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ABSTRACT 

A transient 2D axisymmetric numerical model for the Bridgman solidification process for a stationary furnace 

and moving sample is presented. The model is able to predict the evolution of temperature and solid fraction of 

binary alloys in cases where buoyancy induced convection is negligible, such as in microgravity conditions. A 

dimensionless form of the governing equations was derived in order to identify the dimensionless parameters 

that characterize the process, those being the Stefan, Péclet, and Biot numbers. The problem was solved using a 

finite volume method and an explicit time stepping scheme. To test the efficacy of the model, simulated results 

were compared with experimental data from the literature and acceptable agreement was obtained. Finally, a 

parametric analysis was performed for understanding the influence of the process parameters on solidification. 

One key feature of this study was the inclusion of a term describing the advection of latent heat due to the 

translation of the mushy zone with varying solid fraction. This thermal transport mechanism was shown to be 

significant, since its magnitude was comparable to the advection of sensible heat. It was also found that when 

small Biot numbers were due to low values of the heat transfer coefficients at the surface of the sample, rather 

than to small sample radii, advective mechanisms were enhanced resulting in more convex shapes of the 

liquidus isotherm. This highlighted the importance of considering both axial and radial heat fluxes when 

describing the process.  

 

KEYWORDS: Bridgman furnace, transient solidification, finite volume, binary alloy. 

 

Nomenclature  

A Area V Volume 

Bi Biot number V Velocity vector 

cp Specific heat capacity x Axial coordinate 

gE Solid fraction at eutectic temperature X Non dimensional axial coordinate 

gs Solid fraction  α Thermal diffusivity 

h Heat transfer coefficient θ Non dimensional temperature 

H Enthalpy ρ Density 

k Thermal conductivity τ Non dimensional time 

kpart Partition coefficient   

L Latent heat of fusion Subscripts  

P General thermophysical property cold Cold heater 

Pe Péclet number cv Control volume 

q Heat flux E East face of a cv 

r Radial coordinate hot Hot heater 

R Non dimensional radial coordinate l Liquid 

Ste Stefan number N North face of a cv 

t Time s Solid 

T Temperature S South face of a cv 

TE Eutectic temperature W West face of a cv 
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TL Liquidus temperature   

TM Melting temperature   

u Pulling velocity   

 

 

1. Introduction 
 

The Bridgman-Stockbarger solidification process, originally developed to produce single crystals [1,2], allows for 

control of directional solidification. Figure 1 shows a simple schematic of a Bridgman furnace where a cylindrical 

sample is held inside a long and slender crucible. Using a series of controlled coaxial heaters and an adiabatic 

baffle zone, the material is subjected to a thermal gradient along its length such that the material is fully molten 

at the hotter end and fully solid at the colder end. As Fig. 1 shows, when samples of binary or multicomponent 

alloys are considered, a mushy zone (where solid and liquid phases coexist) develops. A relative axial translation, 

identified as the pulling speed u, is imposed between the sample and the furnace either by pulling the crucible 

from the hot to the cold regions while keeping the furnace stationary or by moving the furnace and keeping the 

crucible stationary. For typical constant pulling speed operation, steady-state conditions are reached and the 

solidification process keeps pace with the relative translation speed of the sample. However, the sample will 

experience initial transient conditions during start-up and stopping periods. 

 

 

 

 
Figure 1: Schematic of a Bridgman furnace. 

 

In steady state operation, the cooling rate of the solidification process can be roughly estimated as the product of 

the temperature gradient in the axial direction, G, and pulling speed, u. Accurate information about the temperature 

gradient may be lacking because the temperature distribution, and hence temperature gradients, change along the 

length of the sample. In addition, width, shape and position of the mushy zone during the solidification process 

depend on the temperature distribution to which the sample is subjected. In some processes, much attention is 

paid to the morphology of the solid-liquid interface. For example, radial temperature gradients can cause a 

deviation from a planar interface to either a concave or convex ones [3].  

 

In some cases the Bridgman furnace is used in a transient mode of operation. For example, when a phenomenon 

such as the Columnar to Equiaxed Transition (CET) is investigated, it is necessary to establish transient conditions 

during the solidification process [4]. In this case, a step change in pulling rate (known as a velocity jump) can 

cause a CET. In other modes of operation, the Bridgman may use a combination of velocity jump and controlled 

power down of the heaters to provide the desired transient conditions in the sample [5].  

 

In metallurgical studies, a Bridgman furnace under steady-state operation may be used to determine which 

conditions are favourable for the formation of different microstructural features in the final casting. For instance, 

specific steady-state conditions can be related to microstructural characteristics such as primary and secondary 



arm spacing in dendritic growth [6]. In most cases, due to the opaque nature of metal alloys, only a post mortem 

analysis is possible, whereby the samples are cut, polished, and etched after solidification and then  observed by 

optical or electron microscopy techniques. These types of procedures allow for the direct observation of relevant 

details, like the final grain structure and size, or the dendritic arm spacing [7–10]. Nevertheless, the observation 

of some features may still be difficult, as in the case of alloys that experience solid-state phase transformations 

that may alter or completely remove the initial solidification microstructure [11]. The main disadvantage of post 

mortem analysis is the lack of time resolved information during the solidification process. 

 

Additional methods may be employed to investigate the solidification phenomenon in real time. X-ray 

radiographic imaging has been used in some alloy systems to monitor the real-time evolution of the microstructure. 

However, the applicability of this technique is limited by strict requirements on the sample geometry (thin samples 

only) and segregation of solute species [12–15]. For example, Reinhart et al. [16]  observed CET in a Bridgman 

furnace in real-time after a velocity jump was imposed on the sample..  

