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Abstract In spiking neural networks, signals are transferred by action potentials.
The information is encoded in the patterns of neuron activities or spikes.
These features create significant differences between spiking neural net-
works and classical neural networks. Since spiking neural networks are
based on spiking neuron models that are very close to the biological
neuron model, many of the principles found in biological neuroscience
can be used in the networks. In this chapter, a number of learning
mechanisms for spiking neural networks are introduced. The learning
mechanisms can be applied to explain the behaviours of networks in the
brain, and also can be applied to artificial intelligent systems to process
complex information represented by biological stimuli.
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1. Introduction

The first generation of neural networks is based on the model of
McCulloch-Pitts neurons, as computational units in which the percep-
trons are regard as threshold-gates. A characteristic feature is that such
systems have digital output for every unit. For example, multiplayer
perceptrons, Hopfied nets, and Boltzmann machines are based on this
model. The second generation is based on computational units in which
an “activation function” with a continuous set of possible output values
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is applied to a weighted sum of the inputs. Common activation func-
tions are sigmoid functions and linear saturated functions. The piecewise
polynomial functions and piecewise exponential functions are also con-
sidered as activation functions, for example feed forward and recurrent
neural networks, and radial basis networks. These networks can com-
pute certain Boolean functions with fewer gates than first generation
networks [1], and are able to compute functions with analog input and
output. These two generations of neural networks focus on a small num-
ber of aspects of biological neurons. The third generation [2] of neural
networks is based on the Hodgkin-Huxley spiking neuron model [3], [4].
The functionalities of the spiking neurons can be applied to deal with
biological stimuli and explain complicated intelligent behaviours of the
brain. A distinct feature of spiking neural networks is that significant
information is encoded in the neural activity patterns and the neurons
communicated using spike trains [5], [6] instead of single values, as used
in the first two-generations of neural networks. Spiking neural networks
always work with a large population of neurons. As a large-scale network
of spiking neurons requires high computational resources to simulate, the
integrate-and-fire neuron model and spike response model [4] are usually
regarded as a simplified Hodgkin-Huxley model. Since spiking neuron
models are employed and information is encoded using the patterns of
neural activities, learning mechanisms for spiking neural networks are
very different from that in the first two-generations of classical neural
networks. Initially, researchers tried to apply traditional learning mech-
anisms to spiking neural networks. SpikeProp [7], which is similar to
the classical BP algorithm, has been proposed to train spiking neural
networks. The neuron model employed in the SpikeProp network is
based on a spike response model and assumes that each neuron only
fires once during a period. This work proves that networks of spiking
neurons are able to be trained to perform classification and function ap-
proximation. Using parallel calculations, the network can be trained by
fewer epochs than a classical neural networks for the same classification
problem [7], [8]. Based on a spike response neuron model with delay en-
coding, a spiking neural network [9] is applied to a time-series prediction
problem-laser amplitude fluctuation. In the spiking neural network, a
delay is defined as the time difference between the presynaptic firing time
and the time when the postsynaptic potential starts rising. Learning is
the process of modifying the delay according to the time difference be-
tween presynaptic neuron firing time and the postsynaptic neuron firing
time, so that the input time structure is memorized into the delay. In
[10], a model of a network of integrate-and-fire neurons with time delay
weights is presented. The model consists of one layer of multiple leaky
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integrate-and-fire neurons fully connected with a set of temporal inputs.
These inputs simulate spatiotemporal patterns formed in the olfactory
bulb, and the neural layer corresponds to the olfactory cortex that re-
ceives and recognizes those patterns. The periodic inputs are expressed
by a Dirac delta function. The phase shifts of the input spikes encode
concentrations of the corresponding constituent molecules. The total
time delay of an input signal that arrives at an output neuron is equal
to the sum of the phase shift and the additional time delays stored in the
synaptic connections. The Hopfield’s phase shift encoding principle at
the output level is applied for spatiotemporal pattern recognition. Fir-
ing of an output neuron indicates that corresponding odour is recognized
and phase shift of its firing encodes the concentration of the recognized
odour. The learning mechanism is to update the delays and weights
[10]. The result shows that the approach is capable of invariant spa-
tiotemporal pattern recognition. The temporal structure of the model
provides the base for the modeling of higher-level tasks, where temporal
correlation is involved, such as feature binding and segmentation, object
recognition, etc.

