
Robotic Architectures for indoor and outdoor
museum guides

Lorenzo Riano

February 14, 2008

Contents

I Overview 2

1 Introduction 3
1.1 Outline . 6
1.2 State of the art . 7

2 Probabilistic Robotics 9
2.1 State estimation . 10

2.1.1 Notation . 10
2.1.2 Belief Updating . 11

2.2 Particle Filter . 12
2.3 Sensor Model . 14
2.4 Motion Model . 16
2.5 Mapping . 17
2.6 Mapping . 17

II An Indoor Robotic Museum Guide Architecture 19

3 Cicerobot 20
3.1 Introduction . 20
3.2 System Overview . 21
3.3 Map building . 23
3.4 Planning . 23
3.5 Control . 25

3.5.1 The dynamic window . 26
3.5.2 The goal function . 27

3.6 Finding peoples . 28
3.7 Dealing with invisible obstacles . 30
3.8 Interaction with visitors . 31
3.9 Experimental results and Conclusions 31

ii CONTENTS

4 High level control 33
4.1 Introduction and motivations . 33
4.2 Related works . 34
4.3 Modelling the Bayesian network . 34
4.4 Taking decisions . 38
4.5 Experimental Results . 40
4.6 Conclusions and future works . 44

III Outdoor Robotic Museum Guide Architectures 45

5 Basic Architecture 46
5.1 Introduction . 46
5.2 Motivation and related work . 48
5.3 System Overview . 49
5.4 Environment representation . 50
5.5 Path Planning . 51
5.6 The localization system . 52
5.7 The controller . 54
5.8 Experimental Results . 55
5.9 Conclusions and future works . 57

6 Appearance Based Navigation 59
6.1 Introduction . 59
6.2 Related works . 60
6.3 System Overview . 61
6.4 Topological map . 63
6.5 Image preprocessing . 63
6.6 Incremental-EM . 64

6.6.1 Building the temporary model 64
6.6.2 The complete model . 65

6.7 From features to space . 67
6.8 Place detection . 68
6.9 Experimental results . 69
6.10 Conclusions . 70

7 Towards Topological Maps 72
7.1 Introduction . 72
7.2 Related Works . 73
7.3 Overview . 76
7.4 Node discovery . 78

CONTENTS iii

7.5 Map Building and Updating . 81
7.6 Node Appearance . 83
7.7 Localization . 85
7.8 Navigation . 87
7.9 Experimental Results . 87
7.10 Conclusions . 91

IV Conclusions and future works 93

List of Figures

3.1 Cicerobot while interacting with visitors 21
3.2 A diagram of the proposed architecture 22
3.3 The "sala Giove" map. The whiter a pixel, the more probable it is

of being free. Blue pixels are unexplored ones. 23
3.4 The wavefront planner applied to a fictitious scenario. The red

square with a G inside is the goal position, while the other red square
is the robot position. Figure (a) shows the wavefront expansion,
stopped when it meets the robot. Figure (b) shows the planned
path, with a waypoint in the middle. 25

3.5 An example of planned path in a real environment 26
3.6 The goal function. 28
3.7 The robot (red circle) together with the obstacle field. 29
3.8 The robot near some dangerous places. Left figure shows the robot

moving alongside a glass panel, which is invisible to the lasers. Right
figure shows the robot passing near a staircase. 30

4.1 The Bayesian network. 36
4.2 The dynamic Bayesian network. 38
4.3 The influence diagram. 39
4.4 The robot has a clear path. 41
4.5 Few people block the robot path. The robot decided to move around

them. 42
4.6 Many people block the robot path. The robot decided to stop and

ask the people to leave. 43

5.1 Part of the Botanical Garden Map. The thick red line displays the
robot route. 47

5.2 A close-up of the robotic platform used. 47
5.3 Raw odometry with laser scans. The two red circles point to the

same position, i.e. the central plaza. The distance between the two
points in this map is v 100m. 49

0 LIST OF FIGURES

5.4 GPS data obtained during the same path as in figure 5.3. The black
line displays the true robot path. 50

5.5 GPS data collected during map building. Each node has a name,
and a gaussian distribution whose contour is displayed as a black
ellipse. The black thick line is the 250m long path the robot followed
while collecting the data. 51

5.6 Comparison of GPS (green dots), raw odometry (red line) and GPS
with EKF (blue line). Refer to figures 5.3, 5.4 and 5.5 for comparison. 52

5.7 Two maps generated for two nodes. 55
5.8 A large map displaying the first pathway. It lacks much details,

including numerous plants in front of the two lateral walls. 56
5.9 Images taken during a crowded demo. 56

6.1 The system overview . 62
6.2 An example of two non overlapping Gaussians 67
6.3 Two different images taken from the same place 68
6.4 The first test results. 70
6.5 The second test results. 71

7.1 An outline of the proposed architecture. 76
7.2 Illustration of the node discovery procedure. See text for details. . . 80
7.3 Local map shifting. As the robot moves (from the red point to the

green one) the local map shifts according to the new perceptions. . 81
7.4 An example of map updating. See text for details. 84
7.5 The Dynamic Bayesian Network used for localization unrolled for

two time slices. In this example the map comprises three nodes,
therefore there are three action nodes ui

t−1 85
7.6 A local map without detecting nodes. 88
7.7 A local map. A potential node has been detected 89
7.8 Steps in creation of the topological map. 90
7.9 Local maps in indoor environment. 92

Acknowledgments

Dal primo momento in cui ho iniziato a scrivere questa tesi ho pensato a come
scrivere i ringraziamenti. Ci sono persone che hanno direttamente partecipato alla
sua stesura, e persone che mi hanno sostenuto tantissimo pur non sapendo cosa
vuol dire quello che ho scritto. Cercando di rendere omaggio alla terra che mi
ha ospitato durante il dottorato, ho preso una semplice decisione: non inserisco
nomi, né riferimenti. Chiunque ci tenesse a vedere comparire il suo nome come
preambolo ad una lista di equazioni, immagini picassiane e termini strani sarà
deluso. Ma sono sicuro che chiunque sa di essermi stato vicino, di avermi aiutato
o anche solo stimolato nelle mie ricerche, troverà un ringraziamento lungo circa
cento pagine di tesi.

Ma non posso cavarmela così facilmente. Esistono persone che mi hanno sop-
portato, aiutato, che mi hanno confortato, e spesso riportato ai miei doveri quando
non ce la facevo più. Senza di loro tutto, sarebbe diverso oggi. Senza di loro, penso
che buona parte di questo lavoro non avrebbe la forma che ha oggi. Eppure hanno
fatto una cosa così semplice: mi hanno dato uno scopo. Ed è a loro che dedico le
righe più importanti di questa tesi.

Grazie.

Part I

Overview

Chapter 1

Introduction

The field of museum robotic tour-guide is a real testbed for applied robotics. Al-
gorithms for mapping, localization, navigation and human-robot interaction are
deployed in an out-of-lab environment and integrated in a robotic system to serve
people. Usually the tour-guide robots environments are highly dynamic and un-
predictable, as hundreds of people walk around and make the robot job harder
and harder. A good robotic architecture should cope with any kind of uncertainty,
trying to react to unpredictable fault conditions, while still maintaining a pleasant
behavior for the museum visitors.

Consider for example the task of a human guide whose goal is to show the
museum and its exhibits to a group of visitors. The first thing he should know
is a list of the museum exhibits, together with their positions in a suitable frame
of reference. For example he could know that in a museum room there are three
main exhibits, while in the next two rooms there are items of minor interest. He
should know therefore where the rooms are inside the museum, where the exhibits
are located in each room and he should plan a tour to visit them. Obviously a
human guide who stops in the middle of a room trying to remember where a place
of interest is does not look very amazing. The same problem is even harder if we
consider a large unstructured environment, like an archaeological garden. Here
distances play a fundamental role, as an incorrect tour planning could lead to the
guide (and the following visitors) walking for kilometers to see exhibits very far
away from each other.

Now consider the same problem, but applied to a robotic platform. While we
human being consider the task of walking as somewhat innate, thus very easy,
the same is not true for a robot. Tasks like moving from one place to another
one while not colliding with obstacles are trivial for us, while the robot needs ad
hoc algorithms that should often include a detailed kinematic model of the robot
locomotion system.Many algorithms for obstacle avoidance have been developed,
but they all relies on the robot sensing capabilities, which are often very limited.

4 Introduction

For example a glass door is hard to detect for most of the sensors in commerce
(and often for human too), and the robot could easily collide with it. Another
“hard problem” for the robotics is the world state estimation. Most of the robotic
algorithms rely on a complete world state knowledge, which is hard to achieve
even for a very simplified world model. An instance of this problem is tracking
the robot position: no sensor can estimate with precision the robot pose in a given
frame of reference, and if we consider measure uncertainty over the poses space,
the problem quickly grows to become intractable. The same problem is magnified
when considering large and unstructured environments. Consider yourself in the
middle of an unknown city, without a map, trying to get to a particular place
with nobody to ask for information. You could move around and explore your
neighborhood, but after traveling along roads and turning at crossings it is hard
to decide if the place you are looking at is the same you were some time ago. Even
if you have a map but you do not know your starting place, it could take a lot of
time and exploration efforts to understand where you are. A similar problem arises
when your map is not detailed enough, as it often happens for touristic maps.

In the last decade we saw many successful robots deployed in public museums
and acting as tour-guides (some of them will be introduced in section 1.2). Issues
like navigation, planning and map-building have been mostly addressed. The key
idea in successful robotic applications is to explicitly introduce uncertainty in each
algorithm. Uncertainty in robotics arises from the sensors, from the actuators,
and from the world representation model. It is not possible, apart from trivial
scenarios, to build a robust robotic architecture without coping with uncertainty.
Although this has been observed well before the last decade, it is only in the near
past that robotic architectures have been pervaded with uncertainty measures.

Uncertainty means stochastic. We do not have anymore a single variable de-
scribing the world state, but a probability distribution over all the world states
space. We do not have anymore a deterministic action, but actions are functions
over a probabilistic space. The same is true for decisions: the robot does not
take decisions based on sure outcomes, but on an expected utility based on the
robot beliefs. The probabilistic approach has a drawback: algorithms are often
computationally expensive, at the point that they are intractable. The problem
of finding a good trade-off between uncertainty representation and computation is
still mostly unresolved.

This thesis is mainly concerned with robotic architectures for museum tour-
guides. We will consider two different environments, namely the Archaeological
Museum of Agrigento and the Botanical Garden of Palermo. Each developed
architecture will try to solve a set of problems, while pursuing the goal of creating
a fault tolerant robotic system. The robot Cicerobot operates in the archaeological
museum, and it uses well-known algorithms for mapping, localization and planning
processes. Although it is able to fulfill its tasks, it lacks a high level control

5

system to recover after faults or to take decisions when multiple action choices are
presented. To to this aim we will develop a high level decision system based on
dynamic Bayesian networks and influence diagrams. These represent a graphical
language to aid a decision system taking decision under uncertainty. The robot
may decide, for example, to ask people clear its way or to try a maneuver to avoid
them, depending on a measure on the number of people surrounding it and the
expected outcomes of its strategy. Furthermore the dynamic Bayesian network is
used to estimate some unknown variable using information from many sensors and
its belief. Therefore the proposed robotic architecture will be more fault tolerant,
and even more appealing to people.

While Cicerobot operates in an indoor environment, Robotanic operates in
a large outdoor environment, namely a botanical garden. Dealing with outdoor
environments is harder than dealing with indoor ones, as spaces are very large and
sensor data are often very subject to noise. Furthermore outdoor environments are
often unstructured, meaning that they lacks many features useful for localization
and navigation like walls or uniform lighting. During our experiments we found
that a metric representation is not suitable for this environment (in contrast with
indoor ones). We will explore two ways to represent the environment, namely
appearance and topological maps.

Appearance based navigation uses a holistic view of image data to memorize
the “look-like” of a place. Instead on focusing on landmark detection or features
detection, the holistic approach uses all the information gathered from a set of
images to describe a place. We will develop a robotic system which fuses cam-
era and odometric information to autonomously partition the environment into
places. Next they are connected in a graph to allow planning and navigation.
This approach lifts the need of estimating the robot position point-wise, while still
allowing precise localization and navigation.

The last developed architecture uses a functional definition of meaningful place
in order to build a topological map of the environment. A topological map is a
graph structure in which meaningful places are represented by nodes, and the link
between nodes implies a physical connection between places. The graph is built by
incrementally adding or removing links as the beliefs are updated using a dynamic
Bayesian Network. Furthermore 3D vision is used in order to detect branching in
the pathways and to estimate the free space in front of the robot.

Several public demos validated the capabilities of the proposed robot architec-
tures to deal with issues related to perception, planning and human-robot inter-
action typical of museum tour applications. Cicerobot has been tested during a
first session of experiments in the period from March to July 2006. The second
session, during which we used the high-level decision system (chapter 4), started
in November 2007 and ended in January 2008. Robotanic has been tested in the
period from April to September 2007 and it has been presented during an inter-

6 Introduction

national conference held in the Botanical Garden of Palermo.
The main contribution of this thesis are i) the use of an influence diagram for

high level robot controlling, an approach that is, as far as we know, still unexplored;
ii) the study of non-metric environment representations for large unstructured en-
vironments, allowing the robot to reliably navigate and localize even when precise
position information are not available.

In the next two sections we will give a brief outline of this thesis and a survey
of the museum tour-guide literature.

1.1 Outline

This thesis is organized in four parts. Each part is divided in chapters, in which
we try to address some issues that often arose in the previous ones. Each chapter
is meant to be self-explanatory, thus providing an introduction to the problem,
related works, system development and conclusions.

In chapter 2 we will introduce the localization and mapping problem, which
is one of the main topics in robotic. We will introduce furthermore planning and
control, illustrating the approaches we will use in the development of the proposed
architectures.

The second part introduces a robotic architecture for indoor robotic museum
guide, based on the concepts presented in chapter 2. It is divided in two chapters:
chapter 3 illustrates the development of the robot “Cicerobot”, operating at the
Agrigento Archaeological Museum. This work is very similar to the ones in lit-
erature, but the issues that will arise in this environment will be the motivation
for the development of a high level control architecture presented in chapter 4.
Such architecture is based on Bayesian networks, a framework for reasoning under
uncertainty, with the aim of providing a fault tolerant robotic controller. It should
pointed out that the proposed controller is not concerned with issuing low level
commands, but only to reason about the robot state and act accordingly.

The third part is concerned with the development of an outdoor robotic mu-
seum guide architecture, which is the main focus of this thesis. As the environment
and the robotic platform are much more different from the previous ones, we had
to develop a complete new system, illustrated in chapter 5. Following this experi-
ence we tried to answer a hard question: “Does the robot need a complete metric
representation of the environment?”. The answer obviously depends on the task
the robot should carry on, but in chapter 5 we will see that a coarse topological
representation augmented with local-scale metric information is sufficient to solve
the proposed task. In the two subsequent chapters we will develop two robotic
systems aimed to build a topological map of the environment without any metric
information. In chapter 6 we will explore the appearance based robot mapping

1.2 State of the art 7

and localization, adapting current state-of-the-art algorithms to the problem of
on-line learning. Although the architecture will not be used in the context of
robotic museum guides, it will form the basis for the development of the system
proposed in chapter 7. According to the proposed system the robot should be able
to build a representation of the environment based on junction roads, obtaining a
map similar to an urban one. As a mean to explore the visual SLAM approach,
we will use only camera information.

The last part presents a conclusions and still open issues.

1.2 State of the art

In this section we will provide a brief survey of the robotic museum guides topic.
We will outline the most relevant works from the adopted techniques point of
view. Furthermore each chapter includes a more detailed and focused related
works section, as demanded by the chapter main topic.

One of the first tour-guide robot was Polly [1], which operated at the AI Lab
of MIT. It used a camera-detected floor carpet as a pathway for movement and
obstacles detection, and a behavior-based architecture for control. Although being
a very simple robotic architecture, it could be considered the pioneer of robotic
tour-guides. Rhino [2, 3] has probably been the first robotic museum guide. It
operated in the Deutsches Museum in Bonn, and it used most of the algorithms
we will describe in chapter 2, although most of them were not as refined as today’s
standards. Paralleling the development of Rhino the tour-guide robot Xavier [4]
has been deployed at the Carnegie Mellon University. People could use a Web
interface to give it commands, which were mostly navigation-related. Its localiza-
tion and navigation system was based on Partially Observable Markov Decision
Process [5]. This is a generalization of the Markov Decision Process (MDP) where
the world state is not observable, but only detectable through sensors. The robot
pose is tracked using a discrete Bayes filter, where the state space is discretized to
a coarse grid. POMDP are used to plan the robot actions. As computing a policy
for a POMDP may be a very expensive task, all the policies are computed offline
and then used when needed.

A masterpiece in the topic of robotic museum guides is Minerva [6]. Much
of the chapter 2 is based on this work. Minerva successfully operated for two
weeks at the Smithsonian Museum. It used an EM algorithm to generate an
environment map, and Monte Carlo Localization to track the robot pose. POMDP
were employed to generate a plan for navigation; the result is also known as coastal
navigation, referring to the sailor habit of navigating near the coasts to avoid
getting lost. A similar concept is applicable to robotics, where a robot should
prefer a path close to mapped objects in order to refine its belief about its position.

8 Introduction

Furthermore an emotional system has been developed in order to facilitate human-
robot interactions.

A different approach is in [7]. They deployed a tour-guide robot named RobotX
at the Swiss National Exhibit Expo. It used a multi-hypothesis Gaussian local-
ization system to track the robot position, while the environment was represented
using a topological graph. Sensor data are integrated by matching local features
with global ones, organized in a search tree. Navigation and planning are per-
formed by a Navigation Function mixed with a Dynamic Window Controller (see
section 3.5.

Finally, a simple but very effective robotic architecture has been used to con-
trol Sage [8], a robot operating at the Carnegie Museum of Natural History. It
used a behavior based architecture to control its movements, and a set of artifi-
cial landmarks to track its position. Although modifying the environment is not
always possible, the authors pointed out that a simple architecture and a simple
implementation made a robot reliable even when operating in fully autonomous
mode.

As far as we know no outdoor robotic museum tour-guide has been developed
so far. In the chapters devoted to outdoor robotic we will give some references
about some related works and the outdoor robotic topic in general.

Chapter 2

Probabilistic Robotics

Signor capitano, non glielo volevo dire
Ma in mezzo al mare c’è una donna bianca

[. . .]
Giovanotto, io non vedo niente

Andiamo avanti tranquillamente
- Francesco de Gregori, I muscoli del capitano

One of the major challenges of modern robotics is estimating the robot and the
world state. Most of the algorithms developed in the field of robotics rely on
a somewhat precise observation of the robot state and the world geometry. For
example most planning algorithms need to know the precise robot position together
with a detailed map of its environment. Even if the robot could have a “perfect”
sensor, i.e. a sensor which is able to measure the robot and the world state
with absolute precision, dynamics and changes in the environment make each plan
useless after just a little time. Nature makes the task even harder, as any action or
perception is every time corrupted by noise, which often accumulates with time.