 

Another approach for gathering real-time information during Bridgman solidification is the use of the ultrasonic 

pulse-echo technique. In this case the time-of-flight of an ultrasonic signal reflected by the solid-liquid interface 

was measured and used to estimate the velocity of the solidification front [17,18]. 

 

For the purpose of gaining accurate insight into the process, practitioners cannot always rely exclusively on 

experimental results. Therefore, reliable numerical models are valuable, and sometimes necessary tools for 

analysing alloy solidification. Simulations performed prior to physical experiments may be useful to predict the 

conditions that the material is likely to encounter during the process. In addition, computational models can be 

employed during or after the process to extract key information which would be difficult or impossible to observe 

or measure experimentally. 

  

Nevertheless, it is crucial to highlight that the benefits of adopting numerical methods are highly dependent on 

the accuracy of the input data, the validity of initial modelling assumptions, and above all, the correctness of the 

model and solution technique themselves. Hence, when possible, verification and validation of the model are 

essential steps in establishing the efficacy of the model predictions [19]. 

 

Several models for the investigation of the Bridgman solidification process of alloys have been developed in 

recent years. Timchenko et al. [20,21] implemented a method, based on a single domain enthalpy approach, to 

study the evolution of temperature, solute concentration and solid-liquid interface during Bridgman solidification 

of Bi-1at%Sn. This model assumed furnace configurations with low growth speeds and high thermal gradients, 

allowing the model to treat the phase change as isothermal and without the formation of any mushy zone between 

solid and liquid. The simulated solutions showed good agreement with measured experimental results.  

 

Mirihanage et al. [8] employed a front tracking method to simulate the advance of the columnar dendritic front 

and development of the undercooled region in Al-7wt.%Si samples during Bridgman solidification in 

microgravity. The purpose of this study was to estimate the conditions for CET. Thermal data collected during 

experiments were used as inputs for the thermal boundary conditions. In the aforementioned models, the relative 

translation of sample and furnace was treated as a moving boundary condition. As a result, advection was not 

included in the conservation equations of the model. 

 

A novel Bridgman Furnace Front Tracking Model (BFFTM) was developed by Mooney et al. [5,22–24] where 

the boundary conditions were fixed and the movement of the sample was modelled by including an additional 

term in the energy equation for the advection of sensible heat. The model was used to solve an inverse heat transfer 

problem for the characterization of the heat transfer conditions of a Bridgman furnace using experimental data as 

inputs [24]. The obtained thermal data were used in a subsequent study to investigate the solidification conditions 

during a series of experiments [5]. This particular BFFTM was based on a 1D hybrid approach; therefore its 

applicability was limited to cases when an axial heat flow assumption could be made, requiring that Bi<0.1. 

 

The overarching objective of this investigation is to investigate the transient evolution of temperature and solid 

fraction during Bridgman solidification of binary alloys. To this end, a new 2D axisymmetric model is proposed 

that is capable of capturing both axial and radial heat flow within the cylindrical samples. Microgravity conditions 

are assumed, therefore buoyancy-induced convection is not considered. This assumption is applicable to practical 

cases, such as experiments carried out on the International Space Station or on sounding rockets [25] or 

experiments designed to suppress thermal and solutal convection in the sample [18]. Importantly, the new 2D 

model also accounts for the advection of latent heat due to the translation of the mushy zone with varying solid 

fraction within the mushy zone. The specific aims of this investigation are as follows: 



 

1) to outline the details of a new general dimensional 2D axisymmetric numerical model for Bridgman 

solidification of binary alloys  

2) to derive a dimensionless form of the equation in order to identify key non-dimensional quantities that 

influence the evolution of temperature and solid fraction during solidification 

3) to test the efficacy of the general model by simulating a suitable and relevant experimental test case [18] 

4) to perform a parametric analysis of the Bridgman solidification process so as to contribute to the 

understanding of the influence of different dimensionless parameters on temperature and solid fraction 

evolution. 

 

 

2. Methodology 
 

2.1. Mathematical Model 

 

To obtain the temperature field in the sample, the conservation equations for a mixture of solid and liquid phases 

must be solved. The general form of these equations is well established and may be found in Bennon and 

Incropera [26] and Ni and Incropera[27]. In order to reduce the complexity of the problem, the following 

assumptions are considered: 

 

 negligible buoyancy induced convection;  

 uniform velocity in the domain, equal for the solid and liquid phases (Vs=Vl=pulling velocity u); 

 constant and uniform density ρ in the sample. 

 

With these assumptions, momentum and continuity equations are automatically satisfied so that it is sufficient to 

solve only the energy conservation equation. Applying the hypothesis of uniform velocity u to the general 

mixture energy equation [27,26] , it follows:  

 

     (1) 

where enthalpy is defined as: 

            (2) 

Therefore, by substituting equation (2) into equation (1), the heat transfer equation written in terms of 

temperature becomes: 

 

  (3) 

Note that r is the radial coordinate and x is the axial coordinate (Figure 2). Since zero gravity conditions are 

assumed, the orientation of the axial direction is not relevant. The term on the left hand side of this equation 

represents the rate of change of sensible heat per unit volume. The first and second terms on the right hand side 

represent the conductive rate of heat flow per unit volume in the radial and axial directions. The third term 

accounts for the release of latent heat due to the solidification process. The fourth and fifth terms are, 

respectively, the rate of sensible and latent heat flow per unit volume due to the advection of material at the 

given pulling velocity u. Clearly, the terms that include variations of solid fraction gs are present exclusively in 

the mushy zone. Hence, these terms are only present in alloy systems that exhibit a mushy zone and are not 

applicable in the case where there is a sharp interface between liquid and solid regions.  

