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Personal Autonomic Computing Reflex
Reactions and Self-Healing
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Abstract—The overall goal of this research is to improve the
self-awareness and environment-awareness aspect of personal au-
tonomic computing (PAC) to facilitate self-managing capabilities
such as self-healing. Personal computing offers unique challenges
for self-management due to its multiequipment, multisituation, and
multiuser nature. The aim is to develop a support architecture for
multiplatform working, based on autonomic computing concepts
and techniques. Of particular interest is collaboration among per-
sonal systems to take a shared responsibility for self-awareness and
environment awareness. Concepts mirroring human mechanisms,
such as reflex reactions and the use of vital signs to assess oper-
ational health, are used in designing and implementing the PAC
architecture. As proof of concept, this was implemented as a self-
healing tool utilizing a pulse monitor and a vital signs health moni-
tor within the autonomic manager. This type of functionality opens
new opportunities to provide self-configuring, self-optimizing, and
self-protecting, as well as self-healing autonomic capabilities to
personal computing.

Index Terms—Autonomic computing (AC), environment aware,
personal autonomic computing (PAC), personal computing, self-
aware, self-healing, self-managing systems.

I. INTRODUCTION

P ERSONAL autonomic computing (PAC) is autonomic
computing (AC) [1] in a personal computing environ-

ment [2]. Personal computing has evolved substantially into
a consumer product. Its scope now extends from end user com-
puting in the office to home PCs, wireless laptops, palmtops and
is evolving into applications of personal embedded computing,
for instance with next-generation mobile/cell phones and iPods.
In the near future, these will be leaf nodes in the self-managing
ubiquitous and pervasive computing environments incorporat-
ing next-generation internet.
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Personal computing is an area that can benefit substantially
from autonomic principles. Examples of current difficult expe-
riences that can be overcome by such an approach include [2]:
1) trouble connecting to a wired or a wireless network at a
conference, hotel, or other work location; 2) switching between
home and work; 3) losing a working connection (and shouting
across the office to see if anyone else has had the same prob-
lem!); 4) going into the IP settings area in Windows and being
unsure about the correct values to use; 5) having a PC which
stops booting and needs major repair or reinstallation of the
operating system; 6) recovering from a hard-disk crash; and 7)
migrating efficiently to a new PC. Coping with these situations
should be routine and straightforward, but in practice such in-
cidents are typically stressful and often waste a considerable
amount of productive time.

PAC shares the goals of personal computing—
responsiveness, ease of use, and flexibility—with those
of AC—simplicity, availability, and security [3].

Personal computing also creates some problems for the im-
plementation of autonomic principles. In particular [2], personal
computing users are often, of necessity, system administrators
for the equipment they use. Most are amateurs without formal
training, who perform system operations infrequently. This re-
duces their effectiveness and typically requires them to consult
with others to resolve difficulties.

This paper presents relevant background and related
work before proceeding to discuss the PAC architecture in
Section III. These concepts are explored in a proof-of-concept
tool that embodies reflex self-healing. We detail these results in
Sections IV–VI and conclude with some observations and sug-
gestions for future work.

II. BACKGROUND AND RELATED WORK

A. Autonomic Computing (AC)

IBM introduced the AC initiative in 2001, with the aim to
develop self-managing systems [4]. With the growth of the
computer industry, with notable examples being highly effi-
cient networking hardware and powerful CPUs, AC is an evo-
lution to cope with rapidly growing complexity of integrating,
managing, and operating computing-based systems. Computing
systems should be effective [5], should serve a useful purpose
when they are first launched, and continue to be useful as con-
ditions change. The realization of AC will result in a significant
reduction in system management complexity [6].

The autonomic concept is inspired by the human body’s au-
tonomic nervous system [6]. The autonomic nervous system
monitors heartbeat, checks blood sugar levels, and keeps the
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TABLE I
SERVER VERSUS CLIENT DIFFERENCES

body temperature normal without any conscious effort from the
human being. There is an important distinction between auto-
nomic activity in the human body and autonomic responses in
computer systems. Many of the decisions made by autonomic
elements (AEs) in the body are involuntary, whereas AEs in
computer systems represent tasks that the system designer has
explicitly chosen to delegate to self-contained logic [6].

Upon launching AC, IBM defined four key “self ” proper-
ties: self-configuring, self-healing, self-optimizing, and self-
protecting [6], [7]. In few years the self-x list has grown as
research expands bringing about the general term selfware or
self-* properties, yet these four initial self-managing properties
along with the four enabling properties—self-aware, environ-
ment aware (self-situated), self-monitor, and self-adjust—cover
the general goal of self-management.

