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Abstract

We propose a robotics algorithm that is able to simultanously combine, adapt and create actions to solve a task. The
actions are combined in a Finite State Automaton whose structure is determined by a novel evolutionary algorithm.
The actions parameters, or new actions, are evolved alongside the FSA topology. Actions can be combined together in a
hierarchical fashion. This approach relies on skills that the robot is already provided with, like grasping or motion
planning. Therefore software reuse is an important advantage of our proposed approach. We conducted several
experiments both in simulation and on a real mobile manipulator PR2 robot, where skills of increasing complexity
are evolved. Our results show that i) an FSA generated in simulation can be directly applied to a real robot without
modifications and ii) the evolved FSA is robust to the noise and the uncertainty coming from real-world sensors.
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1. Introduction

A close look at the literature in robotics reveals that
robots are increasingly being provided with sophisticated
skills. Many of these skills are coded in programs
or routines freely available to researchers and engineers
alike, so that they can build more sophisticated systems.
However, in spite of the huge array of skills available, the
creation of truly effective autonomous robotics systems
still evade researchers.

Among other reasons, we believe this is due to the
difficulty of creating a reliable complex system, even when
such a system is composed of already available parts. Even
if a single skill is based on a well-known and reliable
technology, there are little or no tests of the same skill
when it has to be integrated with other skills. Most of the
time even this reliability cannot be proven, as the robot
is required to operate in a world where a huge amount of
information comes from noisy and deceptive sensors.

When faced with the task of designing a robot that
solves a particular problem, a roboticist has to answer the
following questions:

• Which skills are needed and how to combine them.

• How skills should be modified to work in cooperation
with others.

• Which skills are not available and need to be created.
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In this paper we propose to address these problems in a
autonomous way and within the same framework. We
rely on the assumption that many low and high level
actions can be reliably performed by a robot using ad-hoc
algorithms. These include for example object detection,
motion planning and grasping. The role of our proposed
algorithm is therefore to i) structure and organise the
execution of available actions, ii) adapt these actions to
solve a particular problem, iii) create new actions when
necessary. This process can be carried on in a hierarchical
fashion, and hence we use the term “compositional skills
building”. Given this compositional nature of skills into
actions, we can interchangeably use the terms actions
(created by our proposed algorithm) and skills (provided
by an external routine).

In our proposed approach an action is performed by a
Finite State Automaton (FSA, plural automata) [1], whose
nodes represent skills that are externally provided to the
robot (or previously created actions) and whose transitions
are the outcomes of the actions. Each action can have
a set of parameters. The FSA are instantiated by a an
evolutionary process [2] that simultanously evolves the
topology of the FSA and the parameters of the actions.
Given the particular problem that we aim to solve we
have been required to devise new evolutionary operators,
as described in section 3.6 and section 3.7.

The proposed approach does not depend on a particular
implementation of an action. Therefore if a new action
is provided that performs better than an old one, the
corresponding node in the evolved FSA can be replaced
with the new action without impairing the functionalities
of the FSA. Reuse of components thus becomes an
important advantage of our proposed algorithm.
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We have conducted several experiments, both on a real
robot and on a simulator, and we conducted extensive
testing to prove that the obtained FSA can reliably drive
the robot to solve the problem for which they were evolved.
To illustrate the work we provide four videos showing
experiments with the real robot, and pointers to the source
code which implements the proposed approach.

This paper is organised as follow: in section 2 we
review the related work and the main differences between
our approach and others in literature; in section 3 we
consider the techniques and the algorithm we developed;
in section 4 we describe three of the experiments we
conducted; the results are discussed in section 5; finally in
section 6 we draw the conclusions and we consider plans
for future work.

2. Motivation and Related Work

The idea of sequencing a robot’s behaviour in several
sub-actions has been explored several times in the past.
In Brook’s seminal work [3] a robot is controlled by
several sub-modules called behaviours. The organisation
and arbitration of these modules was handcrafted.
Subsequently hybrid architectures have been proposed to
provide the robot with higher-level skills [4]. Here a
planning module played a key role in that this module’s
task was to choose which behavior should be activated
at which time step. In the classic formulation of hybrid
architectures the behaviours were rigid structures that
could not be changed or adapted by the planner.

More recent planning-based works [5, 6] include the
possibility to optimise the free parameters of two
subsequent actions so that the overall execution of the
plan is optimal. This optimisation happens only when two
actions have to be performed together, therefore it applies
only to a limited set of scenarios. Plans are constructed
on-line by using knowledge extracted from the web. A plan
is then executed by invoking elementary program units,
which are analogous to the actions we define in section 3.1.
The concept of elementary programs, or actions, is used
also in [7] in the context of manipulation and geometric
planning.

Our approach borrows ides from the robotics planning
literature, in that we share with it some of the goals
outlined in the previous section. An FSA can be seen
as the structure that instantiates and carries on the
execution of a plan. However, unlike a planning system,
we do not require a detailed description of every action’s
pre-coditions and post-conditions to correctly generate a
plan. In section 4 we show that a simple simulator suffices
to generate FSA that are robust when applied to a real
robot. A second major difference between our proposed
approach and classic planning is that we allow actions
to be adapted to a particular problem by varying their
parameters. Moreover, as we show in section section 4.2,
in our proposed approach adapting an action or creating
a new one is perfomed in the same framework, while

the same might not be as easy using classical planning
approaches.