 

In the context of the past literature, Bridgman solidification of binary alloys under the assumption of negligible 

buoyancy-induced convection was investigated by Mirihanage et al. [8] and by Mooney et al. [22]. In the case of 

Mirihanage et al., the relative translation between the sample and the furnace was simulated by applying moving 

boundary conditions. With the assumption of this reference frame, the effect of advection on solidification was 

intrinsically included in the boundary conditions hence the two advection terms of equation (3) were not 

considered in the model. Mooney et al., did model a moving sample , however the last term of equation (3) was 

not considered, which limits its range of applicability to cases when cp>>L∙|∂gs/∂T|. Furthermore, this study 

focussed on scenarios where radial temperature gradients were negligible such that the heat flow throughout the 

sample could be approximated as 1D. 



In the present study, the reference frame choice of a moving sample in a stationary furnace facilitates for the 

study of both advection thermal transport mechanisms on the solidification process. Also, the model considers 

2D effects which can be significant with respect to the development of the mushy zone. 

In order to solve equation (3), a closure relation for evaluating the evolution of the solid fraction, gs, during the 

process must be included in the model. In the case of binary alloys, the solid fraction may be derived from the 

Scheil equation as follows [28]: 

 

   (4) 

where gE is the value of solid fraction at eutectic temperature, calculated by using T=TE in equation (4). Finally, 

eutectic solidification was assumed to be in equilibrium and was treated using a conservative enthalpy method 

for isothermal freezing at eutectic temperature TE [29], such that, 

 

    (5) 

 

Specific heat capacity cp and thermal conductivity k, in general, change as functions of temperature and are often 

different for the solid and liquid phases. Depending on the data available for the alloy under consideration, the 

model can accommodate these thermophysical properties as being either constants or variable. When distinct 

values for the different phases are available, the general property P in the mushy zone is calculated as follows: 

 

      (6) 

where Pl and Ps may be either constants or polynomial functions of temperature [30]. 

 

 

 
Figure 2: Computational domain for simulations. 

 

Figure 2 shows the computational domain adopted for the simulations. As it is shown, the heat input and heat 

extraction zones are separated by an adiabatic baffle zone. The total length of the domain is xdom, while the 

radius of the cylindrical sample is rsamp.  

 

Since the problem is axisymmetric, half of the axial cross section of the sample was considered and an adiabatic 

boundary condition was assumed on the axis to enforce symmetry.  

Dirichlet boundary conditions were applied at each end of the domain such that, 

 

     (7) 

where Tleft and Tright could be either constant or variable with time.  

 

To model the radial heat flow at the sample circumference, convective boundary conditions were applied along 

the interface between the sample and the heaters,  

 

    (8) 



where Thot and Tcold are the temperatures of the hot and cold heaters respectively. 

 

At the interface with the adiabatic baffle, the radial heat flux is zero such that, 

 

     (9) 

 

 

2.2. Non-dimensional formulation 

 

In order to perform a parametric study, and to identify the dimensionless numbers that characterize the 

Bridgman solidification process, a non-dimensional formulation of equation (3) was derived.  For this purpose, 

the following dimensionless variables are defined: 

 

    (10) 

where 𝛼 = 𝑘 (𝜌𝑐𝑝)⁄  is the thermal diffusivity, and lref and ∆Tref are the length and temperature reference scales 

respectively. By substituting these quantities into equation (3), a new dimensionless formulation for the energy 

equation is obtained:   

 

    (11) 

Note that, for the derivation of equation (11), all the thermophysical properties were considered constant.  

Here, two dimensionless numbers are identified, the Péclet number and Stefan number: 

 

     (12) 

From a physical point of view, the first parameter represents the relative magnitude of convective and diffusive 

transport of heat, whereas the second parameter represents the ratio of sensible and latent heat. In order to assign 

a meaningful value to the Stefan number for a eutectic alloy, the difference between the liquidus and eutectic 

temperatures of the alloy under consideration was used to define the reference temperature scale: Δ𝑇𝑟𝑒𝑓 = 𝑇𝐿 −

𝑇𝐸 . 

 

It is also noticed that the axial variation of solid fraction is proportional to the ratio Pe/Ste. This quantity may be 

rewritten as follows, 

 

    (13) 

 

Therefore this dimensionless quantity has the same meaning as the Péclet number, in the sense that it represents 

the relative magnitude of conductive to advective heat transport, though for this instance it is latent heat 

advection opposed to that of sensible heat. 

 

The dimensionless formulation of equations (3)-(9) was obtained in an analogous way; in particular, the 

convective condition expressed in equation (8) becomes:  

 

   (14) 

In doing so a third dimensionless number is identified, the Biot number Bi, defined as, 

 

     (15) 



This quantity represents the relative magnitude of the diffusion resistance inside the sample and the convective 

resistance at the surface of the sample. To characterize the value of Bi along with the other dimensionless 

parameters the reference length scale was chosen as the ratio between the volume and the external surface where 

the heat transfer is occurring. Thus, for the cylindrical domain under consideration, the reference length scale is 

𝑙𝑟𝑒𝑓 = 𝑟𝑠𝑎𝑚𝑝 2⁄  as is common for radial systems. 

 

 

2.3. Numerical Model  

 

A finite volume numerical model was implemented for solving the problem outlined above. Here, the model for 

the non-dimensional formulation is described. The cylindrical computational domain was divided into annular 

control volumes of length ∆x and thickness ∆r, as shown in Figure 3. For practical purposes, related to the 

performance of a grid convergence study, half control volumes were considered at the boundaries. 