B. PAC

As stated, PAC is AC in a personal computing environment
[2]. In some respects, achieving AC within server environ-
ments will be an easier task than within personal computing.
Servers are likely to have received the level of investment to en-
sure in-built fault tolerance and include extensive redundancy—
including facilities such as hot swapping [8]. Personal devices
are often machines built on the faster, cheaper, and smaller phi-
losophy with limited, if any, redundancy and as a result the self-
healing logic has fewer and less effective alternatives. Servers
are also likely to have a user base of highly skilled teams,
whereas personal devices are often in the hands of nontechnical
users who often also act as the administrator. Other consider-
ations are required for personal computing such as flexibility
of location (e.g., laptops) and of hardware (e.g., palm devices)
and software configuration that complicate further the goal of
achieving AC [2], [5]. Specifically in terms of PCs used for client
versus server applications, Table I highlights typical differences
in the way an organization uses them, resulting in different man-
agement requirements for the two domains. As such it is not just
the case that PAC is AC implemented on a PC—there are many
other considerations related to the way these PCs are used.
Added to this, personal computing is not just the PC—consider
the pervasiveness of all manners of personal devices with
such future directions toward wearable computing and smart
homes.

The following are the common examples of existing auto-
nomic capabilities within personal computing.

Self-configuring: Microsoft Windows XP has an automatic
update function. It updates itself to catch updated or newly
released component(s) [2].

Self-healing: Windows XP Professional provides a check-
point function to backup the system and to permit the user to
recover if the system has crashed.

Self-optimizing: Microsoft Windows XP Professional now
optimizes the user interface based on the way the system is
used. For instance, it attempts to keep the desktop clean and
uncluttered by removing items not recently used. Because of
the nature of personal computing, the user is asked to confirm
that these changes take place [2].

Self-protecting: An example of a protection mechanism is en-
cryption. Windows XP is built with an encryption capability that
allows directories to be encrypted. Microsoft Internet Explorer
is embedded with security protocols such as SSL and TSL (a
downside is encryption makes self-healing harder to achieve on
different technologies). Norton’s Antivirus (Symantec Corpo-
ration) software automatically scans all emails to check if they
contain any virus. Microsoft Excel prompts an alert if the user
opens a spreadsheet containing a macro which may have a virus.

C. Peer-to-Peer (P2P)

P2P is a paradigm in which each workstation on a network
can dynamically serve in any role, for example, as client or
server [9]. This differs from the Client/Server architecture, in
which a server is a dedicated computer to serve client requests.
The server machine is usually always available so that the clients
can connect to it at any time, while in a P2P network there may
not be such availability guarantees. P2P is not a new concept; IP
routing is a classic example. P2P computing offers the promise
for an organization of cost-efficient sharing of computer re-
sources, improving network performance, and increasing over-
all productivity.

Peer frameworks are becoming mainstream, for instance,
JXTA [10] and Microsoft’s peer framework update [11]. The
P2P paradigm is also a key in ambitious future plans for virtual
file servers that would be accessible to a hundred thousand [12]
or even link billions [13] of individual computers. It offers the
flexibility required for achieving autonomic personal comput-
ing, for instance, it makes available additional resources to a
(redundancy-poor) PC for self-healing.

The first P2P systems had computers connected together as
a workgroup and configured for the sharing of resources such
as files and printers. In particular, the computers were located
near each other physically and ran on the same networking
protocols. Today, computers are connected together over the
Internet. Computers (including handheld devices) can join the
network from anywhere with little effort.

P2P architectures enable computers to dynamically share
services and resources directly between one another. P2P
participants range from a large server to a handheld device.
Resources and services include the exchange of information,
processing cycles, cache storage, and disk storage, as well as
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Fig. 1. Heart-beat monitoring (“I am alive” signals).

higher level services [14]. An application of P2P technologies is
for reclaiming unused computing cycles on desktop computers
and harnessing them into a virtual supercomputer [15]. In this
scenario, a large job can be broken into small parts and run on
separate machines in parallel. At the same time, it reduces the
load on servers, allowing them to perform specialized services
more effectively. In the P2P-enabled distributed computing
model, a managing server is configured to send different pieces
of one computing job to a set of peers, who then distribute
it on to second-tier peers, then third-tier peers, and so on.
P2P can also facilitate geographically dispersed collaborative
computing. As with file sharing, collaboration can decrease
network traffic by eliminating e-mail and can decrease server
storage needs by storing files locally. P2P computing also allows
domains to collaborate using intelligent agents [14]. In terms of
self-protection, sharing virus alert information is an example.