These considerations lead to the conclusion that dealing with the real world
using physical devices cannot be accomplished, apart from trivial tasks, without
explicitly considering uncertainty. Probabilistic robotics is the field of applied
robotics where uncertainty in sensing and acting are treated using statistical algo-
rithms. The key idea behind probabilistic robotics is that instead of representing
the robot state as a single deterministic variable, it is represented as a distribution
function over the whole state space. The world too is represented using a measure
of uncertainty, which comprises either errors in model building, either changes due
to environment modifications. Moreover even actions and perceptions are modeled
by considering the intrinsic noise they are affected. For example a modern laser
rangefinder has an average error of about 10cm2, even if there are some surfaces
which produce strange light reflections or even no reflection at all. Sonars are much
more affected by noise, as they measure distance in a cone instead of a beam, so

10 Probabilistic Robotics

that we cannot know which part of the cone generated the reflection. One of the
best known errors that plague mobile robotics concerns odometry. Wheels slippage
or even small errors in the odometric model accumulate over time, making the es-
timated robot pose completely unknown after a few movements. Other common
sources of uncertainty are from GPS data or digital compasses.

In this chapter we will provide an overview of common approaches to prob-
abilistic robotics, mainly illustrating the algorithms we will use in the following
chapters. We refer to [9] for a complete survey of the topic.

2.1 State estimation

2.1.1 Notation

One of the main goals of robotics is to estimate the environment state xt at time
t. The degree of information of the variable x depends on the current task: often
it will be the robot pose in a given frame of reference, but it may include external
sources of information like landmarks or people position. We will assume that the
state variables undertake the Markov Assumption, i.e.:

p(xt+1|xt, xt−1) ≡ p(xt+1|xt) (2.1)

This assumption is often violated when dealing with environment dynamics (e.g.
people) not explicitly included in the state variable, or even if some erroneous
assumptions are included in the models. We will see that the Bayes Filter described
below is often robust to Markov Assumption violations. We will refer to the
environment state distribution as robot belief or simply the belief bel(xt).

A robot is a physical device which interacts with the environment. Interaction
is performed by acting, e.g. moving, and sensing. An action ut usually modifies
the environment, in the sense that the state variable x is modified after taking
an action. This means that we are often interested in the probability distribution
p(xt|ut, xt−1), i.e. the probability of being in state xt after applying the action
ut conditioned on the robot being previously in state xt−1. We will refer to this
distribution as motion model, but sometimes it is called transition probability or
predictive distribution.

Sensing is the act of observing the environment state using the robot sensors.
This is a special kind of action in the sense that it does not modify the environment,
but may give some insights in the current state. In other words, a sensing zt

may modify the current belief xt according to the distribution p(xt|zt). Usually
estimating this distribution is very hard: imagine estimating the robot pose xt

2.1 State estimation 11

given a camera image zt!. We can invert the variables using the Bayes rule:

p(xt|zt) =
p(zt|xt)p(xt)

p(zt)
(2.2)

The distribution p(zt|xt), that is called the sensor model, is often much simpler
to compute, as we will see in section 2.3. Although we could use the Markov As-
sumption for the distribution p(xt|zt), using past readings like in p(xt|z1:t) usually
yields better results (for example in scan matching iterations are performed over
all the dataset). The converse is not true, as the current readings are independent
of past data given the robot belief:

p(zt|x1:t, z1:t−1) ≡ p(zt|xt) (2.3)

Finally we define a static description of the environment a map m. We use
the term “static” here to underlie that any action performed by the robot does
not change the map, so it is not included in the state variable xt. Maps may be
given to the robot, like a building blueprint, or they may be learned using mapping
algorithms (section 2.6). Either the sensor model and the motion model may be
conditioned on the map m. Common representations of maps include metric grid-
like maps, like occupancy grids, or features map, like a set of landmarks and their
poses.

2.1.2 Belief Updating
The robot belief at time t, conditioned on past readings and actions, is represented
by the distribution p(xt|z1:t, u1:t). We will show that it can be computed using a
recursive formula, i.e. by building on the past belief p(xt−1). The first step is the
application of the Bayes rule:

p(xt|z1:t, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
(2.4)

The denominator is just a normalizing constant, and we will refer to it by the
variable η. By applying the Markov Assumption we get:

p(zt|xt, z1:t−1, u1:t) = p(zt|xt) (2.5)

The second term in equation 2.4 is reduced by marginalization over xt−1 and by
further application of Markov Assumption:

p(xt|z1:t−1, u1:t) =

=

∫
p(xt|z1:t−1, u1:t, xt−1)p(xt−1|z1:t−1, u1:t)dxt− 1 by marginalization

=

∫
p(xt|ut, xt−1)p(xt−1|z1:t−1, u1:t−1)dxt− 1 by Markov

(2.6)

12 Probabilistic Robotics

The term p(xt−1|z1:t−1, u1:t−1) is the belief at time t−1, so we can rewrite equation
2.4 using the Bayes filter recursive formula:

bel(xt) = ηp(zt|xt)

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (2.7)

In equation 2.7 we can recognize two already introduced terms: the motion
model and the sensor model. We can describe the Bayes filter by saying that,
starting with the belief at time t − 1, we first update it using the motion model.
This step is called prediction step, as it computes the robot state using an open
loop prediction step. The next step is to integrate observations by using the sensor
model, which narrows the belief around the most probable state given actions and
observations.

Although the Bayes filter represents an elegant solution to the belief updating
problem, it is usually not computable in closed form1. We should rely on ap-
proximate solutions, by making assumption on the belief distribution shape or by
discretizing it. A common approach is the Kalman filter [10]; it is an optimum
estimator under the assumption that the belief function is a Gaussian distribution,
and the assumption that booth sensor and motion models are linear functions of
the belief. The linear functions assumption has been partially lifted by using the
Extended Kalman filter or the Unscented Kalman filter [11], while the Gaussian
assumption still limits the filter applications.

A popular method that gained much attention in the last years is the Particle
Filter which traces back to the work by Metropolis and Ulam [12]. According
to this approach the belief is represented as a finite collection of samples, named
particles. By using a discrete set of samples we can replace the integral in equation
2.7 with a summation, making the belief update formula computable given enough
computational resources. In the next section we will describe the Particle filter,
as it will be heavily used in the next chapters.

2.2 Particle Filter

If we could have a large set of samples from the belief distribution, we could easily
solve equation 2.7. This is the basic insight of Monte Carlo methods, which use a
discrete representation of the target posterior distribution in order to approximate
integrals. Let us assume that we are able to draw N independent and identically
distributed (i.i.d) random samples {x(i)

0:t; i = 1 . . . N} from the belief bel(x). Then

1The main problem lies not only in the normalizing factor η, but also in the second term
integral in equation 2.7.

2.2 Particle Filter 13

we could approximate it by the distribution:

b̃el(x) =
1

N

N∑
i=1

δ(x
(i)
0:t) (2.8)

where δ(x
(i)
0:t) is the delta-Dirac mass located in x

(i)
0:t. The filter equation 2.7 then

becomes:
b̃elt(x) =

= p(zt|x(i)
0:t)

∫
p(x

(i)
0:t|ut, x

(i)
0:t−1)b̃elt−1(x)

= p(zt|x(i)
0:t)

1

N

N∑
i=1

p(x
(i)
0:t|ut, x

(i)
0:t−1)

(2.9)

The main issue related to this approach is that we cannot generate i.i.d samples
from an arbitrary multi-variate distribution. We need an alternative sampling
methods, known as the Importance Sampling. Suppose that we need to evaluate a
distribution P (x), but we can only evaluate it up to a multiplicative constant. In
other words we can evaluate a function P ∗(x) such that

P (x) =
P ∗(x)

Z
(2.10)

where Z is, in our case, the normalizing constant η. Let assume furthermore that
we have a simpler distribution Q(x) which we can evaluate again up to a multi-
plicative constant (i.e. Q(x) = Q∗(x)/R). We will call Q the proposal distribution
and we will assume that we can draw N samples {x(i)

0:t} from it. As these samples
are drawn from a different distribution Q∗(x), we can account for the mismatch
between the two distributions by introducing the weight

w
(i)
t =

P ∗(x
(i)
t)

P ∗(x
(i)
t)

(2.11)

Equation 2.8 then becomes:

b̃el(xt) =

N∑
i=1

w
(i)
t δ(x

(i)
t)

N∑
i=1

w
(i)
t

(2.12)

If Q(x) is non-zero for all x where P (x) is non-zero, then it could be proved that
the approximate belief converges to the true one as the number of particles N goes
toward infinity.

14 Probabilistic Robotics

The next step is to describe the procedure described above using the distribu-
tions we already described, namely the motion model and the sensor model. By
replaying the steps in equations 2.4 and 2.6, this time maintaining all states in the
posterior, we get:

p(x0:t|z1:t, u1:t) = ηp(zt|xt)p(x|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1) (2.13)

If we use the motion model p(x|xt−1, ut) as a proposal distribution, we get the
weight:

wt =

= η
p(zt|xt)p(x|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1)

p(x|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1)
= ηp(zt|xt)

(2.14)

where the term η is irrelevant because sampling is performed using an alternative
distribution Q∗(x). The same procedure is repeated for each particle, leading to
the Particle filter algorithm:

Algorithm 1 Particle Filter(u1:t,z1:t)
1: for i = 1, . . . , N do
2: sample x

(i)
0 ∼ p(x0)

3: end for
4: for all t do
5: for i = 1, . . . , N do
6: sample x̃

(i)
t ∼ p(xt|xt−1, ut)

7: w̃
(i)
t = p(zt|xt)

8: end for
9: Normalize the particles weights

10: Resample with replacement N particles {x(i)
t } from the set {x̃(i)

t } according
to the importance weights and append them to the belief bel(xt)

11: end for

This algorithm, that is also known as Bootstrap filter [13], is very easy to
implement and generalizes to a very broad range of applications. It will be the
main localization algorithm we will use in the next chapters. For further details
see [14, 15].

2.3 Sensor Model
The sensor model p(zt|xt) is used to estimate the probability of a percept zt given
the robot position xt. Usually we will assume that an environment map m is

2.3 Sensor Model 15

available, so that the sensor model become p(zt|xt) ≡ p(zt|xt, m). In this section
we will introduce the beam model [16, 17], a sensor model designed for accurate
range sensors like lasers. According to this model, the resulting distribution is a
mixture of four distributions:

• Real object with local noise: A range finder may correctly hit the nearest
object as reported in the map. Let the true nearest object in the laser
trajectory at angle θ be denoted by zθ∗

t . This may be easily computed by ray-
casting a beam from the robot in position xt in the map m and at angle θ until
it hits an obstacle. In the real world the laser is affected by noise, assumed to
be estimable by a Gaussian distribution with variance σhit (usually the laser
manufacturer specifies the noise variance). Thus we model the hit probability
as:

phit(z
θ
t |xt, m) =

{
ηN (zθ

t , z
∗θ
t , σhit) if 0 ≤ zθ

t < zmax

0 otherwise
(2.15)

where zmax is the maximum range of the laser and N (x, µ, σ) is a Gaussian
distribution with mean µ and variance σ. The normalizer η evaluates to:

η =

(∫ zmax

0

N (zθ
t , z

∗θ
t , σhit)dzθ

t

)−1

(2.16)

• Short readings: Unmodeled environment dynamics are explained by an
exponential distribution. Typical moving objects are people: they tend to
be attracted by the robot often surrounding it (see section 3.6 for an example
and applications). The required distribution is:

pshort(z
θ
t |xt, m) =

{
ηλshorte

−λshortz
θ
t if 0 ≤ zθ

t < zθ∗
t

0 otherwise
(2.17)

where the normalizer η evaluates to:

η =

(∫ zθ∗
t

0

λshorte
−λshortz

θ
t dzθ

t

)−1

=
1

1− eλshortz
θ∗
t

(2.18)

• Max range: Usually a range finder returns zmax if it did not report an
obstacle in range. This is modeled by a point mass distribution centered in
zmax:

pmax(z
θ
t |xt, m) =

{
1 if zθ

t = zmax

0 otherwise
(2.19)

16 Probabilistic Robotics

• Unmodeled random noise: Further unexpected laser reflections are equiprob-
able over all the laser ranges:

prand(z
θ
t |xt, m) =

{
1

zmax
if 0 ≤ zθ

t < zθ∗
t

0 otherwise
(2.20)

The sensor model for a single beam p(zθ
t |xt, m) is a linear combination of the

four distributions described above, using coefficients zh, zs, zm, zr which sum to 1:
zh

zs

zm

zr

T

·

phit

pshort

pmax

prand

 (2.21)

Finally we assume that each measure is independent of the others, thus obtaining
the final sensor model:

p(zt|xt, m) =
∏

θ

p(zθ
t |xt, m) (2.22)

2.4 Motion Model
The prediction step in the Bayes filter is performed by the motion model p(xt|utxt−1).
It computes the probability of being in a state xt after applying control ut and
while previously being in state xt−1. Here the control is assumed to be the trasla-
tional and rotational velocities v, ω. We will use the particle filter described in
2.2, so we need to generate samples from the motion model. This is performed
by firstly perturbing the control using random noise, then applying the perturbed
control to the initial state xt−1.

The first step is to apply random noise to the control: v̂

ω̂

γ̂

 =

 v

ω

0

+

N (0, a1|v|+ a2|ω|)
N (0, a3|v|+ a4|ω|)
N (0, a5|v|+ a6|ω|)

 (2.23)

where N (0, σ) is a random sample generated from a Gaussian distribution with
mean 0 and variance σ. The next step is to apply the kinematics equations of
motion: x′

y′

θ′

 =

 x̂

ŷ

θ

+

− v

w
sin(θ) +

v

w
sin(θ + ω∆t)

v

w
cos(θ) +

v

w
cos(θ + ω∆t)

ω∆t + γ̂∆t

 (2.24)

Using the procedure above for each particle we can generate samples from the
belief bel(xt−1) according to the motion model.

2.5 Mapping 17

2.5 Mapping

2.6 Mapping
The problem of robotic mapping is that of building an environment representation
suitable for the tasks the robot has to carry out. The robot uses its sensor to
perceive the outside world, but as we said in the introduction sensors are affected
by noise. A good mapping algorithm should therefore cope with noise, while
at the same time extracting relevant information from the sensors data stream.
Another difficulty in the mapping problem arises from the high dimensionality of
the maps space. For example, trying to build a build a very small map represented
as 3 × 3 grid of binary cells involves search in a space with nine dimensions and
29 admissible configurations. Other issues are i) the correspondence problem, in
which the robot should try to determine if sensor data taken in different points
in time refers to the same object, and ii) the environment dynamics, where even
small world modifications may invalidate a previously built map. In this section
we will give a brief overview of the mapping problem, focusing on an approach we
will use in the following, and we refer to [18] for details and further information.

One of the most widely used environment representation is the occupancy grid
map [19]. According to this representation, the world is modelled as a grid made
by binary cells2. Each cell mi,j may be either free or occupied, thus we need to
estimate the probability p(mi,j = occ|x1:t, z1:t) . This is solved using a variant
of the Bayes filter algorithm, namely the binary Bayes filter. It is often written
using log odds, i.e. log p(x)

1−p(x)
, to avoid numerical instabilities due to near-zero

probabilities. Using a procedure similar to the one in eq. 2.7 we get:

log
p(mi,j|x1:t, z1:t)

1− p(mi,j|x1:t, z1:t)
=

= log
p(mi,j|xt, zt)

1− p(mi,j|xt, zt)
+ log

1− p(mi,j)

p(mi,j)

+ log
p(mi,j|x1:t−1, z1:t−1)

1− p(mi,j|x1:t−1, z1:t−1)

(2.25)

that is a recursive formula. By using the prior p(mi,j) = 0.5, the middle term in
equation 2.25 disappears.

The main problem related with the occupancy grids approach is that it needs
the poses x1:t to be correct. Therefore we need to integrate the above mapping
algorithm in a localization algorithm. A simple yet effective way to perform this
is to insert the occupancy grid mapping in the particle filter algorithm described
in section 2.2, just after the weight calculation (line 7). Another approach, more

2Although 3D grids have been used [20], we will use only 2D maps.

18 Probabilistic Robotics

computationally involved but more robust to the data association problem, involves
the use of the EM algorithm [21] Here the goal is to iteratively estimate a map
given the previous map estimation and the robot belief:

m[i+1] = arg max
m

Ex1:t [log p(x1:t, z1:t, u1:t|m)|m[i], x1:t] (2.26)

The E step is performed by using the Bayes filter algorithm, while the maximiza-
tion step is performed by considering each cell independent from the others (details
and derivation may be found in [22]). The main drawback of this approach is that
the mapping is performed offline, usually using one or more logs. Furthermore EM
does not retain a full notion of uncertainty, but it uses hill climbing in the space
of all the maps, stopping when it finds a local maximum. However this procedure
has achieved noteworthy results even when closing loops in large environments, as
we will show in the next chapter.

Part II

An Indoor Robotic Museum
Guide Architecture

Chapter 3

Cicerobot

3.1 Introduction

Cicerobot (figure 3.1) is a robotic museum guide that operates at the Agrigento
Archaeological Museum. Its environment is the large “Sala Giove”, one of the
most important rooms in the museum. Such room is divided in two floors, the
second one being horseshoe shaped. Showcases are present near three of the room
walls, while in front of the forth one there is a large statue named “Telamone”.

The robot operates in the second floor, about 20m × 18m large. It is an
ActivMedia PeopleBot© equipped with a laser range finder, a sonar array, a color
stereo camera and a touchscreen. The primary obstacle detection sensor, i.e. the
laser, uses light for measuring range and so it cannot detect the showcases neither
the glass panels that divide the second floor from the first one (see figure 3.8a).
This means that the robot may run into one of the invisible obstacles damaging
them and itself. Furthermore the are two staircases, still invisible to the sensors,
which the robot must avoid.

The robot task is to guide visitors around the room explaining them the various
exhibits. It has a database of items of interest, along with the related description.
The user may interact with the robot using its interface to get information about
the museum or some particular item. When a visitor asks to see an item the robot
starts moving toward it, stopping when reaches the goal position and starting
illustrating the item. The main source of interaction are perhaps the pre-defined
tours: the robot has some plans that comprise a set of interesting items, each plan
corresponding to a particular topic.

As described in chapter 2, the various sources of uncertainty are addressed by
the use of probabilistic algorithms. Each time the robot queries its sensors to
update the beliefs about its position in a Markovian fashion. In order to get an
estimate of its position, the robot has to build a map of the environment. In this

3.2 System Overview 21

Figure 3.1: Cicerobot while interacting with visitors

work we decided to use the metric representation of occupancy grid maps. The
map is built off-line, using a set of training data previously collected. Planning
and localization processes both use the map to solve their tasks.

Several public demos validated the capabilities of the robot to deal with issues
related to perception, planning and human-robot interaction typical of museum
tour applications. A first session of experiments has been carried out from March
to July 2006. The second session, based on the architecture described in this
chapter, started in November 2007 and ended in January 2008.

3.2 System Overview

architecture A diagram of the main system components is showed in figure 3.2.
The main robot task is activated by user interaction. A tour comprises a set of
exhibits to be visited. Each exhibit is associated with a point in the map where
the robot should stop and describe it. Starting from the current robot position
the planner generates a path that will pass through each point, and the controller
is activated in order to move the robot towards each planned waypoint.