A different approach can be found in [8], where the
authors propose a Reinforcement Learning algorithm that
allows skills to be created and hierarchically combined.
The same work has been applied to a robotic domain in [9].
Although this work provides an approach to skills building
than could be considered more sophisticated than ours, it
does not allow for the adaption of old skills nor it provides
a convenient way to structure actions. Other approaches
that involve sequencing actions to obtain a robot controller
are described in [10, 11], although their scope is mainly to
build low-level controllers.

Several approaches have been proposed to learn an
FSA, many of which focus on approximating a grammar.
Some of the most successful use an evolutionary algorithm
approach, like [12, 13]. As our scope is different, we
decided to adopt strategies similar to those adopted in
neuroevolution [14]. The main problem when evolving
the topology and weights of a neural network is using a
crossover algorithm that does not destroy the information
content of the offspring networks [15]. One of the main
successful approaches has been NEAT [16]; here the
evolutionary history of genes is recorded so that they
can be later aligned before performing crossover. This
approach has proven to be successful in a variety of tasks.
Other more recent appraoches are presented in [17, 18].

Although evolving an FSA is similar to evolving a neural
network, we see a fundamental difference in that in an FSA
states that are directly linked are very likely to be strongly
interdependent. Therefore preserving the connectivity
between subsets of FSA while performing crossover has
a stronger importance than in neural networks. This
motivated us to propose the new evolutionary algorithm
for the evolution of FSA presented in the next sections.

To summarise, this work is motivated by the following
considerations:

• Several robotics skills are proved to reliably deliver
good performance in a real-world scenario. Any
complex action can and should make use of them
whenever possible.

• Combining skills is often not sufficient to solve a task.
Skills need to be adapted or newly created when
needed.

• Although classical planning approaches allow for the
composition and sequencing of actions to reach a goal,
to the best of our knowledge no planning system
proposed so far allows for skills to be adapted (with
the limited exception of [5, 6], see the discussion
above) or created during the planning process.

• Learning an FSA has so far focused on grammatical
inference. Therefore we had to devise a new algorithm
which is suitable for our scope.
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Figure 1: The schematic representation of an FSA. An FSA is
represented as directed graph with parallel edges. Every node is
associated to an action. The red squared node is the starting node.
To the right of every edge is its label, i.e. an outcome of an action.

3. Techniques

3.1. Finite State Automaton

Given our particular application, our formulation of the
FSA differs from the classic one adopted for example in
[1]. We define an FSA as a quadruple (A,O, δ, s), where:

• A is a finite, non-empty set of actions.

• O is a finite set of outcomes. Each outcome j of state
ai is denoted by outj [ai].

• δ : A×O → A is the transition function.

• s is the initial state.

In addition to the above, all the states have a (potentially
empty) set of real-valued parameters and they share a
common memory where they can read and write data. The
role of the shared memory is to share information so as to
enable passing of data between actions (more details are
in section 3.8 and in section 4). An example of an FSA is
given in Figure 1. The parameters are used to adapt an
action to a particular problem.

The main difference with the model illustrated in [1]
is the lack of the input alphabet, or inputs. This means
the the transition from one action to another depends on
the action outcome only. However the common memory
replaces and enhances the input function. Although the
main features and behaviour of our proposed model still
closely resembles the classic FSA’s one, the presence of a
common memory makes it closer to a Turing Machine than
to an automaton.

In the following we will always use the above definition
of the FSA unless otherwise stated.

3.2. Evolutionary Algorithm

The evolutionary algorithm we used follows the general
standard structure described for example in [2], and it is
shown in Algorithm 1. The implementation made use of
the library PyEvolve described in [19].

Algorithm 1 The evolutionary algorithm

1: Initialize a population of N individuals (section 3.5)
2: while Task is not solved do
3: Evaluate each individual in the population

according to the task (section 4)
4: for i = 1→ N

2 do
5: Select two individuals g1 and g2 from the

population using Tournament Selection [2]
6: With probability pcross generate two children c1

and c2 using crossover (section 3.7)
7: With probability pmut mutate both c1 and c2

(section 3.6)
8: end for
9: end while

ParametersStarting
State

Action id Outgoing edges (action outcomes)

Single node i

Figure 2: A linear representation of a genome. Every genome
has a starting state, followed by a serie of elements each of them
representing a node’s associated action, parameters and outgoing
edges.

3.3. Genome Representation

The genome is represented as a directed graph G =
(V,E) with parallel edges, where V is the set of the nodes
and E is the set of edges. A node vi ∈ V is associated
with a single action type aj ∈ A, and it has a (possibly
empty) list of real-valued parameters 0 ≤ αi ≤ 1 (as in our
model of FSA described in section 3.1). The meaning of
the parameters is action-specific. As every action aj has a
fixed number of outcomes, every node will have a specific
number of outgoing edges, each of them representing the
specific outcome of an action. In addition to the nodes
and edges, the genome encodes the FSA starting state.
There is no restriction on the action type the node can be
associated to, and several nodes can have the same action
type.

Figure 2 shows a linear representation of a genome.
In all our experiments we did not use this linear
representation, but we resorted to a direct graphical one
using the tool illustrated in [20]. In the following we
will use the term genome and graph to refer to the same
structure presented above.

