottom-up
view, top-down view and lateral view. If an abstract tree is
viewed in the samec or similar ways, with further
transformation, it could output usefal visualisations. For
example, viewinga tree in a lateral wayc culd lead to a
traditional node-linkd iagram. Normally the tree may also
need to be rotated by a certain degree. Viewing a tree from
bottom-upa ndt reatingn odes from root to leaves equally
could provide a radial view and a balloon view of the tree.
Viewing a tree from top-down and letting leaf nodesd ivide
the projection area according to certain rules, thus producing
the Treemap. Although the Treemap is not initially obtained
from this metaphor, different metaphors coulda chieve the
same grrangement. The FlexTres is a variation oft he lateral
views from this perspective.

B. Aesthetic rules for design
To effectively display a tree on the screen, certain rules must
apply. Charles Wetherell and Alfred Shanmon [13] and
Edward Reingold and John Tilford [11] defined five aesthetic
rules to draw a binary tree.T hey are as follows:

1. A parent should be drawn above its children.

2. Nodes at the same] evel should lica long sh orizontal
line.

3. Aleft child should be positioned to the left of its parent
and a right child to the right.

4. A tree and itsm irror image should be drawn to reflect
cach other.

5. A subtree should Jook the same, regardlesso f where it
occurs.

As stated in {9], "it makes more sense to use horizontal trees
to diagram user-interface trees because typically they contain
text strings of varying fength." So if the first two rules could
be extended from top-to-bottom to left-to-right
correspondingly, they would be very useful in the FlexTree
design. Since the third and fourth rules are restricted to
binary trees, they are not applicable. To keep the fifth rule,
one has to allocate emough space between tree nodes.
Howeveri n Information Visualisatior designs, screen pixels
are so precious duc to the large amount of nodes to be
presented. So even though the fith rule is helpful in
understanding 2 tree,i t will require modification. Three rules
for the FlexTree design are:

1. A parent should be drawn left of its children.

2. Nodes at the same level should lie along a vertical line.

3. A subiree should look similar, regardless of where it
occurs,

C. Rearranging traditional node-link diagrams

[8] Lo 2,0 30
Figure 3. Rearranged node-link diagram with co-ordinates for
each node indicating positions

A hierarchy can be organised in such a manner that each
node can be coordinated as in Figure 3 so that each nods has
a unique pair of co-ordinates, The co-ordirates can be
mapped onto the X and Y co-ordinates on & Cartesian plane
with X-axis standing for level andY for sequence. In so
doing a histogram-like layout may be obtaitied. In such an
arrangement, not only is the number of levels of the hierarchy
easily seen but also are the numberso f nodes in each level
visually comparable. Thus it is easy to visually identify those
levels which have large or small amounts of nodes. In this
arrangement nonco f the relationships within the hierarchy
are disposed of. They are representedb y lines connecting
parent nodes and their children. Although the hierarchy is not
as aesthetic as its origin (Figure 2}, the relationships are still
clearly visible. However using lines is not enough to truly
depict the tree structure. For example, the line representation
would not perrait the users to see how many child nodes

belong to a certain parent node, or to visually compare the
numbers of child nedes from two different parent nodes. The

- first case can be solved by providing a visual cue to highlight

all the children of the currents elected node, As to the second
case, nodes need (o be grouped according to their parents and
thus groups separated in a certain manner. The FlexTree
solutioni s toi nsert a gap(several pixels of blank space)
between two nodes from different parents. As the gaps are
consistently inserted, the tree structure is much clearer than
before, Since different people have different visual ability to
recognisc structures, the height of the gap is also variable,
The bigger the gap’s height, the clearer the tree structure. The
effect can be seen in Figure 4.

As stated earlier in this paper, a hierarchy always has
structural information and content information. Any
hierarchy has structural information, but content information
is always specific to the domain where the hierarchy is
extracted. How FlexTree presents the structural informatien
is described above. In order to express the coneept of
presenting the content information, it is necessary to provide
an gpplication in a specific domain, In this instance the
example given is a computer file system.

A computer file system is organised as files and file folders;
together they composc the file system hierarchy. In the
FlexTree design, files are takena s content information of
folders other than leaf nodes. In such a way, only folders
contribute to the structural information, files only contribute
to the content information of nodes. The strectural
information is shown explicitly on the screen with the content
information accessible through interaction, This is similart o
showing only branches of a tree and hiding the leaves. Such a
metaphor makes it possible to visualise large hierarchies
without letting the huge amount of content information
overwhelm the screen.