 

 
Figure 3: Domain discretization. 

 

Using an explicit formulation in time, the temperature at the centre of a general control volume (i, j) at the new 

time step, given by the discretized heat equation (3), is: 

 

     
  (16) 

where the volume and faces of each control volume are calculated as follows: 

 

    (17) 

The quantities qs, qn, qw, and qe are the heat fluxes at the faces of each control volume such that: 

 

    (18) 

 

The values of the thermophysical properties at the CV faces were calculated as harmonic means of the values at 

their respective centres [31]. The model adopted is explicit in time so that all the terms on the right hand side of 

equation (16) refer to the previous time step, except for the new value for solid fraction gs
new, given by the 

discretization of the time derivative of solid fraction in equation (3). To calculate this term, a Newton-Raphson 

iteration method was employed at each time step, similar to that described in [29]. This was required because 

the solid fraction is expressed by the Scheil equation (4) which is a nonlinear function of temperature. 

The numerical scheme for the solution of the dimensionless form of the equation is analogous and its derivation 

straightforward so is not discussed here for conciseness.  



 

As an initial condition for the temperature distribution in the sample, an arbitrary piece-wise linear function was 

defined as follows: 

 

  (19) 

 

In order to obtain a physically realistic distribution of temperature within the sample, during the first stage of the 

simulations the pulling velocity u was set to zero. The first stage lasted until temperature and solid fraction 

distribution settled to a steady-state solution. After this condition was reached, a velocity jump was applied to 

the sample. 

 

 

 

2.4. Conditions for comparison with experimental data 

 

In order to verify the efficacy of the model and solution technique, simulations were compared with data from 

experiments performed by Zimmerman et al. [18]. In the experiments, directional Bridgman solidification of Al-

1.3wt%Cu cylindrical samples was performed. Three thermocouples were used to measure temperature 

evolution during the process and an ultrasonic pulse-echo technique was employed to determine the growth rate. 

Importantly, the availability of time-dependent measurements makes this experiment particularly suitable for the 

comparison with the transient model developed in this work. It is important to note that in the experiments the 

sample was stationary while the furnace was translated. On the contrary, the model simulates a moving sample 

in a stationary furnace. Nevertheless, since the pulling velocity was constant it is possible to compare the result 

by considering the simple relation x=u∙t.  

 

Table 1 shows the set-up parameters used for the comparisons. Several simulations were performed, with 

different heat transfer coefficients, since their precise measurements were not available.  hhot and hcold  were 

varied in a realistic range of values (last two columns of Table 1) for Bridgman furnaces within an argon 

atmosphere based on the literature [32,33].  

 
Table 1: Set-up for comparison with experimental data from Zimmermann et al., 2007. 

xdom [m] baffle length [m] rsamp [m] u [m/s] Tleft =Thot [ ̊C] Tright =Tcold [ ̊C] hhot [W/(m2 ̊C)] hcold [W/(m2 ̊C)] 

0.2 0.04 4∙10-3 2∙10-6 1100 25 [100,350] [20,50] 

  

 

2.5. Conditions for the parametric study 

 

A parametric study was carried out simulating the Bridgman solidification process for a range of conditions 

aimed to gain knowledge with respect to the relative influence of each of the important dimensionless 

parameters, along with several key aspects of the solidification process, such as the temperature evolution, shape 

of the mushy zone and its position in the furnace.  

 

The parametric study was performed by considering only variations corresponding to physically realistic 

scenarios. Here, the length of the domain xdom and the length and temperatures of the heaters were maintained 

constant and the same sample material was used for all the simulations, such that the thermophysical properties, 

and hence Ste, were constant.  

 

The upper part of Table 2 reports the dimensional input data used in the study, while the bottom part shows the 

relevant dimensionless quantities relative to each simulation. An arbitrary reference set-up (simulation S0) was 

selected and the following cases were considered: 

 samples with different radii (simulations S1 and S2): Xdom, Pe and Bi change at the same time; 



 different pulling velocities (simulations S3 and S4): only Pe changes; 

 different heat transfer coefficients (simulations S5 and S6): only Bi changes. 

 
Table 2: Input values for parametric simulations. 

Simulation 

Run 
xdom [m] x1 [m] x2 [m] Tleft =Thot [ ̊C] Tright =Tcold [ ̊C] rsamp [m] u [m/s] h [W/(m2 ̊C)] 

S0 0.2 0.09 0.11 668 527 0.02 00.5∙10-3 1000 

S1 

S2 
0.2 0.09 0.11 668 527 

0.01 

0.04 
00.5∙10-3 1000 

S3 

S4 
0.2 0.09 0.11 668 527 0.02 

00.25∙10-3 

01.0∙10-3 
1000 

S5 

S6 
0.2 0.09 0.11 668 527 20 00.5∙10-3 

500 

2000 

 Xdom Rsamp  Ste Pe Bi 

S0 20 2 0.211 00.1686 0.1250 

S1 

S2 

40 

10 
2 0.211 

00.0843 

00.3372 

0.0625 

0.2500 

S3 

S4 
20 2 0.211 

00.0843 

00.3372 
0.1250 

S5 

S6 
20 2 0.211 00.1686 

0.0625 

0.2500 

 

 

Table 3 lists the thermophysical properties of the alloys used in the comparison with experimental data and in 

the parametric study. Al-1.3wt%Cu was the alloy used by Zimmerman et al. in the experiments [18], and hence 

used in the comparison. 