Crossover and mutation happen with probabilities pmut

and pcross respectively. Although the literature discussing
the choice of these parameters is rich (see for example [2]),
no optimal solution has been found so far. After extensive
experiments we found that the parameters listed in Table 1
yield good results, although we strongly believe that the
parameters choice does not have a strong influence on the
overall evolutionary algorithm performance.
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Adding a Node

Before After

Figure 3: An example of adding a node to a graph. The new node
is labeled α0 and it is inserted between α2 and α1, breaking their
joining edge. As α0 has one outgoing edge this is randomly created,
joining α0 and α3. All the nodes are reachable from the starting
node α2 so no node is pruned away (see section 3.4).

3.4. Genetic Operators

In our proposed evolutionary algorithm we developed
both mutation and crossover operators. Each of these
operators has to guarantee that every node in the graph
has the same number of outgoing edges as the number
of outcomes of the associated action. Moreover every
node which is not reachable from the starting node will
be removed from the graph. This is to ensure that the
evolutionary search is not wasted in areas that do not
contribute to the overall fitness function.

3.5. Initialization

During the initialization phase for each graph a fixed
number S of nodes is created, each of them with a random
parameters vector and a random associated action. Then
for each possible outcome of the associated action a new
edge to a randomly selected node is created. The graphs
are then pruned of the unreachable nodes (see previous
section). Therefore although the graphs start with the
same number of nodes, their size changes before the
evolutionary algorithm starts.

3.6. Mutation

Mutation happens both at the graph-level and at the
node level. At the graph level one or more of the following
mutations can happen:

• A new node is added to the graph with probability
pmut. The new node will have randomly initialized
parameters and outgoing edges. To ensure that the
new node will be reachable from the starting one,
a random node with a least two incoming edges is
selected from the graph and one of its incoming edges
is re-routed to the new node. An example of this
process is illustrated in Figure 3.

• A random node is removed from the graph with
probability pdel. All the incoming edges are rerouted
to randomly selected nodes.

• The starting node is changed. The new one is selected
among the nodes which have at least one outgoing
edge and not all the edges are self-loops.

At the node level the following mutations can happen:

• A random outgoing edge is re-routed to a different
randomly selected node in the graph.

• Zero or more parameters are added a zero-mean
normal distributed random number.

• The node’s associated action changes. In this case the
parameters and all the outgoing edges are randomly
recreated. As this is a more drastic change in the
overall graph topology, it happens with probability
p2mut.

3.7. Crossover

Crossover is performed between two parents genomes,
g1 and g2, to create two children graphs c1 and c2. As
explained in section 2 crossover has to ensure that groups
of nodes that are potentially working together will not be
broken in the process. Finding groups of nodes that are
closely coupled is a very hard problem2, so we assume
that nodes whose distance is small (as the path length in
the graph) are more likely to be working together than
nodes that are far away. This allows for sub-solutions
to be developed and maintained by subgraphs and to be
preserved over generations if they contribute positively to
the fitness function.

Algorithm 2 The crossover algorithm

1: num nodes← random()
2: source g1 ← random()
3: source g2 ← random()
4: subgraph g1 ← bfs(g1, source g1, num nodes)
5: subgraph g2 ← bfs(g2, source g2, num nodes)
6: edges(g1)← edges(g1) \ edges(subgraph g1)
7: edges(g2)← edges(g2) \ edges(subgraph g2)
8: for i = 1→ num nodes do
9: swap v1,i ∈ subgraph g1 with v2,i ∈ subgraph g2

10: for e ∈ edges(subgraph g2, v2,i ∈ subgraph g2 do
11: add edge(g1, v1,i ∈ subgraph g1, head(e))
12: end for
13: for e ∈ edges(subgraph g1, v1,i ∈ subgraph g1 do
14: add edge(g2, v2,i ∈ subgraph g2, head(e))
15: end for
16: end for
17: Fix missing outgoing edges in g1 and g2

The proposed crossover algorithm is shown in
Algorithm 2, while Figure 4 shows a graphical
representation of two child graphs created by combining
two parents, g1 and g2. The first steps of the algorithm are
to select a random number of nodes to swap (num nodes)
and an initial starting node for both graphs (lines 1−3); in

2Even if it was simple, enforcing strict topological structures will
limit the capability of evolutionary algorithms to find novel solutions
or even a solution at all.
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Figure 4: An illustration of the crossover algorithm. The two top
graphs are the parents, while the two bottom graphs are the resulting
children. See text for details.

Figure 4 these are nodes a3 and a0 respectively and 3 nodes
have been selected for swapping. In lines 4 − 5 we select
the subgraphs that will be swapped. As described above
we assume that close nodes are more likely to be closely
working together than distant ones. For this reason we
select a subgraph made by num nodes nodes via Breadth
First Search (BFS) starting from the previously selected
starting nodes. In Figure 4 these are the nodes a0, a3, a4
for graph g1 and a2, a0, a1 for g2. Two subgraphs are
created by using the extracted nodes and all the edges
between them (lines 6−7 in Algorithm 2 and the red nodes
in Figure 4). In lines 6−7 all the edges in the newly created
subgraphs are removed from the original graphs g1 and
g2. Finally, the nodes in both subgraphs are swapped (i.e.
the associated action and parameters are swapped), and
the edges are recreated (see the bottom part in Figure 4).
An effect of this procedure is that some nodes (notably
the ones belonging to the extracted subgraphs) will have
missing outgoing edges. Therefore new edges are created
for all the nodes whose outcomes are not matched by an
outgoing edge. This is shown in the bottom left part of
Figure 4, where the node a1 had one of its edges randomly
rewired.

