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Abstract— Wireless Ad-hoc and Sensor Networks are the
cornerstone of decentralised control and optimisation tech-
niques in numerous sensor-rich application areas. Triggered
by the necessity of autonomous operation within constantly
changing environments, Wireless Ad-hoc and Sensor Networks
are characterised by dynamic topologies, regardless the mobility
attributes of their operational nodes. As such, the relative
awareness that each node can obtain of the entire network
draws the roadmap of viable reconfiguration mechanisms, such
as the establishment of bidirectional connectivity. The issues
addressed in this paper are related to the bidirectional connec-

tivity conditions over Wireless Ad-hoc and Sensor Networks.
Based solely on the relative awareness that each node has of
the entire network, sufficient end-to-end connectivity conditions
are herein extracted. These conditions, exploiting the notion
of relative Delaunay neighbourhoods, formulate the basis of a
transmission power adjustment scheme. Without any additional
network overhead, the resulting Relative Delaunay Connectivity
Algorithm is herein proven to yield an efficient solution to the
connectivity issues. Extensive simulation results are offered to
evaluate the performance of the network, resulting from the
proposed transmission range adjustment, whilst highlighting
the benefits of the Relative Delaunay Connectivity Algorithm.

I. INTRODUCTION

Wireless Ad-hoc and Sensor Networks (WASN) have

gained prominence as a cross-disciplinary research field for

numerous sensor-rich application areas. Driven by the needs

of these applications, a WASN is expected to operate in

a self-organised manner and adapt itself to variations of

both the surrounding environment and the demands of the

user [11]. Consequently, even in the case of static nodes,

a WASN is characterised by dynamic topologies, where

alterations are triggered either by the requirements of user

or the components of the network itself.

Introducing these dynamic topologies as a key attribute

for a WASN, intensifies the necessity to eliminate global

knowledge of the network from the perspective of each node.

As observed in [5], it is impractical to consider that each

node has, or can obtain, awareness of the attributes that

characterise the entire network. On the contrary, each node

can have access to a set of network characteristics that are

limited by the operational range within its neighbourhood.

The resulting, relative perspective that each node has on the

network may differ from the actual, global network status.

Nevertheless, this perspective formulates the basis, on which
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distributed techniques can be employed for achieving the

goals of the entire WASN.

The relative awareness that each node has of the net-

work also benefits the establishment of connectivity across

the entire network [3]. Ensuring connectivity is considered

essential for the (re)configuration across the WASN. A

connected network is a prerequisite for employing more

advanced network techniques, such as the construction of

Minimum Spanning Trees [6], routing protocols [9], and

coverage-oriented schemes for mobile networks [17].

As shown in [4], connectivity conditions are strongly

aligned to the spatial attributes of the nodes, while they

are achievable when the apposite network model is com-

bined with graph theory tools [15]. Typical decentralised

approaches for establishing connectivity are recorded in

recent literature either as specialised networking proto-

cols [2], [1] or as feedback- and local observer- based reg-

ulation schemes [7], [18]. From an algorithmic perspective,

the connectivity problem is modelled either as a Minimum

Spanning Tree [8], or a Shortest Path Problem [16], requiring

in both cases the exchange of customised messages between

the operational nodes.

The issues addressed in this paper are related to the end-

to-end connectivity over a WASN. End-to-end connectivity

refers to the bidirectional connectivity between each pair of

nodes in the network. More specifically, relative network

and spatial awareness is built for each node, based on

its maximum achievable operational range. This awareness

is described by a set of relative operational nodes and a

relative Delaunay tessellation. As proven herein, the suf-

ficient conditions described in [13], which associate end-

to-end connectivity to the globally-calculated Delaunay tri-

angulation, can be extended to the case of the relative

Delaunay triangulation. These conditions are further used

for the synthesis of the Relative Delaunay Connectivity

Algorithm. Although this work considers an algorithmic

approach, the proposed scheme can be repeatedly employed

in an independent and localised manner by each node, in

order to calculate the minimum transmission power required

to establish end-to-end network connectivity. Theoretical and

simulation analysis highlight the efficacy of the resulting

transmission power adjustment in end-to-end connectivity

terms, whilst introducing no additional network overhead.

The remainder of this paper is organized as follows: in

Section II the end-to-end connectivity problem is formu-

lated. In Section III the proposed algorithm is presented,

accompanied by the theoretical analysis of its operation.

Extensive simulation results are offered in Section IV, while
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the conclusions of this work are drawn in Section V.

II. PROBLEM STATEMENT

In this work we consider a WASN, henceforth denoted as

(N,ΓN), comprised of a set ΓN = {1,2, . . . ,N} of N nodes.