 

The material considered for the parametric study was Al-7wt%Si. This alloy was selected both due to the 

availability of data in the literature and for its solidification behaviour. In fact, at eutectic temperature, the solid 

fraction is equal to 0.5417 which means that half of the solidification process occurs over a wide range of 

temperatures (𝑇𝐿 − 𝑇𝐸 = 41  ̊C). As such, a wide mushy zone develops during solidification. This characteristic 

is particularly suitable for observing the influence of the process parameters on this region.  

 
Table 3: Thermophysical properties of Al-1.3wt%Cu and Al-7wt%Si used in simulations. 

 Al-1.3wt%Cu 
Al-7wt%Si 

 Solid Liquid 

 TM [ ̊C] 660.2 660.2 

 TL [ ̊C]  657 618 

 TE [ ̊C] 547 577 

  kpart 0.17 0.13 

  cp [J/(kg∙ ̊C) ] 2396 496 1100 

  k [W/(m∙ ̊C)]   209 90.7 80 

  ρ [kg/m3] 2500 2452.5 

  ρL [J/m3] 961 ∙ 106 1064 ∙ 106 

 

3. Results and discussion 
 

This section reports and discusses the results of the comparison with experimental data and of the parametric 

investigation. In all simulations the domain was divided into annular control volumes of length ∆x=1 mm and 

thickness ∆r= 1 mm.  The time step used in the simulations was equal to 0.001 seconds, which ensured the 



stability of the explicit scheme employed. Grid and time step independence for this choice were investigated and 

the numerical model was proven to be convergent. The estimated L2 norm of the truncation error due to the 

discretization was of the order of 0.1 ̊C. It should be noted that a code-to-code verification exercise was 

performed with this model by comparing it with a commercial code. The details of this numerical verification 

are provided elsewhere [34].  

 

3.1. Comparison with experimental data 

Due to the complex nature of the solidification process under consideration, there does not yet exist benchmark 

experimental data that can be leveraged to validate numerical simulations in accordance with established 

validation criteria [35].  As a result, relevant measurements from the literature have been used which means that 

the analysis cannot be regarded as a rigorous validation exercise, since the experiments do not provide all of the 

relevant data to reproduce exactly the same conditions.  Regardless, the data provided from the experiments are 

sufficient to establish the veracity of the simulations provided that any assumptions, such as the magnitudes of 

the heat transfer coefficients, are within acceptable limits.  Albeit adjustable parameters, there are established 

ranges for their magnitudes and, for the scenario under consideration here, adequate agreement was found when 

hhot=300 W/(m2∙ ̊C) and hcold=40 W/(m2∙ C̊) which are acceptable values based on the literature  [32,33]. 

Figure 4 shows the cooling curve measured during the experiments by thermocouples at steady state during the 

pulling stage. This is compared with the computed cooling curve at steady state after the velocity jump. The 

time scale is normalised to the time where the temperature was equal to the equilibrium solidus temperature of 

Al-1.3wt%Cu, which in this case is 627.5 C̊. The experimental cooling rates were about 34x10-3 K/s in the liquid 

and 20x10-3 K/s in the solid. In the simulations, similar results were obtained, with cooling rates of 33x10-3 K/s 

in the liquid and 16x10-3 K/s in the solid.  

 

 

Figure 4: Measured and computed cooling curves at steady state, normalised to the time where the temperature equals the 

solidus temperature of the alloy in thermal equilibrium (627.5°C). 

 

Figure 5 shows the temperature gradient obtained from the difference of temperatures measured by two 

thermocouples located 16 mm and 10 mm above the measured solid-liquid interface at the beginning of the 

pulling stage. Since the numerical model reproduces the actual formation of a mushy zone, instead of a sharp 

solid-liquid interface, the simulated temperature gradient in Figure 5 was calculated as the difference of 

temperatures between two points located 16 mm and 10 mm ahead of the mid-point of the mushy zone. Time 

t=0 s corresponds to the beginning of the pulling stage when the velocity jump was imposed.  

 



 

Figure 5: Axial temperature gradient taken from the temperature difference measured by two thermocouples and 

temperature gradient from simulations; time is normalised to the beginning of the pulling stage. 

 

In general, the simulation results show qualitative agreement with experimental data from Zimmermann et al. 

[18]. Nevertheless, some differences are present. These differences could be due to several reasons. For 

example, the values of the heat transfer coefficients at the circumference were chosen in a realistic range for an 

argon atmosphere furnaces, but the actual values from the experiments were unavailable. Also, in reality the 

heat transfer coefficients may vary with axial position, while in the simulations constant values of hcold and hhot 

were assumed. In addition, for the Dirichlet boundary condition at the right and left ends of the sample, constant 

temperatures were assumed, since precise measurements of real temperatures from thermocouples were not 

available. Nonetheless, the agreement between the simulations and experiments was deemed to be acceptable, 

especially considering the uncertainty in the experimental data. In particular, Figure 5 shows good agreement, 

demonstrating that the model was capable of effectively reproducing the axial temperature gradient.  

 

Since the pulling velocity was very low (u=2∙10-6 m/s), and with respect to the resolution of the grid (∆x=∆r=1 

mm), it was not possible to observe a transient in the shape and position of the mushy zone envelope in the 

simulations for this test scenario. However, it was possible to detect the duration of the transient phase by 

calculating the difference of temperature at subsequent time steps. The total duration of the transient stage was 

similar to the one measured in [18]. During the experiments the transient stage lasted about 500 seconds while in 

the simulations a full steady-state condition was reached after about 530 seconds which is deemed to be 

acceptable agreement.  

 

Based on the verification work [34] and the validation attempt against the relevant but limited experimental 

data, it is believed that the model is sufficiently accurate that it can be used to provide correct physical insight 

into the influence of physical parameters on the Bridgman solidification process. 