D. Visual encoding

Encoding information into visual cues is vitally important in
visualisation design. A good design is able to speed
information understanding and assimilation, whereas a poor
design may be of no use in aiding understanding and may
even be misleading. It is not always wue to say that the more
information shown on screen the better the visualisation. One
attribute of objects needsa t least one visual cue to encode.
Many visual cues shown simultaneously could cause
cognitive overload, because the mapping from attributes to
visual cues has to be bome in mind by usersw hile viewing
the visualisation.

Visualc ucs include length and height, colour, texture, shape,
size and symbols etc. Considering the quantity of information
to be visualised, it requires careful choice of visual cues. The
visual cues must bes calable, which means they should be
effectively discernible even wken they are only several
pixels. FlexTree utilises length, colour, and texture as the
main visual cues because theya re discernible even when
sceled down to one pixel if used properly.

FlexTree uses bars of equal length to stand for nodes. The
equal lengths of the bars guarantee that there is no line

crossing between any two neighbour nodes. Each bar has a
coloured bar on top of the bar. The colour of the coloured bar
is used to encode content modified history of folders when
applied to visualising file systems. The colour scheme is
visually lincarised [5] and selectable by users. Modifying a
file contained in a folder would cause the change of the
folder’s colour.

The length oft he coloured bar represents the amount of the
contenti nside the folder, itc an be the total size of files or the
rumber files, Adding new files to a folder or deleting existed
files from a folder would cause the change of the coloured
bar’s length.

A three-state-icon is introduced as an indicator of a folder’s
states, that is open, closed, childless. The icon is allocated at
the very right of every node, the node tail. When a folderi s
childless the icon shows no texture and the same colour as
the background of the node. When a folderh as children and
all the children are visible (open state), the icon shows as a
small square with a minus symbol in the middle. When a
folder has children and all the children are invisible (closed
state), the icon shows as a smalls quare with a plus symboli n
the middle. This encoding is similar to Windows Explorer to
some extent; thisi sd eliberate in order to take advantage of
the familiarity of such encoding. Another benefit of this
encoding is that the state of a gode is still visible even when
the height of nodes reduces to one pixel.

FlexTree does not encode much meaning with the links; they
only represent parent-child relationships. The colouro f lines

changes when a node is br d or selected. Browsing or
sclecting a8 node will highlight the lines linked to it to
emphasise all the related nodes.

E. Interaction

Interactive systems provide a good means of dealing with
large quantities of information. It is ubiquitous in current
visualisations. One of the main benefits of applying
interaction is that it can temporarily hide the rest of the
information while showing one part of it. It is also easy to
achieve different views of the same data set through
interaction. In the design of FlexTree, these two benefits are
fully utilised.

Interacting with the FlexTree system is easy. Some
representative functions are illustrated in more detail.

1) Navigation
As Beard states [1] on navigating large2 D spaces, "If the
two-dimensional information space fits completely onto a
display screen, there isn o navigation problem ... Users are
never lost because theyc an see the complete information
space.” Since the FlexTree system is a 2D visualisation, this
goal has been kepti n mind in the design, Scrolling is applied
to the navigation of the FlexTree. Therefore thes calability
becomes an issue. It is difficult to provide an overview of too
many nodes, It is recommended that an overview should at
least be able to see one quarter of the scene.

2) Zooming
Zooming is simple for users to understand, but users lose the
overview after they have zoomed in and the mechanism for

zooming out is not always apparent [3]). Zooming is an
important part of the interaction with the FlexTree. A strategy
was carefully designed to overcomet he above problem. In
this strategy, vertical zoom and horizontal zoom are
separated. Horizontal zoom only works on levels of nodes. It
uses the same mechanism as operating & usual database table
or electronic spreadsheet. When users want to see more
details of a level of nodes or some details of a singfe node in
that level, they can drag the border of the columm to the right
to zoom in and to the left to zoom out. Vertical zoom is
further divided into node-zoom and structure-zoom. Node-
zoom has effect only on nodes; it can be performed on all
nodes, a level ofn odes and individual nodes. All the global
functions in the FlexTree are executed through clicking
buttons including the vertical node-zoom. A pair of vertical
zoom buttons is specially designed and they are metaphored
by cylinder lenses employing the common metaphor "+" to
zoom in and "-" to zoom out. Vertical zooming with a level
of nodes and an individual node uset hes ame mechanism;
they utilise the mouse wheel. Scrolling the wheel forward to
zoom in and backward to zoom out, The onlyd ifference
between them is the position of the mouse cursor. For
individual node operation, the cursor needs to be positioned
on the node, whereas for level of nodes the cursor needs to be
on the background of the column. Structure-zoom is even
easier. Left-click on the background of a column will further
separate nodes from different parents. Right-click is to
minimise the separation.

