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Abstract 

This paper applies a unique integrated approach to determine the flammability properties of a 

composite material (Epoxy with carbon-fiber) and compares its fire behavior at two different 

thicknesses (2.1mm and 4.2 mm) by performing small scale (TGA/FTIR) and meso-scale tests 

(Cone Calorimeter). For small scale tests, experiments were conducted in nitrogen using 

thermo-gravimetric analysis (TGA) coupled to gas analysis by Fourier Transform Infrared 

Radiation (FTIR).These results allow the determination of thermal stability, main degradation 

temperature and main gaseous emissions released during the thermal degradation. For meso- 

scale tests, experiments were carried out using a cone calorimeter with sample dimensions of 

100×100mm at five heat fluxes (30, 40, 50, 60 and 70kW/m²). The results show that the 

ignition time increases with an increase in the thickness of the material. Relative hazard 

classification of the fire performance of the current composites has also been compared with 

other materials using parameters obtained elsewhere. In addition, the effective ignition, 

thermal and pyrolysis properties obtained from the ignition and mass loss rate experiments for 

the 4.2 mm thick samples were used in a numerical model for pyrolysis to predict well 

ignition times, back surface temperatures and mass pyrolysis rates for all heat fluxes as well 

as for the 2.1 mm thick samples. Note that the ignition temperature obtained in the cone 

agrees with the main degradation temperature in the TGA. The flammability properties 

deduced here can be used to predict the heat release rate for real fire situations using CFD 

modelling.   

KEYWORDS: Cone calorimeter, TGA, Epoxy composite, Thermal degradation, Pyrolysis, 

Gaseous emissions, FTIR. 

NOMENCLATURE 

A pre-exponential factor (s-1) c Specific heat (J.kg-1 K-1) 

TRP Thermal Response Parameter (kW.s1/2.m-2) Ea Activation energy (kJ.mol-1) 

TSP Total Smoke Production (m²) Greek  

TGA Thermogravimetric Analysis Α Thermal diffusivity (m2.s-1) 

I Thermal inertia (J².m-4K-²s-1) δ Thermal depth (m) 

SMLR Specific mass-loss rate (g.m-².s-1)  Density (kg.m-3) 



h Heat transfer coefficient (W.m-2K-1) α Diffusivity (m².s) 

k Thermal conductivity (W.m-1 K-1)  Emissivity 

t Time (s) 
CH  Heat of Combustion (kJ.g-1) 

Y Yield (ggas/gsample) (𝑚̇) Mass Flow Rate (g.s-1) 

X Mole Fraction of Species (-) qint Heat flux intercept (kW.m-2) 

EHC Effective Heat of Combustion (kJ.g-1) erfc(x) complementary error function 

CHF Critical Heat Flux (kW.m-²) Subscripts 

FTIR Fourier Transformed InfraRed spectroscopy 0 Initial, ambient 

MLR  Mass Loss Rate (g.s-1) b Specie  

TML Total Mass Loss (g) ig Ignition 

HRR Heat Release Rate (kW.m-2) eff Effective 

THR Total Heat Release (MJ.m-2) e Transferred to the surface 

 

1. INTRODUCTION  

Composites of carbon fibers with a polymer resin are widely used recently as alternatives to 

metals in the aerospace industry. The composite properties such as light weight, mechanical 

performance, cost and environmental impact (life cycle assessment) are advantageous factors 

to the aircraft designer. 

However, one of the main safety issues in using composite materials is their flammability. 

Furthermore, smoke and toxic gases emitted can cause hazards to humans and limit the 

visibility thus impeding the evacuation from an aircraft in case of a fire. Thus, the challenge 

requires attaining multifunctional composites with high-performance mechanical properties 

and acceptable flame resistance levels at the same time [1]. 

Apparatus to measure and deduce the flammability properties during the thermal degradation 

and burning of materials include a) the cone calorimeter [2] in meso-scale, and b) the 

TGA/FTIR [3] in micro-scale. TGA (Thermo-Gravimetric Analysis) is a traditional method to 

investigate thermal degradation by measuring the weight loss of mg quantities at different 

heating rates [3]. Fourier transformed infrared spectroscopy of the emitted gases combined 

with TGA (TGA-FTIR) is one of the most useful methods to better understand thermal 



degradation of solid materials because this technique can provide an understanding about the 

chemical reactions that can occur during the thermal decomposition [3].  