 

 

3.2. Influence of varying Pe and Bi on Bridgman solidification 

 

The dimensionless parameters that characterize the Bridgman solidification process are the Stefan number Ste, 

Péclet number Pe, and Biot number Bi.  Ste is defined as cp∙∆Tref /L. In the present work, the temperature range 

is defined as ∆Tref =TL-TE. Hence Ste represents the ratio of sensible and latent heat released across the 

temperature range where solidification occurs, i.e., in the range of temperature where a mushy zone exists. With 

this choice, Ste is exclusively a function of the sample material properties and is not a variable process 

parameter. Hence variations in Ste were not characterized explicitly in the parametric study since only one alloy, 

Al-7wt%Si, was considered. That is not to say that its influence is not considered since the ratio Pe/Ste defines 

the order of magnitude of the advection of latent heat, which is a key parameter under investigation in this work.  

On the other hand, Pe and Bi are functions of the material properties as well as of process parameters such as 

pulling velocity, dimension of the sample and furnace heat transfer coefficients. Therefore, their variations were 

considered explicitly in the parametric study. 

 

In the discussion, particular emphasis is placed on the evolution of the envelope of the mushy zone on the liquid 

side, corresponding to the liquidus isotherm (T=618 ̊C). In fact, depending on the magnitude of axial and radial 



heat fluxes at locations close to the liquidus isotherm, the development of different grain structures in front of 

the axial columnar grains which usually constitute the mushy zone in Bridgman processes could be promoted, 

i.e. radial columnar or equiaxed grains. In particular, previous studies [5] suggest that negative radial thermal 

gradients close to this position could promote the growth of radial columnar grains, while this radial growth 

would be suppressed by positive radial thermal gradients. 

 

As mentioned earlier, the last two terms of the heat equation (11) describe the thermal transport by advection 

and are functions of Ste and/or Pe. In particular, the term that expresses the transport of sensible heat by 

advection is directly proportional to Pe, while the last term representing the transport of latent heat by advection 

is proportional to the ratio Pe/Ste. From Table 2, Ste= 0.211, while Pe ranges between 0.0843 and 0.3372, such 

that 0.4<Pe/Ste<1.6. From a scaling point of view, one would thus expect the latter to be the dominant 

advection mechanism in the mushy zone i.e. within the region between the liquidus isotherm and the eutectic 

isotherm where the solid fraction is varying. To demonstrate the relative influence of each advection term, 

Figure 6 shows the temperature distribution along the axial axis of the sample both with and without advection 

terms, for the baseline simulation S0. In one case, advection is assumed to be absent by setting u=0. Advection 

of sensible heat only, as well as the case whereby advection of both sensible and latent heat together, are also 

simulated for comparison.  It is clear that the steady state temperatures for the Pe>0 cases are higher when the 

terms describing the advection of both sensible and latent heat are included. In particular, the inclusion of the 

advetion of latent heat has a significantly higher impact on the temperature distribution, highlighting it as the 

dominant advection mechanism which is consistent with the scaling argument posed above.  

 

Figure 6: Simulation S0: temperature distribution on the axis of the sample, obtained with and without advection. 

 



 
Figure 7: Simulation S0: solid fraction and temperature distribution in an axial section of the sample. (Top) resting stage 

(Pe=0), (Bottom) pulling stage (Pe>0).The white highlights the position of the liquidus isotherm, which represents the 

envelope of the mushy zone on the liquid side. 

 

Figure 7 shows the distribution of solid fraction and temperature in a cross section of the sample for the baseline 

simulation S0. The top images represent the steady state solution in the resting stage (Pe=0), while the bottom 

images are the steady state solution reached during the pulling stage (Pe>0) and correspond with the upper and 

lower curves in Figure 6 for reference. As it is shown, when the pulling velocity is zero the mushy zone is 

located within the adiabatic zone i.e. 90 mm ≤ x ≤ 110 mm.  In this case, the liquidus isotherm is located 

marginally inside the left hand heat source side of the domain. Here, heat flows inward to the material from the 

heat source along its circumference such that ∂T/∂r>0 and the liquidus assumes a corresponding concave shape. 

Heat transfer from the heat source region to the heat sink region is thus predominantly axial, across the thin 

mushy zone, resulting in the steep temperature gradient observed in Figure 8. Once steady state is achieved 

subsequent to the  velocity jump (Pe>0), the mushy zone moves to the right penetrating deep into the low 

temperature heat sink region. In contrast to the Pe=0 case, the liquidus isotherm is now positioned within the 

heat sink region. Thermal access to the cold heat sink walls causes ∂T/∂r<0 for the entire mushy zone resulting 

in a convex liquidus isotherm. The figure also shows a substantially lengthened mushy zone, to the point that it 

occupies a significant portion of the heat sink domain. Latent heat is being released within this region, acting as 

a volumetric heat source term. Generation and advection of latent heat cause the higher temperatures over the 

mushy zone compared with the Pe=0 case, as shown clearly in Figure 6. There is also a prominant and almost 

discontinuous increase in the magnitude of the temperature gradient near the end of the heat sink region, which 

occurs after the end of the mushy zone (T=TE).This is due to the fact that the latent heat terms, whose magnitude 

is particularly high in correspondence to the eutectic zone where the solid fraction gradient is higher, drop 

abruptly to zero in the solid zone.. Thus, the inclusion of advection, in particular for this case that of latent heat, 

has a significant  influence on the heat transfer within the system, especially in the region where the solid 

fraction is varying. As will be discussed, advection and 2D effects are coupled and can influence the heat 

transfer and solidification mechanics, as is represented in Figure 8 which shows a wide variation of the shape of 

the liquidus isotherms (T=618 C̊) from each simulation listed in Table 2 for the steady state pulling stage.  