D. Heartbeat and Beacon Monitoring

System management is typically based on events that are gen-
erated by a process when fault or problem conditions occur in
that process. In embedded systems, the opposite is typically the
case—a management action is taken when an independent pro-
cess detects that an expected event has not occurred. An example
is the fault tolerant mechanism of a heartbeat monitor (HBM);
through a combination of the hardware (the timer) and software
(the heartbeat generator) an “I am alive” signal is generated pe-
riodically to indicate all is well [16]. The absence of this signal
indicates a fault or problem. Some embedded processors have
a hardware timer which, if not periodically reset by software,
causes a reset/restart. This allows a particularly blunt, though
effective, recovery from a software hang. It may cause a percep-
tible outage in the system’s function and may even cause lost
data.

The approach of independent process monitoring offers the
advantage that through continuous monitoring problem deter-
mination becomes a proactive rather than a reactive process.

The HBM has now been adopted in system management ar-
chitectures. In Grid Computing, the Open Grid Services Archi-
tecture (OGSA) has a facility referred to as the Globus HBM
which is designed to detect and report whether registered pro-
cesses are still alive or not [17], by detecting the absence of
an heartbeat. The HBM may be considered a specific type of
environment awareness, since from a system perspective these
heartbeats provide awareness of the individual functioning ele-
ments [5] (Fig. 1).

Deep Space 1 (DS1) [18], [19] was launched in July 1998 by
the National Aeronautics and Space Administration (NASA).
The beacon monitor was 1 of the 12 new technologies used in
DS1. Its goal was to decreasing the total volume of engineering
telemetry, through reducing the frequency of use of the downlink

TABLE II
BEACON TONE

and the volume of data received per pass [19]. With beacon
monitoring, the spacecraft assesses its own health and transmits
one of four subcarrier frequency tones to inform the ground how
urgent it is to track the spacecraft for telemetry [20]. Table II
summarizes the tone definitions.

The two primary flight software innovations implemented
through the beacon monitor were onboard engineering data
summarization and beacon tone selection [19]. The tone selector
module maps fault protection messages to beacon tone states.
Transforms and adaptive alarm thresholds are the components to
create top-level summary statistics, episode data, low-resolution
“snapshot” telemetry, and user-defined data. These two compo-
nents aim to minimize the number of false alarms.

These approaches influence our architecture for PAC, and we
adopt the taxonomy of urgency that they define.

III. PAC ARCHITECTURE

The goal of an AC environment is self-management. The
four self-managing properties are self-configuring, self-healing,
self-protecting, and self-optimizing [6], [7], together with
the attributes of self-awareness, environment awareness (self-
situated), self-monitoring, and self-adjusting. Self-healing is
concerned with ensuring effective monitoring, diagnosis, and
recovery when a fault occurs, without human interaction. To
achieve the self-healing objective, a system must be self-aware
and environment aware. A system would be aware of its internal
state as well as the external operating conditions. The system
would have knowledge of its available resources, components,
desired performance characteristics, current status, and status of
interconnections with other systems [7].

In this research, P2P approach is utilized due to the dynamic
realities of personal computing. The peers form a “neighborhood
watch” scheme so as to assist with self-management and look
out for each others’ health. Peers take on the responsibility of
low-overhead monitoring of other peers and can help initiate
self-healing activities when the failing system cannot.

A. Reflex and Healing

Reflexes and healing are complementary strategies inspired
by biological systems [21]. Animals have a reflex system, where
the nerve pathways enable rapid response to pain. Reflexes cause
a rapid involuntary built-in preplanned motion, such as when a
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Fig. 2. Architecture of a PAC element.

sharp object is touched. The effect is that the system reconfigures
itself, moving away from the danger to keep the component
functioning.

The body will heal itself on a much longer timescale. Re-
sources from one part of the system are redirected to rebuild the
injured body part, including repair of the reflex response net-
work. While this cannot help in the real-time response, directly
after an event, it can prepare the system for the next event. In
addition, it can readjust the system for operation with a reduced
set of resources [21].

These complementary strategies resolve a dilemma: how can
a system react quickly to limit damage and also perform the
complex reconfiguration and regeneration to recover from it?
The answer is to provide different mechanisms, which function
on different time scales, each optimized for part of the task.

B. PAC Element

Achieving high usability and security for personal systems
requires rapid accurate responses to changing circumstances.
The PAC architecture incorporates a mechanism equivalent to
the biological reflex reactions to alert members of the peer group
to situations requiring urgent attention. In general, a system
will have to reconfigure itself to avoid a detected threat, while
maintaining its operation as far as possible. This may result in
the system operating with a reduced set of resources [21]. Like
the human body, a system can then address the problem causing
the reaction with less urgency; this may involve some damage
repair.