A large database of information is already available on the time to ignition, heat release rate, 

and smoke toxicity properties of several composite materials used in aircraft or other 

structures [4-18]. Moreover, several researches investigated the behaviour of the resin alone 

and the resin with Nomex fabric combination using a cone calorimeter, others investigated the 

thermal degradation with or without a fire retardant treatment layer. In this sense, a study 

conducted by [4] shows that the thickness has an influence on the fire performance of the 

foam and fabric combinations [4]. 

The present study investigates the flammability properties of a carbon-fiber/epoxy composite 

developed for modern aircraft at two different thicknesses by conducting micro-scale and 

meso-scale experiments in order to fully comprehend the thermal degradation of the 

composite materials. For micro-scale testing, experiments were conducted using thermo-

gravimetric analyser (TGA) together with FTIR in nitrogen at 5, 10 and 20 °C/min to 

determine the thermal stability. For meso-scale testing, experiments were carried out using a 

cone calorimeter with sample dimensions 100x100mm at five different heat fluxes (30, 40, 

50, 60 and 70kW/m
2
). Relative hazard classification of the fire performance of the current 

composites has also been compared with other materials using parameters obtained elsewhere 

[30]. Finally, the effective ignition, thermal and pyrolysis properties obtained from the 

ignition experiments were used in a numerical model [20] to predict the time to ignition,  

subsequent mass loss rate and back surface temperatures for all heat fluxes and sample 

thickness sizes.  

2. RESULTS AND DISCUSSION 

2.1. Materials  

In the present study, two samples of the same composite at two thicknesses were examined as 

shown Table 1 denoted as C21 (thickness 2.1 mm) and C42 (thickness 4.2 mm). 

The specimens were supplied as a composite of carbon fibers in an epoxy resin. According to 

its manufacturer, the composites contain Bisphenol F Epoxy and Tryglycidyl-P-Aminophenol 

as the resin having with a percentage around 30% by weight. The density is approximately 

1.48±2% g/cm
3
. The exact composition is proprietary. 



2.2. Microscale - TGA-FTIR Analyzer Results 

To characterize the nano-scale behavior, TGA experiments in nitrogen were carried out in a 

Mettler Toledo TGA, with samples having mass of 12±1 mg, and at three heating rates 5, 10 

and 20°C/min over a temperature range from ambient temperature 20°C to 800°C. TGA 

samples in the form of powder were ground using a mechanical grinder. A high resolution 

digital scale was used to ensure that the same sample mass (12mg) was used for all tests. 

The TGA furnace and the balance were flushed with nitrogen at a flow rate of 50ml/min and 

100ml/min
 

respectively. The gaseous emissions released during the experiments were 

analyzed with a FTIR spectrometer (Thermo-Nicolet 670) placed at the outlet exhaust of the 

TGA apparatus. Infrared spectra were recorded in the spectral range of 4000–650 cm
−1

 with a 

0.5 cm
−1

 resolution and 16 scans. The analysis of multi-component spectra is carried out in 

two steps. The first step is the calibration or training step based on spectra obtained from 

standard gases of interest. During the second step, the absorption intensity of the products 

released is determined.  

Fig. 1a shows the mass loss curves versus temperature for the epoxy resin carbon fiber 

materials at three different heating rates 5, 10 and 20°C/min where the results indicate that an 

increase in the heating rate leads to an increase in the induction temperature. Such shifts 

towards a higher temperature as the heating rate increases occur owing to the kinetics of 

degradation in the solid [20]. The thermal decomposition mainly occurs between 300 and 

500°C. At 500°C, the mass loss is about 23% of the initial mass. It seems that about 7% of 

resin remains in the solid phase as char if we consider that the initial content of the resin is 

30% by mass. 

Fig. 1b shows the mass loss rate (MLR) curves for the epoxy resin fiber carbon materials at 

three different heating rates 5, 10 and 20°C/min. Notice that the evolution of the curves is 

quite similar regardless of the heating rate studied, with one main peak of MLR. Indeed the 

temperature corresponding to the peak of the MLR increases slightly with the heating rate 

[21]. 