The localizer uses Monte-Carlo localization to track the robot position. This
subsystem is identical to the one described in [17], where range data are gathered
from the laser sensor. The motion model parameters are estimated using the
same training data used to build the map. As the Monte-Carlo methods produce
a multi-modal pose distribution, we need to extract a single pose in order to
proceed with motion planning and control. Various methods exist, for example
Gaussian extraction, density trees or kernel density extraction. We observed that
the particles, once the filter converges to a solution, are distributed in a very

22 Cicerobot

Figure 3.2: A diagram of the proposed architecture

narrow subspace of the poses, so the robot can just pick the particle with the
greatest weight as a most-of-the-time correct pose estimation.

Planning and motion are achieved using deterministic algorithms, as they
proved to be reliable for our task. Planning is performed after a set of goal points
arrive, and it is not modified during the task execution. Although using a static
plan may seem a limitation, the coarse resolution of the plan make it robust to
dynamic changes in the environment. The only exception is when a goal point
is occupied. In that case the robot will plan to a backup point (still defined in
advance) and, if such point is occupied too, the current goal is skipped and the
robot proceeds to the next exhibit.

The controller has the role of moving the robot towards a goal point. It uses
information from the laser readings to avoid obstacles, and information from the
localizer to adjust its heading towards the goal position. Furthermore robot dy-
namics are taken into consideration in order to generate motion commands not in
conflict with physical constraints. Although the robot could be considered holo-
nomic at low speeds, using dynamic constraints produces a smoother motion.

Once the robot has reached an exhibit, it stops and start describing it. At the
time of writing we found no robust way to recognize item of interests, so the robot
stops at fixed angles toward them. During traveling from one exhibit to the next
one, especially during long paths, the robot generate random speeches ranging
from casual comments to general information about the museum. This way we
simulate a sort of interaction with the people, while at the same time keeping
them from interfering with the robot motion (as it often happen, especially when

3.3 Map building 23

Figure 3.3: The "sala Giove" map. The whiter a pixel, the more probable it is of
being free. Blue pixels are unexplored ones.

dealing with children).

3.3 Map building

Map building is performed using the EM algorithm outlined in section 2.6. We
collected a data set of odometric measures and laser scans, and used it to build
offline a map. The result is shown in figure 3.3.

3.4 Planning

Planning is based on the popular Wavefront planner. This algorithm uses an
occupancy grid map bynarized so that each cell is either free or occupied. It accepts
as input a goal point and output a map representation suitable for navigation. The
main steps are illustrated in algorithm 2. Here lines 1− 3 initialize the variables,
the set V keep tracks of all the visited cells, the set S is the current expanding
front while the set D keep tracks of the distance of a cell from the goal. Lines
5−12 update each cell near the cells in S; the function neighborhood(c, m) returns
from the map m the set of the 4 cell near c, excluding the occupied and the out-of-
bounds ones. The structure D may be easily used for navigation purposes, as the
robot needs only to go from its current cell to the next lower one. Furthermore it
needs to be computed only once per map, so that the planner needs to compute
only the path from the robot current position to the goal position. The set of all

24 Cicerobot

Algorithm 2 WaveFrontPlanner(m, g)

1: V = g
2: D(i) = {0}∀i
3: S = {si|si ∈ neighborhood(g,m)}
4: while V 6= m do
5: for all si ∈ S do
6: S ← S \ {si}
7: for all nj|nj ∈ neighborhood(si, m) ∧ nj /∈ V do
8: V ← V ∪ {nj}
9: S ← S ∪ {nj}

10: D(nj)← D(si) + 1
11: end for
12: end for
13: end while
14: Return D

the cells in the robot path are called waypoints. The visual effect of the algorithm
running is like a wavefront (hence its name) expanding from the goal point in all
directions until the map is full covered (see figure 3.4).

We performed some slightly modification to the presented algorithm in order
to cope with the museum environment. The first one is to grow all the obstacles
by a factor1, in order to avoid the robot passing too near to them. Although the
controller is free to move near obstacles if, for example, it needs to avoid people,
this solution helps the robot remaining in a safe area.

The second modification to the Wavefront algorithm concerns producing smooth
movements. Using the naive implementation produces a path which is very dis-
continuous, often degenerating in staircase motion. Instead of keeping a number
of waypoints equal to the number of cells in the path, we collapse all the waypoints
along a line into two ones, indicating the two ends of the line. Thus starting from
the robot position, all the waypoints which are “visible” (using ray casting) from
the starting one are deleted, until the last visible one, which will be the starting
point for the next collapsing procedure, until the goal is met. This procedure is
illustrated in figure 3.4.and 3.5.

The output of the planner subsystem is a set of waypoints connecting the robot
starting position to the next goal. The same procedure is repeated for each exhibit
in the tour, obtaining this way the whole plan. We should note that, given our
environment, the waypoints result very spaced. This produces a coarse plan that
does not need to be modified if some occlusions (due mainly by people) happen

1This procedure is similar to the construction of the Configurations space for the robot.

3.5 Control 25

(a) Expanding the wavefront. (b) The planned path.

Figure 3.4: The wavefront planner applied to a fictitious scenario. The red square
with a G inside is the goal position, while the other red square is the robot position.
Figure (a) shows the wavefront expansion, stopped when it meets the robot. Figure
(b) shows the planned path, with a waypoint in the middle.

along the route: the controller task is to get rid of occlusions by moving around
them, if possible, while moving the robot from one waypoint to the next one. An
example of the plan generated in the museum is shown in figure 3.3.

3.5 Control

The controller task is to move the robot from one waypoint to the next one,
while avoiding obstacles along its route. The approach we will describe has been
introduced in [23], and has undergone some modifications in the next years. We will
use the naive approach, with some slight adaptations to fit our application. The
key concept is that robot movement may be controlled by issuing direct rotational
and traslational velocity commands, thus controlling the two variables v, ω. If both
velocities are kept constant for an amount of time, the robot will follow a circular
trajectory whose curvature is given by v/ω (positive curvature means clockwise
motion). Given the current goal position and the local obstacle configurations,
the controller seeks to optimize a function over the (v, ω) space, i.e. generate
curvatures that will bring the robot towards the goal while avoiding the obstacles.
The function to be optimized is generally non-linear, so iterative methods may be
applied. The drawback is that such methods may converge to a local minimum,
thus obtaining sub-optimal solutions. Another solution arises when observing that
the space of admissible velocities, given the robot physical constraints and its
current velocity, is a small subset of the whole (v, ω) space. This insight is the
basis for the development of the dynamic window approach.

26 Cicerobot

Figure 3.5: An example of planned path in a real environment

3.5.1 The dynamic window
The dynamic window is a subspace of the robot velocities where the search for
a function maximum may be carried. This space is obtained by combining three
limitations given by the robot physical constraints. The first and most obvious
one is that the motors speeds are bounded by a maximum speed:

Vs = {(v, ω)|0 ≤ v ≤ vmax,−ωmin ≤ w ≤ ωmax} (3.1)

The second constraint is obtained by avoiding velocities that will bring the robot
in contact with nearby obstacles:

Va = {(v, ω)|v ≤
√

2 · dist(v, ω) ∧ |ω| ≤
√

2 · dist(v, ω)} (3.2)

where the function dist(v, ω) returns the distance between the curvature given by
v and ω and the nearest obstacle. The last and more important constraint is given
by the robot acceleration. If in a given time t the robot velocities are (vt, ωt),
then applying the maximum acceleration (v̇, ω̇) for a time interval ∆t results in
the following constraint:

Vd = {(v, ω)|vt − v̇∆t ≤ v ≤ vt + v̇∆t ∧ ωt − ω̇∆t ≤ ω ≤ ωt + ω̇∆t} (3.3)

Stated in other therms, if the controller acts every ∆t time intervals, then it can
apply only velocities contained in Vd.

3.5 Control 27

The final search space is given by the intersection of the above sets:

Vr = Vs ∩ Va ∩ Vd (3.4)

As it can be seen it is much more smaller than the original search space, easing
function optimization a lot.

3.5.2 The goal function
The controller task is to find a value in Vr that maximizes a goal function. Such
function is composed by three distinct subgoals, namely speed dist and clearance,
all normalized to 1:

G(v, ω) = σ(α · speed(v, ω) + β · heading(v, ω) + γ · dist(v, ω)) (3.5)

where α β and γ are three coefficients which sum to 1 and σ is a smoothing
function.

Speed is simply the projection of the v component over the (v, ω) space:

speed(v, ω) =
v

vmax

(3.6)

Heading depends on the curvature and the target heading θg. The role of this func-
tion is to generate rotational velocities that will bring the robot oriented toward
the goal in a time interval2 ∆t. An exponential factor is introduced which forces
the robot to rotate quickly towards the goal if it is very misaligned, but flattens
the region around θg, to let the robot be free to move around obstacles:

e = 1 + δ

(
|θg|
π

)0.5

heading(v, ω) = e

(
1− |θg − ω∆t|

π

)
(3.7)

In order to compute the distance between a curvature and an obstacle we
approximate the robot shape as circular with radius r. Although this may be a
simplistic solution, the only drawback is that the robot will further keep away from
obstacles, a feature sometimes appreciated. An obstacles field is a set of circles
centered in each obstacle point oi, as detected by the laser rangefinder, with radius
r. Then the function dist is the minimum distance between the curvature c and
each obstacle oi:

dist(v, w) = min
i

distc(c, oi)

L
(3.8)

2Here we assume that the robot will move with constant speed in the time interval ∆t, which
is a good approximation if we consider small time intervals.

28 Cicerobot

Figure 3.6: The goal function.

where L is the laser maximum range. In order to compute distc we need to compute
the distance between the circle defined by the curvature c and the obstacle circle
oi. This is performed by simple geometric computation.

Figure 3.7 shows the robot together with the detected obstacles, enlarged by the
robot radius. In figure 3.6 the goal function together with the simple components
is shown; here the target heading is 0deg. In [23] the function maximum is found
by exhaustive search over the discretized space. Here we used the Monte Carlo
approach by generating random pairs (v, ω) over Vr for ∆t time, then picking the
best one. We found that, for standard computers, the results are even better than
the standard approach given a small ∆t.

3.6 Finding peoples

In chapter 2.3 we defined the sensor model as a combination of four probability
distributions. One of them refers to unexpected short range readings. People
surrounding the robot may cause such short readings, so a probabilistic filter that

3.6 Finding peoples 29

Figure 3.7: The robot (red circle) together with the obstacle field.

inspects the cause of a sensor data could detect them. In order to detect short read-
ings we need to introduce a correspondence variable ck

t ∈ {hit, short,max, rand}.
By applying Bayes rule and dropping irrelevant conditioning variables we obtain:

p(ck
t = short|zk

t , z1:t−1, u1:t, m) =

=
p(zk

t |ck
t = short, z1:t−1, u1:t, m)p(ck

t = short)∑
c

p(zk
t |ck

t = c, z1:t−1, u1:t, m)p(ck
t = c)

(3.9)

The prior distributions take the value {zhit, zshort, zmax, zrand}, so we need to solve
only the first term in the numerator by integrating away xt:

p(zk
t |ck

t = short, z1:t−1, u1:t, m) =

=
∫

p(zk
t |xt, c

k
t = short, z1:t−1, u1:t, m)p(xt|ck

t = short, z1:t−1, u1:t, m)dxt =

=
∫

p(zk
t |xt, c

k
t = short,m)p(xt|z1:t−1, u1:t, m)dxt =

=
∫

p(zk
t |xt, c

k
t = short,m)bel(xt)dxt

(3.10)
Using the probabilities phit, pshort, pmax, prand we can devise the filter formula:

p(ck
t = short|zk

t , z1:t−1, u1:t, m) =

∫
pshort(z

k
t , xt, m)zshortbel(xt)dxt∑

c

pc(z
k
t |xt, m)zcbel(xt)dxt

(3.11)

Equation 3.11 does not possess closed-form solution, so we approximate it using
Monte Carlo methods. This way, using the samples over the belief function, the
integrals become a sum which is computable by a simple iteration over the par-
ticles. For each laser scan the probability p(ck

t = short|zk
t , z1:t−1, u1:t, m) may be

thresholded in order to detect unknown obstacles, i.e. peoples.

30 Cicerobot

Figure 3.8: The robot near some dangerous places. Left figure shows the robot
moving alongside a glass panel, which is invisible to the lasers. Right figure shows
the robot passing near a staircase.

3.7 Dealing with invisible obstacles

As pointed out in section 3.1, the museum is full of showcases and glasses invisible
to the laser light (figure 3.8a). Furthermore there are two staircases (figure 3.8b)
which are not detectable by any range sensor, and which have to be considered as
a serious danger for the robot.

In order to cope with invisible obstacles we created an accessibility map which
masks every hazardous place. The original map and the new one share the same
dimensions, so that a point in the first one corresponds to the same point in the
second one. The robot keeps track of its position in either maps using the local-
ization process. Each time a new position is computed by the localizer, the robot
position in the accessibility map is updated accordingly. Fake laser readings are
created by ray casting 181 beams in front of the robot pose. This way we simulate
the robot moving and sensing in a fictitious environment where the hazards are
masked with detectable obstacles.

The localizer process generates data at very low frequency compared to odo-
metric sensor. As the dead reckoning system is accurate for small movements, we
use odometric information to update the robot pose in the accessibility map until
a new pose is generated by the localizer, in which case the stored robot position
is replaced by the new one.

Finally we can combine the fake laser and the real one by taking the smallest
of the readings corresponding to the same angle. The resulting hybrid laser is
used as input for the dynamic window controller, which is able to avoid either fake
obstacles (i.e. invisible hazards) either real ones.

As the whole system relies on the robot position for completing its tasks and
also for safety, in case of catastrophic position errors the robot is halted and a

3.8 Interaction with visitors 31

human operator must intervene to re-localize the robot.

3.8 Interaction with visitors

The robot is provided with a touch screen interface which is used to interact with
the museum visitors. People may choose among a pre-defined set of tours, which
comprise some exhibits grouped per thematic area. Each time the robot reaches
an exhibit, it starts describing it. Usually it does not talk for more than 2 minutes
to avoid boring people. A visitor may press a button to get more information, or
another one to stop the robot talking. Because traveling from one exhibit to the
next one may sometimes take time, the robot generate random speeches ranging
from casual comments to general information about the museum.

If the robot is traveling and it detects some people, at random it may choose
to stop and invite them in joining it. We found that this behavior is often amusing
if not surprising, and it allowed the visitors to enjoy Cicerobot. On the other
side the robot may ask the people to leave if they are blocking its way. This is
performed in an incremental way: at first the robot talks in a gentle way, but if
the path is still blocked then the robot will talk using an angry voice. We found
that this behavior too is often amusing, while being useful for the robot in order
to get a clear path.

3.9 Experimental results and Conclusions

Cicerobot was tested at the Archaeological Museum of Agrigento in a large room
named “Sala Giove”. It had run continuously for one week during the museum
opening hours, with some pauses needed to recharge the batteries. It performed 37
tours in total, traversing a total of about 1.5km while often surrounded by people.
During one of the tour the localization module failed, mainly because of hardware
communication problems, and the robot needed to be re-localized. During the
remaining tours the robot was fully autonomous while carrying its tasks.

People were often impressed by the robot behavior, especially while it told ficti-
tious stories about itself or some ancient exhibit in the museum. Although children
loved to block the robot path and to make its controller halt, the interaction mod-
ule proved to be useful to let the robot move even if surrounded. Cicerobot angry
voice was kept jocose, in order to not upset the visitors while still obtaining the
desired results.

Although this work is not new in literature, it has been the basis for the further
development we will see in the following. In the next chapter we will introduce
a more robust control architecture with the aim of increasing fault tolerance and

32 Cicerobot

robustness under unpredictable conditions. Furthermore the described mapping
and localization algorithms will be used in the outdoor environments described in
the next part, and as the basis for the introduced topological mapping.

Chapter 4

High level control

4.1 Introduction and motivations

In the previous chapter we developed a robotic architecture for an indoor museum-
tour guide. We found that there are situations where the proposed system may
fail, and recovering may be hard. For example if the robot looses track of its
position it could be hard to get localized again, especially when the environment
is very large. Trying to design a robot high-level controller which should cope
with any kind of problem is simply unfeasible, as the world dynamics and inherent
uncertainty may undermine any fault tolerance effort.

In this chapter we propose a robotic decision system that should act when
unpredicted problems arise. We assume that the robot is provided with lower level
modules which provide functions as planning, localization and motor control. The
decision system plays its role when anyone of the lower level modules fails, or when
the robot should take decisions based on a sensor fusion approach. For example,
a museum tour-guide robot is often surrounded by people that block its way and
generate false sensor readings. Altough filtering approaches have been proposed
that eliminate false readings [17], we found that the localization module could still
fail in certain situations. A decision system should analyze information like laser
readings, velocity, people density and so on in order to choose an action. Moreover
any action should have an expected outcome, based on current robot state and the
future predicted state.

As all the above information are affected by uncertainty, a Bayesian network
is well-suited to infer the robot state using sensor data. Moreover we used an
influence diagram to describe the robot decisions and their outcomes based on the
estimated state. We will show that even a simple network may have a surprisingly
behavior when the robot is faced with hard decisions, making the whole system
more fault tolerant.

34 High level control

4.2 Related works

Bayesian networks and influence diagrams have been applied to robotics mainly
to monitor the physical state of the platform and to take actions according to
the diagnosis. In [24] an expert system based on LIMID influence diagrams [25]
is proposed. It is used to monitor the battery status of the robot, and a set of
decisions is provided in order to act if a problem arises.

Plain Bayesian networks are also used to develop robot behaviors. In [26] a
novel programming methodology is proposed, made by a multi-stage design process
of Bayesian networks which are subsequently sampled in order to generate motor
commands. Similar approaches are in [27] and [28].

Partially observable Markov decision process (POMDP) are closely related to
decision diagrams, but they use an infinite horizon. A successfull application of
POMDP to robot navigation is the robot Xavier [4]. It used a discrete repre-
sentation of the environment to plan robot movements in order to minimize the
travelling time. POMPDP have been used also on Minerva [6], a tour-guide mu-
seum robot, and in [5], where a nursery robot is proposed. In [29] POMDP are
replaced by hierarchical dynamic Bayesian networks, resulting in a increased com-
putational speed.

This work departs from the above ones in that we consider the localization
and planning problems solved by lower level modules, while we deploy a decision
system to act when the lower levels fail.

4.3 Modelling the Bayesian network

One of the main sources of fault is the presence of people around the robot. They
generate spurious laser readings, making the localization harder. For example, the
robot moving in an open space but flanked by two ranks of people may think it is
running in a corridor. Once the robot position is lost, it is very hard to recover
from the fault, especially in large dynamic environments. Altough this problem
has been partially solved [17], during our experiments we found that localization
may fail even when filtering out spurious readings. Other problems may arise
when dealing with “invisible” obstacles, or when the set of parameters governing
the low-level controller behavior makes the robot get stuck in a local minima.

A Bayesian network is well suited to fuse sensor readings in order to investigate
the source of problems. We divided the set of nodes in two kinds, namely sensor
nodes and internal state nodes. Using a medical analogy, a sensor node may be
related to a test, and an internal state node to a disease. Using this analogy, in
order to gain insight for the presence of a given disease we conduct some tests
and report their results. A robot may query its sensors to estimate the presence

4.3 Modelling the Bayesian network 35

of a particular condition, and it may use the result of this test in order to make
decisions.