3.8. Simulation

One of the main limitations of evolutionary algorithms
in robotics is that they require a simulator to be effective.
This is due to the fact that the same experiment has
to be carried on hundreds if not thousands of times in
order to reach a solution. This is not only extremely time
consuming when performed with a real robot, but it could
also be dangerous for the machine. To avoid this problem,
evolutionary robotics is usually developed in simulation,
then the result is applied to the real robot [21–24]. This
creates gaps between a solution found in simulation and its

applicability to a real robot. Although these gaps can be
reduced by using a very accurate simulator, this increases
the computational cost of evolutionary algorithms, to the
point that using a simulator becomes as impractical as
using a real robot.

In our approach this problem is avoided by
concentrating on high-level actions and their effect,
rather than the physics of the robot and its interactions
with the environment. For example we deal with
a grasping action in a high-level way: the result of
grasp(object i) is simply “object i is in the robot gripper”,
without caring about the low-level details of the grasping
itself. The main assumption behind this work is that
several actions are already implemented, including high
level ones like perception, grasping, navigation and
localisation. If a better grasping algorithm is provided,
the old one can be replaced with the new one without
affecting the simulations or any previously evolved FSA.
This is therefore an implementation of the “minimal
simulator“ approach described in [25]. Noise can be
introduced by allowing actions to have a failure outcome
based on pre-conditions not being met or even a random
event.

All the actions described in section 4 have been
implemented in the abstracted way described above. As
mentioned in section 3.1 all the states share a common
memory where they can read or write data. We used this
memory as a high level representation for both the robot
and the world state. Every action queries the common
memory to find if it can be executed, and the result of its
execution is written in the common memory.

Once the evolutionary algorithm has converged to a
solution, only the meaningful parts of the FSA are retained
to be used on the real robot. For example one could keep
the resulting FSA topology and replace all the simulated
actions with the real ones, or one could only use the
parameters that our algorithm has found for one or more
actions. Therefore the amount of information to retain
from the result of the evolutionary algorithm depends on
the task the robot has to solve and on the particular
actions that are needed to be executed.

The above approach allows for fast simulations in the
context of evolutionary algorithms while still obtaining an
easy transfer of the solution evolved in simulation to the
real robot, as we will show in section 4.

4. Experiments

We tested our proposed system in three different
experiments, of which two have been applied to a real
robot. The robotic platform we used is a mobile
manipulator PR2 robot manufactured by Willow Garage3.
It is two-armed with an omni-directional driving system.
Each arm has 7 degrees of freedom. The torso has an

3http://www.willowgarage.com
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Figure 5: The moble manipulator platform PR2. The robot has
two 7DOF arms and an holonomic base. The pan-tilt head unit is
equipped with two stereo cameras, one high resolution camera and
one texture projector (the red light). A tilting laser and a fixed laser
on the base are used for navigation and motion planning.

additional degree of freedom as it can move vertically.
The PR2 has a variety of sensors, among them a tilting
laser mounted in the upper body, two stereo cameras (with
narrow and wide field of view) and a laser scanner mounted
on the base which is used for mapping and navigation.
Several skills that we relied on are developed by the ROS4

community, and they include:

• Detecting and grasping unknown objects using 3D
information [26].

• Planning and executing a collision-free trajectory with
the 7DOF arms [27].

• Navigation and obstacle avoidance using an
omni-directional base [28].

For all the experiments we used the same set of
parameters summarised in Table 1. The code for the
simulations is available on-line5 where all the experiments
described below are included.

4.1. Pouring Water

We first conducted a pilot experiment to test the
capabilities of the proposed evolutionary algorithm. The
robot is presented with a jug of water and a glass, and its

4http://www.ros.org
5https://github.com/lorenzoriano/Graph-Evolve

Table 1: Parameters used in the experiments.

Parameter Value Description

pmut 0.1 Mutation probability,
section 3.6.

pcross 0.1 Crossover probability,
section 3.7.

padd 0.2 Probability of adding a node,
section 3.6.

pdel 0.01 Probability of deleting a
node, section 3.6.

N 300 Number of individuals,
algorithm 1

S 50 Initial number of nodes for
each graph, section 3.5

task is to pour water into the glass. The set of actions it
can perform are:

• RecogniseObject: The robot uses the stereo camera
in front of it and finds the 3D location of both the
jug of water and of the glass. The objects’ locations
are stored in the common memory. This action has
only the outcome success as we assume the objects
are visible and recognisable by the robot.

• MoveToObject: The robot approaches the jug of
water with one arm. This action is required to grasp
an object. The action can end with an outcome of
success with probability 0.8 and with an outcome of
failure with probability 0.2 or if the object’s location
is not in the common memory. The effect of this
action is that the gripper position will be within 10cm
of the jug. WHERE 0.2 AND 0.8 COME FROM

• GraspObject: The robot grasps the jug. The action
has an outcome of success with probability 0.8 and
an outcome of failure with probability 0.2 if either
the objects have not been detected or the gripper has
not approached them. The presence of the object
is recorded in the common memory if the action
succeeds.

• MoveGripperToParam: The robot moves the
gripper to a x, y, z position in the space specified by
the 3 action’s parameters. The action can end with
an outcome of success with probability 0.8 and with
an outcome of failure with probability 0.2. The new
position of the gripper is recorded in the common
memory.