By using the measurements at different heating rates, the activation energy and pre-

exponential factor A (s
-1

) in the Arrhenius expression describing the reaction can be 

determined following the ASTM E698 method [22].  For an assumed one-step first order 



reaction the activation energy is 149kJ/mol and Log10 (A) is 21.4. The mass loss rates 

calculated using the deduced activation energy and pre-exponential factor are shown in Fig. 

1b to be in good agreement with the experimental data. It is worth mentioning that Chen and 

Yeh [23] studied the degradation of a pure epoxy resin and found the activation energy for 

epoxy resin is 172.92 kJ/mol, and the pre-exponential factor Log10 (A) is 16.51 with an order 

of reaction of 0.4. The deviation between our results and these in [23] may be due to the 

different order of reaction, to the presence of carbon fiber in the composite tested in this work 

or to the use of different additives materials. 

The gas emissions released during the TGA experiments were detected using FTIR. Figure 3 

presents the FTIR spectra of the gaseous emissions at three different times (15, 20 and 25 

min). The results at other heating rates are similar. As can be shown, after 15 min, some light 

hydrocarbons were detected, the carbon dioxide was detected after 20min and finally after 25 

min, near the end of pyrolysis, the absorbance was small with the gases corresponding to 

nitrogen oxides and nitrous oxide. Moreover Fig. 3d presents the gaseous emissions intensity 

as a function of temperature for the major gases (CO2, CO and water vapour), while all the 

gaseous emissions and their temperature range are reported in Table 2. 

As can be seen from Table 2, water from the composite is released in two regions: the first 

one (moisture contained in the sample) was in a range of temperature from the room 

temperature to less than 100°C. The second one was between 180 and 250°C, corresponding 

to the thermal degradation process of the material with a maximal value at 200°C. Carbon 

monoxide was also detected between 230 and 450°C with a maximal value at 300°C. Nitrous 

oxide was observed between 250 and 430°C with a maximal value at around 400°C. Carbon 

dioxide emissions have one peak (380-430°) with a maximal value at 410°C. The gaseous 

emissions detected in this work are similar to those reported in [24], which investigated the 

pyrolysis of pure epoxy resin and corresponding high-performance carbon fiber-reinforced 

composites, but the corresponding temperature ranges are different, probably due to the 

presence of fire retardant or the effect of presence of different additive materials in the both 

cases. 

The combined FTIR/TGA analysis is useful in understanding the pyrolysis of a material 

because it identifies the gases evolved at different stages of pyrolysis. These gases are directly 

linked to the flammability and toxicity of a material burning in a real situation. As shown in 



the table 2 the major flammable compounds released around 350°C, thus we expect that the 

ignition temperature will be near this value.  

2.3. Meso scale- Cone Calorimeter Results 

2.3.1. Ignition Times 

The composite samples of two thicknesses were tested at five different heat fluxes 30, 40, 50, 

60 and 70kW/m
2
. The operating principles of the oxygen consumption in the cone calorimeter 

method are presented in [2]. The size of the sample is 100 mm×100 mm and the thickness is 

4.2 mm and 2.1 mm. In this work, the tests were conducted using a sample holder used in [25] 

in order to minimize the conduction heat loss from the sample. Figure 3 presents the sample 

holder. Cotronics paper is used for insulation of the sample holder. It is worth noting that 

during experiments a layer of aluminum sheet is placed between the sample and the insulating 

materials to prevent the melted polymer to soak into the insulation. As this aluminum sheet is 

very thin, it only absorbs a very small amount of heat. Note that the exhaust hood air flow rate 

was 24 l/s. The samples are tested in horizontal position and ignited by a spark igniter [26-29]. 

For each experimental condition, three (3) experiments have been done in order to confirm the 

repeatability of the results. 

It was observed that a few seconds before piloted ignition, smoke is released and its intensity 

increases until ignition occurs. The smoke is emitted from the top and on the sides of the 

sample. Piloted ignition seems to start at the edges of the sample and then expands to the 

whole exposed area. The average of ignition times is rounded to next whole number and 

presented in Table 3, together with an empirical comparison of their ratio and their difference. 

The ignition times for C21 (2.1 mm thick) are lower than those for C42 (4.2 mm thick) 

because the thickness of the thinner material (compared to the thicker material) is much less 

than the thermal thickness corresponding to the imposed heat fluxes.  