We used not only physical sensors, but also “virtual” ones, i.e. sensors which
report the result of some kind of elaboration on the real sensors data. For exam-
ple, laser data and reported velocities correspond to physical sensors, while the
degree of localization is a virtual sensor based on elaborations from the localiza-
tion module. Internal state variables measure the belief the robot has about some
unobservable state of the world. As we are most concerned with fault tolerance, we
focused on two main kinds of fault sources, namely the presence of people around
the robot and the proximity of obstacles.

When the robot is surrounded by people, it often happens that the degree of
localization drops as a consequence of spurious laser readings, and the number
of filtered out laser readings increases. Furthermore the controller slows down
the robot in order to avoid the obstacles, while trying to find a clear path. These
effects are modulated by the number and the relative position of the people respect
to the robot: a few people blocking its path may slow down the movement, but
the localization module may still keep track the robot position correctly. However
many people laying on the robot sides may get the localization in trouble, but the
robot could have enough space to continue moving.

As described in section 3.7, one of main problems of the robot museum envi-
ronment is the presence of “invisible” obstacles. The robot is able to avoid them
unless it knows its position in the map, but if the localization module fails nothing
could prevent the robot from getting into hazardous situations. Dangerous situ-
ations may happen even if the robot is near unexpected obstacles, like people or
unmapped obstacles.

From the above considerations we modelled the Bayesian network using the
following inner state variables:

• People, with states (none, few, many). It reports an estimation of the
number of people surrounding the robot. Few people means also that people
are not blocking the robot path, while many people implies that they are
blocking its movements.

• Lost, with states (true, false). It measures how much the robot is confident
about its current pose estimation.

• Danger Proximity, with states (true, false). It is used to detect if the
robot is too near to unmapped obstacles.

• Danger, with states (true, false). It is a general measure of how much the
robot is running into troubles.

36 High level control

Figure 4.1: The Bayesian network.

4.3 Modelling the Bayesian network 37

People none few many
true 0.2 0.4 0.8
false 0.8 0.6 0.2

Table 4.1: P (Lost|People)

People none few many
Wanted 0.5 0.2 0.05

Unwanted 0 0.6 0.9
None 0.5 0.2 0.05

Table 4.2: P (Stopping|People)

• Stopping, with states (none, unwanted, wanted). It reports if the robot is
deliberately stopping or because of unexpected conditions (e.g. obstacles).

Moreover we need the following sensor variables:

• Velocity with states (toolow, normal). It reports if the robot is travelling
at normal speed or if it is stopping. It is a determinist variable, meaning
that only one of the two states is allowed per time.

• Maneuvering with states (true, false), which is true if the robot is con-
ducting some kind of low-speed maneuvering. It is a deterministic variable.

• MCL with states (localized, notlocalized). If the probability of reading a
laser scan given the robot estimated position and the map is low, this variable
shift towards notlocalized, otherwise it reports localized.

• Obstacles with states (regular, unexpected). It is used like the MCL vari-
able, this time reporting the output of the people filter.

The whole network is displayed in figure 4.1. Two examples of conditional proba-
bilities distributions are given in table 4.1 and 4.2.

Many nodes propagate their state over time: for example, if in a given time
t the robot detects people in front of it, in the next time step t + 1 it will be
very probable that people will still be there. The same exists for the localization
state. To model temporal interactions we modified the Bayesian network to include
temporal arcs, making it a dynamic Bayesian network (DBN). The DBN unrolled
for two time slices is shown in figure 4.2. We added two temporal links for People
and Lost, while the other variables remained unchanged1.

1The main reason for this is that all the other inner variables strongly depends on these two,

38 High level control

Figure 4.2: The dynamic Bayesian network.

4.4 Taking decisions

The robot should be able to make decision using the Bayesian network described
above. To this aim we modified the network to include decision nodes, obtaining an
influence diagram. Most of the decisions the robot has to face are deterministic,
e.g. plan a path or stop to illustrate an exhibit, so we focused on decisions to
recover from failures. As we said above we identified two main sources of failure,
i.e. motion failure and danger failure.

Motion failure is most of the time due to people blocking the path. The robot
may choose to try to avoid them, or simply ask them to clear the way. Each
decision has its pros and cons: if the robot tries to maneuver around people the
risk of getting lost could increase, but in many situations this is the most effective
way to get rid of them. On the other side asking to leave may be the only option
available, especially if many people are in front of the robot, while it does not
always produce the desired result.

The resulting influence diagram is displayed in figure 4.3. We introduced a
decision node, named Decision, with states (moveaway, asktoleave, none), and
three utility nodes. The first utility node, Gain, measures how much reward the
robot gains by observing the people density before and after taking the decision.

so that no temporal link is strictly necessary.

4.4 Taking decisions 39

Figure 4.3: The influence diagram.

The second utility node, Cost, represents the cost of taking an action. Obviously
outmaneuvering people is a task harder than asking to leave, while taking no
actions has no cost. The last utility node, Total, is a simple linear combination of
the twos.

Taking decision when the robot is in danger is a bit more complicate. The main
source of danger is the loss of localization. At the time of writing we found no
optimal policy to deal with this situation, so we decided to adopt a fixed strategy:
at first, if there are people around the robot, it should ask them to leave. The
next step is to generate random particles in the area the robot had last known
positions recorded. Finally the robot starts moving at random until the particle
filter converges to a correct pose. It usually needs moving only for a few meters
to obtain a correct pose estimation. Although this may be a greedy strategy, we
found it very useful when the localization module failed.

The final decision the robot has to take happens when a plan fails. This
happens when the movement fails, i.e. when unexpected obstacles (i.e. people)
are blocking the robot path. The first thing to do is to get rid of obstacles by using
the policy described above. Then the robot uses its current position to obtain a
new plan and continue its route.

40 High level control

4.5 Experimental Results

The robot was tested at the Archaeological Museum of Agrigento in a large room
named “Sala Giove”. It had run continuously for one week during the museum
opening hours, with some pauses needed to recharge the batteries. It performed
37 tours in total, traversing a total of about 1.5km while often surrounded by
people. Here we show some snapshots of the decision system taken under different
conditions.

In the first snapshot (figure 4.4) the robot had clear path in front of it. The
sensor system reported evidence that the robot was travelling at normal speed, no
unexpected obstacles were detected and the localization was working fine. As we
can see from figure 4.4c, the probability of people presence was near zero, so the
decision system applied no recovery action (figure 4.4b).

In the second snapshot (figure 4.5) the robot path was slightly obstructed by
people (marked with red circles). Evidence of normal speed (it was about 0.49m/s)
and good localization was reported in the Bayesian network, altough unexpected
obstacles were detected. The probability distribution of the people node, given
evidence, was (0.37, 0.61, 0.2), correctly showing that few people were standing in
the robot path. The decision system reported an utility of −0.085 if a moveaway
action should be performed, against an utility of −0.1525 if asktoleave and an
utility of−0.451 if none action should be selected. Obviously the best action was to
avoid the people; under this decision the predicted probability distribution for the
next time step people variable was 0.788, 0.157, 0.055, thus a better situation was
expected. Performing an avoid maneuver meant varying the low-level controller
parameters to weight more the clearance function while weighting less the heading
function (see section 3.5 for the meaning of these parameters).

The last snapshot (figure 4.5) showed a situation where the robot was sur-
rounded by many people, who were near enough to slow down the robot to a
velocity of 0.177m/s. This time we wanted to test the Bayesian network param-
eters, and we did not allow the sensor system to put evidence on the MCL and
Obstacles node. The results were surprisingly good, as the localization and laser
filter systems reported nearly the same results: the localization score dropped
down to 30% while about 90% of the laser readings was filtered out (this is due
to the poor localization score too). Under these conditions the decision system
(figure 4.6b) chose to stop the robot and ask people to clear the way. In figure 4.6c
it can be seen that the laser readings reported a large open area on the robot left.
However, on the robot left side there was a screening of glass panels, invisible to
the laser. If the controller had chosen to avoid people by maneuvering towards the
open area, given the poor localization, the robot would have almost surely collided
with the invisible obstacles. This kind of situation leaded us to the introduction
of the proposed high level controller.

4.5 Experimental Results 41

(a) The laser readings. (b) The influence diagram.

(c) The Bayesian Network.

Figure 4.4: The robot has a clear path.

42 High level control

(a) The laser readings. (b) The influence diagram.

(c) The Bayesian Network.

Figure 4.5: Few people block the robot path. The robot decided to move around
them.

4.5 Experimental Results 43

(a) The laser readings. (b) The influence diagram.

(c) The Bayesian Network.

Figure 4.6: Many people block the robot path. The robot decided to stop and ask
the people to leave.

44 High level control

4.6 Conclusions and future works
In this chapter we presented a high-level robot decision system based on dynamic
Bayesian networks and influence diagrams. It has been applied on a tour-guide
robot operating at the Archaeological Museum of Agrigento. The proposed system
acts on top of a set of lower level subsystems (like the planner, the localizer and
the controller) to monitor the robot state and act in case of troubles. We identified
two main kind of faults, namely the inability to move because of obstacles and a
wrong pose estimation. A dynamic Bayesian network monitors the robot state
inferring possible causes of trouble from sensor readings, while a decision system
based on an influence diagram act accordingly in case of troubles.

Experimental results showed that the fault tolerance of the robotic system im-
proved, as the robot is able to decide the best action using policy evaluation and
utility functions. We are currently working on introducing more variables in the
network, in order to improve human-robot interaction. Furthermore we are in-
vestigating learning algorithms to automatically estimate the network parameters
and the policy function. The ultimate goal could be a lifelong learning robot that
adapts to the environment changes and users interactions.

Part III

Outdoor Robotic Museum Guide
Architectures

Chapter 5

Basic Architecture

5.1 Introduction

In this chapter we present the first robotic architecture for outdoor environment: a
Botanical Garden. Obviously we are focused on tours that are considerably simpler
than those offered by human guides of the garden. Nevertheless delivering even
simple robot guided tours is a challenging task due to the large spaces involved
and the high noise in sensor readings. We made use of standard SLAM techniques,
but we will point out where they fail and the proposed solutions.

The robot has two main goals, namely i) guide tourists along the botanical
garden and ii) ensure the safety of people, environment and itself. During a route
the robot will stop near exhibits of interest and speak about them. A planner
generates the set of actions needed to accomplish its task (including the speaking
actions). The controller executes the actions, while ensuring the safety of people,
environment and robot, and monitoring that no problem occurs. Finally a local-
ization system keeps track of the robot position, using a large scale topological
map and different small scale metric maps.

The robotic platform we are working with is an ActiveMedia© Pioneer 3-AT
(figure 5.2) using differential drive and equipped with a laser scan range finder, a
sonar array, a stereo camera, a digital compass and a GPS. The environment map
is shown in figure 5.1, the red thick lines displaying the robot route. The itinerary
is composed in part by a pathway bounded by short walls. The environment
is nearly 10000m2 large, although only a small part of it is traversable by the
robot. Furthermore roads are often covered by foliage or mud. A typical route
takes v 30min to complete it (not including speaking). The environment is highly
dynamic as visitors are all day walking inside the botanical garden, gardeners work
alongside the plants and even workers trucks happen to pass by. Any sensing and
controlling process must therefore cope with such dynamics.

5.1 Introduction 47

Figure 5.1: Part of the Botanical Garden Map. The thick red line displays the
robot route.

Figure 5.2: A close-up of the robotic platform used.

48 Basic Architecture

5.2 Motivation and related work

Two early works about robotic tourist guide are in [6] and in [2]. They used prob-
abilistic approaches to solve the localization problem. The pose of the robot is
represented as a distribution over the space of configuration, and it is continu-
ously updated using information gained from sensing and control using Bayesian
filtering. Although noteworthy results have been reported in the context of local-
ization in dynamic environments, problems arise when i) the robot motion model
is very broad distribution compared to the sensors model, mainly because of a
poor odometric platform, and ii) when closing loops in large scale environments
[30].

An approach that tries to address both problems concerns splitting the en-
vironment map into several smaller maps and creating a graph structure to link
them. This leads to hybrid metric-topological maps [31, 32, 33, 34]. Splitting the
environment requires each small map being well-defined, and the union of all the
maps being (not considering overlapping) the whole map. As we will point out
in a while, this is a very hard requirement given the robot and the environment
described.

A slightly different approach uses landmarks instead of metrics map, estimating
the pose distribution using particle filters and Extended Kalman Filters (see for
example [35]). The main issue related to this approach is the landmark detection
and recognition. This is a problem easy to solve using a laser range finder1 but
very hard using computer vision in outdoor environment. Although visual slam
is a topic in rapid development (see for example [36, 37, 38]), we did not find a
suitable methodology able to cope with outdoor environment often cluttered with
occlusions.

A completely different approach is in [39], where a cognitive architecture based
on artificial consciousness is employed. Cicerobot used an internal simulator to
plan and anticipate actions, while sensors feedback is used to correct its behavior.
However from a practical point of view creating an accurate enough simulator for
large scale environments is still an open issue.

Figure 5.3 shows raw odometric and laser readings, where large odometric
errors are evident. It can be seen that after the robot travelled only for 50m the
heading error is v 70◦. The arc-shape of the pathway is due to a constant drift
to the right during straight motion, of which the odometric system is not aware,
while it being aware of the correction made to keep the robot in the pathway
center. Trying to generate a complete map using state-of-the-art SLAM algorithms
(see next sections) leaded to very poor results. The problem lies in the poor

1The range finder is commonly used to detect trees in the environment. In the botanical
garden of figure 5.1 there are not such easy detectable features.

5.3 System Overview 49

Figure 5.3: Raw odometry with laser scans. The two red circles point to the same
position, i.e. the central plaza. The distance between the two points in this map
is v 100m.

.

odometry (although a motion model has been estimated using real data [40] to
take into account systematic errors.) and in large laser noise inducted by the
strange reflection of plants and trees. This leads to the practical impossibility of
generating metric maps from raw data of much of the environment.

GPS data were not much more precise, as shown in figure 5.4. Satellite com-
munication was often hindered by the intricate leafage of tall tree, leading to errors
often as high as 10m. Furthermore heading can not be estimated using only the
GPS, and the digital compass is unusable while the robot is in motion (although
it is very accurate if the robot is stopped).

Such results lead to the conclusion that integrating the robot pose continuously
as it travels is infeasible, given the environment and the robotic platform described.
The proposed approach relies therefore on a “lazy localization”, i.e. the point-wise
correct pose is computed only when useful and feasible. The usefullness of a correct
pose is due to the robot task, i.e. it is needed (together with a correct metric map)
only when the robot should speak about an object of interest. In the following
setions we will describe the proposed system and the experimental results.

5.3 System Overview

The proposed system is composed by three main components, being i)the path
planner, ii)the controller and iii)the localizer. Shared among them lies the envi-

50 Basic Architecture

Figure 5.4: GPS data obtained during the same path as in figure 5.3. The black
line displays the true robot path.

ronment map, represented as a directed graph. As the robot receives a route the
path planner generates a plan made by a set of nodes to visit. The controller goal
is to move the robot from one node to the following one, querying the localizer for
the actual position and acting as soon as a problem arises (it happen very often
due to localization problems and dynamic environment). The localizer task is to
keep track of the robot position, either in the sparse discrete space of the graph
either in the fine-grained low-level map if it is using it.

5.4 Environment representation
The environment map is represented as a directed graph where each node is a place
meaningful for the robot. A place is meaningful if there is an exhibit, or there is
a junction in the path. An edge exists between two nodes a and b if it possible
to travel from a to b without passing by any other node2. Each edge contains the
relative orientation between two nodes, taken using the robot digital compass.

A node represents a subset of the whole environment, although the set of all
the nodes does not sum to the whole map, i.e. there are large portion of the
environment which are not covered by a node (sometimes neither by an edge).
This is due to the hardness of generating a map in some areas (for example the
large plaza in the center of the pathway), or to the poor localization performances

2The resulting graph is doubly connected, however we will keep the directed formalism because
each link carries different information.

5.5 Path Planning 51

Figure 5.5: GPS data collected during map building. Each node has a name, and
a gaussian distribution whose contour is displayed as a black ellipse. The black
thick line is the 250m long path the robot followed while collecting the data.

if surrounded by too much people. During the map building process we collected
GPS data for the whole route, stopping it for a while along meaningful places to
collect more data. For each node i we fitted a gaussian distribution memorizing
its mean µi and its covariance Σi. The results are showed in figure 5.5.

The places which contain exhibits the robot should talk about include a metric
map, like the two Ficus in figure 5.7. Experimental results show that the robot
was able to localize itself using these small maps, even if surrounded by people.

5.5 Path Planning

Path planning is performed by simple graph search over the environment map.
Each time the robot receives a new route made by a list of exhibits, a list of nodes
to visit is extracted. The planner then generate a set of high level actions ai to
perform, i.e. the list of actions needed to move from the node the robot belongs
to the next ones.

When the robot reaches an exhibit node, the local metric map is used and a
new path is computed this time using cells instead of nodes. Once the goal position
is reached the robot starts illustrating the exhibit.

52 Basic Architecture

Figure 5.6: Comparison of GPS (green dots), raw odometry (red line) and GPS
with EKF (blue line). Refer to figures 5.3, 5.4 and 5.5 for comparison.

5.6 The localization system

The localization task is performed using the topological map or the metric map if
it is available. The GPS plays a key role during the large scale localization, as it
is unaffected by occlusions and its error is bounded.

The robot keeps track of its pose using an Extended Kalman Filter, where
the prediction step is performed using traslational and rotational velocity, and the
measure integration step is performed using plain GPS data. Figure 5.6 shows
data from odometry, plain GPS and the EKF. Results are still inaccurate, mainly
because of the burst errors in the GPS, but they are far better than using plain
GPS or plain odometry.

Let Nt ∈ 1 . . . Np be the current node at time t and x1:t the set of positions
collected until time t and integrated using the EKF. Let furthermore a1:t−1 ∈
1 . . . Np be the high level actions applied until time t − 1. Each ai represents the
act of moving the robot from its current node towards the next one (this is very
different from the low-level control u we will introduce below). The set of high-level
controls is usually planned in advance during the route definition.

We can recursively compute the probability of being in a node n, given all
the observations and control, by applying Bayes rule and dropping conditionally
independent variables:

5.6 The localization system 53

P (Nt = n|x1:t, a1:t−1) ∝
p(xt|Nt = n, a1:t)P (Nt = n|x1:t−1, a1:t)

= p(xt|n)P (n|x1:t−1, a1:t−1)

= p(xt|n)
∑
n′

K(n′, n, at−1)P (n′|x1:t−1, a1:t−2)

(5.1)

Here we assume that the pose is independent of the node given the control, and
that past controls give no information about the node transition.