The networks of spiking neurons are capable of self-organization in
different ways. A model of this type of network was applied in the pat-
tern interaction and orientation maps in the primary visual cortex [11],
[12]. Spiking neurons with leaky integrator synapses were used to model
image segmentation and binding by synchronization and desynchroniza-
tion of neuronal group activity. The advantage is that the network can
model self-organization and functional dynamics of the visual cortex at
a more accurate level than earlier models.

Since spiking neuron models are very close to biological neurons, many
findings in neuroscience can be simulated using spiking neural networks.
Based on spike timing dependent plasticity (STDP) found in biological
neurons [13], [14], [15], [16], a set of learning mechanisms are demon-
strated in this chapter.

2. Spiking Neuron Models
2.1 Hodgkin-Huxley Spiking Neuron Model

Hodgkin and Huxley [3] performed experiments on the giant axon of
the squid and found three different types of ion current. The equations
of Hodgkin and Huxley describe the electro-physiological properties of
the giant axon of the squid. The basic mechanism of generating action
potentials or spikes is a short influx of sodium ions that is followed by
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Figure 7.1. Equivalent circuit for the Hodgkin-Huxley neuron model

an efllux of potassium ions. Let v represent the membrane potential of
a neuron. The basic equation of spiking neuron models is given by

cmdig) = Io = Iyn(t) — zj:fj(t) (7.1)

where C,, is the membrane capacity, sy, the synaptic input current,
and Ij is the current through ion channel j. Three types of channels can
be regarded as an equivalent circuit in Fig.7.1. The Hodgkin-Huxley
model describes three types of channels. All channels may be charac-
terized by their resistance or, equivalently, by their conductance. The
leakage channel is described by a voltage-independent conductance gy;
the conductance of the other ion channels is voltage and time depen-
dent. If all channels are open, they transmit currents with a maximum
conductance gn, or gk, respectively. Normally, some of the channels
are blocked. The probability that a channel is open is described by
additional variables m, n, and h. The combined action of m and h con-
trols the Na™ channels. The KT gates are controlled by n. Specifically,
Hodgkin and Huxley formulated the three current components as

> I = gnam®h(v(t) — Exa) + gren® (v(t) — Ex) + gL (v(t) — EL) (7.2)
j

The parameters En., Fk, and Ej, are the reversal potentials. Rever-
sal potentials and conductance are empirical parameters from biological
neurons. For example, a set of typical parameters are shown as follows.

Ena = 50mV; Ex = —77mV; E;, = —54.4mV; gn, = 12()mS/cm2;
gk = 36mS/ cm2; g, = 0.3ms/ cm?. Three gating variables are expressed



Learning Mechanisms in Networks of spiking neurons 175

Table 7.1. Parameters for channel control equations

X oz (v) Bz (v)

m (0.1v + 8.5)/[exp(0.1v + 8.5) — 1] 4exp|(65 — v)/18]

n (0.75 — 0.01v) /[exp(7.5 — 0.1v) — 1] 0.125 exp[(65 — v)/80]
h 0.07 exp[(65 — v)/20] 1/lexp(9.5 — 0.1v) + 1]

by the following differential equations.

m = an()(l—m)—Fnv)m
no= ap(v)(l—=n) = Ba(v)n (7.3)
h = ap(v)(l=h)=pFp(v)h

Where o, (v) and (. (v) for z € {m,n,h} are dependent on membrane
potential v. The relationships are shown in Table 7.1.

The single neuron model was implemented in the NEURON spiking
neural network simulation package [17]. The synapse current is not
always a constant. Different synapse models were used to model synapse
current such as a square pulse, exponential pulse, alpha function, etc.

2.2 Integrate-and-Fire Neuron Model

As mentioned in Section 2.1, the Hodgkin-Huxley spiking neuron is
governed by differential equations (7.1), (7.2), and (7.3). If this model
is applied to a large scale network, the implementation will encounter
a very high computational complexity. Therefore, a set of simplified
models were proposed. For example, the NEURON software provides
three types of integrated-and-fire neuron models, i.e. IntFirel, IntFire2
and IntFire4 [17], [41]. A spiking response model with temporal encoding
was used in [7], [18]. In this chapter, the conductance-based integrate-
and-fire model is used for each neuron in SNNs because the behaviour
of this neuron model is very close to the Hodgkin-Huxley model [19].
In the model, the membrane potential v(t) is governed by the following
equations [4], [19], [20], [21].

