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Abstract— The effective life-long operation of service robots
and assistive companions depends on the robust ability of
the system to learn cumulatively and in an unsupervised
manner. For a cumulative learning robot there are particular
characteristics that the system should have, such as being able
to detect new perceptions, being able to learn online and without
supervision, expand when required, etc. Bag-of-Words is a
generic and compact representation of visual perceptions which
has commonly and successfully been used in object recognition
problems. However in its original form, it is unable to operate
online and expand its vocabulary when required.

This paper describes a novel method for cumulative unsuper-
vised learning of objects by visual inspection, using an online
and expanding when required Bag-of-Words. We present a set
of experiments with a real-world robot, which cumulatively
learns a series of objects. The results show that the system is
able to learn cumulatively and recall correctly the objects it
was trained on.

I. INTRODUCTION

The effective life-long operation of service robots and
assistive companions depends on the robust ability of the
system to learn cumulatively and in an unsupervised manner.
The aim of cumulative learning is to provide a system with
developmental programs that allow it to evolve and learn
through prolonged periods of observation and interaction
with its environment. In order to efficiently achieve this, a
mechanism that identifies observations that are new to the
robot is needed. In previous work [6] we have identified
particular characteristics that are important for the effective
operation of a cumulative learning system. In particular,
a cumulative learning system should be able to identify
new perceptions, learn online and unsupervised, expand
when required, cope with noise, and fuse information from
different sensors.

A first phase in cumulative learning is perceptual learning,
i.e. learning and being able to recall objects previously
observed. There is an extensive body of existing research
into object recognition, and one popular approach is using
the compact and generic Bag-of-Words representation of
visual perceptions (BoW) [8], [11]. Inspired by the BoW text
classification algorithm, a “vocabulary” of unordered feature
descriptors is constructed offline. The frequency of these
features/words within an image is then used to categorise
the imaged object online.
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Applications of the BoW method in robotics have ranged
from visual-SLAM [3] to tactile-sensing driven object recog-
nition [10]. However, due to the need to train and fix the
vocabulary offline, the algorithm is not directly suitable for
robotics applications that require the ability to cumulatively
learn online in an unsupervised way. In this work we are
interested in creating a system that can autonomously and
cumulatively learn to identify objects without any user inter-
action. In order to achieve this, a growable BoW vocabulary
must be created dynamically online.

This work has been inspired by work with expand-
able learning structures, in particular the Grow When Re-
quired [12] network and Growing Cell Structure [13]; but,
the overall architecture of the network and the way that new
nodes are added are two key differences from these previous
expandable networks. The closest related work is that of
Filliat et al. [1], [4]. In [4], an online BoW approach is
proposed for localisation and mapping that offers the ability
to incrementaly learn by expanding the vocabulary. However,
semi-supervised learning is carried out in an interactive
training process, where as the system proposed here is purely
unsupervised. Also, in [1] an unsupervised BoW approach to
robot visual mapping is proposed. Loop-closure is detected in
a video sequence by assessing the similarity of video frames
incrementally online. However, in order to assist the BoW
matching process, geometric constraints are used to validate
image matches. In the system proposed here such constraints
do not need to be considered, and complete images do not
need to be stored.

II. EXPANDABLE BAG-OF-WORDS

The architecture of the proposed expandable BoW is
shown in Figure 1. It consists of a neural network, which
each node keeps a vector of a feature descriptor, and a binary
vector, named “ownership vector”, defining the objects that
the node belongs to.

The network expands when a particular feature descriptor
is not a close match to any of the nodes in the network. In this
case, a new node is created with the feature descriptor vector
initialised to the input descriptor. Else if the input feature is
a close match, then the best-matching node is trained. In
both cases (expanding or training) the ownership vector of
the new or of the trained node is updated to reflect that this
node belongs to the object of the input feature.