The variable K(n′, n, a) = P (Nt = n|Nt−1 = n′, a) is a transition matrix
used to introduce stochasticity in the control. This means that the robot may
decide to move from one node n′ towards a node n by applying control a, but the
probability of entering node q 6= n is non-zero. The transition matrix has been
built empirically for each node by observing the robot behavior during several
runs. We will see the usefulness of such approach in the experimental results. The
distribution p(xt|Nt = n) is the likelyhood of the pose given the node. As stated
before this is a gaussian distribution with mean µ and covariance Σ, so that:

p(xt|Nt = n) ∼ N (xt; µn, Σn) (5.2)

Tests performed using this system showed an error not larger than 3m, mainly
due to the satellites communications. These errors were evident during the tran-
sition between two nodes, but the whole system is mainly unaffected by them.
Sometimes it happened that the robot missed completely a node, or picked up the
wrong one: this was the kind of problems the controller has to cope with.

If the node includes a metric map, the robot will use it to localize using a
precision lower than 10cm. The maps are created using Monte-Carlo occupancy
grid mapping. We will briefly describe the problem and the proposed solution.
Further details may be found in the huge literature on this topic.

The SLAM (simultaneous localization and mapping) problem involves estimat-
ing the posterior of the robot pose along with the map:

p(xt, m|z1:t, u1:t) (5.3)

where xt ≡ (x, y, θ)T is the robot pose, m is the map (usually an occupancy grid
map), z are the measurement (in this case the laser readings) and u is the low-
level control (in this case traslational and rotational velocity). Equation 5.3 may
be factorized in:

p(xt|z1:t, u1:t) · p(m|z1:t, x1:t) (5.4)

The second term in equation 5.4 may be easily computed using an occupancy
grid mapping algorithm. The first term is computed using a particle filter that
incrementally updates the pose xt using measurements and control variables.

54 Basic Architecture

Particle filters need a proposal distribution to resample during each step. A
common choice is p(xt|xt−1, ut−1) i.e. the motion model. Although easy to com-
pute, it is not well-suited for this kind of problem. Another kind of proposal is
p(zt|mt−1, xt), which is harder to compute but gives much better results than the
former. In [41] a system is proposed that performs well even in large scale envi-
ronment, although the assumptions on the motion model are a way too restrictive
for our robot.

As soon as the robot enter a node with a map, an initial belief is generated
by sampling particles in the neighborhood of the entry point, and the particle
filter is started. It takes usually less than 2m of travelling for the particle filter
to converge to the true pose, and it is hard to have the filter diverged. If the
localization is performing bad (a good indicator is the mean weight associated
with each particle) random samples are generated in the map, so that the robot
will recover its position even after completely loosing it [42].

5.7 The controller
The controller goal is to move the robot from one node to the next one, or to move
the robot towards a specific point in a grid map. We used the dynamic window
approach described in [23]. Here a brief explanation of the approach is provided,
and we refer to the original paper for details.

Robot movements are performed by issuing direct rotational and traslational
velocities, thus controlling the two variables v, ω. If both velocities are kept con-
stant for an amount of time, the robot will follow a circular trajectory whose
curvature is given by v/ω (positive curvature means clockwise motion). Given the
current goal heading and the local obstacle configurations, the controller seeks to
optimize a function over the (v, ω) space, i.e. to generate curvatures that will bring
the robot towards the goal while avoiding the obstacles. The space of admissible
velocities, i.e. the space over which function optimization is performed, is a small
subset of the whole (v, ω) space when considering the robot physical constraints
and its current velocity, . The goal function is composed by three distinct subgoals,
namely speed dist and clearance, all normalized to 1:

G(v, ω) = σ(α · speed(v, ω) + β · heading(v, ω) + γ · dist(v, ω)) (5.5)

where α β and γ are three coefficient which sum to 1 and σ is a smoothing function.
Speed is simply the projection of the v component over the (v, ω) space. Heading
measures the misalignment between the robot and the goal heading. During trav-
elling between nodes the heading stored in the map edges is used, while during
the navigation in the grid map the heading is computed using the robot position
and the goal point position. Finally the function dist is the minimum distance

5.8 Experimental Results 55

(a) Ficus 2 (b) Ficus 1

Figure 5.7: Two maps generated for two nodes.

beetween the curvature v/ω and each obstacle oi as detected by the laser range
finder.

The topological map has been built in a way that if two nodes i and j are
linked, it should not happen that during the travelling from i to j a third node
k 6= i, j is detected. Howewer as pointed out in the previous section, it may happen
that the localization reports a wrong node. If this happens the controller stops
any travelling behavior, asks the planner for a new plan from the node k to the
node j and restarts. In the worst case (a GPS burst error for example) this will
lead to the robot starting-aligning-restarting a couple of times, without any other
consequence for the localization and the controller system.

The metric map associated with the neighborhood of an object of interest is
used to place the robot in an exact position and to turn it to a desired heading.
This is useful to let the visitors understand what the robot is talking of. Once the
pose of the robot is well known (the particle filter converged), a path is computed
using the grid map. As soon as the robot reached the desired location (or the
nearer one, if it is occupied), it will stop, turn towards the object of interest, and
talk.

5.8 Experimental Results

The first part of this work concerned generating metric maps of the environment
and testing the localization system. A large map comprising a pathway (about one
third of the whole route) is displayed in figure 5.8. That map lacks many of the fe-

56 Basic Architecture

Figure 5.8: A large map displaying the first pathway. It lacks much details, in-
cluding numerous plants in front of the two lateral walls.

Figure 5.9: Images taken during a crowded demo.

5.9 Conclusions and future works 57

atures in the real environment, mainly the plants and small trees in the front of the
side walls, as they were “overwritten” during the SLAM process. Large odometric
errors and the presence of people leaded to very poor localization performances in
the large map, sometimes degenerating in the robot being completely lost. This
test showed that using a single large map of the environment was unfeasible, thus
leading to the approach we proposed.

Although we managed to obtain a map of a pathway, obtaining an accurate
map of the central plaza was impossible, mainly because of large spaces and poor
odometry. A similar problem has been reported in [6], where the authors used a
camera pointed towards the ceiling to aid the localization. Obviously we can not
use the same approach in our environment.

Different results were obtained by reducing the map size. In figure 5.7 two maps
corresponding to the neighborhood of two large trees (named “Ficus”) are shown.
The robot was able to localize itself using these maps even in highly dynamic
environment. These maps were used as local metric maps for two nodes.

We performed a second set of tests in order to validate the high level localiza-
tion system. At first we used no transition matrix, thus considering deterministic
motion. The localization system performed well where no obstacles were on the
robot path. Different results were obtained in dynamic environments. Here the
robot tried to move around people, loosing track of its position very often. Fur-
thermore the deterministic nature of the motion model made error recovery im-
possible. When using the transition matrix the uncertainty in motion leaded to a
multi-hypothesis belief, thus enabling error recovery when new GPS data arrived.

The real testbed for the proposed system was during an international conference
held in the Botanical Garden. The robot performed several tours, covering more
than 3km in a day. Figure 5.9 shows some snapshots taken during the route. The
robot was equipped with a text-to-speech system, tuned to produce a robotic voice.

An example of planned route is showed in figure 5.5. Apart from the pathway
nodes, the robot had to stop and talk in all the other ones. Talking was performed
also while travelling from one node to the next one.

Position errors happened in the node named ’Plaza’. Here the robot was sur-
rounded by people, and it believed it was in the wrong node while trying to move
around them. Subsequent path planning and re-localization processes corrected
the robot pose, demonstrating the system high fault tolerance and robustness.

5.9 Conclusions and future works

In this chapter we proposed a robotic tour-guide for outdoor environments oper-
ating in a Botanical Garden. We can easily affirm that simply putting a robot
in the context of a museum generates a new interest in visitors, even the ones

58 Basic Architecture

completely unaware of the role of the robot, as we often have experienced in the
pauses between experiments.

The main problem related to this environment was high noise in both the
proprioceptive and exteroceptive sensor data. We performed tests using state-of-
the-art SLAM algorithms, noting their failures and how to cope with them. In
particular we noted that integrating continuously the robot pose is often infeasible
in our environment, and we proposed a “lazy localization” approach that proved
to be reliable and fault tolerant, even in highly dynamic environments.

This project needs anyway to be enhanced under different aspects. As the
planned future routes will comprise paths harder to follow in the Botanical Garden,
we need to improve the controller and the localization system. In particular, it
would be easier to detect an object of interest using vision and to move towards
it, instead of using a metric map to track the position. This way the robot will
be more “aware” of what it is talking of. Furthermore we are studying a way to
detect a drivable surface using vision, thus avoiding potential invisible hazards.
Finally we are studying the integration of a GIS (global information system) to
aid the navigation and localization systems.

Chapter 6

Appearance Based Navigation

6.1 Introduction

So far we assumed that the process of map-building is splitted from the process
of localization. Furthermore we used raw sensor data (laser and GPS) without
any feature extraction or preprocessing. In this chapter we explore an emergent
mapping methodology, namely appearance based navigation. Under this framework
the robot recognizes places using camera images, while at the same time building
a topological representation of the environment. Although the proposed system is
not used yet in the context of robotic museum guides, it poses some basis for the
chapter 7, in which places recognition and topological maps are the main topics.
Furthermore the proposed algorithms are appliable either in indoor and outdoor
environments, thus bridging the gap between different methodologies.

Our primary goal here is to build an incremental model of the environment as
the robot starts without any prior knowledge. Robot sensing is assumed stochastic
as it is often heavily corrupted by noise and dependent on environment conditions.
Our system goal is to detect places which share a common representation and
which are close in the space, using camera images and odometry information. The
places are modelled in a holistic fashion [43], thus not relying on landmark or
local image information. They are furthermore organized in a topological map,
which forms the basis for a Markov model of transition from a place to another
one. Although it is widely common to use a-priori information (such as a training
set of the pattern the robot should recognize), we let our robot to discover and
model its environment without such information. Therefore a great effort has been
dedicated to incremental statistical learning, which starts from features detection
to place shaping.

Although the literature in appearance based navigation is under rapid devel-
opment, little efforts have been devoted to on-line learning of environment. The

60 Appearance Based Navigation

usual approach is to learn a set of features taken from a previously filled database
of sensor readings, then let the robot recognize them. Machine learning algorithms
provide robust ways to achieve such task, but they lack incremental counterparts.

In our work we tried to address this problem by adapting batch algorithms (like
EM) to on-line ones. We did not give the robot any prior knowledge about the
world. Furthermore no human intervention (like labelling or setting the number
of cluster) is required to run our system. This poses some non-trivial problems,
related to dimensionality reduction and to the concurrent processes of learning and
recognition. The use of on-line learning algorithm often leads to radical changes in
the methodologies to be applied. Anyway we tried to adopt well-known although
still experimental algorithms to keep our system robust and reliable under varying
conditions.

The problem of finding new places is still an open one. Some earlier approaches
used to place nodes at equidistant locations. We chose to merge odometric and
visual information to achieve a more flexible node placing. Although odometry is
known to be unreliable for position tracking, it is still useful during short-length
run, as we will prove in the subsequent sections.

6.2 Related works
Appearance-based robot navigation has attracted a lot of attention because of its
simplicity and success in localization problems. In [44] a comparison between some
appearance-based and landmark-based navigation systems has been analyzed. It
is shown that the former approach is more robust to noise and occlusions.

Omni-directional images have been widely used [45, 46], although they are more
sensible to dynamic environment. In [47] this problem is addressed by introducing
a biological inspired attention system in the context of novelty detection.

One of the major drawbacks in appearance-based robot navigation is the need
to train the system off-line with images describing all the environment often under
varying conditions. This is usually due to the need of input data dimensional-
ity reduction, in most cases performed by principal component analysis (PCA).
Although incremental versions of PCA exist (see [48] for example1), their appli-
cation to pattern classification is still under development. Another successful is
in [49], where appearance of places is modelled using a mixture model on Fourier
coefficients.

A batch training process has been used with considerable success for instance
in [50] and [51]. In the first one the system is trained with features vectors built

1Although the incremental PCA is shown to work as well as the batch one, the eigenspace
changes at every update and so the projected coefficients, making them unusable for further
training algorithms.

6.3 System Overview 61

from a large database of images taken either in indoor and outdoor environment.
The training is performed by PCA and Parzen window density estimation, while
recognition is aided by a hidden Markov model for transition between places. In
[51] features vectors are extracted using an underlying biological-inspired attention
system and PCA. Training and recognition is performed by a three-layered neural
network with back-propagation. The training set is composed by a huge set of
indoor and outdoor images taken at the same locations under varying illumination
conditions. In [52] an active stereo vision system is used to acquire appearance
images. Their approach relies heavily on the training set, either for dimensionality
reduction and to cut off computation complexity. Anyway the proposed frame-
work could be easily adapted to on-line learning, provided the use of incremental
algorithms.

In [36] an approach similar to our proposed has been developed. The authors
concentrated mainly on the problem of robot control. They use Markov models
and Gaussian mixtures for multi-hypothesis position tracking while they lack in
features recognition. Furthermore the map they define is grid-like, leading to non-
small position errors on the long run.

6.3 System Overview

As the robot has initially no environment knowledge, its primary goal is to build
a world model. The environment is represented with a topological map, i.e. a
unoriented graph where each node is a “place”.

We define two different spaces, the first one being a bi-dimensional metric
space X ∈ <2, the second one a d-dimensional features space F ∈ <d. X is
the plane upon which the robot moves (we discarded the orientation, as it is
not meaningful for our purpose), while v ∈ F is a features vector obtained by
pre-processing a camera image. A place is defined as a subspace Pi ⊆ F , and
building an environment model is to find a partitioning of F . Note that we are
not clustering F (a features vector may belong to more than a place), so we need
a way to distinguish between different places given a features vector; this will be
accomplished by coupling F and X (see section 6.7).

A single place is modelled in a holistic fashion, where all its features vectors
contribute to build its model. For each place Pi we construct a model Υi

2. Such
model is the probability distribution that a vector v belongs to a place P , i.e.
Υ(v) ≡ p(P |v),∀v ∈ F . Υ is approximated using a Gaussian mixture model

2In the following we will refer to a generic place as P and to a generic model as Υ, thus
dropping the subscript i.

62 Appearance Based Navigation

Figure 6.1: The system overview

(GMM):

Υ =
C∑
i

πiN (v|µi, Σi) (6.1)

where N is a d-dimensional normal function with mean µi and covariance matrix
Σi.

Expectation maximization algorithm (EM) gives an efficient way to compute
the GMM, but it usually needs the complete training set to run. As we are building
an incremental model of the environment, we will use an online version of EM; the
number C of components is determined by a minimum message length approach.

Figure 6.1 shows the main components of the developed system. As the robot
moves, it gathers features vectors by camera image preprocessing, updating the
place model. At the same time position (in the metric space) is tracked using
odometry information, and a neural network is trained to map F into X .

Features and position information are combined to detect new places: if the
robot has travelled for enough space and the detected features are not more mod-
elled by Υ, then a new place is created and added to the topological map. Such
process is accomplished by a place detector, which goal is to detect a new place or
recognize an old one if it is already present in the topological map. The following
sections will provide further details on each of the mentioned components.

6.4 Topological map 63

6.4 Topological map
The topological map is a double oriented graph where each node is a place and an
edge exists between two nodes i and j if:

∀i, j i←→ j ⇒ @k : i←→ k ←→ j (6.2)

where the operator←→ means the existence of an edge between two nodes. Stated
in other terms, two places i and j are directly linked if there is not another place
k which lies between them.

Each edge is labelled with the probability p(j|i) of getting from a place i to j.
The probability is an uniform 1/n, where n is the number of places directly con-
nected to i. Note that p(i|j) 6= p(j|i) because the number of outgoing connection
may differ between i and j. Note moreover that ∀i, j, k p(i|j) = p(i|k), because of
the lack of a complete world frame of reference (as in absolute diktiometric maps,
see [53] for example). Each place comprises a model Υ of its features, a neural
network that maps F → X , and a relative frame of reference which origin was
created as soon as the robot detected the place.

From the probabilities p(j|i) we can build a transition matrix Q(i, j) to obtain
a hidden Markov model for place transition. To avoid unrecoverable position errors
the zero entries are deleted by applying a Dirichlet smoothing prior to the matrix.

The relative frame of reference attached to each node is used only during learn-
ing to compute the place centroid (see section 6.7). Its origin is placed at the point
where the place was initially detected, and it is used to reset the odometry as a
new learning process starts (see section 6.8).

6.5 Image preprocessing
The features vectors are computed by applying the discrete cosine transform
(DCT) to images; its data independent bases allow to build the feature space
incrementally. Furthermore, a useful property of the DCT is that most of the
information about the signal is concentrated in just a few coefficients of the DCT
[36, 54], allowing to achieve a considerable data reduction.

Each component k = 1 . . . d of the feature vector v is obtained by decomposing
the image I in terms of the DCT basis functions:

v(k) =
2

N
wk

N−1∑
n=0

I(n)cos

[
k

(
n +

1

2

)
π

N

]
w0 =

1

2
wk = 1, k 6= 0

(6.3)

64 Appearance Based Navigation

where N is the dimension of the image treated as a vector.
For each image we retain the most significant coefficients in terms of the amount

of stored information, which leads to a tractable eighty-dimensional features vec-
tors.

6.6 Incremental-EM
For each place the robot explores a set of features vectors v are obtained by camera
images pre-processing. As stated above, the probability Υ ≡ p(P |v) of being in a
place P follows the Gaussian mixture in eq. 6.1. Usually GMM can be estimated
by iterative approaches, such as Kernel methods or Expectation Maximization.
We chose to adopt the EM approach, as it has been widely used in the past with
success. This poses although some non-trivial issues: we do not know in advance
the prior number C of components, data arrive in a continuous streaming and the
model Υ has to be used concurrently with its building by the place detector.

Suppose we have a model Υt−1 of the vectors obtained at time t − 1 for the
current place. The proposed Incremental-EM algorithm is stated as follows:

1. Get M features vectors from images streaming.

2. Build a model φ of the newly arrived data using MML approach (temporary
model).

3. For each component of φ add it to the previous model Υt−1 if and only if:

• It has not statistically equivalent covariance with any of the component
in Υt−1.

• It has not statistically equivalent mean with any of the component in
Υt−1.

4. If the above conditions are not met, the new component is merged to the
one it is equivalent to.

5. Update Υt.

6.6.1 Building the temporary model
To explicit the dependence of Υ upon its parameters θ, we rewrite eq. 6.1 as3:

Υ ≡ Υ(V |θi) =
C∑
i

πiN (V |µi, Σi) (6.4)

3In the following we will refer to V as a matrix M × d, where M is the number of features
vectors, each of them d-dimensional.

6.6 Incremental-EM 65

Following Shannon theory, the shortest code length for V is d− log p(V |θ)e. If θ is
unknown the message is splitted in two parts:

Length(θ, V) = Length(θ) + Length(V |θ) (6.5)

which has to be minimized. This is solved by minimizing the quantity:

θ̄ = arg min
θ
L(θ, V) (6.6)

with:

L(θ, V) =
N

2

C∑
m=1

log
(nπm

12

)
+

C

2
log

M

12
+

+
C(N + 1)

2
− log Υ(V |θ)

(6.7)

where N = d + d(d + 1)/2 is number of parameters of θ. The algorithm starts
from an initial guess Cmax of the components number, reducing it if a component
weight became negative during iterations. (see [55] for the complete algorithm and
formula derivation).