e = - o)+ X P )

where ¢, is the specific membrane capacitance, E; is the membrane
reversal potential, E; is the reversal potential (s € {i,e}, and e indi-
cate inhibitory and excitatory synapses respectively), w’ is a weight for
synapse j, and Ag is the membrane surface area connected to a synapse.
If the membrane potential v exceeds the threshold voltage vy, v is reset
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Figure 7.2. Conductance based synapses in a SNN

t0 Vpeset for a time 7.y and an action potential is generated. Fig. 7.2
shows that a neuron receives spike trains from three afferent neurons in
a receptive field.

The variable g(t) is the conductance of synapse j. When an action
potential reaches the synapse at ¢4y, the conductance is increased by the
following expression.

gg(tap + tilelay +dt) = gg(tap + tilelay) + s (7.5)

Otherwise, the conductance decays as illustrated in the following

equation. ‘
d gi(t) L

=——gl(t 7.6

- gl (7.6)

where ¢, is the peak conductance. Neuron i integrates the currents

from afferent synapses and increases the membrane potential according

to Equation (7.4). In this simulation, the parameters are set as fol-

lows. téelay = 0. vy, = —d4dmv. Vpeser = —70mv. Fe = Omv. Ei =
—75mv. Ge_maz = 0.01Us. ¢;_maz = 0.01us. g = 0.002 pus. ¢; = 0.002 us.
El = —70mv. g = 1.0},Ls/mm2. Cm = 10nF/mm2. Te = 3ms. 7, =

10ms. A, = 0.028953 mm?. A; = 0.014103 mm?.

In order to show action potential or spikes generated by a single
Integrate-and-Fire (I&F) neuron, 50 excitatory synapses are connected
to the neuron. The mean frequency of 50 random spike trains is increas-
ing slowly from 0 to 100 Hz. The output spikes of the spiking neuron
changes from non-firing to firing at a fixed frequency. The neuron passed
through three stages, as shown in Fig.7.3. When the input spike trains
are at a low firing frequency, the neuron do not fire (see Fig. 7.3(a)). The
membrane potential of the neuron varies under a threshold. When the
input spike trains are strong enough, the neuron enters into an irregular
firing state (Fig. 7.3(b)). When the input spike trains are very strong, the
neuron fires at a fixed frequency (Fig.7.3(c)). This frequency depends
on the refractory time 7,.; of the neuron. This is a simplest example
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Figure 7.3. 1&F neuron response to spike trains with different frequenices
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Figure 7.4. Firing properties of a single neuron bombarded by random synaptic
inputs. Both neurons were bombarded by Poisson-distributed random synaptic
(AMPA) inputs different firing rates ( 10Hz —100Hz), with maximal conductance
of 100 nS.

for spike generation for an integrate-and-fire neuron. This conductance-
based 1&F neuron model is very close to the Hodgkin-Huxley-model in
the NEURON software. The simulation results for both models are illus-
trated in Fig. 7.4. and this comparison was performed in the SenseMaker
project [22].

3. Information Encoding in SNIN

Although a neuron transfers information to another neuron by means
of a complicated biological process, experiments show that the action
potentials or spikes [3] are the key signals. Spiking neural networks in
the brain are very complicated. Thousands of spike trains are emitted
constantly by different neurons. How to understand such a spatiotem-
poral pattern of spikes is an extremely important topic in spiking neural
networks. Therefore, a wide range of different encoding schemes have
been discussed in the domain of neural coding [4], [6]. For example,
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Figure 7.5. Angular variable can be represented by a circle of neuron chain