Fig. 2 shows an abstract view of a system architecture to
support this model [5], [22]. This is similar in nature to the
architecture proposed in the IBM blueprint where an autonomic
manager (AM) consists of monitor, analyze, plan, and execute
along with knowledge (MAPE-K) components [6].

An AE is made up of a managed component and an AM. The
self-monitor actively observes the state of the component and its
external environment, drawing conclusions using information
in the system knowledge base. If necessary, this can lead to

Fig. 3. Autonomic environment.

Fig. 4. Pulse monitoring (“I am/am not healthy” signals).

adjustments to the managed component. An additional feature is
the use of an extended version of a HBM, called a pulse monitor
(PBM) [22], to summarize the state of the managed component
for other connected AEs. Essentially it provides an indication
of the health of the managed component (self-awareness) or
external environment (environment awareness) as viewed by
that manager, with the absence of a signal (heartbeat) indicating
a specific problem with the manger itself. The signal itself, like
a human pulse, can provide additional information to further
explain the state of the element and trigger reflex actions [23].
Pulse monitoring is discussed in more detail in the next section.

Key within this AE is the ability to provide self-management
through a combination of a control loop (self-monitor and self-
adjuster) and the system knowledge.

Fig. 3 depicts how the AEs are logically connected. The ar-
tifacts within an AE (Fig. 2) and AEs within a system (Fig. 3)
communicate, for instance, via a logical communications chan-
nel using asynchronous communicating techniques, like a mes-
sage bus [6]. The logical difference between the pulse signal and
general event messages has been highlighted in Figs. 2 and 3,
since essentially the pulse provides the mechanism for a reflex
reaction whereas the general event messages under fault condi-
tions form part of the slower healing process-root cause analysis
from the event stream.

C. Pulse Monitoring

A hybrid approach for the autonomic environment [23] is to
use the urgency concept of the beacon monitor to turn the HBM
into a pulse monitor—so instead of just checking the presence
of a beat, the rate is also measured (Fig. 4).

The concept of the pulse monitor is based on extending the
HBM construct. The HBM itself provides a means to ensure a
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vital process may be safeguarded. The lack of a heartbeat will
alert the designated remote HBM that the process has died (or
indeed the communications themselves have failed). This rela-
tively instant alert to the fact a process is no longer functioning
enables immediate actions such as restarting the process and as
such minimizing disruption.

Essentially, the HBM provides a vital construct, without
which the system is relying on another process noticing that
the process has died with no guarantee on how much time will
have lapsed before this occurs, if at all.

Yet, vital as it is, essentially the HBM only informs if a pro-
cess is alive or dead (assuming communications are working),
not the processes’ actual health or state of being. Taking the
biological analogy, the rate of the heartbeat indicates the current
conditions within which the biological system is operating and
determines strategies for components within the system (for ex-
ample, increased heart rate may indicate increased blood flow
through the body due to the individual changing from walking
to running). Choosing the right rate for the pulses is key, since if
they are too frequent, resources are consumed unnecessarily; if
too infrequent, the latency of detection is too long and damage
may propagate.

An important point to note from the HBM, and also from the
Beacon Monitor, is the minimization of data sent, essentially
only a signal is transmitted. Any move towards sending more
information must not compromise this reflex reaction. As such,
the tone or the beat must contain within it the urgency level.

This effectively may be used to provide a reflex reaction
within the autonomic environment and adds the dual approach
of reflex and healing, sharing responsibility for self-monitoring
and environment monitoring among peers.

The pulse monitor has been recommended as an extension of
the HBM for Grid computing [22], as a construct within an AM
[5], [23] and a reflex mechanism within a telecommunications
fault management architecture [24]. The research reported here
is utilising the pulse monitor as a construct within the PAC
architecture which specifically demonstrates self-healing. The
demonstration self-healing tool operates in a P2P mode without
any additional environment on top of the Windows OS.

D. Reflex Self-Awareness

The PBM monitor may be used as a means to quickly (a
reflex reaction) communicate the state of the individual self
to other AMs (peers), i.e., through internal monitoring of a
managed component vital signs (e.g., failing processes) give
an indicator to the state of health and used to bring about a
change in pulse being emitted from the self. This information
could then be used in various ways, for instance, to enable
remote recovery strategies or avoid allocation of workload to
that element experiencing difficulties.

