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Abstract. Inspired by the behaviour of the human visual system, a spiking 
neural network is proposed to detect moving objects in a visual image 
sequence. The structure and the properties of the network are detailed in this 
paper. Simulation results show that the network is able to perform motion 
detection for dynamic visual image sequence. Boundaries of moving objects are 
extracted by the spiking neural network. Using the boundary, a moving object 
filter is created to take the moving objects from the grey image. The moving 
object images can be used to recognise moving objects. The moving tracks can 
be recorded for further analysis of behaviours of moving objects. It is promising 
to apply this approach to video processing domain and robotic visual systems.  
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1   Introduction 

    A football player can promptly perform a series of actions to capture a football 
when he sees the moving football toward him. The information of the moving football 
conveys to the brain through the visual system. The retina contains complex circuits 
of neurons that extract salient information from visual inputs. Signals from 
photoreceptors are processed by retinal interneurons, integrated by retinal ganglion 
cells and sent to the brain by axons of retinal ganglion cells. Different cells respond to 
different visual features, such as light intensity, colour or moving objects [1–5]. 
Mammalian retinas contain approximately 55 distinct cell types, each with a different 
function [1]. A retinal cell type responds to upward motion has been identified in [6]. 
Results in [7] demonstrate that information for segmenting scenes by relative motion 
is represented as early as V1. To detect moving objects, the brain must distinguish 
local motion within the scene from the global image. The findings in [8] show how a 
population of ganglion cells selective for differential motion can rapidly flag moving 
objects, and even segregate multiple moving objects. In [9], it is shown that neurons 
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compute internal models of the physical laws of motion. These findings are shown 
some principles for the brain to detect moving objects in the psychological or 
statistical level. What are the exact neuronal circuits for motion detection? How can 
we simulate the neuronal circuits in electronic circuits and then apply them to 
artificial intelligent systems? This is the motivation of this paper. Jeffress [22-24] 
applied the time difference principle of axonal delay to account for sound localisation 
[11,13]. Based on spiking neuron model and axonal delay [10-14], a neuronal circuit 
is proposed to explain how a spiking neural network can detect moving objects in an 
image sequence.  The neuronal circuit has been simulated in software and embedded 
in a simulation system. Combining with the traditional image processing approaches, 
the system can demonstrates retrieval of moving objects from an image sequence. 
       The remainder of this paper is organized as follows. In Section 2, axonal delays 
are used to construct a spiking neural network which is used to simulate the visual 
cortex for motion detection, and the principle of motion detection based on spiking 
neurons is described. The network model is based on conductance-based integrate-
and-fire neurons. The behaviours of the neural network with the axonal delay are 
represented by a set of equations in Section 3. Simulation system and results for 
motion detection are presented in Section 4. Discussions about the network are given 
in Section 5. 

2   Spiking Neural Network Model for Motion Detection 

The human visual system performs motion detection very efficiently. Neuroscientists 
have found that there are various receptive fields from simple cells in the striate 
cortex to those of the retina and lateral geniculate nucleus (see page 236-248 in [15]), 
and the axonal delay causes a phase shift for a spike train [10-14]. Inspired by the 
axonal delay mechanism, a spiking neural network model is proposed to detect 
moving objects. Its structure is shown in Fig. 1. Suppose that the first layer represents 
photonic receptors for an image. Each pixel of the image corresponds to a receptor. 
The intermediate layer is composed of two neuron arrays. N1 neuron array and N2 
neuron array have the same size as the receptor layer. N1 and N2 neuron array are 
connected to neurons in output layer. As shown in Fig.1, the neuron Nr(x, y) is 
connected to N1(x, y) through excitatory synapse without delay and through 
inhibitory synapse with an axonal delay Δt. Let SNr(x, y, t) represent current from 
receptor Nr(x, y). If the current from receptor Nr(x, y) is stable, i.e. current SNr(x, y, t) 
is equal to current SNr(x, y, t-Δt), the excitatory input and the inhibitory input of 
neuron N1(x, y) can be balanced by adjusting the parameters of synapses, and then 
neuron N1(x, y) is silent. If the current of receptor Nr(x, y) becomes stronger, i.e. the 
current SNr(x, y, t) is larger than current SNr(x, y, t-Δt), the balance is broken, and then 
neuron N1(x, y) will generate spikes if SNr(x, y, t) is larger enough than SNr(x, y, t-Δt). 
If the current of receptor Nr(x, y) becomes weaker, neuron N1(x, y) does not fire. In 
this case, neuron N2(x, y) will fire if SNr(x, y, t) is smaller enough than SNr(x, y, t-Δt). 
Therefore, the moving pixels are reflected in the output neuron layer, i.e. Neuron 
N(x’, y’) will fire if Neuron N1 or Neuron N2 fires. 
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Fig. 1. Spiking neural network model for motion detection 

3  Spiking Neuron Model and Simulation Algorithms 

Simulation results show that the conductance based integrate-and-fire model is very 
close to the Hodgkin and Huxley neuron model [16-21]. The conductance based 
integrate-and-fire model is applied to the aforementioned network model. Let Gx,y (t) 
represent gray scale at time t at point (x,y) in the image,  represent peak 
conductance caused by excitatory current S

, ( )ex
x yq t

Nr(x, y, t) from a receptor at point (x,y), 
and  represent peak conductance caused to inhibitory current S, ( )ih

x yq t Nr(x, y, t) from a 
receptor at point (x,y).  For simplicity, suppose that each receptor can transform a 
value of gray scale to peak conductance by the following expressions. 