count code, binary code, timing code and rank order code were de-
scribed in [6]. Firing frequency and firing rate were described in [4].
The differences between rate encoding scheme and temporal encoding
scheme was discussed in [6]. Here, a specific spatiotemporal encoding
scheme is used. Let a circle of chain neurons shown in Fig. 7.5 represent
an angular variable. If Neuron No.0 or No.40 fires at the highest firing
rate and firing rates for neurons from No.38 to No.2 draws a bell-shaped
distribution, this pattern of the neuron activity indicates 0°. Suppose
that after 200ms the centre of the pattern moves to Neuron 1. The cor-
responding angle is 360°/40 = 9°. By analogy, the centre of the pattern
moves from Neuron 2 to 39 step by step with step duration 200ms. The
corresponding angle can be represented by the equation ®4(t) = 9¢/200
degree, where the unit of ¢ is ms. If the angle is represented by the centre
neuron number in the bell-shaped distribution of firing rates, the equa-
tion is written as ®(¢) = ¢t/200, where ®(¢) unit is the neuron number.
Recording all the activities of the neuron chain for 8000ms, a firing rate
raster is plotted in Fig. 7.6. Similarly, variable x can be represented by
a neuron chain. The firing pattern for z(t) = 20 — 10 COS(2nt/3600)
is shown in Fig.7.7. The phase encoding scheme is also used in this
chapter. Details will be given in Section 5.
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4. STDP Implementation

Changes in the synaptic connections between neurons are widely be-
lieved to contribute to memory storage. These changes are thought to
occur through correlation-based, Hebbian plasticity [16]. Spike Timing-
Dependent Plasticity (STDP) was found in biological neurons. The
synaptic plasticity model has been explored based on the fact that a
synaptic potentiation and depression can be induced by precisely timed
pairs of synaptic events and postsynaptic spikes [13], [14], [15].

In order to perform STDP learning in SNNs, the implementation ap-
proach in [23], [24] is applied. Each synapse in an SNN is characterized
by a peak conductance g5 (the peak value of the synaptic conductance
following a single presynaptic action potential) that is constrained to lie
between 0 and a maximum value ¢s_mqr. Every pair of pre- and postsy-
naptic spikes can potentially modify the value of ¢,, and the changes due
to each spike pair are continually summed to determine how ¢s; changes
over time. The simplifying assumption is that the modifications are
produced by linear combination of individual spike pairs.

A presynaptic spike occurring at time ¢,.. and a postsynaptic spike
at time .5 modify the corresponding synaptic conductance by

gs < qs + QS,maxF(At) (7.7)

where At = tpo5t — tpre and

Apexp(At/Ty), if At >0

F(At) = { —A_exp(At/T_), if At<0 (7.8)

The time constants 74 and 7— determine the ranges of pre- to postsynap-
tic spike intervals over which synaptic strengthening and weakening are
significant, and A4 and A_ determine the maximum amount of synaptic
modification in each case. The function F'(At) for synaptic modification
is shown in Fig. 7.8.

The experimental results indicate a value of 71 in the range of tens of
milliseconds (about 20 ms). The parameters for STDP are set as follows.
Gs_maz = 0.01, Ay =0.01, A_ =0.005, 7+ = 20ms, 7— = 100 ms.

4.1 Connection Selectivity of Two-layer
Network Simulations

Based on the implementation approaches[23], [24], a two layer spiking
neural network with STDP connections is designed. The architecture is
shown in Fig.7.9.

The first layer consists of sensory neurons that transform stimulus
strength to phase encoding and output fixed frequency spike trains.
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Figure 7.9. The architecture of two-layer network

The second layer contains spiking neurons that are connected to the
first layer by a one-to-one configuration; the efficacy of these connec-
tions are determined by STDP learning. A high-level control neuron is
fully connected to the second layer. Suppose that three different stimuli
are presented to the neurons in first layer. One of the stimuli is also
presented to the high-level control neuron. After STDP learning, the
firing neurons are only those neurons that receive the same stimulus as
the control neuron. STDP can increase the efficacy of these connections
between neurons with synchronous signals, and decrease the weights of
connections between neurons with asynchronous signals. The simulation
results are shown in Fig. 7.10. This two-layers network can be used as a
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Figure 7.10. Synchronized signals selected by STDP learning

spike train filter. It is capable of selecting the signal that is the same as
that from the control neuron.

4.2 Non-linear Function Approximation

Let the input layer represent variable x and output layer represent
variable y. By using the STDP learning mechanism, the two-layers net-
work shown in Fig.7.11 can be trained to perform any non-linear function
y = f(x). At the training stage, a training stimulus is required to feed
into the output layer. As shown in Fig.7.11, the training layer can gener-
ate the target stimulus according to f(z) and feed into the output layer.
A series of stimuli is randomly generated and presented to the input
layer. At the same time the training layer applies the series of stimuli
to generate target stimuli for the output layer. After STPD learning,
the two-layer network can perform the function y = f(z) without any
training stimuli from the training layer i.e. after removal of the training
stimuli.