6.6.2 The complete model
Suppose we modelled the new M data with φ(v). Suppose furthermore that we al-
ready built the model Υt−1 of the previous L data. Then the new model describing
all the data is [56]:

Υt =
L

L + M
Υt−1 +

M

L + M
Φ (6.8)

Although eq. 6.8 allows to merge historical data with newly ones, applying it
straightforwardly will lead to overfitting, i.e. too much components. By testing
each component k of Φ if it is statistical equivalent to any component j of Υt−1 we
avoid this drawback. The test is carried on in two steps: covariance equivalence
and mean equivalence.

In the covariance test we determine if M features vectors v1, v2, . . . , vM ∈ <d are
statistical equal to a given covariance matrix Σ0. We first transform the data into

a new vector y =
[(

LT
0

)−1
V T
]T

where L0 is a upper triangular matrix obtained
by Cholesky decomposition of Σ0. Then the test became determining if Σy is
equivalent to the identity matrix I.

If d > M (as it often happen in this application), the covariance matrix Σy

is singular and the likelyhood-ratio test can not be performed. We can use the
W -statistic defined as [57]:

W =
1

d
tr
[
(Σy − I)2]− d

M

[
1

d
tr (Σy)

]2

+
d

M
(6.9)

66 Appearance Based Navigation

where tr() denotes the trace of a matrix. Under the null hypothesis we have:

(nW − d)d

2
+ d ∼ X 2

d(d+1)/2 (6.10)

which is true as n and d go to infinity [57]..
In the mean test we determine if the M features vectors mean is statistical

equal to a vector µ0. Hotelling’s T 2 statistic is well suited to this aim. It is defined
as n(x̄− µ0)

T ΣV (x̄− µ0) and under the null it has distribution:

n− d

d(n− 1)
T 2 ∼ Fd,n−d (6.11)

As ΣV may be singular, we can use Σ0 to replace it4.
If both the tests passed, we need to merge the component k of Φ and j of Υt−1.

By definition of mean and covariance we have:

µ =
Lπjµj + Mkµk

Lµj + Mk

(6.12)

Σ =
LπjΣj + MkΣk

Lπj + Mk

+
Lπjµjµ

T
j + Mkµkµ

T
k

Lπj + Mk

− µµT (6.13)

π =
Lπj + Mk

L + M
(6.14)

where Mk is the number of data points in component k of Φ. If a component k does
not have a statistical equivalent component in Υt−1, only its weight is updated:

π =
Mk

L + M
(6.15)

while Σ = Σk and µ = µk. Each remaining component j in Υt−1 which has no
equivalent in Φ has its weight updated:

π =
Lπj

L + M
(6.16)

The model is updated finally with:

Υt = Υt−1 ∪ {µ, Σ, π} (6.17)

4The mean test follows the covariance test, so we already determined the statistical equivalence
between ΣV and Σ0.

6.7 From features to space 67

Figure 6.2: An example of two non overlapping Gaussians

6.7 From features to space
The partition of the features space F (see section 6.3) can not be performed using
only features information, as we can incur in perceptual aliasing or overfitting, i.e.
more places than needed are detected. As the robot is a mobile platform, it may be
useful to integrate position information to detect the start and the end of a place.
To this aim a mapping between F and X is necessary. Although the whole system
may be seen as performing this mapping, we want to underline that it is computed
only on a small scale (i.e. inside a single place), and an accurate position estimate
is not required. In other terms such mapping is an auxiliary (although necessary)
process in the context of introducing position information for place detection. In
the current implementation we use a three-layered neural network to interpolate
between F and X , because it is easy to add new samples and it is fast to converge
to good results.

The place detector needs to know where the “most representative point given
Υ” is (see section 6.8). This should be the model centroid. As Υ often is composed
by non-overlapping Gaussians, leading to a centroid in a zero-probability region
(see figure 6.2 for a one-dimensional example), we keep all the centroids, which by
definition are the mean vectors of each component of Υ.

Using the neural network we can associate to each centroid µi its coordinates
xi in the place reference frame. Then the place centroid (in the space X) is:

x0 = arg min
i
{‖x− xi‖} (6.18)

where x is the robot position in the place reference frame as estimated by the
odometry5.

5We assume odometry being reliable for small displacements (inside a place), as it is often for

68 Appearance Based Navigation

(a) First image acquired (b) Second image acquired by rotating 180
degrees on its place

Figure 6.3: Two different images taken from the same place

Finally the distance between the robot and the centroid is modeled by a normal
bivariate distribution with spherical covariance Σ = σI to take into account of
odometry errors:

pos(x|Υ) =
1

(2π)|Σ|1/2
exp

(
−1

2
(x− x0)

T Σ−1(x− x0)

)
(6.19)

6.8 Place detection

Suppose the robot is constructing a new model of a place, let it be a room with
some windows along one of the walls. Suppose furthermore that at the beginning
it is facing a wall and next it turns 180 degrees without traslating, facing the wall
with the windows (see figure 6.3 for an example). It would be very hard for an
unsupervised pattern classification algorithm to cluster together features gained
from the first and the second image. But if we integrate position information
(only the (x, y) pair), the robot should be able to recognize that the place has not
changed.

This simple example is useful to introduce the last component of our system:
the place detector. Its goal is to detect, during learning, when a place has changed
so that we need to create a new model, or recognize a old one. Informally, we
have a new place if the features the robot is gathering are not more modelled by
the current model, while at the same time the robot has moved far away the place
centroid.

most modern odometry systems.

6.9 Experimental results 69

Formally, the robot detects a new place if the product of the likelyhood of the
current features vector v given the place model Υ times the distance between the
robot and the place centroid (as in eq. 6.19) is above a threshold δn:

{Υ(v)× pos(x|Υ)} > δn (6.20)

If the robot detects a new place then a new node is added to the topological map,
the odometry is resetted to zero and a new frame of reference centered at the
current position is added to the new place.

If the topological map is not empty, the robot tries to recognize a place before
adding a new one. This is performed by checking that the max likelyhood of the
current features vector under any known place model, weighted with the transition
probability, is greater than a threshold. Formally if the robot is coming from a
place Pj, then a place Pi is recognized if:{

max
i

[Υi(v)×Q(i|j)]
}

> δr (6.21)

When this happens the model Υi is updated using the proposed algorithms, as if
it was just created; otherwise a new place has to be added.

6.9 Experimental results

We performed two separate tests, the first one involving only the feature detector
in a standard appearance-based navigation fashion, the second one involving the
complete system.

For the first test we manually controlled the robot along one corridor taking 360
images from both the stereo cameras every 30cm. The left camera odd images have
been used for the training set T , the right camera even images for the validation
set V . The training was simply performed by appling the DCT transform of eq.
6.3 to all the images in the training set. The same process was applied to all the
images in the validation set. For each vector i in the validation set we chose the
one closest to a vector j in the training set using the formula:

j = arg min
k∈V
‖Vi − Tk‖ (6.22)

where Vi and Tk are the d-dimensional rows of matrix V and T . This way we
achieve a position-independent error estimate. The plot of all the (i, j) pairs is
shown in figure 6.4; we plotted a red line with all the correct pairs (i, i) as a
reference. As it can be seen the error is too large and too frequent to make a
correct localization.

70 Appearance Based Navigation

Figure 6.4: The first test results.

The second test was performed by letting the robot move autonomously. We
provided a set of simple low-level behaviors to explore our laboratory environment,
composed by a room and two corridors. The test has been repeated 20 times,
performing nearly 100 place detection and recognition processes per place. The
robot partitioned the environment in four places, which we identified as a room
and three corridors (actually the third corridor was located at about the junction
between the two real corridors). Results are shown in figure 6.5. On the x-axis
the place identifier is reported. For each place pi, i = 1 . . . 4 we plotted how many
times the robot detected the place pj, j = 1 . . . 4. The first place was correctly
recognized 80% of all the trials, the second one 90%, the third one 75% while the
last one 95%, achieving a good overall performance.

6.10 Conclusions
We have introduced a robotic system able to simultaneously build a topological
map of the environment and to use this map for localization. The base definition
we introduced is “place”, meaning a set of features which share a common rep-
resentation and are close in the space. Places are connected together to form a
topological map, also the base for a hidden Markov model. Furthermore position
is integrated with features detection for the purpose of place recognition.

Our main concern was about building an incremental model of the environment
as the robot starts without any prior knowledge. This leaded to the adoptions of
several statistical incremental learning algorithms, which proved to be as reliable

6.10 Conclusions 71

Figure 6.5: The second test results.

as the batch ones.
In this chapter we introduced a novel methodology for on-line appearance based

navigation. Although we did not use the proposed system in the context of robotic
museum guides, the concepts illustrated here will form the basis for chapter 7,
where appearance based navigation is heavily used in the context of node recog-
nition.

Chapter 7

Towards Topological Maps

7.1 Introduction

In chapter 5 we showed the problems that arise when moving from a small struc-
tured indoor environment to a large outdoor one. Many of them were solved using
the GPS and confining the metric mapping to a local scope where precision was
needed. In some applications GPS data may not be available, or they could be
discontinuous or too noisy (like in urban or cluttered environments). In this chap-
ter we will develop a mapping system based only on topological information, thus
eliminating the need of any metric environment representation. The maps gen-
erated this way may be used for high-level motion planning, like road planning
in urban environments, and metric information may be added where the robot
task needs precise position information. We will use only camera images, as a
mean to investigate vision based SLAM. Part of this work is based on the material
in chapter 6, namely the appearance node recognition sub-system. Although the
proposed system is usable either in indoor and outdoor environments, it is more
suited to large ones where there is not too much clutter (see section 7.9.

Vision based Simultaneous localization and mapping (SLAM) is currently one
the major challenges for robotic research community. While noteworthy results has
been achieved using range finders (laser or even sonar), vision still poses challenges.
These are mainly related to the burden of computational complexity, because the
data stream is much larger compared to range sensors. Furthermore vision is
mainly affected by illumination changes and noise, for instance in the case of poor
light conditions or strong contrast. However such large stream of data produced
by cameras may be exploited to solve problems that are still hard for range finders,
like for example perceptual aliasing or data association.

Our work will focus on large semi-structured environments, i.e. environments
which human intervention has not radically modified, like office buildings and

7.2 Related Works 73

similar. In particular we assume that navigable space is clearly distinguishable
from obstacles, and it should be laterally bounded in space, as in the case of roads
or pathways. Examples of semi-structured environments include parks, urban
roads or even large buildings. We carried on experiments in the botanical garden
presented in chapter 5, as an instance of a large semi-structured environment, but
results has been obtained also in an office-like environment.

Our primary goal is to build an environment representation suitable for lo-
calization and path planning. Such representation should be flexible enough to
account for sensing and action uncertainty, allowing it to be robustly modified
as new information is added or the old one is updated. Furthermore the entire
process should be autonomous and unsupervised, denying then the use of off-line
training procedures or previously collected databases. The most suitable choice
for our purposes is a topological map. Although some works exist that try to
merge the two metric and topological maps (see for example [58]), using a metric
map usually involves computing a description of the environment which order of
precision is often the centimeter. Topological maps on the other side often involve
the use of landmarks, i.e. features of the environment that are easy to locate and
distinguishable.

We define a topological map where each node describes a characteristic of the
environment, namely the presence of a branching in the navigable space, without
any landmark position or distance information. This is mainly due to the poor
odometry of our robotic platform, but it is supported by the requirement of the
map to be scalable to large environments. A great effort has been applied to
obtain a robust node detector, because it will be the basic building block of our
architecture. Furthermore in order to deal with action and sensing uncertainty we
use a Bayesian framework to keep track of the robot belief. The same framewok
is used to augment the topological map with uncertainty measures, so that it is
easily modifiable when new observations are gathered.

7.2 Related Works

This work has been mainly inspired by [59], where a hierarchical representation
of the environment is proposed. The topological layer comprises nodes placed at
distinctive places. The definition of distinctive places is mainly sensor related,
i.e. a place needs to be easily distinguishable from other ones given only sensory
information. However this approach relies on a complete observability of the robot
state, assumption with is easily violated when working with real robotic platforms.

The SLAM problem concerns estimating a map of the environment while the
robot pose is unknown, using sensory and controls information. Probabilistic al-
gorithms proved to be reliable enough for the task (see for example [6, 60]. Two

74 Towards Topological Maps

fundamental mainstreams for solving the generic SLAM problem are the Extended
Kalman Filter (EKF) [61] and the Rao-Blackwellised Particle Filter (RBPF) [62].
The first one has been widely adopted due to its simple implementation and effec-
tiveness. Its major drawback is its poor scalability because the covariance matrix
cannot be efficiently updated as the number of landmarks increases too much.
Many efforts have been dedicated to enhance the efficiency of the EKF-SLAM,
like factorizing map information [35]. On the other hand, the RBPF SLAM ap-
proach exploits the conditional independence of landmark measurements given the
robot trajectory, while maintaining a multi-modal posterior distribution. Impres-
sive results have been achieved using laser range finders sensors to create metric
maps [30, 63].

Probabilistic approaches for SLAM have been applied for the creation either of
metric maps and topological maps. Some works recently tried to merge metric and
topological maps, for instance Poncela et al. [58] use a hierarchical subsampling
of metric space to obtain a coarse topological map. A different approach is in
[64], where a data driven learning of hidden Markov models is used to build a
topological map. Few works have addressed the issues related to inference about
topological maps. In [49] the space of topological maps is analyzed to obtain a map
closely related to collected data. Markov chain Monte Carlo methods are used to
sample this huge space and evaluate the likelyhood of topological map hypotheses.
This approach has still to be proved scalable to large environment.

Several vision-based SLAM approaches have been proposed which use either
EKF or RBPF. A major part of the work extracts 3D landmarks based on image
features. Faugeras et al. [65] used an EKF both to create a 3D map composed by
line segments and to localize the robot by registering the local map into the global
one. SIFT [66] point features have been applied to the SLAM problem to extract
3D landmarks [67]. In this system, odometry data provide a rough estimate of the
robot motion that is used to predict landmarks locations in the next image. Then
SIFT features are matched and a least-square approach is applied to refine both
the robot pose estimate and the map. This approach has been extended [68] to
deal with global consistency. Local submaps are merged in a global map and a
loop closure constraint is applied to minimize the effect of the accumulated drift.

Sim et al. [69] also use SIFT features combined with an RBPF. Their approach
does not use odometry data, relying on visual odometry to compute the robot
motion model. The approach proposed in [70] is based on the EKF and relies only
on visual information provided from a single camera to solve the SLAM problem.
Image regions detected using the saliency operator of Shi and Tomasi [71] are
used as landmarks. A similar approach is in [72] where a stereo camera is used
to compute the visual odometry, while landmarks are extracted using the Harris
corner detector [73].

A topic closely related to visual SLAM is visual navigation. The main problem

7.3 Overview 75

is to find a map of navigable space given image information (usually stereo images).
The map is represented as an elevation map or traversability map, where each cell
contains information about the elevation of that small region or cost-to-traverse. In
[74] stereo vision is used to obtain an elevation map used for path planning. A close
work is presented in [75] where color information is coupled with range information
to obtain an obstacle map. In [76] the problem of finding road junctions has been
addressed. However this application is limited with recognition of urban roads,
being no useful for general kind of junctions (a problem we try to address in this
work).

A slightly different approach to visual SLAM relies on appearance based nav-
igation. Appearance based approaches usually need to train the system off-line
with images describing all the environment often under varying conditions. This
is usually due to the need of input data dimensionality reduction, in most cases
performed by principal component analysis (PCA). In [50] the system is trained
with features vectors built from a large database of images taken either in indoor
and outdoor environment. Recognition is aided by a hidden Markov model for
transition between places. In [51] features vectors are extracted using an under-
lying biological-inspired attention system and PCA. The training set is composed
by a huge set of indoor and outdoor images taken at the same locations under
varying illumination conditions. In [36] Markov models and Gaussian mixtures
are applied for multi-hypothesis position tracking. In [77] an on-line version of ap-
pearance based place detection is proposed where a place detector decides which
features belong to which place integrating odometric information and a hidden
Markov model. An appearance based approach is adopted in [78] to detect loop
closure; 3D SLAM is performed using a 3D laser scanner.

The main contribution of this work is a novel mapping algorithm based mainly
on visual information. By introducing a functional concept of node, the robot
creates maps that closely resemble roadmaps. Fur themore dealing with large
environments with a robotic platform affected by poor odometry induced us to
define a topological map which is no metric related. This means that there are
no landmarks and no metric information to be estimated from the environment.
Although this approach denies the possibility of having the robot pose known
with precision, we hypothesize that this is not the main goal in large environments
applications. Nevertheless our approach allows merging metric and topological
maps for instance by augmenting each node with a small scale detailed map, where
needed.

76 Towards Topological Maps

Figure 7.1: An outline of the proposed architecture.

7.3 Overview

The proposed system performs exploration and SLAM at the same time. Although
the exploration process is not detailed here, it should be pointed out that it is a
crucial step for the map building and updating. Going through the same nodes
and edges more and more times will produce a more correct and coherent map. In
this section we will overview the main components of our system, outlined in Fig.
7.1.

The robot goal is to build a topological map describing the choices the envi-
ronment offers in terms of branching in the navigable space. The topological map
is a undirected graph; each node is a place in the environment where the robot
may follow more than one path. In order to discover such places a local metric
map of the environment has to be built. Although this may seem in contrast with
our approach, it is needed in order to exploit the environment structure and to
find navigable space.

A local map is a detailed metric map built by performing 3D reconstruction
of stereo images and by projecting to a 2D plane the obstacles. Even though the
compression of the dimensionality results in a loss of possible recognizable features
(e.g. shape), the remaining information is sufficient for the subsequent steps to be
performed. Navigable space between obstacles will represent a possible branching
of the pathway.

The local map is very bounded in space, as it relies on odometric and visual
information, which are well-known to be very noisy. Namely 3D reconstruction is

7.3 Overview 77

performed using a maximum range threshold of 10 meters, as the performances
of the stereo reconstruction are usually unreliable at longer ranges. Moreover we
consider robot displacement of at most 3 meters, as experimentally it has been
noted that our robotic platform odometry is unreliable for longer distances.

The local metric map is represented as a 2D occupancy grid map [19] where
each cell contains the probability of being occupied. In contrast with previous
approaches we do not need an accurate representation of the environment from a
metric point of view. As a consequence, inaccuracies due to stereo mismatch do
not affect the proposed approach. Subsequent steps will take care of detecting false
positive, i.e. the absence of navigable space between obstacles. Even though some
obstacles regions in the local map are sparse and noisy, the incremental building of
the occupancy grid results in the filling of the "holes" between adjacent obstacles.
Moreover by accumulating data over time we overcome the problems due to the
limited field of view of the stereo camera.

When a new node is discovered, it needs to be validated, i.e. each potential
branching should be checked to be sure it is not due to reconstruction errors. This
is accomplished by moving the robot to an observation point and checking if there
is enough space to account for navigability. The second step is to memorize the
appearance of each edge, information needed either for localization and navigation
purposes. Appearance based localization and navigation is a growing topic that
has shown good results even in large unstructured environments [50, 77, 47, 36, 51].
Moreover it is not very susceptible to perceptual aliasing, as it uses the whole image
as data to learn and to recognize. Using the sum of appearances of edges allows us
to reduce the node recognition problem to smaller classification problems, easier to
solve and lesser susceptible to perceptual aliasing. Furthermore the robot builds a
probabilistic model of the edges appearance that is useful to integrate observations
during localization.