E. Reflex Environment Awareness

The PBM may also be used for environment awareness. In
this scenario, the pulse becomes a shared value of environment
health as opposed to an individual’s health value (Fig. 5). From
Fig. 2 it is clear each machine (the managed component) must

Fig. 5. Reflex environment awareness.

have its own internal monitoring but it is also clear that each AM
needs to monitor the external environment (at least two control
loops per AE). In a local P2P network in many circumstances it
may be assumed that the environment the peers are all monitor-
ing is the same environment, resulting in a waste of resources
through duplication [Fig. 5(a)]. To reduce this duplication, an
individual peer or group of peers (e.g., the least busy PC or
assigned PCs) may take on the monitoring role for the group
[Fig. 5(b)]. Again taking into account the required flexibility of
personal computing, other peers must be ready to take on moni-
toring responsibilities should circumstances change (a laptop is
removed from the peer group by the user departing the office).
The role of the PBM in these circumstances is to provide a reflex
reaction from the environment monitoring (external monitoring)
peer to the nonenvironment monitoring peers to alert them to an
environment situation.

The PBM utilized for environment awareness should be con-
sidered in addition to the self-awareness pulse mechanism, i.e.,
utilized to create a shared dynamic group environment aware-
ness as well as individual self-protection.

The following sections detail a proof of concept PAC self-
healing tool based on these principles.

IV. REFLEX SELF-HEALING TOOL DESIGN

Self-healing is an emerging research discipline in itself [25].
Personal computing with its flexible nature and diverse user
base [2] often makes self-healing harder to achieve.

The assumption behind this self-healing tool used to demon-
strate the concepts and architecture discussed in the previous
sections is that dying/hanging processes on the PC are signs or
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Fig. 6. P2P pulse monitoring.

indicators of the health of that PC. These vital signs may indicate
that the PC is becoming unstable and is possibly in imminent
danger of hanging or becoming unreliable for current processes
running on that machine. As well as restarting the detected hung
process(es) the peers are notified of the situation via a change
in pulse.

This is particularly useful in situations where the PC is unat-
tended (for example, running a web server) and the user may
be notified via a peer PC that the machine is in difficulty. It is
also useful when machines in the peer group are sharing work
load, for example, via Harmony PC grid services [26]; a peer is
notified in advance of the immanent danger and can recover data
and reallocate work to another peer. Such an approach is more
proactive than responding once the machine (managed compo-
nent) has hung, and as such offers fuller potential for autonomic
capabilities.

The underlying functionality of the tool is a heart-beat moni-
tor; if a process hangs it should be restarted and the pulse monitor
takes note. Upon several processes hanging or the same process
repeatedly hanging within specified timeframes, a change oc-
curs in the monitor’s perception of how healthy the machine is,
and as such brings about a change in the pulse being broadcast
to an assigned peer from that PC.

Since the tool operates in a P2P mode it also takes respon-
sibility to monitor its neighbors; as such other PCs (peers) will
register with it and it will monitor their pulse. Since PBM is P2P,
all hosts have equivalent capabilities and responsibilities. They
are monitoring each other with minimal human interaction. A
host retains its autonomy and can choose either to register or
not register with other hosts. Two hosts become neighbors after
they register to each other. There is no logical limit on how
many neighbors that a host can register with. Hosts send pulses
to each other only when they are connected. If a host becomes
unavailable, an alternate registration may be made.

Fig. 6 depicts an overview of the pulse monitor construct.
An internal monitor inside a host takes care of monitoring its
health condition. This health condition will be represented by
a pulse. Each host is able to send its pulse to a peer via an
external monitor. The “knowledge & database” stores the pulse

TABLE III
P2P PULSE VALUE

Fig. 7. P2P pulse monitoring use-case diagram.

level and rules (i.e., predefined knowledge) which may adapt
over time, the monitoring logs, and the history of neighbor
hosts. A computer system is different from a biological system;
firstly, since the human biology reflex reaction is involuntary
while the reflex reaction decision making in computer systems
is delegated to the system by the user (through a set of rules
or policies) and secondly, the extent to which the reaction can
be reconfigured. Since an argument could be made, that in a
biological system the reflex reaction is wired-in through genetic
adaptation over time, the important difference to focus on is
the extent of the ability to reconfigure the reflex reaction. For
example, rules such as the “pulse sending interval” and “change
pulse after three failed process” are reconfigurable.

The host sends the degree of urgency to the peer’s pulse
external monitor instead of just a beat. The urgency level
is transformed based on the number of failed processes
(Table III).

