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Abstract
This paper reviews several critical issues facing signal processing for brain–computer
interfaces (BCIs) and suggests several recent approaches that should be further examined. The
topics were selected based on discussions held during the 4th International BCI Meeting at a
workshop organized to review and evaluate the current state of, and issues relevant to, feature
extraction and translation of field potentials for BCIs. The topics presented in this paper
include the relationship between electroencephalography and electrocorticography, novel
features for performance prediction, time-embedded signal representations, phase information,
signal non-stationarity, and unsupervised adaptation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The signal processing (i.e. feature extraction and translation)
scheme is the most vital component in the design of a
successful brain–computer interface (BCI), which translates
signals produced by the brain into useful device commands. A
workshop at the 4th International BCI Meeting was organized
to review and evaluate the current state of signal processing
of field potentials for BCIs. Field potentials represent the
summed activity of multiple neurons recorded from implanted
electrodes, electrodes placed on the surface of the cortex, or
electrodes placed on the scalp. This paper discusses the crucial
questions and strategies for BCI signal processing proposed
by workshop participants.
8 Current address: Institute of Neuroscience, Newcastle University, UK.

2. Critical questions

(i) Should future BCI research emphasis shift from scalp-
recorded electroencephalography (EEG) to electrocor-
ticography (ECoG), and how are the signals from the
two modalities related?

A step toward answering this question is to better
understand the relationship between EEG and ECoG.
Section 3.1 examines this by comparing and contrasting
the contribution of population synchronized (rhythmic)
and asynchronous changes in the EEG and ECoG potential
measurements.

(ii) What promising feature extraction and translation
techniques deserve more attention?
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There are a number of promising approaches which
have been presented in recent years that are currently
underutilized. Sections 3.2 and 3.3 provide a review of
two of these promising approaches: time-embedded EEG
prediction and the utilization of phase information.

(iii) Why are some individuals unable to use BCIs, and what
are the predictors of BCI performance?
Despite intensive research, a substantial percentage of
users still appear incapable of learning how to operate
a BCI. Recently, particular features that are predictors
of BCI performance for sensorimotor rhythm (SMR)
paradigms have been identified. Section 3.4 addresses
this issue by investigating the causal influences of other
oscillations on SMRs.

(iv) How can feature and classifier adaptation be used
to cope with signal non-stationarities and aid user
training, and what are effective approaches to encourage
neuroplasticity in rehabilitation applications?
Section 3.4 discusses novel features that can aid user
training, while section 3.5 reviews and compares a number
of state-of-the-art unsupervised adaptation approaches
and presents new results.

3. Proposed strategies

3.1. A ‘back of the envelope’ comparison between EEG and
ECoG

In order to understand the relationship between neuronal
population processing and the measured potential in both EEG
and ECoG, we make the following simplifications (following
Nunez and colleagues [48–50]) to compare the contribution
of population synchronized (rhythmic) and asynchronous
(broadband, 1/f ) changes in the EEG and ECoG potential
measurements [39] (figure 1(A)).

• Planar approximation—we will initially ignore curvature
of gyri, brain surface, skull, and scalp, and treat them all
as having a stacked planar conformation.

• Point measurement approximation—consider the poten-
tial only at the centers of an ECoG electrode and an EEG
electrode.

• Neglect effect of neuropil, tissue, skull, etc—solely
consider the implications of the distance from the source
of current density and the electrode.

• A point dipole approximation is used for the contribution
to the electric potential of the current source density of an
individual pyramidal neuron. At the EEG distance, this
is appropriate, but at the ECoG distance, the quadripole
moment will also likely contribute.

• The depth of the current dipole is approximated as
0.5 mm from the gyral surface (i.e. the depth of neurons
in the upper cortical layers). The scalp surface is
approximated as 12.5 mm from the most superficial gyral
surface.

• Ignore angular dependence of dipole field.
• The lateral extent is considered to the limit where the

contribution of a unit is 1/4 as large as the contribution
directly below the electrode.

A

B

C

Figure 1. Illustration of basic comparison between EEG and ECoG
(see the text for details): (A) simple heuristic for comparison, (B)
synchronized cortical activity and (C) asynchronous cortical activity.

These assumptions lead us to the following approxima-
tions.