For example, an SNN with three 100-neuron layers was trained to
perform y = sin(z). The input layer is set to a circle chain with 100
neurons. The zero degree corresponds to Neuron 50. The output layer
and training layer are set to 100 neurons respectively. If y is regarded
as a one-dimensional co-ordinate, the origin of the y co-ordinate is set
to Neuron 50. Let y = 1 correspond to Neuron 94. Because stimulus
is a bell-shaped firing rate distribution, 6 neurons at the end of the
neuron layer are used to deal with the stimulus. Similarly, let y = —1



Learning Mechanisms in Networks of spiking neurons 183

X Input layer STDP Output layer Y
180 +1
120 —— 0.75
60 E— 0.25
0 -

0 — = ?0 25
-120 2 ’
_180 -0.75
-1
) +f O Bixed weights
s 0.75 ©
> 025 ©
0 O
-025 o
0.75 o
-1 O Training layer

Figure 7.11.  SNN trained with STDP for non-linear transformation

correspond to Neuron 6 instead of Neuron 1. If a stimulus is presented at
x, the firing rate distribution of the bell-shaped stimulus is represented
by following express.

cos(zwﬂ'(x—x/))

fx(x/) = Rpaxe 52 (79)

where R4 is the maximal firing rate, IV is the number of neurons in the
layer, 2’ is the neuron numbers adjacent to the neuron at x position, and
§ is a constant. If z = 0, the centre of stimulus is at Neuron 50. Note
that not only Neuron 50 responds to the stimulus, but also those neurons
adjacent to Neuron 50. This is very different from the values in classical
neural networks or digital numbers in Turing computers. In order to
easily generate the stimulus, the frequency can be transformed to Inter
Spike Interval (ISI). IST for each neuron in x layer can be represented as
follows.

Tisi(x') = round(— log(rand)) + 6 (ms) (7.10)

b
fo(2!)

where 2/ is a neuron number adjacent to position x, and f is the firing
rate of neuron z’/. Note that a 6 ms refractory period is considered.
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Figure 7.12.  Weight distribution for connections between input and output neurons

Stimuli for x and y are represented by stimuli that are firing rate dis-
tributions described using (7.9) and (7.10). The value of x is randomly
chosen, and the value of y is calculated using the formula y = sin(x).
This pair of x and y stimuli are presented to the input layer and training
layer separately for 20 ms. The weight distribution is then updated by
the STDP rule. After 20ms, a pair of x and y stimuli corresponding to
another random x value is presented to the network for 20 ms. Repeating
this procedure for 3000ms, the weight distribution converges to a stable
distribution, as shown in Fig.7.12. The red point indicates the connec-
tion with the highest value of weight. With this weight distribution the
two-layer network can perform the function y = sin(x). Example test
results are shown in Fig. 7.13.

4.3 Stimuli Integration

A cue integration model was proposed in [25]. However, the STDP
learning mechanism was not considered in the model. A similar SNN
model with the STDP learning mechanism is proposed in Fig.7.14.
Three neuron layers x,y, z are connected to a 2D intermediate neuron
layer. Suppose that neurons in the x and y layers are connected to neu-
rons in x-RF and y-RF fields with excitatory synapses respectively, as
shown by a solid line in Fig. 7.14. Neurons in the x and y layers are con-
nected to neurons outside of the x-RF and y-RF fields with inhibitory
synapses respectively, as shown by the short dash line in Fig.7.14. Neu-
rons in the intermediate layer are fully connected to each neuron in the
z neuron layer via STDP synapses, as shown by the long dash line in
Fig. 7.14.
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Figure 7.14. Scratch for Architecture of Multiple Stimuli Integrating SNN.

When two stimuli are presented at the input neuron layers z and y,
the target stimulus for z = = + y is injected into z layer. The STDP
synapses adapt to the stimuli. After training, the weights between the
intermediate layer and the z layer are adapted to perform z =z +y. In
the experiment, neuron layers x, y and z have 20 neurons respectively.



186

¥ neuron #

Q. Wu et

X neuron #

Zoos Loos
% gum
Eoua
‘2003 20034
& Y
gnuz . go.m
2 2
éo.m g-um
3 5

a
2 2 el
S % 5
= 3

¥ meuren ¥

X neuron#

(a) Weight neuron array to output neuron 1 (b) Weight neuron array to output neuron 13

Figure 7.15. Weight strength distribution for intermediate layer to z neuron layer.

