
February 2006 107

S O F T W A R E T E C H N O L O G I E S

The properties of an autonomic
or self-managing system provide
the basis for future selfware
development.

S oftware has become perva-
sive. It helps entertain us
when embedded in iPods and
MP3 players. In GPS naviga-
tion systems, it helps us get

to our desired location. It’s present in
our home appliances and cell phones.
It’s used in defense systems, space
exploration, and hospitals. Software
constantly appears in more devices,
with public expectations of greater
functionality, reliability, and contin-
ued operation.

Despite this success and expansion
into daily life, there have, of course,
been a number of software-related
disasters and near-disasters. Software
failures have resulted in giving cancer
patients excessive (and lethal) doses
of radiation, loss of aircraft and space-
craft, and disclosures of private finan-
cial information.

We continue to push software to the
limits, in many cases using it where
failure would be catastrophic, and

where many organizations are spend-
ing as much as 33 to 50 percent of the
total cost of ownership of their com-
puting and communication systems to
avoid software failure.

Many practitioners believe that self-
managing software can potentially
ensure safer, more reliable, and cost-
effective computer systems. Creating
software systems that are self-directed,
self-governing, and self-adapting has
been the focus of development in auto-
nomic computing, autonomic commu-
nications, pervasive computing, organic
computing, and adaptive computing.

AUTONOMIC SYSTEMS
In 2001, IBM launched its perspec-

tive on the state of IT (www.research.
ibm.com/autonomic/manifesto), which
focuses on solving the ever-increasing
complexity and total cost of ownership
of today’s systems through the devel-
opment of self-managing systems, a
major component of which is self-man-

aging software, inspired by the human
body’s autonomic nervous system. The
ANS is that part of the nervous system
that manages body functions noncon-
sciously such as blood circulation,
intestinal activity, and hormonal secre-
tion and production and thus lets us
get on with our conscious daily lives.

The general properties of an auto-
nomic, or self-managing, system can be
summarized by four objectives—and
four attributes. Essentially, the objec-
tives represent broad system require-
ments, while the attributes identify
basic implementation mechanisms.

An autonomic system’s objectives
are

• Self-configuration. The system
must be able to readjust itself auto-
matically, either to support a
change in circumstances or to assist
in meeting other system objectives.

• Self-healing. In reactive mode, the
system must effectively recover
when a fault occurs, identify the
fault, and, when possible, repair it.
In proactive mode, the system
monitors vital signs to predict and
avoid health problems, or reaching
undesirable levels.

• Self-optimization. The system can
measure its current performance
against the known optimum and
has defined policies for attempting
improvements. It can also react to
the user’s policy changes within the
system.

• Self-protection. The system must
defend itself from accidental or
malicious external attacks, which
requires an awareness of potential
threats and the means to manage
them.

To achieve these self-managing
objectives, a system must be

• self-aware—aware of its internal
state;

• self-situated—aware of current
external operating conditions;

• self-monitoring—able to detect
changing circumstances; and

• self-adjusting—able to adapt
accordingly.

Self-Managing
Software
Michael G. Hinchey
NASA Software Engineering Laboratory

Roy Sterritt
University of Ulster

Editor’s note: Contributions to this new bimonthly column will examine lead-
ing-edge software development trends, including software development tools
and methodologies, languages, formal methods, and software engineering.
Readers interested in submitting column-length essays (2,000-2,500 words)
should contact Michael G. Hinchey at michael.g.hinchey@nasa.gov.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108 Computer

if necessary, and executes it through
effectors. The closed feedback control
loop provides the basic backbone for
each system component. Figure 1
illustrates the two conceptual control
loops, self-awareness (managed com-
ponent) and self-situation (environ-
ment), in an autonomic element.

IBM represents this self-monitor-
ing/self-adjusting function as the mon-
itor, analyze, plan, and execute (MAPE)
control loop. The monitor and analyze
aspects process information from the
sensors to provide both self-awareness
and environmental awareness. The plan
and execute aspects control the self-
management behavior that the effectors
will execute.

The MAPE components use corre-
lations, rules, beliefs, expectations,
histories, and other information either
directly known to the autonomic ele-
ment or otherwise available through
the knowledge repository within the
autonomic manager.

Reflex signals
To ensure its robustness, the auto-

nomic environment requires the auto-
nomic elements and, in particular,
autonomic managers, to communicate

Thus, a system must be aware of its
available resources and components,
their ideal performance characteristics,
and current status. It must also be aware
of interconnection with other systems,
as well as rules and policies for adjust-
ing as required. A system’s ability to
operate in a heterogeneous environment
requires relying on open standards to
communicate with other systems.

These mechanisms do not exist inde-
pendently. For example, to successfully
survive an attack, the system must
exhibit self-healing abilities, with a
mix of self-configuration and self-opti-
mization. This not only ensures the
system’s dependability and continued
operation but also increases self-pro-
tection from similar future attacks.
Self-managing mechanisms must also
ensure minimal disruption to users.

CONTROL LOOP
Sensors and effectors are central to

the architecture of any autonomic sys-
tem. An autonomic manager creates a
control loop by first monitoring
behavior through sensors and then
comparing it to historical and current
data, rules, and beliefs. The auto-
nomic manager then plans the action,

with each other regarding the various
self-* activities. The communication
between autonomic managers in Figure
1 also includes a reflex signal, which a
pulse monitor—with the capability to
encode system health and urgency sig-
nals as a pulse—can facilitate.