, ,( ) ( )ex
x y x yq t G tα= ;  , ,( ) ( )ih

x y x yq t G tβ= (1) 

where α and β  are constants. According to the conductance based integrate-and-fire 
model [20-21], neuron N1 is governed by the following equations. 
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where 1_ ( , ) ( )N ex x yg t and 1_ ( , ) ( )N ih x yg t are the conductance for excitatory and inhibitory 
synapses respectively, τex and τih  are the time constants for excitatory and inhibitory 
synapses respectively, Δt is the axonal delay, is the membrane potential of 
neuron N1, E

1( , ) ( )N x yv t

ex and Eih are the reverse potential for excitatory and inhibitory synapses 
respectively, cm represents a capacitance of the membrane, gl represents the 
conductance of membrane, ex is short for excitatory and ih for inhibitory, Aex is the 
membrane surface area connected to a excitatory synapse, and Aih is the membrane 
surface area connected to a inhibitory synapse, represents the strength of 

inhibitory synapses, represents the strength of excitatory synapses. 

and are adjusted so that neuron N1 dose not fire when 
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    By analogy, membrane potential of Neuron N2 is governed by an equation as 
follows.  
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where represents the membrane potential of neuron N2. Note that changes 
of conductance of excitatory synapses have a delay comparing with Neuron N1, but 
changes of conductance of inhibitory synapses have not any delay that is different 
from Neuron N1.  

2( , ) ( )N x yv

     When the membrane potential of Neuron N1 and N2 reaches a threshold vth the 
neuron generates a spike respectively.  These spikes are transferred to corresponding 
neuron in output layer. Let SN1(t) represent a spike train which is generated by neuron 
N1. 
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By analogy, let SN2(t) represent spike trains for neurons N2. Neuron Nx’,y’ in the output 
layer is governed by the following equations. 
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Note that Neuron Nx’,y’ is connected to intermediate neurons only by excitatory 
synapses. Let Sx’,y’ (t) represent spike train generated by Neuron Nx’,y’ in output layer. 
The firing rate for Neuron Nx’,y’ is calculated by the following expression. 
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Plotting rx’,y’(t) as a grey image, white areas indicate neuron groups with high firing 
rate. Drawing the outside boundaries of firing neuron groups, boundaries of moving 
objects are extracted.  

4    Simulation Results 

The network model was implemented in Matlab using a set of parameters for the 
network:  vth = -60 mv. vreset = -70 mv. Eex= 0 mv.  Eih= -75 mv. El= -70 mv. gl =1.0 
μs/mm2. cm=10 nF/mm2. τex=2 ms. τih=3 ms. Aih=0.028953 mm2. Aex=0.014103 mm2. 
These parameters can be adjusted to get good quality of output image. The 
architecture of simulation system is shown in Fig. 2.  
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Fig. 2. The architecture of simulation system 



 
(a) A frame of image in the sequence                 (b)The moving car has been detected. 

 
(c) Another frame from the sequence                 (d) The car has been detected from (c). 

 
(e) People in an original image                        (f) The people has been detected from (e)  

 
      (g) People in an original image                       (f) The people has been detected from (g) 

 
Fig. 3. Results of simulations. 



 
The system takes an image from the image sequence each time step. The image is 

transferred to a grey scale image. The grey image presents to the spiking neural 
network (SNN) for motion detection. The moving objects can be detected by the SNN 
based on the equations in Section 3. The edges of firing neuron groups are used to 
determine the boundaries of the moving objects. Using the boundaries of the objects, 
a filter is generated to take out of moving objects from background. Therefore, the 
moving object in the grey image is transferred to the output image. The results of 
simulations are shown in Fig. 3. Images (a), (c), (e) and (g) are original image from 
image sequence, where as (b), (d), (f) and (h) are corresponding outputs of the 
simulation system. A simplified model based on the principle is implemented using 
C++ in Windows XP. This program can be used to demonstrate the dynamic 
properties for SNN motion detection in real time. 

inciples found in the visual system. This is an very interesting topic 
for further study. 
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5   Discussion 

Inspired by biological findings, a neuronal circuit for motion detection is proposed in 
this paper. The neuronal circuit is based on axonal delay using spiking neuron model 
and it can be used to explain how a spiking neural network in the visual system can 
detect moving objects. Further research is required to establish the actual mechanisms 
employed by the visual cortex to determine motion. However, the proposal presented 
here can be used in artificial intelligent systems. Since the circuit is based on spiking 
neuron model, other findings in the human visual system can be integrated into the 
system to process more complicated moving objects tracking and recognition. It 
would be very promising to create more powerful image processing system using 
more biological pr
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