• The contribution to the potential due to a single unit with
dipole moment p at a distance r from the unit is V ∼ p

r2 .
• The perpendicular distance, L, from the electrode to the

furthest unit we consider (‘Pooling length’—the radial
distance to a unit with contribution to the potential which
is 1/4 that of the closest unit) is then L = √

3r0, where r0

is the perpendicular distance from the electrode to a dipole
source directly beneath. For EEG, this corresponds to a
distance of ∼22 mm, and for ECoG, it corresponds to a
distance of ∼0.9 mm. This corresponds to the area of
pooling in EEG that is of the order of 500 times larger
than that of ECoG.

To assess the contribution to the signal from cortical
surface distributions of different sizes, we approximate the
spatial extent of a coherent activity of the synchronized
phenomenon as being of the same order as that of the pooling
region of an EEG electrode (N total units) with coefficient
β (figure 1(B)), and the spatial extent of an asynchronous,
broadband change [40], to be of the same order as that of
the pooling region of an ECoG electrode (M total units,
figure 1(C)). Note that ‘units’ might refer to the dipole moment
produced by an input to a single synapse rather than the net
dipole moment of a neuron, since macroscale field potentials
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are understood to reflect a synaptic input [45]. To first order,
these can be treated as independent, although they will actually
be correlated because of the nonlinear potential dependence of
active channels in the dendrite [60]. We will approximate the
sources that lie within our ‘pooling region’ as being of equal
magnitude for a first-order approximation. (Our cutoff was
derived from the fact that contributions further away were of
less magnitude.)

In comparing synchronous and asynchronous cortical
sources, we keep in mind that they will be accompanied by
a constant magnitude, task-independent 1/f noise throughout
the whole pooling range, with coefficient η.

Synchronized units add in linearly V ∼ βN , and
asynchronous changes add in quadrature V ∼ χ

√
N .

Therefore, for an activity that is synchronized across the whole
EEG pooling region (figure 1(B)),

• V ∼ βN + η
√

N (EEG)
• V ∼ βM + η

√
M (ECoG).

For an activity that is asynchronous, and task-modulated
at the scale of the ECoG pooling region (figure 1(C)),

• V ∼ η
√

N + χ
√

M (EEG)
• V ∼ √

M (η + χ) (ECoG).

These approximations suggest that synchronized cortical
oscillations may be differently reflected at the EEG scale than
the ECoG scale. Because of the influence of rhythms on the
local cortical activity clusters by gyral anatomy [42], a rhythm
may be more pronounced in ECoG (at the brain surface)
than EEG, which averages over a spatial area (diameter
2L = ∼4–5 cm) that is larger than the width of a gyrus
(diameter ∼2 cm). At the EEG scale, a rhythm might be more
pronounced, due to averaging, than that of a single ECoG
measurement because the synchronized portion of the cortical
activity adds linearly, while the background noise adds in
quadrature. Likewise, a feed-forward, weak-but-synchronized
[8], event-related potential (ERP) may be more dramatic when
observed at the larger scale of EEG, where unrelated 1/f noise
has been averaged away.

Broadband, 1/f , spectral changes have been demon-
strated to be extremely robust correlates of the local cortical
activity in the ECoG signal [39, 40, 42], and are the most
robust correlates of the mean population firing rate at the LFP
scale [35, 42]. These are spatially very focal, with very differ-
ent behavioral specificity in adjacent electrodes that are 1 cm
from one another [40]. Because these broadband shifts scale
like χ

√
N , even very large increases in χ will be lost at the

larger EEG scale. It is very likely that many of the reports of
‘high gamma’ oscillations in ECoG are, in fact, shifts in 1/f

phenomena [40, 42].
Real neuronal populations that are measured by either

ECoG or EEG will, of course, not be matched to one scale
or another, but will exist in one of the three regimes. They
will be less than N, greater than N but less than M, or greater
than M.

Cortical columns (or ‘modules’) represent the minimum
cluster of neurons involved in a particular aspect of task-related
processing, and are typically of the order of ∼0.5–0.7 mm in

diameter, although they vary in size by the cortical region [27].
Therefore, the standard clinical ECoG electrode, which has
2.3 mm diameter exposed to the cortical surface, for a total
∼4 mm pooling when one considers the above estimate, will
pool over <20 such columns. A broadband 1/f spectral
change will then have to satisfy χ ∗C ≈ 20η to be perceptible
in the ECoG measurement (where C is the number of columns
that are activated at strength χ during task engagement).