So far two pairs of counter concepts are employedi n the
zooming design, that is right and left, forward and backward.
It results in ac lear mechanism for thez ocoming operation.
Once users are familiar with one operation the remainder

appear natural.

Another aspectw orth mentioning is that the node zooming is
semantic zooming in concept because the information content
changes and mored etails are shown when approaching an
area -of interest [6]. It is actually achieved by gradually
showing the whole of the underlying picture starting from a
small part or vice versa. The authors believe that this
mechanism has generic potential to other visualisation
designs.
3) Searching

Considering the size of the information space, to find points
of interest only by browsing normally would not be enough.
For fast access of points ofi nterest a search function is also
provided for the FlexTree. Performing a search willc ause the

- matched points to be highlighted. Currently, search is only

supported by name. Node matching and contentm atching are
differentiated by highlighting using a taffic lights
mechanism. If node names match the search term, the
matched nodes arc highlighted by red. If nodes content match
the term, the nodes are highlighted by green, and if both
highlighted by yellow.
4) Sorting

Ordered information is always easicr to understand. Sorting
is an important feature of the FlexTree system. This function
is provided in order to facilitate navigation of the hierarchy
andc ompare related nodes accordingt oc ertaina tiributes.
Sorting is divided into global sort and level sort to enhance
performance. Global sort has effects on all nodes in the

hierarchy, whereas levet sort only affects certain levels. Sort
by any attributes of nodes is supported. However sorting a
tree is not like sorting & table of records in a database.
Because trees are already structared, it is notp ossible to keep
the tree structure while being able to sotta]l nodes in a level.
The reasonable solufion is to only sort nodes from the same
parent, but also to be considered the rearrangement of the
Tower level nodes to avoid line crossing. The sorting function
always give visual feedback to users, either in colour or in
bar length (the two main visual cues used to encode
information). The encoding from attributest o visual cues is
selectable. This makes the sorting versatile, Through sorting
more insight ¢an be gained into the hierarchy,

IV, IMPLEMENTATION AND TESTING

The FlexTree system was developed as a stand-alone
application using the Java Deveiopment Kit version 1.4 Beta
(JDK 1.4f), to utilise the mouse wheel. The performance of
the system has been tested on different environments. On a
personal computer (PC) with 128 MB main memorya nd
4MB video memory, Pentium 500MHz CPU, and Windows
98 as the operating systern, a computer file system hierarchy
with 6,351 directories and 130,400 files was successfully
visualised. The overall performance is a litle slow, but
acceptable. With a better PC having 256MB memory and
Pentivm 800MHz CPU, both the performance and the
scalability is much improved. Two screenshots were taken
and are shown in Figure 4a nd 5. InF igure 4, twof ocal
folders were zoomed in te show more details while keeping
the other folders int heir minimum states as context. The
vertical gaps were also magnified to show grouping in level
8. Figure 5 shows the overview oft he whole hierarchy of a
PC’s D: drive with JDK1.3 being browsed.

The testing data is simply retrieved from a working PC by
using Disk Operating System (DOS) "dir* command. There is
one issue worth mentioning. The DOS directory and folder
are two different concepts. For example, in Figure 6 the total
number of nodes (folders) is 6,351, but the number of
directories is 19,047 shown by the results of "dir" command.
The mismatch isc aused by the fact that the "dir" command
counts twice the cusrent and parent folder for each file folder.

V. FUTURE DIRECTIONS

The usability of a system isa lwaysc ritical to itss uecesso r
failure. It is intended to carry out comprehensive usability
testing on the FlexTree as part of the future work. Testing in
otherd omains other than computer file systems will also be
considered for instance the potential of utilising FlexTree as a
technique for visualising user profiles on accessing web
pages. Graph visualisation is an open research aread uet ¢
many existing difficulties, discussion of which are beyond the
scope of this paper. A tree is the simplest form of graph, If a
tree can be extracted froma graph, it will aid the
understanding of the graph. It is proposed to combine the
FlexTree into a more complex graph visualisation system.

VI. CONCLUSION
The main enderlying principles in designing this prototype
are:

e Minigturising dats points into their minimum size
whereass till placing discernible and easily comparable
attributes on them to achieve maximum screen pixel
utilisation.