The amount of processes required to cause a change in the
pulse is adaptable and need not necessarily remain at the val-
ues depicted in Table III, as is the time window for qualifying
failing processes. The connection between two hosts is estab-
lished using the User Datagram Protocol (UDP) since the pulse
essentially only transmits small size messages.

Fig. 7 is a UML use-case diagram that summarizes the func-
tionality of the pulse monitor API. The pulse monitor scans the
host periodically to check its health condition; it transforms the
health condition to a pulse value and will send it to connecting
assigned neighbor. If a process is found to have failed, the tool
will try to restart that process.
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Fig. 8. Obtaining process information.

V. REFLEX SELF-HEALING TOOL IMPLEMENTATION

This section looks at the implementation of the proof of
concept. Parts of this implementation are unavoidably OS and
OS version specific, but the hierarchical implementation keeps
much of the prototype generic.

A. Health Monitor Implementation

The pulse monitor is developed in Java. The health
monitor operates under the Microsoft Windows environ-
ment using the running processes (through the active pro-
cess list) as vital health signs. Since this health component
is OS specific it was developed in C with the Windows
SDK.

In the Windows environment, as in other OSes, applica-
tions consist of executable files and dynamic link libraries
(DLLs) [27]. A running application is known as a process;
a process consists of one or more threads, where a thread is
the basic unit to which the operating system allocates pro-
cessor time. Each process is assigned an identifier which is
valid until the process terminates. A module is an executable
file or DLL. Each process consists of one or more modules
[27].

Fig. 8 illustrates how the process information list is obtained
from the Windows platform. The performance monitoring com-
ponents in the Windows Platform Software Development Kit
has the technologies to deal with process, thread, module, heap,
processor, memory, and event. The Process Status Helper (in
psapi.dll) provides an interface to obtain information about pro-
cesses [27].

Within the Windows system, the EnumProcesses function re-
trieves all running process identifiers, the OpenProcess function
opens an existing process object to obtain the handle of a pro-
cess, and the EnumProcessModules function retrieves a handle
for each module of a process, while the GetModuleBaseName
function retrieves the name of a module. A list of running pro-
cesses with their identifiers and names can be obtained by using
these functions; however, the list does not have the processes
status. To establish if a process is running normally or if it
has hung, it is necessary to first obtain the window handle of
that process and then send a message to the window to see
if it can respond or not. The EnumWindows function enumer-

ates all top-level windows and as such has to be called with the
EnumWindowsProc function. The EnumWindowsProc function
is an application defined callback function. It receives top-level
window handles and is a placeholder for the application defined
function. The window handle associated with a process is then
passed to the SendMessageTimeout function to check if the
window is responding or not. It returns without waiting for the
time-out period to elapse if the window appears to not respond
or has hung.

The health-monitor will terminate a process if the process
has failed but cannot be recovered (or restarted). The Window’s
function TerminateProcess terminates a process and all of its
threads. It stops execution of all threads within the process and
requests cancellation of all pending I/O.

The constant monitoring is essentially the control loop in this
situation; self-monitoring of the processes and reaction (self-
adjusting) if necessary (Fig. 2).

B. Health Monitor and Pulse Monitor Interfacing

The Java Native Interface (JNI) [28] is used to interface be-
tween the Java based pulse monitor and the C coded health
monitor. JNI defines a standard naming and calling convention
so the Java virtual machine (JVM) can locate and invoke na-
tive methods. With JNI, native methods can create, update, and
inspect Java objects; Java can pass any primitive data types or
objects as parameters to native methods; native methods can
return primitive data types or objects back to the Java envi-
ronment; Java instance or class methods can be called from
within native methods; native methods can catch and throw Java
exceptions.

The interface could have been developed in COM or
J/Direct instead of the JNI approach; however, these pro-
vide solutions which are even more OS specific [29]. With
the approach used, in order for the health monitor to run
on different platforms such as UNIX, a modification of the
collect process information methods in the C program is
required.

Since the process list (the source of health indicators) is dy-
namic, an array is not flexible enough to store the list. A Vector
class is used to hold the process information. The vector class
in Java is designed to store heterogeneous collections of ob-
jects thus providing methods for working with dynamic arrays
of varied element types. Three vector variables are declared in
the Java program to hold process information: process name,
process identifier, and process status.

C. Pulse Monitor Implementation

The External-Monitor (Figs. 2 and 9) provides the commu-
nications function with other peers, using UDP sockets (see
Fig. 10). UDP is described as unreliable, connectionless, and
message oriented [30], yet is good for sending short messages
like those required for the pulse monitoring application, where
all messages are less than 100 B. A socket is a handle for
a communications link over the network to another applica-
tion [30].
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Fig. 9. Socket communication.