 

Figure 8: Curvature of the liquidus isotherm (T=618°C) at steady state in the pulling stages; note that both axes are 

dimensionless. 

 

Figure 9: Simulations S1(left)  and S2 (right) showing solid fraction (top) and temperature distribution (bottom) in an axial 

section of the samples during the pulling stage (Pe>0). 

 

 

Figure 9 shows the steady state solution of solid fraction (top) and temperature (bottom)  during the pulling 

stage for simulations S1 and S2, corresponding to Bi=0.0625  & Pe=0.0843 and  Bi=0.25 & Pe=0.3372  

respectively. When the radius is smaller (S1) Bi is also lower due to a reduction in the scale of the radial 

conductive thermal resistance within the sample. Compared with S2, the overall radial thermal gradients of S1 

are expectedly weaker and the curvatures of the isotherms are notably smaller along the entire domain. In this 

comparison, Pe is also small for S1, so that advection is weak compared with thermal diffusion. Albeit weak, it 

is still sufficient to influence the position of the mushy zone such that it is located inside the cold heat sink 

region with the liquidus positioned just outside of the adiabatic zone. Being inside the heat sink zone, heat is 



transferred both axially and radially which influenced the breadth of the mushy zone and curvature of the 

liquidus isotherm, showing low yet noticeable positive curvature in Figure 8. In comparison, by increasing the 

radius (S2) the radial component of the conductive thermal resistance increases, increasing Bi, while at the same 

time the effect of advection becomes stronger by the increase in Pe. The former reduces the scale of radial 

conduction while the latter increases the scale of advection causing the mushy zone to penetrate deeper into the 

colder heat sink region. These two effects compound in such a way as to induce strong radial heat flow, 

including significantly more pronounced curvature of the liquidus isotherm, as seen in Figure 8. For later 

reference, it is also worth noting that both Bi and Pe are directly proportional to the value of the sample radius, 

hence when rsamp changes the ratio Bi/Pe as well as Bi/(Pe/Ste) remain constant. 

 

Figure 10: Simulations S3 (left) and S4 (right) showing the solid fraction (top) and temperature distribution (bottom) in an 

axial section of the samples during the pulling stage (Pe>0). 



 

Figure 11: Simulations S3 (left) and S4 (right) showing the advective sensible heat term  −𝑃𝑒
𝜕𝜃

𝜕𝑋
  (top), the advective latent 

heat term  
𝑃𝑒

𝑆𝑡𝑒

𝜕𝑔𝑠

𝜕𝑋
 (middle), and the comparison of the two terms at r=0; note that these terms are dimensionless. 

Figure 10 shows the steady state solution of solid fraction and temperature during the pulling stage for 

simulations S3 and S4, corresponding to Pe=0.0843 (Pe/Ste=0.4) and Pe=0.3372 (Pe/Ste=1.598) respectively. 

It is noticed from the temperature plots of Figure 10 as well as the liquidus isotherm profiles of Figure 8 that 

radial gradients are significantly higher for S4 even though the Biot number is the same for both cases, at 

Bi=0.125. As implied considering S2 discussed above, the reason for this is that for certain cases advective 

thermal transport within the material can be significant and Bi does not account for this as it only scales the 

relative magnitude of conduction within the sample and convection at the boundaries. To highlight this, Figure 

11 shows the distribution of the dimensionless rate of sensible heat flow by advection, -Pe∙∂θ/∂X (top), and 

latent heat flow by advection, Pe/Ste∙∂gs/∂X (middle). Since these terms are dimensionless, Figure 11 illustrates 

the relative magnitudes of the two advective thermal transport mechanisms in order to reveal which one is 

dominant and over what region within the domain. When the pulling velocity is lower, Pe is lower. Therefore, in 

simulation S3 the advective terms are weaker and the mushy zone is located partially within the adiabatic zone 

and the curvature of the liquidus isotherm is low (Figure 8), similar to the case S1 described earlier. 

Correspondingly, the length of the mushy zone is small. On the contrary, in simulation S4 Pe is significantly 

higher and both sensible and latent heat transfer by advection are more important. Advection causes the mushy 



zone to shift towards the cold end of the domain and the shape of the liquidus isotherm becomes notably more 

convex (Figure 8) due to enhanced radial heat transfer.  Considering the scales of to Figure 11, it is clear that 

only the sensible heat advection is present in the single phase liquid and solid regions, whereas the latent heat 

advection is dominant within the mushy zone. Thus, advection of heat, both sensible and latent, can be an 

important factor in determining the thermal profile within the sample, which of course will influence the 

resulting grain structure of the resulting solid. 

 

 

 
Figure 12: Simulations S5 (left) and S6 (right) showing the solid fraction, temperature distribution, and radial temperature 

gradient in an axial section of the samples during the pulling stage (Pe>0). 

The above discussion indicates that 2D effects, here broadly considered by scrutinizing the shape of the liquidus 

isotherm, are strongly influenced by advective thermal transport. Above, the strength of this term was 

considered by increasing Pe, by increasing the length and velocity scales separately. As it was shown, increasing 

Pe has the effect of increasing the curvature of the liquidus isotherm even for the case when Bi is identical. 

However, all of the above simulated cases have the same heat transfer coefficient, in the sense that Bi was 

altered by changing the radius of the sample. Figure 12, on the other hand, shows the radial temperature gradient 

distribution in the samples for simulations S5 and S6 correspond to Bi=0.0625 and Bi=0.25 respectively, where 

Bi is increased for S6 by increasing the heat transfer coefficient whilst keeping the dimensions the same as S5. 