• RotateGripperToParam: The robot rotates the
gripper in place to a ρ, φ, θ angle specified by the 3
action’s parameters. The action has only the success
outcome.

• CheckSuccess: The robot checks if the water is in
the glass. This action fails if water has not been
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success

RecogniseObject_41
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Figure 6: The FSA evolved to pour water.. The red circle marks the
initial state. For clarity the parameters and the timeout outcomes
are not shown. Every node is labelled with the action it is associated
with. The additional number is to distinguish between several
instances of the same action.

poured or if the robot rotated the gripper, with the
jug of water, before having moved over the glass. The
two outcomes success and failure terminate the state
machine execution.

In addition to the above outcomes, all the states have a
timeout condition if the FSA runs for more than 20 steps,
to avoid infinite loops. We introduced a random failure
condition for most of the actions to simulate the possibility
of the actions not completing successfully (for example the
motion planner might fail to find a solution in a given time
slot). This is also to induce robustness in the evolved FSA.

Finding a solution to this problem is not trivial as
there is only one topology that executes all the actions
in the right order. The same is true for the 6 parameters
that need to be evolved, as only one set of real values
leads to a correct solution. We used the fitness function
f in Equation (1), where d(jug, glass) is the euclidean
distance between the jug of water and the glass. This
fitness function has been designed to promote intermediate
solutions so that they can be combined with the crossover
algorithm described in section 3.7. The goal of the
evolutionary algorithm is to minimise the fitness.

f =


0 if the FSA’s outcome is success

20 if the jug is not in the gripper

2× d(jug, glass) if the FSA’s outcome is timeout

d(jug, glass) otherwise

(1)
The evolutionary algorithm evolved the FSA with 7

states after 418 generations, as shown in Figure 6. The
numbers after the state names are used to discriminate

0.00.20.40.60.81.0
failure probability

−3

−2

−1

0

1

2

3

4

5

6

f̄

Average Fitness

Figure 7: The fitness value obtained by FSA of Figure 6. The plot
shows the mean value obtained after 5000 repetitions of the same
experiment, while the vertical bars represent the standard deviation.

between nodes associated with the same action (e.g.
“MoveToObject 7” and “MoveToObject 10”). We tested
the FSA with failure probabilities for all the actions
ranging from 0.0 to 1.0. Each test has been repeated 5000
times. Figure 7 shows the mean fitness value obtained for
each value of the failure probabilities, together with the
associated standard deviation. It can be observed that
with failure probabilities less than 0.5 the FSA correctly
solves the task almost all of the time, i.e. the outcome is
success and the fitness given by Equation (1) is 0.

Unlike the following experiments, for safety reasons, we
did not test this solution on the real robot.

4.2. Moving to Grasp

Many robotics applications require the robot to be able
to manipulate objects. The approach we use to grasp an
object [26] works only if the object is reachable by the
robot. However during our experiments we found that an
object is often hard to reach, even if it is close to the robot.
This is due to physical constraints of the robot’s arms that
are not easy to analytically model. Several approaches
have been proposed [29, 30] to deal with this problem,
and the results prove that this is still a hard benchmark
for robotics algorithms. We therefore decided to use our
approach to find a general solution.

The main goal of this experiment is to show how
our proposed approach can generate novel actions when
the available ones are not sufficient to solve a problem.
Our generic action is represented by a fully recursive
neural network with fixed topology [31] whose weights are
represented by the parameters of the associated node in
the FSA. We did not employ any specific neuroevolution
technique to evolve the network’s topology and weights
(see for example [14, 22]) as we decided to focus on the
evolutionary algorithm we proposed.
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Figure 8: The PR2 while pushing an object. Several random object’s
positions were tested, and the robot had to use both arms.

Representing a grasping scenario requires an accurate
simulation of the environment and the robot. As this will
slow down the evolutionary process, a fast computation
of an action’s outcome is required. In [32] the outcome
of actions in a RoboCup scenario is learnt using neural
networks, while in [33] the same is obtained using
clustering and decision.

In this experiment we decided to use a Radial Basis
Function neural network (RBFNN) [34] to classify whether
an object is reachable or not. We collected training and
validation data over a full day of experimentations, where
the robot was moving randomly with respect to an object
on a table (see Figure 8). To generate more random
positions the robot had to try to push the object instead
of grasping it. During our experiments we found that if
the robot can push an object then it can grasp it as well.
The opposite is not necessarily true, so pushing is a harder
task than grasping. For each tentative push we recorded
the position of the object in the robot’s frame of reference,
the robot’s torso height and which arm was used to push
the object, or if the object is unreachable. Overall we
collected 872 data points: of these 500 points were used for
training and 372 for validation. We then trained a RBFNN
with 5 inputs, the x, y, z position of the object in the robot
frame of reference, the angle θ between the robot and the
object on the x − y plane and the robot’s torso height
h. The RBFNN classifies the input into three classes, 0
if the object is unreachable, 1 if it is reachable with the
left arm and 2 if it is reachable with the right arm. After
training the network had a performance of 92% correct
classifications over the validation data set. We have thus
obtained a fast way to determine if an object is reachable
from a given position: this can be used in a simulator
without resorting to a computationally expensive analysis.