2.3.2. Heat Release Rate and Heat of Combustion 

After ignition and an initial increase of HRR, the heat release rate decreases and then 

increases again as shown in Fig. 4. It was observed that carbon fibers sometimes were 

delaminated from the sample.  

As can be seen in Fig. 4, the intensity of the first peak decreases slightly as the thickness 

increases. This peak is attributed to the thermal decomposition of a thin surface layer of the 



composite which is shown in Fig. 10, by comparison with mass loss rate, to have a higher heat 

of combustion than the bulk of the composite. Subsequently, the epoxy resin starts pyrolysing 

and a carbon fiber layer forms which thermally shields the still unpyrolysed composite.  It is 

interesting to note that the second peak of the HRR, which is due to the backside effect when 

the heat has reached the backside of the sample, is almost the same for the two thicknesses. If 

the samples were well insulated, one would expect that this peak HRR be higher for thinner 

samples. This result indicates higher heat losses to the insulation in the case of C21 having 

thickness of 2.1 mm.  

Figure 5 presents the total heat release (THR) as well as the average heat of combustion for 

the composite material. The THR for C42 is approximately on the average twice that for C21 

whereas the effective heats of combustion are similar indicating that the combustion of the 

pyrolysing gases is similar for both formulations. Notice that the mass of epoxy in the thick 

composite is approximately twice the mass of epoxy in the thin composite. 

2.3.3. CO2, CO and smoke Yields Used for Relative Classification of Toxicity 

Typically, fire fatalities are reported as resulting from the inhalation of smoke and toxic gases. 

Using the exhaust flow rate, the gaseous concentration and extinction measurements, the mass 

flow rate (g/s) of the exhaust specie are calculated whereas their yields (g/g) can be 

determined as the ratio between the mass production of the specie and the total mass loss of 

the composite material. The smoke calculations are done according to Lambert Beers law 

[25].  

The smoke, the carbon monoxide and carbon dioxide yields are given in Table 4 based on 

measurements at both thicknesses. This data will be used next to estimate the Toxicity 

Parameter [30-31].  

Based on the TGA and cone calorimeter results, it is possible to deduce the main parameters 

that can be used for characterising the fire performance of materials, namely Fire Growth 

Parameter, Smoke Parameter, Toxicity parameter, Mass residue and Heat release rate for 

thermally thin materials [30]. 

The fire growth parameter is determined by the following relation, based on the measurement 

performed in the Cone Calorimeter at an external heat flux of 50kW/m
2
. 



Fire Growth Parameter=
ignt

PHRR2

                             (1) 

Where PHRR
2
 is the square of the maximum heat release rate per unit area and t ign is the 

ignition time.  

The smoke parameter in Fig. 6a is the smoke yield, Ys and in Fig. 6b is the modified smoke 

yield divided by the effective heat of combustion as measured in the Cone Calorimeter.  

Smoke parameter = Ys / ΔHc (g/kJ)                  (2) 

The toxicity parameter is defined from the ratio of the effective heat of combustion of the 

composite to that of the neat epoxy resin in the following way:  

Toxicity parameter 
sin_,

sin_,
1

reneatc
H

compositerec
H





                                   (3) 

It represents the inefficiency of combustion which is related to the incompleteness of 

combustion of the basic resin. 

The Mass residue describes how much of the initial material is left behind as residue after 

combustion. This is not significant for fire spread and growth but it can provide the amount of 

total fuel load in a fully developed fire. This quantity can be measured in the Cone 

calorimeter or in TGA in Nitrogen with experiments showing that these quantities so 

measured have close values [30]. 

Finally, the heat release rate for thermally thin materials can be characterized by using the 

measurements in TGA, where the maximum mass loss rate in Nitrogen (appropriately 

normalized by the initial mass and heating rate) is multiplied by the heat of combustion 

measured in the Cone Calorimeter. For thermally thin conditions (e.g. a thin sheet of the 

material), the material pyrolyses as the mg samples do in the TGA in Nitrogen, where 

thermally thin conditions (i.e. uniform heating) prevail. Therefore, we can characterize the 

heat release rate under thermally thin burning conditions by the maximum pyrolysis rate in 

the TGA multiplied by the effective heat of combustion in the Cone Calorimeter normalized 

by the initial mass (proportional to the thickness of the material) and divided by the heating 



rate in the TGA, because the maximum pyrolysis rate in the TGA is nearly proportional to the 

heating rate. It can be determined by the following relation: 

Heat release parameter for thermally thin conditions=
∆𝐻𝑐

𝛽∗ 𝑚0
(

𝑑𝑚

𝑑𝑡
)𝑚𝑎𝑥   (4) 

Where β is the heating rate, m0 is the initial mass, (dm/dt)max is the maximum of mass loss rate 

from TGA data and the ΔHc is the heat of combustion from cone calorimeter data [30].  