Can these broadband changes be captured at the EEG
scale? To have the same contribution to EEG that a single
cortical column would need to have to be measured in ECoG,
the spatial extent of cortical activity would have to span nearly
the full width of a gyrus, and nearly a centimeter longitudinally.
Based upon ECoG measurements of the 1/f change in
the visual cortex, it might be possible to extract during
the visual input directly over the occipital pole [41]. In
the precentral motor cortex, the movement of several digits
in concert might also produce a widespread change dramatic
enough to be measured in the EEG [40].

3.2. Time-embedded EEG and neural networks

Current feature generation methods used in non-invasive BCI
systems typically involve the use of power-spectral densities
(PSDs) or time embedding. Although each of these methods
has been applied with a level of success [1, 44], they both have
a limited ability to capture the temporal information present
within a signal. PSDs represent only the estimated power
across a range of frequencies. Consequently, any correlations
or differences in the phase across multiple channels or
sensors are not readily expressed using a standard PSD. Time
embedding, on the other hand, attempts to account for temporal
information by embedding a number of time steps into a
single sample. Although time embedding may be capable
of reflecting more specific temporal information, it is limited
by the size of the embedding dimension and may require
larger training sets in order to sufficiently sample the higher
dimensional output space.

The use of recurrent artificial neural networks (RNNs),
artificial neural networks that contain feedback connections,
may provide solutions to these problems. These feedback
connections give RNNs an intrinsic state that allows them
to incorporate information from previous inputs. Certain
classes of RNNs, such as Elman’s simple recurrent network
(SRN) [30], are capable of representing complex, nonlinear,
spatiotemporal patterns. Such a model can also be allowed to
become an autonomous and dynamical system by operating
over its own predictions as inputs. When using a sufficient
number of units (several hundred), these autonomous models
produce very rich and accurate EEG predictions.

To explore the practical ability of RNNs to model
neural signals, SRNs were trained using conjugate gradient
backpropagation [46, 69] to forecast the EEG for each distinct
mental state. In this way, an expert at modeling the signals
belonging to each class is created [51]. The feature space can
then be viewed as the forecasting error and the classification
of previously unseen data can be performed by selecting the
class associated with the model that performed best, or by
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Figure 2. Feature distribution and covariate shift minimization [56, 57]. Reproduced from [56] with permission from IEEE.

using various alternative approaches. A range of other neural
network-based approaches involving EEG predictions and the
prediction error have also shown promise in this regard [13–16,
26, 29, 47].

3.3. Sensorimotor representations by phase information

The amplitude and the phase of neural oscillations are spatially
and temporally modulated while processing information
[9, 20, 36, 43, 52]. Furthermore, amplitude–phase cross-
frequency coupling is suggested to play an important role in
neural coding [10, 41]. However, while neural representations
of movement kinematics and movement imagination by
amplitude information in the sensorimotor cortex have been
extensively reported using different oscillatory signals (LFP,
ECoG, MEG, EEG) [38–40, 53, 67], the role of the phase has
been largely unexplored. To date, the published experimental
evidence for representations by phase information in the
sensorimotor cortex is restricted to studies describing the
synchronized activity between M1 and hand speed [28],
cortico-muscular coupling (see [2] for a review), movement-
related cortico–cortical coupling [11, 17], and the instructed-

delay reaching task study by Rubino et al [55] reporting phase
tuning to targets to be reached when LFP beta oscillations
phase locked to target cue onset. With the exception of
the phase-locking value (PLV) [24, 68], most state-of-the-art
BCI methods [3, 32] rely on different amplitude/power-related
estimators and non-circular statistics, respectively.

In addition to its technological use, BCI control
is an experimental paradigm that can provide valuable
information about the neural code and neural plasticity in the
motor system by assessing neural activity–behavior mapping
dynamics. Further research extending the feature extraction
and translation methods utilized in BCI systems in order to
assess the complementary information encoded by amplitude
and phase would contribute to a better understanding of
sensorimotor representations, as well as leading to enhanced
BCI performance.

3.4. Causal influence of gamma oscillations on the
sensorimotor-rhythm

Recently, evidence has been presented that processes
generating distributed γ -range oscillations also exert a causal
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Figure 3. Comparative plots for CSM versus no-adaptation (left), de-biasing versus no-adaptation (center) and CSM versus de-biasing
(right). Reproduced with permission from [57].

influence on the SMR [17, 23]. For BCIs, these results
imply that processes generating γ -range oscillations act as
a modulatory variable on a subject’s capability of volitionally
controlling the SMR by means of motor imagery, providing
an explanation for the trial-to-trial performance variation.
More importantly, these results further suggest that subjects
might benefit from receiving feedback on their current state of
γ -power, as this feedback may help the user to modulate their
mental states to enhance performance. Others have shown
that the SMR during rest can predict a subject’s capacity to
successfully operate a sensorimotor BCI [6].