The next step was to generate an FSA to move the robot
and push an object. The simulation environment includes

RecogniseObject_2

MoveBase_34

success

RecogniseObject_41

failure

Push_21

success

MoveBase_7

success failure

success

Figure 9: The FSA evolved to reach and object and push it.. The
red circle marks the initial state. For clarity the parameters and the
timeout outcomes are not shown. Every node is labelled with the
action it is associated with. The additional number is to distinguish
between several instances of the same action.

a table with an object placed on top and a robot which
starts within 2m of the table. Every time the FSA is
evaluated the table position and dimensions, the object
position and the robot position are randomly generated.
The environment is 5m2 and it has no other obstacles apart
from the table. The robot can use the following actions:

1. RecogniseObject: this is the same action as in
section 4.1, with the difference that only one object
will be detected.

2. MoveBase: this action is executed based on a fully
recurrent neural network with 5 inputs, 3 hidden
neurons and 5 outputs. The inputs are the object
location in the robot’s frame of reference as described
above, and the outputs are the x, y, θ position and
orientation of the robot base, the robot’s torso height,
and which arm to use. To represent the network’s
weights 38 parameters were necessary. This action
ends with failure if the desired position, calculated by
the neural network, collides with the table, or with
success otherwise. The new position of the robot is
registered in the common memory.

3. Push: this action makes use of the previously trained
RBFNN to determine if it can push the object. It
ends with either success if the RBFNN predicts that
the object is reachable with the arm chosen by the
MoveBase action, or with failure if the object is not
reachable or if the network chose the wrong arm. The
FSA will exit with the outcome of this action.

We used a simple fitness function that returns 1 if the
FSA terminates with success, 0 otherwise. Given the
large number of parameters required to be determined the
evolutionary algorithm took 1633 generations to converge
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Figure 10: Testing the Moving to Grasp action. The crosses represent
the locations of the object in the robot frame of reference, while
the red circle represents the robot. This plot has been obtained by
placing both the robot and the object in several random locations.
395 locations are represented.

to a solution. The resulting FSA is shown in Figure 9. The
two actions MoveBase 34 and MoveBase 7 represent
two different neural networks, or two different approaches
to the same solution.

In order to test the evolved FSA on the real robot we
fed the output of MoveBase to the navigation system
described in [28]. The Push action has been substituted
with the real push action we used to train the RBFNN.
The FSA has been tested with the 395 random starting
locations shown in Figure 10. All the positions are shown
in the robot’s frame of reference. As the robot needs to
locate the object before attempting to reach it, we only
allowed the object to be not more than 1.5 meters away
from the robot and not behind it. The robot was able to
reach and push the object 323 times out of the 395 tests,
thus obtaining a success rate of about 82%. Most of the
failures where due to the MoveBase action generating
poses that were unreachable by the robot, given the safety
constraints imposed by the navigation system.

Although we cannot claim that the collected training set
exhaustivly represents all the possible object’s locations
the robot could face, the generalization capabilities of
the RBFNN proved to be sufficient to interpolate new
data points, as proved by the experiments with the real
robot. Moreover, as the object location is expressed in
the robot frame of reference, these points are rotational
and translational invariant, i.e. a form of extrapolation
is possible and it has been used by the evolutionary
algorithm.

The video “moving to push.avi” shows one example
where the robot first searched for the object, then adjusted
both the torso height and its position, and finally pushed
the object. The source code for the RBFNN and the fully

recurrent neural network is available separately6.

4.3. Stacking Objects

The final experiment’s goal is to show how previously
evolved actions can be used in a new evolutionary
configuration and to study the interplay between
parameters of different actions. We devised a scenario
where a robot is facing two objects and it has to stack
one over the other. There are no restrictions on which
object the robot is allowed to take, as long as at the end
of the trial one object is positioned over the other.

The FSA is allowed to use the following actions:

1. RecogniseObject: this is the same action a in
section 4.1.

2. GraspParam: this action allows the robot to grasp
one object. It has one parameter that, if greater than
0.5, the robot will grasp the first object, otherwise it
will grasp the second. The behavior and the outcomes
are similar to the GraspObject action in section 4.1,
with the difference that no MoveToObject action
is required to approach the object. It has a success
probability of 0.7. If successful the new gripper
position and the which object the robot is holding
is stored in the common memory.

3. MoveToReach: this is the action evolved in the
previous experiment. The new pose of the robot is
stored in the common memory. This action has a
success probability of 0.7.

4. MoveGripperToStack: this action has 4
parameters, the first one is used to decide which
object to move the gripper over (in a similar way
to the parameter of the GraspParam action),
while the other 3 parameters represent the x, y, z
displacement, in respect of the chosen object, used
to calculate where to move the gripper. The new
position of the gripper (and of the object, if it has
been grasped) is stored in the common memory. The
action has a failure outcome if i) random event with
probability 0.3 or ii) the new gripper position collides
with the table or an object or iii) the desired pose is
not reachable, which is determined by the RBFNN
described in the previous experiment. The other
possible outcome is success.

5. OpenGripper this action opens the gripper and
releases an object if it was being held. The object falls
along the z axis and stops when it hits an obstacle.
This action has only a success outcome.

6. CheckSuccess: this action checks, via a collision
detection algorithm that has been implemented in the
simulator, if the two objects are stacked. This action
returns success if the objects are stacked, failure
otherwise. The FSA execution terminates with this
action.