Figure 6 shows a comparison of the fire growth against smoke parameter between the current 

formulations and other materials tested in the European project (Aircraft Fire- FP7-2010-

265612) [30], including PMMA, carbon fiber reinforced PEEK (Polyether ether ketone), 

carpet used in the modern aircraft, Phenolic composite and thermo-acoustic insulation.  Figure 

6 shows that the current composites have much lower fire growth parameter than PMMA but 

higher than that of carbon fiber reinforced PEEK and phenolic composite. Both formulations 

are similar in terms of the smoke parameter, but C42 has a slightly lower fire growth 

parameter compared to C21 since both have similar PHRRs but C42 has a higher ignition 

time. 

2.4. Flammability properties and prediction of mass loss rate  

2.4.1. Effective Thermal and Ignition Properties 

The effective ignition properties (considered independent of temperature) of a thermally 

intermediate material can be determined by plotting the time-to-ignition as a function of the 

heat flux for thermally thick and thin conditions for C42 as shown in Fig. 6 using the 

methodology in [30-31] which is briefly described next.  

The results are reported in Table 6 together with similar properties from the literature [31-33]. 

Notice that the left ordinate in Fig. 7 is the inverse of the square root of the ignition time 

divided by a function F1 depending on the thermal diffusivity and thickness of the material 

[30-31]. This ordinate is appropriate if the solid behaves as thermally thick for which case the 

ignition data should lie on a straight line. The right ordinate in Fig. 7 is the inverse of the 

ignition time 1/tign divided by a function F2 depending on the thermal diffusivity and 

thickness of the material [30-31]. This ordinate is appropriate if the solid behaves as thermally 

thin for which case the ignition data should lie on a straight line. By matching the slopes of 



these two lines, the value of the thermal diffusivity can be determined as well as the critical 

heat flux and the thermal inertial parameter (kρc).  

Then, using the measured density of the material, k (conductivity) and cp (specific heat) can 

be determined [30-31]. The ignition temperature is deduced from critical heat flux. The 

effective flammability properties deduced here are within the range of properties reported in 

the literature as shown in Table 6. Notice that the ignition temperature in [32] is very low in 

relation to critical heat flux as it was measured using thermocouples which may have moved 

from the surface because the epoxy melts at higher temperatures before ignition. It should be 

noted again here that even though the conductivity and specific heat change with temperature, 

those determined from the ignition tests are effective (average) values. 

As can be seen by comparison of the results in Table 6 and Figs 1 and 2 , TGA /FTIR 

measurements confirm that the ignition temperature deduced from cone calorimeter is nearly 

equal with  the temperature where flammable gases are released, and when also the maximum 

MLR occurs.  

2.4.2. Mass loss rate predictions using the Heat Flux Ratio 

The authors have previously developed a numerical model for PA6 nanocomposite [20, 34] 

and further validated against other polymer nanocomposites and flaxboard with intumescent 

coatings [35].The fundamental parameter used to characterize the effect of the charring layer 

formed on top of the unpyrolysed material is a heat flux ratio [20, 34-35]:  

)(
)(

0_

tq

q
tFlux

net

net

ratio 






    (5) 

Where 0_netq   is the net incoming heat flux on the surface for the case when there is no 

surface layer and )(tqnet   is the actual heat flux at the interface of the surface (nanoparticle) 

and unpyrolysed depth.  The heat flux, 0_netq  , can be determined based on the energy balance 

on the surface where )(tqnet   is calculated using a 1d heat transfer numerical model with the 

pyrolysed depth calculated from the experimental mass loss rate, sample density and surface 

area [20, 34-35].  