For reference, the baseline S0 simulation corresponds to an intermediate case with Bi=0.125 whilst having the 

same dimensions as S5 and S6.  Each S0, S5 and S6 have the same Pe=0.1686. 

 

Simulation S5 has a lower Bi compared with the baseline S0 case. This would suggest that the radial thermal 

gradients in the sample would generally be weaker than S6 due to the lower relative thermal resistance of 

convective heat transport compared with that of radial conduction. In fact, the mean value of the radial 

temperature gradient in the cold heat sink region at the circumference is ∂T/∂r ≈-0.6 ̊C/mm in simulation S0 and 

∂T/∂r ≈-0.4 ̊C/mm in simulation S5, showing the expected trend. Similarly, in simulation S6 Bi is larger than 

that of both the S0 and S5 cases and the magnitude of the radial heat flux increases as is clear in  Figure 12.  

Here the mean value of the radial temperature gradient is ∂T/∂r≈-0.8 ̊C/mm. Thus, there is clear evidence that Bi 

in part determines the temperature distribution, including 2D radial effects, during Bridgman solidification of 

alloys due to the interplay of the conductive and convective thermal resistances. Interestingly however, Figure 8 

shows that, compared with the baseline S0 case, the curvature of the liquidus isotherm increases in simulation 

S5 and decreases in simulation S6, which is opposite to what one would expect based purely on a Biot number 

scaling argument i.e. one that only includes convective and conductive thermal resistances to characterize 2D 

heat flow.   

 

This behaviour can be understood by observing the position of the mushy zone in the sample. It is evident that in 

simulation S5 the liquidus isotherm is located much deeper in the heat sink region even though Pe is the same as 

in S6. As discussed earlier, the radial heat fluxes are generally higher due to the relative location of the mushy 

zone with respect to thermal communication with the cold heat sink walls, since the latent heat generated during 

the phase change induces higher temperature gradient between the sample and the cold boundary. On the 

contrary, in simulation S6 the liquidus is located at the border region between the adiabatic and heat sink zone 

where the isotherms are inherently flatter. Although the location of the mushy zone accounts for the enhanced 

(S5) or the reduced (S6) curvature of the liquidus isotherm, the reason for the different positions is not 

immediately clear since the magnitude of advection, as defined by the scale of Pe, is the same in both 

simulations. 

 

However, this could be understood by considering the meaning of the ratios Bi/Pe and Bi/(Pe/Ste.) In fact, these 

two terms could be regarded to as the ratios of the sensible and latent heat advective resistances inside the 

sample to the convective resistance at the boundary, respectively. Therefore, when h is lower (S5), Bi/Pe and 

Bi/(Pe/Ste ) diminish, which means that the sensible and latent heat advective resistances in the sample are 

relatively lower. As a consequence, the mushy zone moves deeper in the cold region due to the enhanced effect 

of advection. On the contrary, when the heat transfer coefficient is higher (S6), Bi/Pe and Bi/(Pe/Ste) increase, 

hence the sensible and latent heat advective resistances in the sample are greater and the effect of advection is 

reduced. For the alloy under consideration in this work, this effect is dominated by the latter of the two, meaning 

that the advection of latent heat largely determines this effect, though it cannot be generally stated that this is 

true for all alloys and will be the focus of future study. 

 

 

4. Conclusions 
 

This investigation aimed to contribute to the understanding of Bridgman solidification. In particular, this work 

focussed on numerical simulations which included 2D effects and the interaction of advective thermal transport 

mechanisms. With reference to the stated objectives: the following steps were addressed: 

 

1) A new 2D axisymmetric numerical model for Bridgman solidification of binary alloys was developed. 

2) Key non-dimensional quantities that influence the evolution of temperature and solid fraction during 

solidification were identified as Stefan number, Péclet number, and Biot number. 

3) The efficacy of the model was tested by simulating a suitable and relevant experimental test case [18]. 

4) A parametric analysis of the Bridgman solidification process was performed so as to contribute to the 

understanding of the influence of different parameters on temperature and solid fraction evolution. 

 

The main conclusions from this study are as follows: 

 

The Bridgman solidification process of binary alloy systems that exhibit a freezing range is characterized by 

several mechanisms of heat transfer. In particular, there is a strong interaction between the convective heat transfer 

at the boundaries, conduction and advection of sensible and latent heat in the sample. The parametric study showed 

that changing any of the process parameters, either in isolation or in combination, can induce significant and 



sometimes counter intuitive responses. This investigation suggest that, in order to anticipate the development of 

the mushy zone (position in the sample, shape of the mushy zone envelope), the single values of the dimensionless 

numbers Bi, Pe and Ste might not be sufficient, and that considering the ratios Pe/Ste, Bi/Pe and Bi/(Pe/Ste) will 

give more relevant information on the process. 

One advantage of the proposed model is the ability to reproduce both axial and radial thermal gradients. This is 

an important feature for investigating Bridgman solidification, since magnitude and direction of heat transfer at 

locations close to the liquidus isotherm could lead to the formation of different grain structures in front of the 

axial columnar grains, i.e. radial columnar or equiaxed grains [5]. In order to investigate the formation of 

different grain morphologies, plans for future work include the integration of a front tracking algorithm into the 

model. The front tracking method would facilitate the prediction of distinct regions in the mushy zone, namely 

columnar mush, equiaxed mush, or in the absence of equiaxed nucleation, constitutionally undercooled liquid 

regions.  
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