Localization is performed using Bayesian recursive integration of beliefs with
actions and observations. As the robot real position is unknown, multiple hypothe-
sis have to be tracked. This means that we have a discrete probability distribution
(belief function) over the map nodes. Each time the robot performs an action, i.e.
each time a robot travels over an edge, and each time it gather observations, i.e.
it checks the appearance of a node, the belief needs to be updated. This is accom-
plished by performing exact inference in a dynamic Bayesian network unrolled for
two time slices.

Map updating is a crucial step for the success of the proposed system. As every
information gathered by the robot is corrupted by noise, the topological structure
of the map should be flexible enough to allow changes coherent with the new
environment discoveries. The only information which will be fixed in time during
map building and updating is the presence and appearance of nodes. This means
that once the discovery and validation of a node terminates, the node will never be

78 Towards Topological Maps

deleted from the map. Although this may seem a strong assumption, experimental
results showed that nodes identification is reliable and robust to noise. The edges
connecting the nodes may vary instead. This may happen if the robot started
from a node i, followed an edge ei,j but reached a node k 6= j. In this case various
options may be considered, namely that the robot was not in the node i, or it is
not in node k, or the edge ei,j was wrong. Depending on the belief and the edges
“credibility” this may lead in the worst case to edge deletion or creation of a new
one.

Navigation is performed by following an edge until the next node is detected.
An edge is not required to be a straight connection between two places, but navi-
gating between two nodes is a straightforward process not error prone. This follows
from the node definition: navigating an edge could be related to travelling through
a corridor, without any multiple choice. If a branching is detected, then it must
be a node. Furthermore the robot can choose among the edges by using their
appearance.

Next sections will explain in more details the introduced architecture modules.

7.4 Node discovery

Node discovery is performed by constructing a short-time local metric map inte-
grating the visual information the robot sensed in a bounded region. Each time a
region shows potential multiple choices, a node may be created1.

Each time step the robot performs a 3D reconstruction using the Triclops stereo
vision module (see 7.9). The result of the stereo procedure is a point cloud referred
to a local frame of reference located in the right camera. A Hough transform is
used to estimate the ground plane in front of the robot [79]. The 3D points are
then classified in floor points which are not considered for updating the map, and
obstacle points. The local map is updated by projecting down the obstacle points
and pruning away the points too high to represent a real obstacle for the robot
(e.g. the tree’s branches overhanging the road).

The local map is thresholded to obtain an obstacles binary image. The pixels
are then clustered using the connected components algorithm [80] and the too small
clusters are discarded. The obstacles image is converted in a space of configurations
for the robot using the star algorithm [81]; the result is still an obstacle binary
image. The connected components algorithm is applied again to obtain a set of
disjoined obstacles. This two steps procedure allows to obtain the robot navigable
space and to minimize the impact of the 3D reconstruction errors. A modification

1Due to errors in the visual processing, a potential choice has to be verified prior creating a
node, as explained below.

7.4 Node discovery 79

of the wavefront algorithm is used to compute the minimum distances between
each pair of obstacles:

1. For each pair of obstacles (Oi, Oi+1), starting from the lower left and in a
clockwise pattern:

2. Expand the obstacles using the wavefront until the two waves collide in some
point Pi.

3. Select the next pair of obstacles (Oi+1, Oi+2) and go back to step 1.

This way we obtain a list of points Pi, each of them representing a possible path
choice (edge). If there exists more than one such point then a node could be
created.

Before adding a new node to the map, it has to be verified that either the
selected points really span a new path (clearance check) and the node is not already
present in the map (memory check). The robot needs to find an observation
point from where to look at all the extracted points Pi. The observation point is
computed as follow:

1. Select among the set Pi the farthest point as goal g (using the robot position).

2. Use the wavefront naive algorithm to obtain the shortest path between the
robot and g.

3. Simulate the robot following the path.

4. For each step:

5. Apply the Line Sweep algorithm [82] to the Pi set and the current position.

6. If all the points are visible, then return the current position V .

7. Go back to step 5.

According to the Line Sweep algorithm, it is possible to obtain a clear view of
all the Pi from V . The robot then moves to the observation point V , it uses the
pan-tilt to look at each point Pi and performs both the checks named above.

The above procedure is illustrated with a toy example in Fig. 7.2. In Fig. 7.2a
the robot has built a local binary map composed by four large obstacle plus some
noise. After applying the first clustering and removing small clusters the noise is
removed. The second step (Fig. 7.2b) is to create the configuration space, which
has the effect of connecting the two obstacles on the right into a larger one. Next
the minimum distance between pairs of obstacles is computed by iterating between
pairs of obstacles in a clockwise way. In Fig. 7.2c the first distance is computed,

80 Towards Topological Maps

(a) Initial conditions (b) After pruning small clusters and creating
the C-Space.

(c) After the wavefront expansion. (d) An observation point is found.

Figure 7.2: Illustration of the node discovery procedure. See text for details.

7.5 Map Building and Updating 81

Figure 7.3: Local map shifting. As the robot moves (from the red point to the
green one) the local map shifts according to the new perceptions.

and the first point of contact between the two wavefronts is shown as a diamond.
The final step is to find an observation point, shown as the red one in Fig. 7.2d.

The memory check is described in section 7.7. The clearance check is performed
by a weighted sum of the number of points belonging to the ground floor, weighting
more the fartest points. Only the points Pi that pass both the checks are retained.
If the remaining points still number more than one, then a node is added to the
topological map.

The local map is updated until the robot has traveled for more than 3 meters.
In fact, below this threshold the odometry estimate can be considered sufficiently
accurate for our purposes and the resulting local map is piecewise correct. The
local map can be considered as a dynamic window spanning a fictitious global
map. As the robot moves new pieces of information are added to the local map
while old ones are discarded (see Fig. 7.3). As a consequence past data are not
completely erased as two subsequent local maps are partially overlapped. This
allows to reduce the number of false negative due to the limited field of view of
the stereo camera.

Furthermore if a possible branching has been detected and the robot is ap-
proaching the corresponding observation point, then the local map updating is
suspended.

7.5 Map Building and Updating

In order to manage a topological map we need to update nodes and edges as the
robot gathers new information about the environment. The only piece of informa-
tion upon which the robot can rely is the presence of nodes, as the discovering and
validation process described in section 7.4 assures us that a node is really present.
What we do not know is where the robot really is and, more important for a SLAM
application, what is the map topology. The first kind of uncertainty is addressed
by the use of Bayesian integration of the belief function, as described in section
7.7. This allow us to know, with a great degree of confidence, in which nodes
the robot is most likely to be. The second source of uncertainty arises from the

82 Towards Topological Maps

edges linking the nodes. In order to link two nodes we must be sure of how many
edges may depart from a node (this is a reliable information), and how reliable is
the information that the robot was in node i before arriving in a node j. We can
use again the belief function to obtain a degree of confidence that an edge really
exists. This is exploited in the following, where we propose a novel algorithm to
manage the map, allowing edges to be created or deleted as the robot became more
confident in its beliefs.

The environment map is represented as an unoriented graph G = (V, E), where
V is the set of nodes and E is the set of edges. Each edge e has a value c(e)
associated representing its “credibility”, i.e. the probability that the edge really
exists. A special kind of edge is the dangling edge, i.e. an edge that does not
connect to a node: future exploration will replace a dangling edge with a real one.

When the robot detects a new node (after both memory and clearance checks),
this has to be connected to the existing ones. All the active nodes in the belief
function, i.e. {i|P (x = i) > 0} are eligible to be linked to the new node. On
the other side, if the robot detects an old node, all the active nodes in the pre-
vious belief could connect to all the active nodes in the new belief. This leads
to a competitive node linking process, where each node tries to gather resources
represented as the other nodes edges. This competition is regulated by the value
φ(xt−i, xt) = P (xt−i = i)P (xt = j), which represents the degree of confidence that
the robot travelled from node i to node j. Obviously if a node tries to connect
to more than one node using the same edge (i.e. by performing the same action)
then it will choose to create only the connection with the highest φ value. The
following procedure is used to connect node i to node j, to be applied either to
new node or existing ones:

• While there are not more nodes to be connected:

• Connecting dangling edges: If the robot was going through a dangling
edge belonging to node i, and node j has a spare dangling edge, then create
a new edge between the two nodes and set its value to φ.

• Competition between nodes: If the robot was going through a dangling
edge belonging to node i, and node j has not a spare dangling edge, then:

– If φ is greater than the edge in j with lower c(e) then delete e and create
a new edge (i, j).

– Otherwise the new edge is not created.

• If the robot was going through an existing edge e then:

– Increasing the edge value: If e is already connecting i and j, then
replace its value by max{c(e), φ}.

7.6 Node Appearance 83

– If e is connecting another edge k 6= j, then:

∗ The new edge is more credible than the old one: If φ > c(e)
then delete e and create a new edge between i and j, setting its
value to φ.

∗ No map updating: Otherwise do not connect the two nodes.

Although this procedure may lead to the creation of phantom edges (i.e. a link
between two nodes that are not really connected in the environment), further
explorations will lead to refining the edges as the robot become more confident in
its position. Furthermore it should be noted that the observations P (y|x) are not
included in the edge values, as they are already included in the belief calculation,
otherwise we will count them twice.

An example of this procedure is shown in Fig. 7.4. The start condition is
shown in Fig. 7.4a, where the topological map has three nodes and the belief
is P (X) = {0.4, 0.2, 0.4}; fur themore two edges are labelled with their value,
whereas the other edges are dangling ones. The robot chose three actions, one for
each node with belief greater than zero, shown in Fig. 7.4b as the red edges. A
new node with three edges is discovered and validated; the edge from which the
robot was coming from is shown in red. The map is then updated, and the result
is shown in Fig. 7.4c. Here two new edges are created, linking spare dangling
edges, and labeled with the belief of the tail node. The first node had no dangling
edges, but the one the robot was following had a lower value than the new one.
This means that the new edge is more “credible” than the old one, and it can be
replaced, leading to the new map configuration shown in Fig. 7.4c.

7.6 Node Appearance
The robot needs to memorize a node appearance to recognize it in the future. We
define the appearance of the node as the appearances of all its edges, so that to
recognize a node the robot needs to check the appearance of all the edges. When
a new node is added to the topological map, the appearance of each new edge is
obtained from the observation point. We follow a procedure similar to the one in
[77], where the appearance of the edge connecting node i to j is modelled as a
Gaussians mixture model:

Υi,j =
C∑
k

πiN (vi,j|µk, Σk) (7.1)

The features vector vi,j is extracted from the images using Principal component
analysis [47]. For each edge a bunch of images is collected by moving the robot

84 Towards Topological Maps

(a) The initial graph.

(b) After discovering a new node.

(c) Map updating.

Figure 7.4: An example of map updating. See text for details.

7.7 Localization 85

Figure 7.5: The Dynamic Bayesian Network used for localization unrolled for two
time slices. In this example the map comprises three nodes, therefore there are
three action nodes ui

t−1

pan-tilt unit. Each feature vector is reduced to a low-dimensional one via PCA.
Learning is performed using MML-EM [55] to produce the model in eq. 7.1.

Once the training is performed we obtain a sensor model P (ei,j|vt) representing
the probability of sensing the edge ei,j given the features vector vt. This model
will be used for localization purpose (see sec. 7.7).

7.7 Localization

The localization problem concerns calculating the probability p(x1:t|y0:t, u1:t) of
going through the states x0:t given the past observations y and controls u. This is
accomplished by the well-known Bayesian recursive formula (discrete case):

p(x1:t|y0:t, u1:t) = p(yt|xt)
∑
xt−1

p(xt|ut−1), xt−1)p(xt−1) (7.2)

graphically represented by the Dynamic Bayesian Network in Fig. 7.5.
According to our model the robot state is a discrete probability distribution

(referred to as belief function bt) over the topological map nodes, i.e.:

P (xt) ≡ P (xt = i), i = 1 . . . |V | (7.3)

To avoid unneeded wasteful computations we delete states with a very low prob-
ability, normalizing the resulting belief function. The observation model P (yt|xt)

86 Towards Topological Maps

is derived from the node appearance in eq 7.1, assuming that the appearance of
every single edge is independent of all the other appearances:

P (yt|xt = i) =
∏

k∈edg(i)

Υi,k (7.4)

where edg(i) is the set of all the edges of node i.
The set of possible actions is dependent on the current node, i.e. U ≡ U(x),

and it represents going along one of the edges of the node. The set of all the
possible actions given a belief bt is the union of all the possible actions:

U(bt) ≡
⋃

x|P (x)>0

U(x) (7.5)

This model allows us to split the set of all the possible actions to several smaller
sets of actions each of them depending on the node. During navigation the robot
has to choose which action to perform, i.e. which edge to follow, for each node
which a probability greater than zero (note that nodes with a small probability are
not considered, as explained above). The transition probability is then modelled
as:

P (xt = i|xt−1, ut−1) =

0.9 if ut−1 = goto i

0 if xt− 1 = x
0.1

|edg(i)|−1
otherwise

(7.6)

To take into account errors due to odometry or perceptual aliasing we induced a
small error in the transition, dependent on the number of edges of a node. The
second case in equation 7.6 is needed to avoid some perceptual aliasing problems:
it is assumed impossible that a robot starts from a node, follows an edge and
then finish in the same node it was starting from. This means also that it will
be impossible for the map updating process to add an edge connecting a node to
itself, as navigating an edge means moving from one node to another one.

Localization is performed by unrolling the DBN for two slices and then applying
the junction tree algorithm [83], treating the observation and control nodes as
evidence. Each time the robot recognizes the presence of a node (as in section
7.4) it moves to the observation point and for each potential edge it queries all the
nodes appearance using eq. 7.4. If the result is grater than a threshold for some
node j, then the new node is recognized as an old one and the belief is updated as
described above. If no node is recognized, a new one is added to the topological
map and the belief is updated including the larger state space. It may happens
during map updating that an edge is removed and a new one is added. In this
case the action associated with the old edge is replaced with the new one prior
updating the belief.

7.8 Navigation 87

7.8 Navigation

Although navigation is not a full covered topic in this chapter, we will outline
it in an informal view. Imagine the robot having a plan to go from node i to
node k. If we assume that the state and actions are fully observable (otherwise
we should use a partially observable Markov decision process, see section 7.10),
a plan may be generated using a graph search algorithm like Dĳkstra algorithm
or A*. Furthermore we could augment each edge with its length (although this
information is very subject to odometric errors) or time-to-traverse, to obtain an
optimal path.

Once a plan has been generated, navigation is performed by identifying the
edges that connect each node in the plan. This is accomplished by moving the
robot in the observation point as explained in section 7.4, and checking the edge
appearance with the one needed to reach the next node. Then the robot may start
following an edge until it detects a new node, repeating the process again.

Edge following may be accomplished by a low-level routine like corridor follow-
ing. Although we do not have necessarily a corridor to follow, we could rely on
the fact that no fork may happen during edge traversal, unless the robot arrived
in a node. This means that in order to navigate an edge the robot needs only to
navigate the free space going away from the starting node until it finds a new one.
This is somewhat the same process we human could use when navigating in an
urban environment or along highways.

7.9 Experimental Results

The robotic platform used for our experiments is a Pioneer 3-AT from Mobile
Robots. The robot is equipped with a Bumblebee2 stereo vision camera that is
mounted atop a pan-tilt unit and it is connected via an IEEE 1394 link to an EBX
form-factor single board PC, powered by a Pentium Mobile processor clocked at
1.6GHz. The Triclops Stereo SDK included with the Bumblebee2 performs Sum
of Absolute Differences (SAD) stereo correlation and produces dense disparity
images. Furthermore the robot is equipped with a laser rangefinder and a GPS
unit, although we did not use them for our experiments.

Experiments were conducted in the context of a botanical garden robotic guide
[84]. The environment is characterized with long pathways sided with walls or
plants. The terrain is often covered by foilage and sometimes muddish. This de-
scription fits our definition of semi-structured environment, because the pathways
are screened by obstacles and connected by junctions or large plazas. The robot
was teleoperated while moving along pathways, but switched to automatic control
when it detected a node. The route was about 500m long.

88 Towards Topological Maps

(a) Rectified image. (b) Occupancy grid after 1m travelling.

(c) Binary obstacle image. (d) Configuration space.

Figure 7.6: A local map without detecting nodes.

7.9 Experimental Results 89

(a) Rectified image. (b) Occupancy grid after 1m travelling.

(c) Occupancy grid after 2.5m travelling.

Figure 7.7: A local map. A potential node has been detected

90 Towards Topological Maps

(a) Topological map built after closing one
loop.

(b) Creation of a phantom edge.

(c) Correcting the topological map. (d) The final map.

Figure 7.8: Steps in creation of the topological map.

Two snapshot taken along the route are shown in Fig.s 7.6 and 7.7. The first
one was taken along a pathway where the robot had no choice but going forward.
Fig. 7.6a shows the occupancy grid built after 1m travelling. The corresponding
binary obstacle image (Fig. 7.6b) shows that reconstruction errors leaded to a
phantom hole in the right obstacle. This was corrected by the star algorithm
during the configuration space creation (7.6c), where the two obstacles on the
right were merged to became only one. The second snapshot corresponds to a
junction near a fountain (Fig. 7.7). In Fig. 7.7b the junction was too far away
to be detected, but after 1.5m travelling the robot sensed the trees in front of
it detecting a potential node (Fig. 7.7c). Subsequent validation leaded to the
creation of a new node.

The robot was allowed to make several runs in the environment in order to
validate the map updating algorithm. During the first run the robot discovered all
the nodes in the map. Several phantom nodes were created along a pathway where
small pathways in the side walls where discovered. However they were too small for
the robot to traverse, and they were discarded during the validation process. The
result of the first run is shown in Fig. 7.8a. All the edges and nodes were correctly
discovered, although many internal links were not yet discovered. Several runs

7.10 Conclusions 91

were performed to discover the inter-connections between nodes. The updated map
after the first run is shown in Fig. 7.8b: here the presence of multiple unexplored
choices (dangling edges) leaded to the creation of a phantom edge between nodes b
and d. Subsequent runs deleted the edge (b, d) to create the right edge (b, f). The
final map is shown in Fig. 7.8d: it took 11 runs to create it, with a total travelling
distance of 2.3 km.

In order to further validate our approach the system was tested in an indoor
environment. The robotic platform we used is a Performance PeopleBot from
Mobile Robots, equipped the same way as the P3-AT. Fig. 7.9b shows a correct
node detection. Even if three branches were detected, the one on the left was
correctly discarded after validation, as the robot became rid of the door occlusion.
Fig. 7.9d shows a false negative: the robot was not able to detect the open door at
the end of the room in Fig. 7.9c. A more careful environment exploration would
have surely discovered it, but the assumption of large semi-structured environment
conflicted with the cluttered image presented in Fig..