During classification, the set of input features from a
perceived object are matched to the neural network, and those
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F: feature descriptor
O: ownership

Fig. 1. Expandable Bag-of-Words
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Fig. 2. Sample histogram of votes

with a close match consist the set of known features/words
for this particular perception. The rest of the input features
populate the “unknown” category. The sum of the ownership
vectors of the best matching nodes of the network produces a
histogram of votes, an example is shown in Figure 2, which
together with the number of unknowns features determines
the classification of the perception. This histogram shows
how well the perceived object matches the known objects.
In general terms if the number of unknowns is significantly
higher than the number of votes of the most popular category
then the object is classified as a new object, otherwise the
object is classified as the most popular category.

III. OPERATIONAL PROCEDURE

Our object learning system operates cumulatively. The
robot inspects an object from all directions by driving around
it and taking images of it, providing a 360◦ perception
of the object. As with many BoW implementations, robust
SURF [2] features are extracted from the images to provide
scale, rotation and partial illumination invariance. As new
images are taken, the data is dealt with immediately and
then discarded.

The operational process of the system, shown in Figure 3,
consists of the following phases that are continuously per-
formed in a repetitive loop:

• Inspection phase, during which the robot carries out a
single 360◦ visual inspection of the object. An inspec-
tion loop consists of the following steps:

Inspection
loop Decision

Training
loop

In training mood

Do
nothingObject well known

Object known but 
requires further training

/ New object

Change object

Fig. 3. Operation loop

1) For every perception xo of object o extract its
SURF features S; xo → S

2) For every feature descriptor s in S; ∀s ∈ S :

a) Calculate its Euclidean distances from every
node n with weights vectors wn of the network
N ; Ds = {‖s− wn‖} , ∀n ∈ N

b) Find the best matching node b1 with distance
db1 ; {b1} = argmin(Ds), db1 = min(Ds)

c) Append b1 and db1 to inspection loop log I;
I ∪ {[b1, db1 ]}

• Decision phase, during which the robot decides based
on the inspection phase whether the perceived object
is an already known object or a new one. In the case
that the object is known, the number of unknown new
features is taken into account to decide whether further
training is required. In more detail,

1) Using the inspection log I from the inspection
loop; calculate the histogram of votes, H , by
summing the ownership vectors, B, of all the
inspection instances, i ∈ I , that are good matches;
H =

∑
∀i∈Ig

Bi, where Ig ⊆ I

2) From H get the most popular category; c =
argmax(H), v = max(H)

3) Count the number of bad matches; u = |Ib|, where
Ib = I − Ig

4) If u � v then the perceived object is a new
unknown object

5) Else the object is known and requires further
training if u ≈ v, or it is well known if u� v

• Do nothing phase, during which the robot stands still
waiting for the object to change.

• Training phase, during which the robot circles around
the table perceiving and learning in an online, contin-
uous, cumulative and unsupervised manner the 360◦

perception of either a previously known object or a
new object, depending on the outcome of the preceding
decision step. Training carries on until the object is
well learnt. The training phase consists of the following
steps:

1) For current perception xo of object o extract its
SURF features S; xo → S

2) For every feature descriptor s; ∀s ∈ S :

a) Calculate its Euclidean distances from every
node n with weights vectors wn of the network
N ; Ds = {‖s− wn‖} , ∀n ∈ N



b) Find the best matching node b1 with distance
db1 ; b1 = argmin(Ds), db1 ∈ Ds

c) If the best matching node b1 is a good match,
then train node b1,
i) Update the weights vector wb1 according to
wb1 = wb1+η×(s−wb1), where, η ∈ (0, 1]
is the learning rate

ii) Update the ownership vector B to reflect
that the node represents the training object

d) Otherwise if node b1 is not a good match, then
create a new node; N = N ∪ {nn}
i) Initialise the weights vector wnn

of the new
node nn to the input vector s; wnn

= s
ii) Update the ownership vector B to reflect

that the node represents the training object
3) Repeat steps 1 and 2 until the robot completes a

loop

IV. EXPERIMENTS

A. Experimental Setup

The robot used in this work was a MetraLabs Scitos-G5
differential drive mobile robot equipped with a SCHUNK
7 degrees-of-freedom manipulator and a Microsoft Kinect
camera attached to the end-effector. The 3D data from the
Kinect were used to reliably segment the object from the
background; this was achieved by using RANSAC for iden-
tifying the table and then using depth filtering and projecting
the object points to the to the 2D image to extract the region
of the object.

