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Abstract. An online classification system maintained by a learner can be 
subject to latency and filtering of training examples which can impact on its 
classification accuracy especially under concept drift. A life-cycle model is 
developed to provide a framework for studying this problem. Meta data 
emerges from this model which it is proposed can enhance online learning 
systems. In particular, the definition of the time-stamp of an example, as 
currently used in the literature, is shown to be problematic and an alternative is 
proposed.   
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1   Introduction 

Online learning for classification to date largely involves sourcing data descriptions 
with classifications for use in creating an initial classifier and for subsequent updates:  
an excellent introduction to the current state of research has been written by Kolter 
and Maloof [1].  The current approaches mainly deploy machine learning algorithms 
for use in determining a concept representation, such as rules, for that environment.  
In doing so they inherit all the issues and difficulties of machine learning approaches 
[2].  Even the collecting and preparation of training examples for such algorithms 
remains an area open to difficulty, both in balancing the data sets [3] and in the actual 
sources and sourcing of such data [4].  Furthermore, as a participating factor within a 
concept environment, the classifier may induce a concept drift of its own thus making 
any classifying success a short-term success, as might be reasonably concluded from 
Fama’s Efficient Market Hypothesis [5], e.g. in email spam filtering the update of a 
classifier to filter out spam emails immediately results in the spammers altering their 
behaviour to avoid detection in this latest version. 

Concept learning raises so many issues and criticisms; it is desirable that a 
common understanding and models of the components of concept learning exist to aid 
in targeting research efforts [6].  In this paper, we explore and present a model of the 
life cycle such learners might face; a rationale for latency, as previously summarised 
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by Marrs, Hickey and Black [7]; and the impact of example filtering in order that 
more informed approaches might be developed towards online learning. 

2   The Online Learner Life-Cycle (OLLC) 

According to Domingos and Hulten [8], the online data-stream learner must 
incorporate certain design criteria, in particular: “When concept drift is present, the 
model at any time should be up-to-date but also include all information from the past 
that has not become outdated.”  While this could be viewed as specifically an 
algorithmic issue, it could also be seen as being deeply influenced by the example 
life-cycle.  The learner may only be as up-to-date as the quality of examples it 
contains in its training base. 

They also raise the question of just how much data is enough to learn an accurate 
model [9].  Alternatively we might consider how much quality data is required to 
ensure a good model is produced, i.e. what circumstances could occur during the 
example life-cycle that may directly impact the usefulness of the next training data 
and just how might this be improved upon to aid our learner. 

2.1 Describing the Online Learner Process 

The first stage in the online learning cycle commences with the supervised collection 
of data to comprise the initial training set.  Various sources for example data may be 
used and measures taken to preserve an accurate representation of the current 
universe: a concept universe being the collective environment represented by a 
contemporary true rule-base.  For example, for a loan granting system the training 
samples may consist of historic bank data of customers granted loans and the 
outcomes of such decisions.  The supervising authority selects and pre-processes the 
training data and forwards it on as the initial learning data.  Receiving the training 
data, the learner induces the first classifier and releases it to make predictions with 
real world input. 

The domain presents a descriptive sample as input for classification, e.g. a 
description of a loan applicant's current circumstances.  The classifier predicts the 
likely class and releases the now classified sample back into the domain.  Dependent 
upon the nature of the classification, our sample may have its true classification 
determined at a future date.  Some classes may not lend themselves to being track-
able, rejection classes [10], e.g. a choice to reject a loan applicant cannot be verified 
as the loan applicant is no longer with the lending authority. Others will give you a 
determinable verification of your initial classification, acceptance classes, e.g. at the 
end of the period given for a successful loan application we should be able to verify 
the validity of our initial classification and should the applicant fail in paying back the 
loan prior to the end of the period we will have determined a failed prediction and the 
true class that the applicant should have been rejected.  With the domain sample now 
verified it might find itself returned at a future date to the training base for use in 



improving the accuracy of subsequent classifiers.  These may be composed of both 
supervised data and returned verified classification examples.  

2.2   Overview of the Stages in the OLLC 

The progress of examples through an online learning system can be modeled in a 
series of stages.  

At the first stage, initial supervised example collection takes place using external 
sources and is placed into the training base (figure 1). 
  

  
Figure 1: Supervised Example Collection  Figure 2: Classifier Induction 

Next, the learning algorithm, upon receiving data from the training base, generates 
the first instance classifier, as in figure 2.  This classifier is then placed online for use 
in the domain.  Training data may not necessarily arrive at a constant rate. 

At the third stage, a real-world unclassified example, description, arrives at time tc
 

for classification. Once again the rate of arrival is unlikely to be constant.  It is given a 
predicted class , pclass, it is sent back out to the domain (figure 3). 