The pulse monitor, an extension of
the embedded system’s heartbeat mon-
itor, safeguards vital processes through
the emission of a regular “I am alive”
signal to other processes. Just as a
human heart has a double beat, the
pulse monitor has an encoded double
beat—a self health/urgency measure
and an environment health/urgency
measure—that corresponds with the
autonomic element’s self- and envi-
ronmental-awareness control loops.

Together with the standard event
messages on the autonomic commu-
nications channel, this information
provides dynamics within autonomic
responses and multiple control loops,
such as reflex reactions among the
autonomic managers.

This reflex component safeguards
the autonomic element by communi-
cating its health to another autonomic
element. The component can also com-
municate environmental health infor-
mation. For example, instead of each
individual PC in a LAN—all equipped
with an autonomic manager—moni-
toring the same environment, some can
take on the role of alerting others
through a change in pulse to indicate
changing circumstances.

Minimizing sent data—essentially
transmitting only a signal—is an
important aspect of pulse monitoring
to facilitate a reflex reaction. In the
absence of bandwidth concerns, the
autonomic manager can send more
detailed information, but the addi-
tional information must be in a form
that will not compromise the reflex
reaction. For example, the autonomic
manager could send detailed health
telemetry in a form that does not incur
processing delays and can be acted on
immediately.

SELFWARE
The initial set of self-* properties,

commonly known as self-CHOP (con-

S O F T W A R E T E C H N O L O G I E S

Self-monitor Self-adjuster

Managed component

Knowledge Adapter/planner

Environment
monitor

AM AM
communications

Autonomic manager (AM)

Autonomic element

Autonomic communications channel

Environment-
aware Re

fle
ct

io
nSelf-aware

Reflex
signal

Figure 1.The control loops in an autonomic element.The autonomic manager to
autonomic manager communications include a reflex signal.

figuring, healing, optimizing, and pro-
tecting) represents the general goal of
the Autonomic Computing Initiative.
These properties are neither mutually
exclusive nor definitive. Practitioners
have began to propose and develop
more self-* properties, which has led
to coining the term selfware. We cur-
rently seek inspiration for new ap-
proaches to selfware from existing
biological mechanisms. An example of
one new self-* property is self-destruct.

Safety mechanisms
To provide an intrinsic safety mech-

anism, for example, against undesir-
able emergent selfware behavior or in
response to security concerns, re-
searchers are investigating the need for
software agents or component self-
destruction. To illustrate, skin cells
from a cut are often displaced into
muscle tissue. If these cells survive and
divide, a tumor can result. The body’s
solution to this is cell self-destruction,
referred to as apoptosis. The concept
originated from Greek word to “fall
off,” referring to leaves falling from
trees in the autumn. In this context,
apoptosis is the death of cells in the
midst of a living structure.

Self-destruction
Some researchers believe that cells

know when to self-destruct because
they are programmed to do so. This
intrinsic biological self-destruction
property—also referred to as death-by-
default—is delayed through the con-
tinuous receipt of biochemical reprieve
signals. Mounting evidence now sug-
gests that some forms of cancer are the
result of cells not dying fast enough,
rather than multiplying in an out-of-
control manner, as commonly thought.

When a cell divides, it receives a
simultaneous order to self-destruct,
and it will do so in the absence of a
reprieve signal. Self-protection is the
reason for this. Cells must divide for
the body to survive, but this is a dan-
gerous time because if just one of the
billions of cells locks into division, a
tumor results.

Likewise for computing systems,
while a self-managing agent’s binary

image—which can contain, for exam-
ple, passwords, monetary certificates,
or confidential information—might be
protected by encryption, it must
decrypt to execute, providing a win-
dow of vulnerability. These self-pro-
tection needs are similar to our own
bodies’ during cell division, which is
protected by apoptosis.

S elf-managing software, viewed
from the perspective of auto-
nomic computing or other self-

ware initiatives, offers a holistic vision
for software’s development and evolu-
tion, bringing new levels of automa-
tion, autonomy, and dependability to
systems, while simultaneously hiding
their complexity and reducing costs.
We envisage greater interest in, and
uptake of, self-managing principles in
future software development, as de-
mand increases for systems to exhibit
more autonomic properties. The IEEE
Computer Society recently established
a Task Force on Autonomous and

Autonomic Systems (www.computer.
org/portal/pages/ieeecs/Communities/
tab/tclist/TFAAS.html). Interested read-
ers can sign up to join the task force at
www.computer.org/TCSignup. �

Michael G. Hinchey is director of the
NASA Software Engineering Laboratory
at NASA Goddard Space Flight Center
and an affiliate professor at Loyola Col-
lege in Maryland. Contact him at
michael.g.hinchey@nasa.gov.

Roy Sterritt is an academic in the School
of Computing and Mathematics at the
University of Ulster, Northern Ireland,
and a researcher in the Computer Sci-
ence Research Institute and the Centre
for Software Process Technologies. Con-
tact him at r.sterritt@ulster.ac.uk.

February 2006 109

computer.org/e-News

Available for FREE
to members.

Be alerted to

• articles and special issues

• conference news

• registration deadlines

Sign Up Today
for the IEEE
Computer
Society’s
e-News

Sign Up Today
for the IEEE
Computer
Society’s
e-News