) 28 | 1 I I
I 1 [ EE 0 (] 1 [
L. E T S T S I A A A A (N [N I R
N T R (RN N ]
18 P R R N T TR TN N N N A ST VT
A O A A
1" M R T N R TR TN
& ! ! L (O A A TR N S N N I W S TR I TN
Z12f 11 LA 1 ! ! - R AT i @ i ¥ Ei W (R
E R R TR TR | RN R N T
Booplll Ll Ll i i il e gy T 1 | I
P T E é i |
ol 1 O T O I N VO A "
LI T T | O O O O O O I
el LT O T &
LUUUL L LT LUy I T LY LI
AU T R LD LD LT L LD "
I BT 0 EITE T B0 ¢ [
2 L 2
# 00 0 300 400 600 a0 A0 #00  son w00 O 00 200 300 400 500 700 B00 900 1000
Fire time Cutpat fire timo

(a)Two input stimuli, upper row for x, lower row for y  (b)Output of z neuron layer

Figure 7.16. Stimulus Test for z=x+y

The intermediate layer has 20 x 20 = 400 neurons. The weight distribu-
tions for Neuron 1 and Neuron 13 in the z layer are shown in Fig. 7.15.
The test results are shown in Fig. 7.16.

5. SNN Learning for XOR Problem

The traditional XOR problem and phase encoding scheme are applied
to illustrate STDP learning paradigm in this section. In the phase en-
coding scheme spike trains are assumed in the same firing frequency. For
different spike trains, the firing time is at a different phase. For exam-
ple, suppose that the period is 10 ms and each phase corresponds to a
time interval for 1ms. Each period thus contains 10 phases. In order
to indicate the periods, sine curves are plotted in Fig.7.17. Phases also
can be represented in radian or degree. Firing time at phase 7 stands for
logical ‘0’, and firing time at phase 2 stands for logical ‘1’. The logical ‘0’
and ‘1’ are represented by the spike trains (a) and (b) in Fig.7.17. The
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Figure 7.17. Phase encoding spike trains for logical ‘0’ and ‘1’.
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Figure 7.18. The spiking neural network for XOR problem

XOR problem can be represented as a set of training patterns shown in
Table 7.2. As it takes time for the action potential to travel from de-
lay neurons to neuron N1, N2, N3 and N4, the output spike at phase 3
represents logical ‘0’, and output spike at phase 8 represents logical ‘1.
These patterns are applied to train the spiking neural network shown in
Fig. 7.18.

Fig.7.18 shows the spiking neural network for the XOR problem.
There are two inputs and one output in the network. Each input is
connected to a set of neurons with a specific delay synapse. For exam-
ple, input-1 is connected to a Phase 0 neuron without any delay, and it
is connected to a Phase 1 neuron with a delay 1 ms, Phase 2 neuron with
a delay 2ms, ..., Phase 9 neuron with a delay 9ms. Similarly, input-2
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Table 7.2. Training patterns associations for XOR problem

Pattern No. Input-1 Input-2 Output
1 1-(ph7) 1-(ph7) 0-(ph3)
2 1-(ph7) 0-(ph2) 1-(ph8)
3 0-(ph2) 1-(ph7) 1-(ph8)
4 0-(ph2) 0-(ph2) 0-(ph3)

is also connected to 10 delay neurons. Therefore, two temporal phase
encoding spike trains are transferred to activities of delay neurons, i.e.
spatial-encoding patterns.

N1, N2, N3, and N4 are four pattern recognition neurons that are
fully connected to all delay neurons with STDP synapses. These con-
nections ensure that the network can adapt to the training patterns by
the STDP rule. Four pattern recognition neurons are connected to each
other with inhibitory synapses. These inhibitory synapses make a com-
petition mechanism among the four pattern recognition neurons. Once
a neuron fires, the neuron will inhibit other neurons firing. This makes
it possible for one neuron to respond to one stable input pattern. There
are four patterns in the XOR problem. Four neurons are employed in
this layer.