Fig. 10. Pulse monitor within the autonomic element.

A packet is a self-contained message that includes informa-
tion about the sender, the length of the message, and the message
itself. The send function sends out a datagram packet to a des-
tination address. The receive function blocks until a datagram
packet is received. It waits for a packet forever unless a time-out
is enabled.

The Java code to communicate using UDP carries out the
following: creates an appropriately addressed datagram to send;
sets up a socket to send and receive datagrams for a particular ap-
plication; inserts datagrams into a socket for transmission; waits
to receive datagrams from a socket; decodes received datagrams
to extract the message, its recipient, and other metainformation.
The DatagramSocket class provides a function to create a socket
object and communicate packets [28]. A datagram socket is the
sending or receiving point for a packet delivery service. Each
packet sent or received on a datagram socket is individually
addressed and routed. The DatagramPacket class represents a
datagram packet, which are used to implement a connectionless
packet delivery service. Each message is routed from one ma-
chine to another based solely on information contained within
that packet.

Before two hosts can send the pulse to each other, they
first have to register to each other. When the External-Monitor
starts, it immediately connects to its registered neighbor. The
External-Monitor disconnects from all connecting neighbors
when it ends. Unregistering from a neighbor will remove that

host from its neighbor list and they will no longer send the
pulse to each other.

UDP is an unacknowledged service protocol. The use of only
one port to serve all messages may overload the port and hence
increase the probability of losing a message. There are six UDP
sockets created on different ports to wait for incoming messages:

1) to register to it, port 4001;
2) to unregister from it, port 4002;
3) waiting neighbors connecting to it, port 4003;
4) waiting neighbors disconnecting from it, port 4004;
5) neighbors sending pulse to it, each host defines its own

port number;
6) waiting neighbors to check if the host is still on or not,

port 2222.
Time-out is not enabled on these sockets because they have

to wait for incoming messages forever. When PBM receives a
message, it then calls the corresponding function and replies
with an acknowledgment to the sender. The advantage of using
multiple ports is that there is less decoding/dispatching to do.
To send a message, a separate socket port is opened. The time-
out is enabled to wait for a reply to ensure the message is
delivered. When finished, this socket will close (i.e., providing
the functionality of any acknowledgment-based protocol like
TCP with the lighter implementation of UDP.)

The health tool and pulse monitor are made up of four compo-
nents: Main-Monitor, Internal-Monitor, External-Monitor, and
Health-Monitor (Fig. 9): All components have to be executed
synchronously since multiple jobs are required to be carried out
at the same time, and thus the tool utilizes Java’s built-in support
for threads to achieve multitasking.

The Internal-Monitor is responsible for the monitoring of
processes running on the machine (the managed component).
The Health-Monitor is responsible for obtaining process in-
formation and cleaning up and rebooting failed processes. The
External-Monitor is responsible for the communication between
its neighbors (sending and receiving pulses). The Main-Monitor
is the coordinator and decision maker in terms of instigating a
change in the emitted pulse level (Fig. 9).

VI. REFLEX SELF-HEALING TOOL RESULTS

A. Self-Healing Scenario

Fig. 11(a)–(f) shows screenshots from the reflex self-healing
tool running on Windows XP. For clarity, parts of the shots are
enlarged [Fig. 11(b)–(f)]. The figure depicts a scenario where
several process have hung, causing the changes in the pulse from
nominal to interesting to urgent and back to nominal as the self-
healing tool successfully cleans up and restarts the processes.
In this scenario, the user was viewing a pdf file on the IEEE
web site [involving Netscape web browser, Acrobat reader, and
touch pad driver (appoint.exe)] and had attempted (impatiently)
to scroll ahead before the document had fully downloaded. This
action had resulted in Netscape/Acrobat hanging. With the self-
healing tool running it automatically detects that the processes
have hung and restarts them. The second restarting of Netscape
in plate f arose as this user utilizes Netscape Mail which had
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Fig. 11. Developing scenario within the self-healing tool.

thousands of emails in the inbox, causing a delay in restart-
ing/reloading the Netscape application.