 

The key assumption of the model is that the heat transfer in the cone calorimeter is one 

dimensional. An adiabatic condition was used at the back of the sample for calculating the 



backside temperature, because in the experiments the back of the sample was insulated with 

very low conductivity Cotronics. 

In the present study, we apply the same methodology for the carbon fiber reinforced Epoxy 

because of its similar burning characteristics as polymer nanocomposites or typical charring 

materials. From the experimental mass loss rate and using the effective ignition properties 

deduced earlier, the heat flux ratio, namely the net heat flux on the surface for the case when 

there is no surface shielding CF layer to the actual heat flux at the interface between the 

surface layer and the unpyrolysed material, can be calculated as a function of the pyrolysis 

depth, i.e., the depth of the material that has pyrolysed [19-20, 31-35]. Note that due to the 

large fluctuations in the raw mass loss rate data, the mass loss rate data used in the 

calculations were calculated using the raw heat release rate divided by the average heat of 

combustion (20kJ/g) for C42 (4.1mm). Figure 8 presents the deduced heat flux ratio (as done 

in references 19, 31-33) as a function of the pyrolysis depth at different heat fluxes. Although 

there are some fluctuations especially at the start of pyrolysis, the data seems to suggest that 

the heat flux ratio increases linearly with the pyrolysis depth (δ) as expected from a typical 

charring materials [30-31, 34-35]. A best fit of the data shows that the following relation is 

valid Fluxratio =1+4500δpyro independent of the heat flux. Note that δpyro is the pyrolysis depth, 

i.e., the depth of the material that has pyrolysed (m). Notice that the pyrolysis depth was 

determined by the mass loss divided by the density and by the sample area. Note that this 

relation is independent of the initial thickness of the material [19-20]. In fact, the data related 

the C42 has been used in this step because the accuracy of pyrolysis depth is less for the 

thinner composite than the thicker composite. 

2.4.3. Predicted mass loss rate 

The relation between the heat flux ratio and pyrolysis depth in Fig. 8, together with the 

ignition and pyrolysis (using the TGA data Arrhenius expression or a thermal pyrolysis 

model) properties can be used to predict the mass loss rate [19, 30-31, 34-35] as shown in Fig. 

9, for different imposed heat fluxes in the cone calorimeter. 

A comparison between the prediction and measured MLRs is shown in Fig. 10. Note that for 

comparison purpose, the raw MLRs and the ones deduced from the HRRs are both included. 

The model data presented here start from the ignition time, as shown in Fig.9 and 10, so that 

the ignition times in Fig.10  are about 75, 50, 35 and 25s at 40, 50, 60 and 70KW/m² 



respectively. The predicted times to ignition and peak values of the MLR are in general good 

agreement with the experimental data as shown in Fig. 10 and table 3. 

The major difference in Fig. 10 is that the experimental MLRs eventually become zero 

whereas the predicted MLRs failed to drop to zero, because at that point all resins has been 

consumed. This is probably due to underestimation of the mass of resin.  

Nonetheless, these results show that the concept of heat flux ratio can be used to explain and 

more importantly to predict the burning behaviors of a material forming a protecting layer 

(e.g. carbon fiber) with unknown and difficult to determine thermal properties such as the 

carbon fiber composite tested here. Notice that the mass loss rate data were calculated from 

the HRR data divided by the heat of combustion of 20kJ/g.  

We note in Fig. 10 that the calculated mass loss rate from the HRR using a constant heat of 

combustion is much higher than the experimental mass loss rate at the first peak after ignition 

of the surface layer. We suggest that this result demonstrates that the surface layer should 

consist of a different component having a higher heat of combustion than the bulk of the 

material.    

In order to examine the effect of thickness, calculations were performed for other thicknesses, 

i.e., 2, 4, 6 and 8 mm at 50kW/m
2
 as shown in Fig. 11, with the model developed here. Notice 

that the experimental data of mass loss for the thinner composite was very noisy due to the 

small initial mass compared to the sample holder mass and to the warping of the composite 

during these tests. As can be seen in Fig. 11, the peak of mass loss rate is around 0.28 g/s and 

this value is  double of mass loss rate deduced from the peak of heat release rate ( shown in 

Fig.4 –C21 ) divided by the heat of combustion (in our case 20kJ/g) .  