In order to obtain 360◦ perceptions of objects, the robot
was programmed to autonomously drive around a table. One
object was placed on the table at a time, and the manipulator
was programmed to maintain the object in the camera view
at all times.

The set of objects consisted of 10 real-world objects,
shown in Figure 4. The surface of the table was a random
sheet of gift wrap paper to make the world as realistic as
possible.

The experimental setup with one of the objects is shown
in Figure 5.

B. Experimental Procedure

The experimental procedure consisted of a training phase
and a validation phase. In the training phase the robot in-
spects, decides and learns the training objects autonomously.
The only time a user interferes with the system is at the end
of the training phase when the robot has satisfactorily learnt
the object it was trained on previously, and it is on a “do
nothing” phase. At that point a user can change the object
on the table.

In the validation phase the robot is asked to recall the
10 objects it has previously learnt in the training phase, by
performing 5 consecutive inspection-decision loops without
any training.

Fig. 5. The experimental setup with one training object on the table

V. RESULTS AND DISCUSSION

A. Training phase

Figure 6 shows the results of training the system on the 10
objects shown in Figure 4. In total, 64 training and inspection
cycles were required to learn the 10 objects, and the size of
the network grew to 63000 nodes. The most substantial jump
in network size occurred when training on Object 2 (a toy
robot). This was due to the higher number of SURF features
found on this object.

Figure 6 shows that the ratio between known and unknown
features quickly dropped as the training on each object
proceeded. This demonstrates the learning effectiveness of
the proposed system, and the stability of the SURF features
used. However, extreme changes in lighting were found to
effect the object learning. This is apparent when training on
Object 9 (epochs 47 – 54), where a spike in the ratio of
known features to unknowns can be seen at epoch 52. This
occurred when bright sunlight saturated the image.

Regardless of such real-world online difficulties, the sys-
tem was able to learn all 10 objects successfully in a
completely unsupervised manner. As each new object was
presented to the robot, it was correctly identified as unknown
and a new object class was created.

B. Recall phase

The same 10 objects as had been learnt by the system were
each placed in front of the robot 5 times and an inspection
loop executed. Figure 7 shows the classification results of all
5 loops for each object.

Each object was correctly identified despite there being a
large number of unknown features also discovered, particu-
larly on Objects 2, 9 and 10. The unknown features are the
result of erroneous features in the image background (around
the object edge), illumination changes causing features to not
be matched to previously seen features, and new features
on the object that had not been detected while training.
Since the system works with online images in real-time,
unknown features will always be present. However, the
system demonstrated reliability even under these conditions.
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Fig. 4. The 10 objects used in the experiments
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Fig. 6. Graph showing the growing size of the network during the training experiment on the 10 objects, and the learning performance ratio for each
one of the objects

The overlap in features between objects is most observable
between Objects 3 and 8 (two books), where although each
object was identified correctly, there is evident similarity
between them. On the other hand, the percentage of votes
for objects other than Object 2 when presented with Object
2 were low. This is again due in part to the large number
of features present on Object 2, reflecting its distinctiveness
from the other objects.

VI. CONCLUSIONS

This paper described an unsupervised cumulative online
learning method for continuous learning of a robot system,
based on a novel growing Bag-of-Words approach, which can
be used in service assistive robotics that have to adapt and
learn new environments and skills. The experimental results
from the training phase have shown that the robot was able
to continuously and cumulatively learn the different objects
that were presented to it. During the validation phase it was
able to correctly recall all the objects it has previously learnt.

Despite the successful demonstration of the proposed
system, there are certain areas for improvement. The first im-
provement is dealing with the increasing size of the network
by using a pruning technique that removes the nodes that
represent the background noise. Although in the experiments

presented here there was no issue with computational per-
formance, it is expected that as the number of objects learnt
increases, then the size of the network will become so large
that computational performance will degrade. An additional
common step dealing with computational performance issues
is using some kind of hierarchical organisation of the data to
avoid an exhaustive search over the whole network. Lastly,
from a practical point of view, the system should be able
to simultaneously segment and recognise multiple objects
existing in a scene, as currently it is capable of segmenting
only a single object.
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