6https://github.com/lorenzoriano
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MoveToReach_34
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OpenGripper_41
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CheckSuccess_22

success

Figure 11: The FSA evolved to stack two objects in front of the
robot.. The red circle marks the initial state. For clarity the
parameters and the timeout outcomes are not shown. Every node is
labelled with the action it is associated with. The additional number
is to distinguish between several instances of the same action.

For this experiment we lowered the number of possible
transitions to 15 before a timeout exit outcome is
produced. The fitness function we used is shown in
Equation (2), where d(o1, o2) is the distance between the
two objects. Again this function rewards intermediate
solutions to allow for crossover to work properly. The goal
of the evolutionary algorithm is to minimise f .

f =


0 if the FSA’s outcome is success

50 if no object is not in the gripper

2× d(o1, o2) if the FSA’s outcome is timeout

d(o1, o2) otherwise

(2)

Figure 11 shows a successful FSA which the evolutionary
algorithm obtained after 603 generations. We then tested
the FSA with 30 different probabilities of failure, with each
test repeated 3000 times (see the same test in section 4.1).
The results are shown in Figure 12. It can be observed
that the evolved solution is sensitive to an high failure
probability: if it is less than 0.3 (the value we used during
the evolution) the FSA correctly solves the problem, but
with an higher failure probability the success has a much
larger variability. This is due to the high number of actions
that could fail, compared to the experiment in section 4.1,
and to the smallest number of tentatives allowed, 15
instead of 20. With an high level of failure the robot does
not manage to grasp any object, hence the mean fitness
distributed around 50 in the left part of Figure 11.

We then deployed the evolved FSA to the PR2 robot.
The GraspParam actions uses the grasping algorithm in
[26], while the MoveGripperToStack uses the motion
planning library described in [27]. The MoveToReach is
the same as the one we used on the real robot in section 4.2.

0.00.20.40.60.81.0
failure probability
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70
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Average Fitness

Figure 12: The fitness value obtained by stacking FSA of Figure 11.
The plot shows the mean value obtained after 5000 repetitions of
the same experiment, while the vertical bars represent the standard
deviation.

Figure 13: The PR2 while stacking a bottle over a box. The robot
was controlled by the FSA in Figure 11.
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We tested the FSA in 20 different scenarios, with objects
of different shapes and positions (see Figure 13 for one
example). The robot successfully executed the stacking
action in all the scenarios. We provided three videos,
“stacking 1”, “stacking 2” and “stacking 3” that shows
the robot dealing with different objects. Of particular
interest is the third video that shows the robot placing
a bottle inside a bag. This proves that the evolved FSA
can deal with scenarios for which it was not evolved.

5. Discussion

As introduced in section 1 our proposed approach has
three primary goals:

• Autonomously build actions out of skills with
which the robot is already provided. In all
the experiments our proposed algorithm solved the
problems by evolving an FSA that made use of the
actions we had provided. In the third experiment the
evolutionary algorithm successfully re-used an action
that had been evolved before.

• Adapt an action to a specific problem. In
section 4.1 and section 4.3 the robot had to adapt
the actions to solve the problem it was facing. In
particular in the second experiment the parameters
of two actions (grasping and moving over) had to be
co-evolved in order to obtain a correct solution.

• Create new actions when required. In section 4.2
we showed that, when the parameters encode a
generic calculator like a recurrent neural network,
new actions can be created when the old ones are
not sufficient. Moreover we proved that the resulting
FSA is robust and able to deal with several real world
scenarios.

In a real scenario an action fails for reasons that cannot
be described by random events (however some sampling
based algorithms can randomly fail, see for example [35]).
This could potentially have made our simulations and
results inaccurate. However, the main goal of introducing
a failure outcome for many actions is to induce the evolved
FSA to have fall-back strategies in case an action should
fail. For example, planning an arm movement could
fail given temporary noise in the obstacles’ detection, or
moving the robot base to a particular goal might fail
in dynamical environments. During our experiments we
found that simply retrying an action often solves the
problem, if this is in principle solvable. Hence our decision
to introduce random failure conditions.

One main test to verify the correctness and generality
of an evolved FSA is then to test it under different levels
of failures. Both the results in section 4.1 and section 4.3
show that the FSA are robust to noise. The fitness plot
in Figure 12 exhibits a greater sensibility to failures than
the plot in Figure 6. We believe this is due both to the

increased number of degrees of freedom of the problem
(the robot can move the base, together with the arms)
and to the smaller number of transitions we allowed for
the second task (15 instead of 20). However the FSA are
robust in the range of failure probabilities we used during
the evolutionary phase (0.3 in both experiments).

In all the experiments, the evolved FSA do not have
an optimal structure. The FSA of Figure 6 repeats the
action MoveToObject twice, while the FSA of Figure 11
repeats the action MoveToReach twice. The FSA in
Figure 9 is a special case as, although it has two instances
of MoveBase, these are different actions as the associated
neural networks have different weights. However we
tested a new FSA containing only either MoveBase 34
or MoveBase 7 and we did not observe a difference in
the performance. We then concluded that both neural
networks are functionally equivalent and the presence of
both of them does not increase the FSA’s robustness.

Observing solutions with always only two redundant
nodes might seem a strange result. However, there are
two forces driving the number of nodes in the FSA during
evolution: the genome starts with a high number of nodes
(50, as shown in Table 1), and too many nodes render the
possibility of finishing with a timeout outcome very likely.
Therefore a shorter FSA is more likely to have a greater
fitness, hence the penalty for timeouts in equations (1)
and (2). Our proposed algorithm therefore found that
duplicating an action still achieves the highest fitness,
while more than one duplication is likely to reduce it.