¢ Simplifying manipylation to maximise ease of use.

¢ Otganising every picture t0 gain high visual clarity and

intuition.

e Always keeping context information to prevent users
from disorientation.

e Reducing high computational constraints to obtain high
performance.

It is hoped that these principles are also beneficial in general
Information Visualisation design, not only the FlexTree

system.

VII. ACKNOWLEDGEMENTS

‘This project is fully sponsored by Nortel Networks (Northern
Ireland) Jigsaw Rescarch Programme. Hereby we thank Chen
Chen,a n MSc student in Faculty of [nformatics, for his
industrious work on part of the implementation of the system.
We also thank our colleagues within Jigsaw Strand 4 for their
comments and feedback.

VHI. REFERENCES

[1] Beard, D. V. and I, J. Q. W., Navigational techniques to
improve the display of large two-dimensionat spaces,
Behaviour and Information Technology, 1990, 9 (6): 451-65.
{2] Beaudoin, L., Parent,M .-A.a nd Vroomen,L . C., Cheops:
A Compact Explorer for Complex Hierarchies, in Proc. [EEE
Visualization Y6, pp. 87-92, San Francisco, USA, October
27 - November 1, 1996. Computer Society Press.

[3]C ard, 8. K, Mackinlay, J. D. and Shneiderman, B., Eds,
Readings in Information Visuali : Using Vision to
Think. The Morgan Kaufinann Series in Interactive
Techpologies, Morgan Kaufinann, San Francisco, 1999.
ISBN: 1-55860-533-9.

[4) Carriers, J. and Kazman, R., Interacting with Huge
Hierarchies: Beyond Cone Trees, in Proc. JEEE InfoVis 95,
pp- 74-81, Atlanta, USA, October 30-31, 1995. Computer
Society Press.

[5] Chalmers, M., Undergraduate Course Lecture Notes on
Interactive Systems, from a tutorial on information
visualisation at VLDB' 99 conference, Department of
Computing Science, Glasgow, UK, 1999.

6] Herman, 1, Melancon, G. and Marshall, M. 8., Graph
Visualisation and Navigation in Information Visualisation: a
Survey, IEEE Transactions on Visualization and Computer
Graphics,2 000,6 (1): 24-43.

[7] Johknson, B. and Shneiderman, B., Treemaps: A Space-
Filling epproach to the visualization of hierarchical
information structures, in Proc. JEEE Visualization V1, pp.
284.291, San Diego, California, USA, October2 2-25, 1991.
IEEE Computer Society Press,

[8] Lamping, I, Rac, R. and Pirolli, P., A focus + context
technicue based on hyperbolic geometry for visualizing large
hierarchies, in Proc. ACM CHI %5, pp. 401-8, Denver,
Colorado,U SA, May 7-11,1 995.A CM Press.

[9] Moen, S:, "Drawing Dynamic Trees” IEEE Software,
1990, 7 (4): 21-28.

[10] Munzner,T .,H 3: Laying outl arge directed graphs in 3D
hyperbolic space, In Proc. the IEEE Symposium on
Information Visualization 97, pp. 2-10, Pheonix, USA,
1997.

[11] Reingold, E. M. and Tilford, J. S., Tidier Drawings of
Trees, IEEE Trans. Software Eng., pp. 223-228, September,
1981,

[22] Robertson, G. G., Mackinlay, J. D. and Card, 8. K,
Cone Trees: Animated 3D Visualizations of Hierarchical

Information,i n Proc. CHI ‘91: Human Factors in Computing
Systems, pp. 189-194, New Orleans, Louisiana, USA, April
27 - May 2, 1991. ACM Press.

[13]W etherell, C. and Shannon, A., Tidy drawings of trees,
IEEE Trans.S ofiware Eng., pp. 514-520, September, 1979.
[14] Wills, G. J., NicheWorks: interactive visualizationo f
very large graphs, in Proc. Graph Drawing '97, pp. 403-414,
Rome, ltaly, September [8-20, 1997. Springer-Verlag,
Berlin.

TEVET i)
R T A e S TP G b

Figure 4.T he screen shot of the FlexTree visualising the Matlab package. The root dircctory and a directory called Expat were
selected as foci.G aps were added for level 8.

Figure 5. The screen shot of the FlexTree visualising a file system with 6,351

7,

Al

W

N

directories

and 130,400 files, the total size of all the

files is 6,936,747,234 bytes.