The tool works best when the user is not directly involved
and the alert to another peer can bring about a useful interaction
(either a self-healing strategy or alerting a human to the prob-
lem), for instance, when running a personal web server such
as Apache which can be restarted once hung. The self-healing
tool offers a much improved solution—instead of waiting for
an administrator to be informed by a user who has noticed that
the web site is down and takes time to report it, the server is
rebooted automatically when it hangs; if the difficulty contin-
ues and the rebooting is not successful, the administrator may

be alerted by the tool through the pulse or the alert from the
pulse can trigger a failover to another system. The scenario in
Fig. 11, with interactive applications, was chosen to highlight
the challenges in PAC as the user is very much in the loop. In
the scenario the user had just noticed that Acrobat had hung.
The side effects of the tool successfully clearing up the multiple
hung processes and restarting them was that these applications
suddenly disappeared from the screen and then restarted creat-
ing unexpected behaviour, which may be considered to break
with computer–human interaction (CHI) guidelines.

Another challenge is although the applications have restarted
for the user, their state has changed: Netscape and Acrobat do
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not show the web page before the restart. The problem here
is that there is no standard means to capture the process state
when it is terminated and to restart the process with that state—
effectively a process is started from fresh with any previous
state lost unless the process’ application itself handles this by
internally checkpointing.

B. Need for Standards and Microrebooting

The scenario has highlighted the need for standards, for au-
tonomic signals, communications, and for checkpoint to take
place not only at the level of AM to processes running on the
managed component, but also at the level of AM to AM. Allow-
ing standard “autonomic signal” routes into processes would
raise security issues if handled at the application level—yet this
will need to be a part of the self-protection autonomic prop-
erty. On the other hand, Windows and Linux processes have
a standard kill function and this is not considered a security
issue. Basically, the infrastructure being considered is OS-like
and therefore trusted.

This implies all processes and OSes need to be designed
with autonomicity and self-managing capabilities in mind,
i.e.,capable of taking direction from the external environment.
This not only raises issues of standards to achieve this but raises
questions as to whether the current design and development
tools meet the needs for developing process of this type.

Recursive microrebooting is a promising nonexpensive ap-
proach for self-healing [31], which fits directly with the con-
cepts in this PAC reflex and healing research. It seeks to create
software components (at various levels of granularity) that are
“crash only,” that is, self-healing is to reboot them, and to do so
at as low a level as feasible so the user does not see the physical
impact of an application restarting.

VII. CONCLUSION

Overall, AC is intended to improve the general usability and
manageability of computing systems and so, in principle, will
benefit all computer users in due course. Since for the majority
of users access to computing is through personal devices,
autonomic research in this area should have a significant
impact. In the longer term, the work is of direct relevance to
emerging important areas, such as utility/grid and ubiquitous
computing, which require systems to self-manage to fulfil
their potential. These will provide broad support for eScience,
eGovernment, eHealth, and eBusiness applications which for
the foreseeable future will be accessed by the majority of users
through personal computing.

The research in this paper explores a novel computing struc-
ture for the distributed realization of autonomic behavior in per-
sonal and embedded systems. AC behavior is commonly imple-
mented in an AM, most often a component of a managed system,
but sometimes separated from that managed system in a man-
agement server. The flow of monitoring and management is most
often hierarchical. This flow is appropriate for systems of static
or near-static structure, with adequate resources to devote to the
AM and to communications between it and the managed system.

The contribution in this research is a way for AMs to share
data and management decisions in a nonhierarchical way, even
in an ad hoc manner. It permits one AM to monitor the health
of other AMs without necessarily controlling them and even to
reach decisions based on consensus. It opens up opportunities
for the collaboration of AMs in a way that is less rigid than in cur-
rent AC architectures. This style of AC is much more appropri-
ate to personal and embedded computing because it supports the
dynamic self-centered style exhibited by this type of computing.

The reflex reaction notion is based on the need for a system to
respond more quickly than it can respond after detailed analysis
and planning of a comprehensive response. Often, the first part of
a comprehensive response can be preplanned: in the case of virus
infections the first step is to disconnect from the network. It has
been observed that failures sometimes occur in recovery from
virus infections, where the OS is reinstalled and is reinfected
during the installation process itself. Recovery actions when
connected to a network hosting a virulent virus infection have
to be performed in less time than it takes to get infected. Also,
since comprehensive analysis in preparation for response may
involve contacting neighbors and servers and waiting in their
queues, the time to do this comprehensive analysis may be long.
To address this requires research into the dynamics of infection,
analysis, and recovery so as to supply bounds on the amount of
time that a system can take before it starts to take action.

Further, autonomic options could involve learning from past
behavior; for example, the ability to spot a process running
intermittently or unstably. The process may have a history of
failing after running for a certain period of time or after attaining
some state. In this case, the process (the application) may need
reconfiguration or reinstallation in order to run reliably. The goal
is to provide options for self-configuring and self-optimizing and
in so doing to prevent the system from degrading further; thus
providing proactive self-protection and self-healing.
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