7.10 Conclusions
In this chapter we presented a novel approach to simultaneous mapping and lo-
calization based mainly on visual information. The main contribution is the func-
tional definition of a node, i.e. as a place where a branching of the navigational
space appears. Furthermore the robot is able to build a map which is in no way
metric related, thus it is not affected by position estimation errors. Metric infor-
mation is used only to build a local map, which is small enough to be unaffected
by odometric or 3D reconstruction errors, and it is needed only to place detection
purposes. Bayesian inference is used either for localization and map updating, to
take into account of sensing and actions uncertainty. Data aliasing is addressed
by using multiple instances of images appearance and integrated in the recursive
belief updating. Finally experimental results showed that the proposed map up-
dating algorithm is strong enough to deal with loop closures problems, although
it needs several environment exploration runs to create a coherent map.

92 Towards Topological Maps

(a) Rectified image. (b) Occupancy grid after 0.5m travelling.

(c) Rectified image. (d) Occupancy grid after 0.5m travelling.

Figure 7.9: Local maps in indoor environment.

Part IV

Conclusions and future works

94

One of the main goal of robotics research is to make robots fully autonomous
while they perform their duties. A robot should be able to cope with problems
which could arise during its task. These are often unpredictable as a programmer
cannot predict all of them in advance. Sources of errors may be due to inaccu-
rate modelling of robot sensors, actuators, or environment. But problems often
arise when the robot has to deal with a highly dynamic environment, like robotic
museum tour-guides often do.

In this thesis we addressed the above problems by proposing fault tolerant
robotic architectures. The first proposed architecture introduced a high level deci-
sion system to allow the robot taking decision when facing with obstacles to fullfill
its task. The decision system works coupled with a dynamic Bayesian network to
estimate unobservable world states. For example we tried to address the problem
of people blocking the robot path. Depending on sensor data and on an estimate
of the people number, the robot was able to decide how to react. He asked people
to move aside when avoiding them was too hard, while it decided to outmaneuver
them if there was enough space. This behavior was not provided in advance to
the robot, but it emerged from the decision system. This example proved that a
probabilistic reasoning system coupled with low-level routines increased the robot
performances while operating in a dynamic environment.

We had to face different problems while dealing with an outdoor environment.
Here large spaces and poor odometry made localization based on metric maps
unreliable. The first proposed outdoor robotic system used GPS data to cluster
the environment, and fixed route points to navigate. Although the system proved
reliable, its main drawback is that it relies on human made environment represen-
tation, limiting robot autonomous capabilities. We tried to address this issue in the
second proposed architecture, which employs appearance based place recognition.
According to this approach, the robot is able to detect places in the environment
using holistic features extraction from camera images. The data association prob-
lem is addressed by coupling sensed images with odometric information, which is
reliable for small distances.

In the third and last robotic architecture we proposed a functional definition
of meaningful places. In contrast with the previous approach, where places were
detected according to differences in images and distances between them, a place is
detected if it is useful for the robot task. As one of the main tasks is navigation,
we defined a place as a subset of the environment where a branching is present. A
topological map has been used to represent the environment, and a novel proba-
bilistic algorithm has been proposed to update the map while the robot gains new
information.

Future works include adapting the high level decision system to the outdoor
robotic systems, mainly to decide where to explore in order to build and refine the
topological map. The robot could also use the decision system in order to detect

95

nodes using its own notion of “functional”. Furthermore, as a robotic museum
tour-guide has to interact with people, we should introduce advanced human-
robot interaction algorithms to make it more appealing. Finally we are working
on providing the robot with a capability to understand spoken language in order
to introduce an easier way to interact with it.

Bibliography

[1] I. Horswill, “Specialization of Perceptual Processes,” 1995.

[2] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,” Pro-
ceedings of AAAI, vol. 98, pp. 11–18, 1998.

[3] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schmidt, “Map learning and high-speed nav-
igation in RHINO,” Artificial intelligence and mobile robots: case studies of
successful robot systems table of contents, pp. 21–52, 1998.

[4] S. Koenig and R. Simmons, “Xavier: a robot navigation architecture based on
partially observable Markov decision process models,” Artificial intelligence
and mobile robots: case studies of successful robot systems table of contents,
pp. 91–122, 1998.

[5] J. Pineau and G. Gordon, “POMDP planning for robust robot control,” The
Twelveth International Symposium on Robotics Research, 2005.

[6] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert,
D. Fox, D. Hahnel, C. Rosenberg, N. Roy, et al., “Probabilistic Algorithms
and the Interactive Museum Tour-Guide Robot Minerva,” The International
Journal of Robotics Research, vol. 19, no. 11, pp. 972–999, 2000.

[7] R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Grep-
pin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, et al., “Robox at Expo.
02: A large-scale installation of personal robots,” Robotics and Autonomous
Systems, vol. 42, pp. 203–222, 2003.

[8] I. Nourbakhsh, J. Bobenage, S. Grange, R. Lutz, R. Meyer, and A. Soto, “An
affective mobile robot educator with a full-time job,” Artificial Intelligence,
vol. 114, no. 1-2, pp. 95–124, 1999.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.

BIBLIOGRAPHY 97

[10] R. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. ASME, Journal of Basic Engineering, no. 82, pp. 35–45, 1960.

[11] S. Julier and J. Uhlmann, “A new extention of the kalman filter to nonlinear
systems,” in International Symposium on Aerospace/Defence Sensing, Simu-
late and Controls, 1997.

[12] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the Amer-
ican Statistical Association, no. 44, pp. 335–341, 1949.

[13] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” Radar and Signal Processing, IEE Pro-
ceedings F, vol. 140, no. 2, pp. 107–113, 1993.

[14] A. Doucet, “On Sequential Simulation-Based Methods for Bayesian Filtering,”
1998.

[15] A. Doucet and N. De Freitas, Sequential Monte Carlo Methods in Practice.
Springer, 2001.

[16] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in
dynamic environments,” Journal of Artificial Intelligence Research, vol. 11,
pp. 391–427, 1999.

[17] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo local-
ization for mobile robots,” Artificial Intelligence, 2001.

[18] S. Thrun, “Robotic Mapping: A Survey,” Exploring Artificial Intelligence in
the New Millennium, 2003.

[19] H. Moravec and A. Elfes, “High resolution maps from wide angular sensors,”
in Proceedings of the IEEE International Conference On Robotics and Au-
tomation (ICRA-85), pp. 116–121, IEEE Press, 1985.

[20] H. Moravec and M. Martin, “Robot navigation by 3D spatial evidence grids,”
Mobile Robot Laboratory, RoboticsInstitute, CarnegieMellonUniversity, 1994.

[21] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete
Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[22] S. Thrun, W. Burgard, and D. Fox, “A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots,” Autonomous Robots, vol. 5,
no. 3, pp. 253–271, 1998.

98 BIBLIOGRAPHY

[23] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to col-
lision avoidance,” Robotics & Automation Magazine, IEEE, vol. 4, no. 1,
pp. 23–33, 1997.

[24] A. Madsen and U. Kjærulff, “Applications of HUGIN to Diagnosis and Con-
trol of Autonomous Vehicles,” STUDIES IN FUZZINESS AND SOFT COM-
PUTING, vol. 213, p. 313, 2007.

[25] S. Lauritzen and D. Nilsson, “Representing and Solving Decision Problems
with Limited Information,” Management Science, vol. 47, no. 9, pp. 1235–
1251, 2001.

[26] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian Robot Program-
ming,” Autonomous Robots, vol. 16, no. 1, pp. 49–79, 2004.

[27] G. Infantes, F. Ingrand, and M. Ghallab, “Learning Behaviors Models for
Robot Execution Control,” Proc. 17th European Conference on Artificial In-
telligence ECAI, 2006.

[28] X. Perrin, R. Chavarriaga, R. Siegwart, and J. Millan, “Bayesian controller
for a novel semi-autonomous navigation concept,” in Proceedings of the 3rd
European Conference on Mobile Robots, 2007.

[29] G. Theocharous, K. Murphy, and L. Kaelbling, “Representing hierarchical
POMDPs as DBNs for multi-scale robot localization,” Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 1, 2004.

[30] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle filters for mo-
bile robot localization,” in Sequential Monte Carlo Methods in Practice
(A. Doucet, N. de Freitas, and N. Gordon, eds.), pp. 499–516, Springer Verlag,
2001.

[31] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, “An
Atlas framework for scalable mapping,” Robotics and Automation, 2003. Pro-
ceedings. ICRA’03. IEEE International Conference on, vol. 2, 2003.

[32] J. Blanco, J. Fernandez-Madrigal, and J. Gonzalez, “A New Approach for
Large-Scale Localization and Mapping: Hybrid Metric-Topological SLAM,”
Robotics and Automation, 2007 IEEE International Conference on, pp. 2061–
2067, 2007.

[33] C. Estrada, J. Neira, and J. Tardos, “Hierarchical SLAM: Real-Time Accurate
Mapping of Large Environments,” IEEE Transactions on Robotics, vol. 21,
no. 4, pp. 588–596, 2005.

BIBLIOGRAPHY 99

[34] A. Chella, I. Macaluso, and L. Riano, “Automatic Landmark Detection and
Recognition in Autonomous Robotics,” in Proceedings of the 2007 Interna-
tional Joint Conference on Artificial Intelligence (ĲCAI), Workshop on At-
tention in Cognitive Systems, 2007.

[35] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges,” Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (ĲCAI), vol. 1156, 2003.

[36] J. M. Porta and B. Kröse, “Appearance-based concurrent map building and
localization,” Robotics and Autonomous Sustems, vol. 54, 2006.

[37] Y. Matumoto, K. Sakai, M. Inaba, and H. Inoue, “View-based approach to
robot navigation,” in Proceedings of the 2000 IEEE/RSJ International Intel-
ligent Robots and Systems, pp. 1702–1708, IEEE Press, 2000.

[38] S. Se, D. Lowe, and J. Little, “Mobile Robot Localization and Mapping
with Uncertainty using Scale-Invariant Visual Landmarks,” The International
Journal of Robotics Research, vol. 21, no. 8, pp. 735–758, 2002.

[39] A. Chella and I. Macaluso, “Sensations and perceptions in cicerobot, a mu-
seum guide robot,” in BICS 2006 Conference, 2006.

[40] A. Eliazar and R. Parr, “Learning probabilistic motion models for mobile
robots,” ACM International Conference Proceeding Series, 2004.

[41] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters,” Robotics, IEEE Transac-
tions on [see also Robotics and Automation, IEEE Transactions on], vol. 23,
no. 1, pp. 34–46, 2007.

[42] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization:
Efficient position estimation for mobile robots,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1999.

[43] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope,” International Journal of Computer Vision,
vol. 42, no. 3, pp. 145–175, 2001.

[44] R. Sim and G. Dudek, “Comparing Image-based Localization Methods,” in
Proceedings of the Eighteenth International Joint Conference on Artificial In-
telligence (ĲCAI), Acapulco, Mexico, 2003.

100 BIBLIOGRAPHY

[45] M. Jogan and A. Leonardis, “Robust Localization using Eigenspace of
Spinning-Images,” in Proceedings of the IEEE Workshop on Omnidirectional
Vision, Hilton Head Island, South Carolina, 2000.

[46] B. Kröse, N. Vlassis, and R. Bunschoten, “Omnidirectional Vision for
Appearance-based Robot Localization,” in Lecture Notes in Computer Sci-
ence, vol. 2238, Springer, 2002.

[47] H. V. Neto and U. Nehmzow, “Visual novelty detection for inspection tasks
using mobile robots,” in Proceedings of the 8th Brazilian Symposium on Neural
Networks (SBRN 2004), 2004.

[48] M. Artac̆, M. Jogan, and A. Leonardis, “Mobile Robot Localization Using
an Incremental Eigenspace Model,” in Proceedings of the 2002 IEEE Interna-
tional Conference on Robotics Automation, May 2002.

[49] A. Ranganathan, E. Menegatti, and F. Dellaert, “Bayesian inference in the
space of topological maps,” IEEE Transactions on Robotics, vol. 22, Feb.
2006.

[50] A. Torralba, K. Murphy, W. Freeman, and M. Rubin, “Context-based vision
system for place and object recognition,” in Proceedings. Ninth IEEE Inter-
national Conference on Computer Vision, 2003, 2003.

[51] C. Siagian and L. Itti, “Rapid Biologically-Inspired Scene Classification Us-
ing Features Shared with Visual Attention,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 2, 2007.

[52] J. M. Porta, J. Verbeek, and B. Kröse, “Active Appearance-Based Robot
Localization Using Stereo Vision,” Autonomous Robots, vol. 18, no. 1, 2005.

[53] B. Yamauchi and R. Beer, “Spatial learning for navigation in dynamic en-
vironments,” IEEE Transactions on Systems, Man and Cybernetics-Part B.,
vol. 26, no. 3, pp. 496–505, 1996. Special Issue on Learning Autonomous
Robots.

[54] K. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,
Applications. Boston: Academic Press, 1990.

[55] M. A. Figuerido and A. K. Jain, “Unsupurevised Learning of Finite Mixture
Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 3, 2002.

BIBLIOGRAPHY 101

[56] M. Song and H. Wan, “Highly Efficient Incremental Estimation of Gaussian
Mixture Models for Online Data Stream Clustering,” in SPIE Conference on
Intelligent Computing: Theory And Application III, 2005.

[57] O. Ledoit and M. Wolf, “Some hypothesis tests for the covariance matrix
when the dimension is large compared to the sample size,” The Annals of
Statistic, vol. 30, no. 4, 2002.

[58] A. Poncela, E. Perez, A. Bandera, C. Urdiales, and F. Sandoval, “Efficient in-
tegration of metric and topological maps for directed exploration of unknown
environments,” Robotics and Autonomous Systems, vol. 41, no. 1, pp. 21–39,
2002.

[59] B. Kuipers, “The Spatial Semantic Hierarchy,” Artificial Intelligence, vol. 119,
no. 1–2, pp. 191–233, 2000.

[60] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro, et al., “Autonomous
exploration and mapping of abandoned mines,” Robotics & Automation Mag-
azine, IEEE, vol. 11, no. 4, pp. 79–91, 2004.

[61] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” Robotics and Automation, IEEE Transactions on, vol. 7,
no. 3, pp. 376–382, 1991.

[62] K. Murphy, “Bayesian map learning in dynamic environments,” Advances in
Neural Information Processing Systems, vol. 12, pp. 1015–1021, 2000.

[63] G. Grisetti, G. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, “Fast and
accurate SLAM with Rao-Blackwellized particle filters,” Robotics and Au-
tonomous Systems, vol. 55, no. 1, pp. 30–38, 2007.

[64] H. Shatkay and L. Kaelbling, “Learning Geometrically-Constrained Hidden
Markov Models for Robot Navigation: Bridging the Topological-Geometrical
Gap,” Journal of Artificial Intelligence Research, vol. 16, pp. 167–207, 2002.

[65] N. Ayache, O. Faugeras, and L. INRIA, “Maintaining representations of the
environment of a mobile robot,” Robotics and Automation, IEEE Transactions
on, vol. 5, no. 6, pp. 804–819, 1989.

[66] D. Lowe, “Object recognition from local scale-invariant features,” Interna-
tional Conference on Computer Vision, vol. 2, pp. 1150–1157, 1999.

102 BIBLIOGRAPHY

[67] S. Se, D. Lowe, and J. Little, “Vision-based mobile robot localization and
mapping using scale-invariant features,” Robotics and Automation, 2001. Pro-
ceedings 2001 ICRA. IEEE International Conference on, vol. 2, 2001.

[68] S. Se, D. Lowe, and J. Little, “Vision-based global localization and mapping
for mobile robots,” Robotics, IEEE Transactions on [see also Robotics and
Automation, IEEE Transactions on], vol. 21, no. 3, pp. 364–375, 2005.

[69] R. Sim, P. Elinas, M. Griffin, and J. Little, “Vision-based SLAM using the
Rao-Blackwellised particle filter,” ĲCAI Workshop on Reasoning with Uncer-
tainty in Robotics, 2005.

[70] A. Davison, “Real-time simultaneous localisation and mapping with a sin-
gle camera,” Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pp. 1403–1410, 2003.

[71] J. Shi and C. Tomasi, “Good features to track,” Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on, pp. 593–600, 1994.

[72] M. Garcia and A. Solanas, “3D simultaneous localization and modeling from
stereo vision,” Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, vol. 1, 2004.

[73] C. Harris and M. Stephens, “A combined corner and edge detector,” Alvey
Vision Conference, vol. 15, p. 50, 1988.

[74] W. van der Mark, F. Groen, and J. van den Heuvel, “Stereo based navigation
in unstructured environments,” Instrumentation and Measurement Technol-
ogy Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE, vol. 3, 2001.

[75] P. Bellutta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin, “Terrain
perception for DEMO III,” Intelligent Vehicles Symposium, 2000. IV 2000.
Proceedings of the IEEE, pp. 326–331, 2000.

[76] M. Lutzeler and E. Dickmanns, “EMS-vision: recognition of intersections on
unmarked road networks,” Intelligent Vehicles Symposium, 2000. IV 2000.
Proceedings of the IEEE, pp. 302–307, 2000.

[77] A. Chella, I. Macaluso, and L. Riano, “Automatic place detection and local-
ization in autonomous robotics,” Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), 2007.

BIBLIOGRAPHY 103

[78] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual appearance and
laser ranging,” IEEE International Conference on Robotics and Automation,
2006.

[79] A. Erkan, R. Hadsell, P. Sermanet, J. Ben, U. Muller, and Y. LeCun, “Adap-
tive long range vision in unstructured terrain,” in Proc. Intelligent Robots and
Systems (IROS’07), 2007.

[80] R. Haralick and L. Shapiro, Computer and Robot Vision. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1992.

[81] T. Lozano-Perez, “Spatial Planning: A Configuration Space Approach,” IEEE
Transactions on Computers, vol. 32, no. 2, pp. 108–120, 1983.

[82] M. Context, “de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,”
Computational Geometry: Algorithms and Applications, 1997.

[83] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[84] A. Chella, I. Macaluso, D. Peri, and L. Riano, “Robotanic: a robot guide for
botanical gardens. early steps.,” in In Proceedings of the 6th AI*IA Confer-
ence, Cultural Heritage Workshop, 2007.

	I Overview
	Introduction
	Outline
	State of the art

	Probabilistic Robotics
	State estimation
	Notation
	Belief Updating

	Particle Filter
	Sensor Model
	Motion Model
	Mapping
	Mapping

	II An Indoor Robotic Museum Guide Architecture
	Cicerobot
	Introduction
	System Overview
	Map building
	Planning
	Control
	The dynamic window
	The goal function

	Finding peoples
	Dealing with invisible obstacles
	Interaction with visitors
	Experimental results and Conclusions

	High level control
	Introduction and motivations
	Related works
	Modelling the Bayesian network
	Taking decisions
	Experimental Results
	Conclusions and future works

	III Outdoor Robotic Museum Guide Architectures
	Basic Architecture
	Introduction
	Motivation and related work
	System Overview
	Environment representation
	Path Planning
	The localization system
	The controller
	Experimental Results
	Conclusions and future works

	Appearance Based Navigation
	Introduction
	Related works
	System Overview
	Topological map
	Image preprocessing
	Incremental-EM
	Building the temporary model
	The complete model

	From features to space
	Place detection
	Experimental results
	Conclusions

	Towards Topological Maps
	Introduction
	Related Works
	Overview
	Node discovery
	Map Building and Updating
	Node Appearance
	Localization
	Navigation
	Experimental Results
	Conclusions

	IV Conclusions and future works