Exploring feature spaces informative of a subject’s
capacity to operate a BCI, rather than feature spaces optimal for
intention inference, may have a large impact on performance;
however, several fundamental problems need to be addressed.
For example, the neuro-physiological causes of good or poor
BCI performance remain largely unknown. While recent
investigations show promise [6, 23], a multitude of currently
unknown brain processes most likely affects BCI performance,
and may vary across experimental paradigms. These need to
be explored in order to design feedback procedures optimal
for teaching subjects how to operate a BCI. Study differences
should be taken into account as the causes of BCI performance
can be investigated on several different levels: Blankertz et al
[6] investigate across-subject performance predictors, while
Grosse-Wentrup et al [23] address the within-subject variation
in performance. Finally, the importance of transferring
insights gained from healthy subjects to patients cannot be
overemphasized.

3.5. Unsupervised adaptation in sensorimotor rhythms BCIs

Accurate and robust unsupervised adaptation is considered a
key challenge for BCI deployment outside the lab where the

intent of the subject and class information is unknown. Issues
and approaches to address this include the following.

(i) Covariate shift adaptation/minimization. When the
distribution of the training features and test features
follows different distributions while the conditional
distribution of the output values (of the classifier) and
the features is unchanged, it is referred to as covariate
shift [63] (refer to figure 2). Unsupervised covariate
shift minimization (CSM) [56, 57] can be achieved by
estimating the shift in distribution using a least-squares
fitting polynomial for each feature and removing the
shift by adding the common mean of the training feature
distributions so that the feature space distribution remains
constant over time, as described in [56, 57]. Off-line
supervised methods have also been proposed to address
the covariate shift problem [5, 33, 63].

(ii) Feature adaptation/regression. This involves adapting
the parameters of the feature extraction methods to
account for subject learning. An approach to adaptively
weight features based on μ and β rhythm amplitudes
and their interactions using regression [37] resulted
in significant performance improvements and may be
adapted for unsupervised feature adaptation. CSM
[56, 57] can be considered an anti-biasing method
because it prevents the classifier biasing, whereas feature
adaptation/regression is likely to result in the need to adapt
the classifier to suit new feature distributions.

(iii) Classifier adaptation. Unsupervised classifier adaptation
has received more attention than feature adaptation
with a number of methods proposed [7, 18, 22, 25,
31, 34, 37, 58, 62, 64–66]. Classifier adaptation
is required when significant learning (or relearning)
induced plasticity in the brain significantly alters the brain
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dynamics resulting in a shift in feature distribution as
well as significant changes in the conditional distribution
between features and classifier output, as opposed to cases
where only the covariate shift has occurred. In [65],
a number of unsupervised classifier adaptation methods
were proposed.

(iv) Post-processing. To account for short-term biasness, de-
biasing the classifier output, in its simplest form, can
be performed in an unsupervised manner by removing
the mean calculated from a window of recent classifier
outputs from the instantaneous value of the classifier
[58], referred to as normalization in [19] where the
standard deviation is also used to produce a control signal
which is assumed to be stationary. De-biasing is suitable
when the covariate shift has not been accounted for and
can improve the online feedback response but may only
provide a slight performance improvement. It has been
shown that unsupervised feature adaptation through CSM
can outperform unsupervised classifier adaptation and
post-classification processing [54] (refer to the results
presented in figure 3). See [37] for an interesting
discussion of the interplay between feature regression and
classifier adaptation.

The success of adaptation depends upon the context in
which the BCI is used, be it for alternative communication
where the probability of interpreting the user’s intent correctly
is maximized, or for inducing neuroplastic changes in specific
cortical areas, e.g., in stroke rehabilitation [39, 54, 61].
Additionally, several key questions regarding adaptation rates
remain: whether online adaptation is necessary, stability of
various signals, and whether ECoG translation algorithms
require less adaptation compared to EEG [4, 12, 37, 59].

4. Summary

As BCI signal processing continues to evolve, the next
horizon is to better incorporate additional information
about neurophysiology, disease traits and progression, signal
dynamics, feature relationships, and feature trainability into
the current or prospective approaches.
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