 

  
Figure 3: Classification Figure 4: Verification and Feedback 

Finally, at time, tv > tc, the true class, vclass, may be discovered from the 
domain. The lag time, referred to as verification latency, between classification and 
verification can vary from example to example.  After a further period of feedback 
latency, the example may be fed back to the training base at time ttb (figure 4). 

For some existing online learner approaches a time-stamp may be used [11].  In 
these learners, the time of arrival at the training base, ttb, is most often used as the 
timestamp, i.e. examples are time-stamped as they arrive for use, (ttb, description, 
vclass). However, we propose that any time-stamp other than that at which the data 



was first classified, tc, may give the learner an erroneous representation of the current 
concept universe. This point is discussed further below. 

Upon completion of the verification and feedback stage the cycle repeats with the 
learner algorithm updating the classifier using newly available training examples. In 
addition to previously classified examples returning, new examples may be obtained 
from sources external to the cycle.  

2.3   Latency 

Concepts can be in a state of drift and change, the act of learning the latest concept 
universe is a competition against the rate of drift.  During any period of latency if the 
concept universe drifts beyond that represented by our most current data then the data 
is now in a state of lag.  We have determined the following key latency periods: 
• External source training example collection 
• Training base to learner 
• Classification to verification 
• Verification to training base 

During the external example collecting period, the time taken, latency, might lead 
to examples being in a state of lagging behind the drift in the current concept 
universe.  By minimizing the latency between the example and its inclusion in the 
training base the concept drift rate is less likely to render an example irrelevant. 

As the example batch is released to the learner, the random latency of the examples 
risks them being in a state of lag with the current concept universe. The latency of the 
training base to the learner impacts on the relevance of the learned classifier to the 
current concept universe. 

Within the OLLC, as noted above, an example is subject to verification latency t1
lat 

= tv - tc and feedback latency t2
lat = ttb – tv . In many applications these latencies are 

random and therefore may bias the availability of training examples in the next round 
of learning. In a real estate domain, a 25 year mortgage may be granted to several 
similar clients.  For each example granted that fails, we discover the true class at some 
point prior to the closure of the 25 year period.  Sending failed examples back to the 
training base immediately at the time of failure will result in a disproportionate 
number of negative cases available for the next round of learning. In this domain it 
could be argued that examples corresponding to failed mortgages should be withheld 
from the training base until the end of the 25 year loan period and, at that point, 
returned with the successful loan repayment cases. Unfortunately, the lag factor for 
the return of these training examples against the rate of concept drift, could ultimately 
eliminate any true value. 

2.4   Filtering  

During the life cycle some examples may be filtered out and so never return to the 
training base. The incidence of such filtering may depend on the example description 
and on class. Thus there is the potential for bias in the training base: examples 
returning may not be a genuine random sample. This would present a problem for the 



learner. In effect such bias could be perceived as false concept drift. Two types of 
filtering occur during the OLLC: trackability and selection.  

Trackability filtering is an example of unsupervised filtering.  It is first necessary 
to group classification values under two headings: trackable classes and non-trackable 
classes: sometimes referred to as positive and negative classes [10]. 

In a bank loan granting domain the classifier might be required to predict whether 
to grant a loan application or reject a loan application.  If the loan is granted then the 
example remains trackable and therefore verifiable, i.e. the bank will be able to 
monitor the application’s progress over the loan period.  If the prediction proves to be 
wrong then the bank will be able to determine this fact and use to update the training 
base for the next learning cycle with a new domain example.   

If loan is rejected, however, the applicant returns to the real world again and is no 
longer able to be tracked by the bank.  In this instance the bank will never be able to 
verify the prediction.  In this case, the example is said to be non-trackable. 

Therefore, there is a natural tendency for some examples to filter themselves out.  
Only certain trackable examples are likely to return to the training base for future 
updates leading to a bias in the next classifier concept representation. In this example, 
where the trackability factor is dependent upon class value, we could say that an 
example with a grant loan value has a probability of 1 to remain trackable and 0 to be 
non-trackable, whereas, a reject loan value has a probability of 0 to be trackable and 1 
to be non-trackable.   

Other domains may be less exact in the probability values of an example’s 
trackability. Cancer diagnosis may have a trackable probability of 1 for those who are 
diagnosed as having cancer and 0 probability of being non-trackable.  However, those 
who are diagnosed as not having cancer may not have entirely clear trackability 
probabilities.  If there is a 0.1 probability that a healthy diagnosis is wrong then there 
remains a 0.1 chance that the example will return and become trackable and a 0.9 
probability that it becomes non-trackable. 

Selection filtering is a managed filtering process where examples may be selected 
for verification.  The example’s true class may not become obvious without some 
supervised examination of the classifications, e.g. spam filtering.  An email may be 
accepted as being non-spam by an online spam detection software system.  It would 
require managed interrogation of these examples in order to determine whether they 
were classified correctly.  It is highly unlikely that every example would be 
interrogated in a large system and therefore a selection process is likely to occur.  The 
practices undertaken for selecting examples for further verification could establish a 
bias leading to an inaccurate concept representation.  The rest of the examples are not 
verified then these are never returned to the training base for subsequent learning. 