 At 2mm, the material behaves like a thermally thin material with a much higher peak MLR. 

With an increase in the thickness, the peak MLR decreases significantly also having a shift in 

the time required to reach the peak MLR.  

In Fig. 12, the predicted backside temperature is compared to the measurements at different 

heat fluxes. The experimental backside temperature measurement has been conducted in two 

different laboratories in order to verify the repeatability of the measurement. The data from 

the repeated tests are similar when time is less than 130sec, after which a discrepancy 

between the two measurements is noted. (The blue line represents the back surface 



temperature data obtained in another laboratory (Institute P’-CNRS France) denote as Ex-

Lab). 

At the heating-up stage, i.e., before pyrolysis starts, the predictions agree well with the 

experimental data, indicating the validity of the effective properties deduced from ignition 

times at different heat fluxes. After ignition, the predictions start to deviate from the 

experimental data with a maximum difference of 80
o
C. A possible reason could be the use of 

the ignition temperature concept in the model, namely, pyrolysis/ignition only occurs when 

the temperature reaches the ignition temperature and remain the same for the whole duration 

pyrolysis. This assumption is only approximate as it is known that pyrolysis typically takes 

place in a temperature range albeit small. Another possible reason is that the model does not 

take into account conduction heat losses, which could be significant towards the end of the 

test when the thickness of the material is small. The difference is however reduced as the heat 

flux increases.  

3. CONCLUSIONS 

The present work investigates the thermal degradation and burning behaviors of a Carbon 

Fiber composite material used in the aviation industry (carbon-fiber reinforced Epoxy) using 

TGA/FTIR and cone calorimeter measurements for two thicknesses (2.1 and 4.2 mm) of the 

material. Furthermore, a numerical pyrolysis model incorporating the ignition and pyrolysis 

properties deduced from the cone calorimeter experiments was used to predict the ignition 

times, the back surface temperature and mass loss rate in the cone calorimeter at different heat 

fluxes. The main conclusions of this work are: 

• The TGA/FTIR experiments show that a) the composite has no thermal degradation 

before 300°C and b) the material degrades owing to one-step reaction. 

• The sample thickness has an important effect on the time to ignition as the 2.1 mm 

sample ignites much earlier than the 4.2 mm sample as measured experimentally and 

predicted by the present pyrolysis model.  

• The HRR curves show two peaks, the first due to the pyrolysis of a thin surface layer 

of the composite (see discussion on Fig.10) and the second is affected by the back side 

thermal insulation effect. We note that after the first thin layer burns, the epoxy resin starts 

pyrolysing and a carbon fiber layer forms which thermally shields the still un-pyrolysed 



composite leading to the formation of the second heat release peak. The heat of combustion 

and smoke yields are similar for the materials of two different thicknesses.  

• Relative hazard classification of the fire performance of the current composites has 

also been compared with other materials (Fig. 6)  using parameters obtained elsewhere [30]. 

• The thermal parameters obtained from the ignition and burning tests in the cone 

calorimeter were used in a pyrolysis model for the heat fluxes (Fig.8) to predict the time to 

ignition and mass loss rate in good agreement with the experimental data for the 4.2mm thick 

sample but providing higher maximum mass loss rates for the 2.1mm sample probably 

because heat losses from the back surface to insulation are neglected in the model. 

• Finally, the same pyrolysis model provides good prediction of the back surface 

temperature of the composite as shown in Fig. 12.  
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Table 1. Details of composites tested. 

Sample specification C42 C21 

Fiber Carbon Carbon 

Matrix Epoxy Epoxy 

Fiber barrier Single laminate Single laminate 

Layup orientation [-135/90/45/0°] [-135/90/45/0°] 

Thickness 4.2 mm 2.1 mm 

 

  



Table 2. Details of gaseous emissions detected during the TGA experiments. 