In the experiments above we provided the evolutionary
algorithm the right set of actions to work with. This has
been done to focus mainly on the main problems we aimed
to solve, i.e. structure a set of actions to create a complex
skill and adapt them to particular problems. Although
this choice has certainly helped to obtain results in a
shorter number of generations, we do not believe this has
any influence over our results. Our proposed algorithms
deals with genomes that initially contain 50 nodes, but
whose size increases and decreases as the evolutionary
process unfolds over time. For example in Figure 11
the action MoveToReach 56 suggests that at one point
during evolution there were at least 56 nodes in the FSA.
Many of these nodes have been found to decrease the
genome’s fitness and therefore they have been evolved
out. Therefore, as discussed above, the limited number
of transitions an FSA is allowed during one execution acts
as a force that pushes the evolutionary algorithm to look
only for the nodes that positively contribute to the fitness.
This in turn will automatically remove actions that do not
contribute to solve a problem.

The same argument applies when the evolutionary
algorithm has to choose between several actions, most
of them being not useful to solve the task. This is
what happens when evolving a neural network, like the
MoveBase action in section 4.2. Most of the evolved
networks represent actions that do not contribute to the
overall fitness of the FSA, and are therefore discarded.
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This means that the our proposed algorithm automatically
choses the right skills to solve a particular task. This
process can be however very long when considering a
complex task that requires several different actions to be
sequenced. Therefore scalability might become an issue.
Our solution is to hierarchically structure actions, as we
did in section 4.3, where the MoveToReach action had
been previously evolved and then used as a skill in a new
evolutionary process. This is a technique widely adopted
in engineering and in evolutionary algorithms as well,
sometimes being referred to as “scaffolding” [36].

The experiments in section 4.2 and section 4.3 and the
attached videos show that bridging the gap between a
simple simulation and the real robot is straightforward.
This is due to our choice of working with high level
actions that encapsulate many otherwise-computationally
expensive details. For example a grasping action does not
require the mechanics of the actual grasping or a suitable
environment representation, as we rely on algorithms
that already deal with these details. This renders the
simulations fast and suitable for use in evolutionary
algorithms. Probably the best effect of this choice is that
the resulting FSA is independent of the particular
actions it uses. This means that if a better grasping
or object detection algorithm is provided, the old action
can easily be replaced and updated without the need for
the FSA to be changed. The results of our proposed
algorithms are therefore general and appliable in several
different scenarios (as proved also in section 4.3 and in the
attached videos). Moreover, in situations where a simple
simulator is not sufficient, like in section 4.2, we found that
a RBFNN was able to reliably approximate the robot’s
behaviour and interaction with objects in the real world.

The main parameters controlling our proposed
algorithm are listed in Table 1. We decided to use the
particular type of evolutionary algorithm described in
section 3.2. However we believe that the general approach
does not depend on this particular choice, but it applies
to different strategies too. We will conduct further
experiments in this regard.

To improve the readability of this paper we decided
to omit some minor implementation details, especially
regarding the mechanics of the simulators we adopted.
We refer the reader to the available source code for full
reproducibility of the results.

6. Conclusions and Future Work

The main contributions of this work are:

• A framework that combines structuring, adapting and
creating new actions to solve robotics problems.

• A new evolutionary algorithm to evolve both the
topology and the parameters of FSA.

We performed experiments to prove that our proposed
evolutionary algorithm has good performance in a variety

of scenarios. Moreoever we proved that, although the
evolutonary process is performed in simulation, the results
have been straightforwardly applied to a real robot. We
have included four videos to document the experiments
and the source code for the evolutionary algorithm is
available online.

We believe that hardly our proposed algorithm will
produce an FSA’s topology which performs better than an
hadcrafted one. Although evolving the FSA’s structure
is fundamental to provide a working solution, it is not
the main goal of this work, as discussed above. Therefore
we are currently focusing on the generative aspect of the
approach, where an FSA will become more similar to a
neural network, whose nodes might represent actions, than
to an automaton.

As this approach relies on an externally provided set
of skills, we do not see it suitable to solve problems
for which already well-estabilished algorithms yield good
results. Actions that cannot be expressed by an FSA will
not be evolved by our algorihtm as well. Examples include
motion planning, object or in general pattern recognition
and optimal control.

One of the major limitation of this approach is the
necessity of writing a simluation environment to describe
a task’s environment, even if our approach only requires
a non-detailed simulator. Our solution in section 4.2 has
been to approximate the effect of the robot’s actions with
an RBFNN. We are currently investigating approaches to
automatically learn the outcome of actions, so that they
will not need complex simulations to be used.

7. References

[1] J. Hopcroft, R. Motwani, J. Ullman, Introduction to automata
theory, languages, and computation, Addison-wesley Reading,
MA, 1979.
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[5] M. Beetz, D. Jain, L. Mösenlechner, M. Tenorth, Towards
performing everyday manipulation activities, Robotics and
Autonomous Systems 58 (9) (2010) 1085–1095, ISSN 09218890.

[6] F. Stulp, M. Beetz, Refining the execution of abstract actions
with learned action models, Journal of Artificial Intelligence
Research 32 (1) (2008) 487–523.
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