If one wants to train the network to recognize XOR pattern 1 in
Table 7.2, the phase encoding spike train (b) is fed into input-1 and
input-2. At the same time, the target output spike train (ph8) is injected
into neuron N1. After about 150ms for STDP adaptation, the connection
weights from N1 to all delay neurons converge to a stable distribution,
and the neuron N1 can respond to the input pattern. Similarly, neuron
N2, N3, and N4 can be trained to recognize pattern 2, 3, and 4. After
this, the network can perform the XOR function. The test results are
shown in Fig. 7.19.

6. SNN Learning for Coordinate Transformation

The brain receives multiple sensory data from the surrounding envi-
ronments where the different senses do not operate independently, but
there are strong links between modalities [26], [27]. Electrophysiological
studies have shown that the somatosensory cortex (SI) neurons in mon-
keys respond not only to touch stimulus but also to other modalities.
Strong links between vision and touch have been found in behavioural
[28] and electrophysiological [29] studies, and at the level of single neu-
rons [30]. For example, neurons in the somatosensory cortex (SI) may
respond to visual stimuli [31] and other modalities [32]. Neurons in a
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Figure 7.19. Test results of the spiking neural network for XOR problem
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monkey’s primary SI may fire both in response to a tactile stimulus and
also in response to a visual stimulus [31].

A new interaction between vision and touch in human perception is
proposed in [33]. These perceptions may particularly interact during
fine manipulation tasks using the fingers under visual and sensory con-
trol [34]. Different sensors convey spatial information to the brain with
different spatial coordinate frames. In order to plan accurate motor
actions, the brain needs to build an integrated spatial representation.
Therefore, cross-modal sensory integration and sensory-motor coordi-
nate transformations must occur [35]. Multimodal neurons using non-
retinal bodycentred reference frames are found in the posterior parietal
and frontal cortices of monkeys [36], [37], [38]. Basis function networks
with multidimensional attractors [25] are proposed to simulate the cue
integration and co-ordinate transformation properties that are observed
in several multimodal cortical areas. Adaptive regulation of synaptic
strengths within SI could explain modulation of touch by both vision
[39] and attention [40]. Learned associations between visual and tactile
stimuli may influence bimodal neurons.

Based on these concepts, a spiking neural network (SNN) model [42] is
proposed to perform the co-ordinate transformation required to convert
a time-coded haptic input to a space-coded visual image. The SNN
model contains STDP synapses from haptic intermediate neurons to the
bimodal neurons.

In order to simulate location related neurons in the somatosensory
cortex (SI), suppose that X and Y are single layers of bimodal neurons
that represent the Cartesian co-ordinates of the output. Fig.7.20 shows
a simplified SNN model for building associations between visual and
haptic stimuli.

If the eyes focus on a point (z,y) at the touch area, a visual stimulus
can be generated and transferred to the X and Y bimodal neuron layers
through the visual pathway. Therefore, the visual signal can be applied
to train the SNN for the haptic pathway. If a finger touches the point
(z,y), a haptic stimulus will trigger (6, ®) stimuli corresponding to arm
position. The (0, ®) stimuli are transferred to (X,Y’) bimodal neuron
layers through the haptic pathway. In this model, the synapse strength
for the visual pathway is assumed to be fixed values. Each neuron in
the X layer is connected to retinal neurons with a vertical line receptive
field shown in Fig. 7-20. Each neuron in Y layer is connected to reti-
nal neurons with a horizontal line receptive field. In this experiments,
Rynae for bell shaped stimuli is set to 80/s, and 4 is set to 0.04, and 40
neurons are employed to encode the 6 and ® layers respectively. 1600
neurons are employed in the 2D intermediate layer and 80 neurons in the
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Figure 7.20. A SNN model for 2D co-ordinate transformation. (z,y) is co-ordinate
for touch area. (a) Visual pathway: the retinal neuron layer is represented by 2D layer
with 40X40 neurons that are connected to X and Y neuron layer with fixed weights.
(b) Haptic pathway: Li and Lo are arms. 6 and ® are arm angles represented by
a 1D neuron layer respectively. Each 6 neuron is connected to the neurons within
a corresponding vertical rectangle in the 2D intermediate layer. Each ® neuron is
connected to the neurons within a corresponding horizontal rectangle in the 2D in-
termediate layer. The neurons in the intermediate layer are fully connected to the X
and Y neuron layers with STDP synapses. These connections are adapted in response
to the attention visual stimulus and haptic stimulus under STDP rules.

training layer respectively. 80 neurons are also employed in the X and
Y layers respectively.