Gas 
First released Second released Third released 

Start End max Start End max Start End Max 

H2O (3775cm
-1

) 30°C 90°C 30°C 140°C 250°C 200°C    

CO (2116cm
-1

) 230°C 340°C 300°C 340°C 450°C 370°C    

CO2 (3673cm
-1

) 380°C 430°C 410°C       

Methanol    

(1250 cm
-1

) 

450°C End 600°C       

N2O (2205 cm
-1

) 250°C 350°C 300°C 360°C 430°C 400°C    

Ethylene        

(994 cm
-1

) 

200°C 300°C 280°C 350°C 400°C 370°C 460°C End  480°C 

Formaldehyde 

(1766 cm
-1

) 

220°C 280°C 240°C 340°C 420°C 370°C 510°C End 540°C 

Acetaldehyde 

(1725 cm
-1

) 

250°C 370°C 340°C 470°C End 520°C    

HCN (3321cm
-1

) 180°C 280°C 230°C 350°C 380°C 360°C 410 End 550°C 

NO (1820 cm
-1

) 180°C 300°C 250°C 370°C 430°C 420°C 470°C End 570°C 

NO2 (1611cm
-1

) 200°C 300°C 230°C 380°C 400°C 390°C    

 

  



Table 3. Ignition time as function of the heat flux. 

Heat Flux (kW/m
2
) 30 40 50 60 70 

tig_C42 (s) 177 72 49 33 25 

tig_C21 (s) 60 49 30 21 17 

tig_C42/ tig_C21 2.9 1.5 1.7 1.6 1.5 

tig_C42- tig_C21 116.7 23.3 19.3 12 8 

 

  



Table 4. CO2 yield (g/g) for composite materials. 

Parameter (g/g) 

CO2 yield 2.3±34% 

CO yield 0.07±43% 

Smoke yield, Ys 0.065±54% 

 

 

 

  



Table 5. Flammability and Toxicity Parameters [30]. 

Parameters C42 C21 

Fire Growth Parameter (kW
2
/m

4
.s) 1605 2754 

Smoke Parameter (g/kJ) 0.0033 0.0033 

Toxicity parameter 0.20 0.35 

Mass residue from cone calorimeter (%) 70% 66% 

Heat release rate for thermally thin materials (kJ/g.K) 0.073 0.060 

 

 

  



Table 6. Thermal properties and thermal inertia values. 

Material Qcri Tig k ρ cp kρc 

 kW/m
2 

K W/m.K
 

Kg/m J/kg.K kW
2
/s.m

4
K

2
 

Composite in 

this study 

10.2 650 0.45 1480 1524.9 1.02 

56% epoxy 

carbon fiber 

composite [32] 

18 513 - - - 5.07 

59 % epoxy 

carbon fiber 

composite[32] 

14 573 - - - 2.25 

Epoxy 

resin[33] 

13-20 648-

698 

- - - - 

Epoxy (EP)/ 

fiber Glass [33] 

10-15 - - - - - 

 

 

  



  

Figure 1a: Mass loss under nitrogen. Figure 1b: Mass loss rate under nitrogen. 
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25min (500°C) gaseous emissions intensity  

Figure 2. FTIR spectra (at 15, 20 and 25 min) as well the intensity of gaseous emissions 

released during the thermal decomposition of the composite materials in N2 in TGA at 

20°C/min. 
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Figure 3. Illustration of the sample holder. 

  

 

  

Figure 4.  The HRR for carbon-epoxy materials as a function of time for two different 

thicknesses 

 

 

  

Figure 5. Total heat release and the effective heats of combustion for composite materials. 
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Figure 6. Classification of composites using the fire growth and smoke parameter. 

 

 

 

 

 

Figure 7. Determination of ignition properties by using relations of ignition times vs. external 

heat flux for C42 assuming thermally thick (left ordinate) and thermally thin conditions (right 

ordinate) [30-31]. 



 

Figure 8. Deduced heat flux ratio against pyrolysis depth for C42 at different heat fluxes. The 

heat flux ratio is the net heat flux on the surface for the case when there is no surface CF  

shielding layer to the actual heat flux at the interface between the surface CF layer and the un-

pyrolysed  material. 

 

 

 

 

Figure 9. Predicted mass loss rate for C42 (thickness 4.2mm) at different heat fluxes. 

  



  

 

 

 

 

Figure 10. Comparison of experimental and predicted mass loss rate for C42 (thickness 4.2 

mm) at different heat fluxes.  

 

 

 



Figure 11. Predicted MLR for different thicknesses at 50kW/m
2
. 

 

 

 

  

Figure 12. Comparison of experimental and predicted back side temperature for C42 at 

different heat fluxes. The experimental data include data in our lab and Institute P’ for Ex-lab.  

 