Examples may be verified incorrectly, e.g. human error, or deliberately bogus, e.g. 
malicious attempts to break the classifier [12]. There are two potential types of 
malicious attempts to break the classifier.  Firstly, we have gaming the classifier, i.e. 
disguising the data so as to defeat the current classifier.  The second approach is to 
game the learner, i.e. introducing enough malicious examples into the training base 
that the learner updates the classifier with a bogus concept representation. Externally 
sourced examples remain a substantial problem.  There may be a lack of control and 
knowledge of what filtering bias has occurred prior to their arrival.  



Ideally, training data is a random sample of the world. However, as a result of the 
filtering processes this may not be a possibility since certain example types may be 
less likely to become available.  Rare classes may not be represented at all.  For many 
domains it is the rare classes that are the most important target for learning, e.g. credit 
card fraud detection. In a credit card system, the most important concept class to 
capture is the fraudulent transaction.  However, the ratio of fraudulent to non-
fraudulent transactions ensures that our fraudulent class will have a low 
representation.  This may require steps to improve the representation in the training 
base through a balancing process, e.g. duplicating existing examples.  However it may 
come at the price of altering the class distribution.  The value of such balancing 
measures is still in question [3]. 

The now verified examples, whether correctly or incorrectly verified, are now 
available in the training base for possible inclusion in the next learning cycle.  

2.5   The Complete OLLC and the Meta Example  

The complete OLLC with latencies and filters as developed above is summarised in 
Figure 5. 

 

Figure 5: Online Learner Cycle 

 
The traditional training example for a classification learner has, in the notation 

used here, the form e = (description, vclass).  From the OLLC model this can be 
enhanced with meta attributes to produce the meta example  



e = (tc, description, pclass, tv, vclass, ttb)   

The training base may also receive examples other than those which have been 
through the life cycle. This can be flagged by an additional meta attribute. It is likely 
that for external attributes some or all of the meta attribute values will be missing. 

4   Discussion 

The development of the OLLC was driven by the awareness that latency and filtering 
as defined above do occur in the real world and can present a serious hazard to an on-
line learner when concept drift occurs.  

Wang et al [13] raise issues about online learning. They state that using only 
historical sources may lead to learning obsolete models whereas using only current 
data can lead to biased classifiers. The benefit of using internal examples, over 
external examples, includes the ability to have a greater understanding of the training 
samples. This is not to say that external examples have no value in the system.  
Trackability filtering demonstrates how certain classes could end up being poorly 
represented in the training base causing either up-sampling or down-sampling to 
occur in the training base. The impact that a highly-skewed class distribution can have 
upon a learner’s performance is clearly demonstrated by Weiss and Provost [14], 
McCarthy et Al [15], and, Chawla [16].  

It has been demonstrated that latency, and the nature of, has a significant impact on 
the overall performance of an online classifier [7].  The experiments investigated the 
impact of four latency models, zero, constant, normal distribution-based and negative 
exponential-based latency, upon an online learner, CD3 [17], using a variety of drift 
simulations.  Proving that latency can hamper both the time taken and overall ability 
of an online learner to recover accuracy: even to the extent of never recovering. 

Hitherto, the only meta attribute routinely used in online learners has been ttb. This 
has been implicitly assumed to be the appropriate time-stamp of the example. The 
correct time-stamp, however is tc . An online learner is attempting to discover the true 
concept definitions operating a a particular time. A training example is an instance of 
the true definition and so its time-stamp is that when the rules were applied to produce 
the example not ttb which is just a result of latencies. Put another way, using ttb as the 
time-stamp amounts to assuming zero latency.    

The value of meta attributes lies in their potential to assist in the maintenance of an 
online learner when concept drift occurs and there is latency. In the absence of drift, 
latency will not impact upon a learner.   

When latency is random, examples will typically not return in chronological order.  
Therefore, having an appropriate time-stamp for the example is essential if we are to 
preserve the grouping of each example within its relevant concept universe. 

By including accurate time-stamp, tc, the internal example gives greater accuracy 
and understanding of the arrival order of examples and the relationship they have with 
both current and historic concepts. Current experimentation in progress has already 
shown that the use of tc as a meta attribute brings substantial improvements. 

Furthermore, by comparing the historic frequency of concept drift sequences 
against the latency time recorded in the example meta data it is possible to estimate 



the lag factor occurring in the system, i.e. just how accurate is the classifier produced 
in representing the current concepts and as such the domain’s suitability for host an 
online learner. 

Finally, internal examples and the feedback they provide allow for a post-mortem 
evaluation of the current classifier performance.  
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