After training, the SNN can transform the (6, ®) stimuli to output
(X, Y) neuron spike activities. In order to test the SNN, suppose that the
forearm turns around with a speed 40° per second, as shown in Fig. 7.21.
The circle is the track of the finger. The values of (6, ®) are applied to
generate Poisson procedure spike trains for # and ¢ layers according to
(7.9) and (7.10). When the finger traces the circumference following the
track of the circle, two stimuli are generated corresponding to (6, ®) of
the arm. The stimuli are shown in the left panel in Fig. 7.22. When the
two stimuli are input into the network, the outputs of the (X,Y) neuron
layers obtained are displayed in the right panel of Fig.7.22. The neuron
firing-rate at the output layer is a bell-shape distribution. Transferring
these firing rate to single values of X and Y, we can demonstrate that
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Figure 7.21. The track of finger movement

the SNN is capable of transferring the polar co-ordinate (6, ®) to the
Cartesian representation (X,Y’) as in the equations.

X = Ljcos(#) + cos(0 + )] (7.11)
Y = Lisin(f) + sin(6 + ®)] (7.12)

The spike train raster in the upper-left panel in Fig.7.22 represents
the stimuli corresponding to 8 = 180°. The stimuli persists for 8000ms.
The stimuli for the ® neuron layer is shown in the lower-left panel.
The stimuli with bell-shaped firing rate distribution stays for 200ms
in sequent positions at & = 0°,9°,18°,...360°. The changes of (6, ®)
correspond to the finger moving along a circle with radius L. According
to (7.11) and (7.12), the output X = L(—1—cos(®)) and Y = —L sin(P).
These mathematical results are consistent with the SNN outputs shown
in the right panel.

The results of learning are stored in the weight distribution of the
connections between the 2D intermediate layer and (X,Y") layers. After
learning, the haptic pathway in the SNN can transform the arm position
(0,®) to (X,Y) bimodal neuron layers. Actually, § and ® are based on
body-centred co-ordinates, which are polar co-ordinates. The neurons
in § and ® layers transfer haptic location signals to the intermediate



Learning Mechanisms in Networks of spiking neurons 193

D=360'

00 ) . TZSéOOms i | T;SOdOms
O=360"" :
®=0 = .}ZSBOOrhs Y=40 T T omiew T "1:;80(50ms

Figure 7.22. Co-ordinate transformation from body-centred co-ordinate (6, ®) to
(X,Y).

layer, and then this intermediate layer transfers the body-centred co-
ordinate to the integrated co-ordinate X and Y neuron layers. The
STDP synapses make it possible to learn and transform body-centred
co-ordinate (0, ®) to co-ordinate (X,Y’). The co-ordinate (X,Y’) can
be regarded as integrated co-ordinates in the brain. In this situation,
co-ordinate (X,Y) is actually the retina-centred co-ordinate. The trans-
formation is equivalent to transformation from a haptic body-centred
co-ordinate to a retina-centred co-ordinate.

7. Conclusion

In this chapter, a number of spiking neuron models were mentioned,
and the conductance-based integrate-and-fire neuron model was intro-
duced in detail. All the demonstrations are based on this model. As
spiking neurons transfer information via spike trains, the neuron en-
coding scheme plays a very important role in learning mechanisms. In
this chapter, a circle of neuron chain was applied to represent an angu-
lar variable. A neuron chain was applied to represent a single variable.
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Based on these representations, SNNs were trained to perform non-linear
function approximation, and cue integration z = x +y.

By using phase encoding scheme, a solution of the XOR problem
was demonstrated. All the learning mechanisms demonstrated here are
based on STDP. These demonstrations only give simple examples so
as to assist in understanding STDP. Based on these principles, more
complicated SNNs can be simulated in a further study.

In a biological system, there are strong links between modalities.
A cross modality learning model for co-ordinate transformation was
proposed. In the SNN model, the network was trained to perform co-
ordinate transformation from the arm angles of the haptic stimuli posi-
tion to a position represented by retina-centred co-ordinate.

The advantage of spiking neural networks is that they are more ro-
bust and provides better noise immunity than classical neural networks,
even if some of the neurons do not work. The learning mechanisms can
provide an approach for designing artificial intelligent systems to process
biological stimuli.
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