Each node i ∈ ΓN is solely characterised by: (a) its 2-D

coordinates (b) its transmission power Ptx
i , constrained by a

predefined upper bound ρmax. Based on this information, the

objective is to locally calculate the minimum transmission

power that ensures end-to-end network connectivity.

The connectivity status of the network is modelled ac-

cording to [13]. More specifically, the connectivity of the

network is represented as a graph of members of ΓN ,

constructed by the bidirectional connectivity links i ↔ j

between the nodal pairs (i, j). The existence of a i ↔ j

link depends on the relative location of nodes i and j and

their transmission coverage areas Ci, C j respectively. The

transmission coverage area Ci is represented as a circle,

while the corresponding transmission radius is a function

of the transmission power Ptx
i , capturing the free space

propagation and ground reflection effects [14].

This model reflects the widely accepted notion of binary

connectivity [3]. More specifically, the establishment of the

bidirectional connectivity link i ↔ j over the nodal pair

(i, j) is quantified by means of the connectivity link binary

parameter αi j. More specifically, αi j =1 if i∈C j and j ∈Ci,

and αi j =0 otherwise.
From the perspective of the entire network, end-to-end

connectivity depends on the combination of the afore-
mentioned connectivity links into connectivity paths Pi j =
{i, . . . ,k, . . . , j} for each nodal pair (i, j). Respective to the
connectivity link parameter αi j, the existence of such con-
nectivity paths Pi j is quantified by means of the connectivity
path parameter bi j:

bi j , 1−
|Pi j|−1

∏
m=1

αPi j{m}Pi j{m+1} =

{

0 if (i, j) is connected
1 otherwise

,

where
∣

∣Pi j

∣

∣ denotes the length of sequence Pi j and Pi j{m}
denotes the element of Pi j at the m-th index.

The binary parameter bi j yields the necessary and suffi-

cient condition for the connectivity of the network:

∑
i∈ΓN

∑
k∈ΓN

bik = 0. (1)

The condition described by (1) highlights the implicit de-
pendency of the connectivity status of the network on the
spatial attributes of its nodes. These spatial attributes can be
represented as the Delaunay graph GS [12] of the members
of the ΓN . Graph GS is plane and formulated by Delaunay
edges ei j between pairs of nodes i and j. The distinct
characteristic of a Delaunay edge ei j is that the apposite
circumcicle contains no other members of the ΓN set [12].
At a nodal level, the vertices of GS that are adjacent to the
i-th vertex formulate the local set ∆i of Delaunay neighbours
of the i-th vertex. As proven in [13], the characteristics of GS

formulate the sufficient conditions for the distributed end-to-
end connectivity of the entire network:
Lemma 1 [13]. If ∀ i ∈ ΓN :

∑
j∈∆i

bi j = 0, via Pi j =
{

{p,q}
∣

∣ {p,q} ≡ epq, p,q ∈ {i}
⋃

∆i

}

,

then condition (1) is satisfied.

A. The Relative Network and Spatial Awareness

The set ∆i of Delaunay neighbours corresponds to a con-

centrated view on a globally-calculated spatial perspective of

the entire network, represented by the graph GS. As such, it is

impractical to assume that each node has a priori-knowledge

of the local set ∆i of Delaunay neighbours. By contrast, each

node is only capable of obtaining a relative view of the

spatial configuration of its surrounding co-operational nodes,

limited by the maximum transmission power ρmax. Based

on this observation, the i-th node is capable of deriving the

set Γ̃i ⊆ ΓN of relative operational nodes, with which it can

establish direct connectivity links:

Γ̃i , {i}
⋃

{

j ∈ ΓN

∣

∣αi j = 1
}

, at Ptx
i ,Ptx

j ← ρmax.

Due to the definition of αi j , if i ∈ Γ̃ j, then j ∈ Γ̃i.

Considering that each node features its 2D-coordinates, the

calculation of the set Γ̃i implies that the i-th node has access

to the related spatial attributes of each j ∈ Γ̃i. Therefore, each

node i is capable of deriving the relative Delaunay graph G̃i

and the set ∆̃i of relative Delaunay neighbours, similarly to

the definition of GS and ∆i, yet solely relying on localised

information Γ̃i that it has the potential of acquiring.

From the perspective of the entire network, the relative

spatial graph G̃S is defined as the union of the partially

constructed graphs G̃i, ∀i ∈ ΓN . Although G̃i preserves the

properties of a Delaunay tessellation and contrary to the

features of graph GS, the relative graph G̃S, cannot be

considered as either connected or plane. An example of the

differences between GS and G̃S is illustrated in Fig. 1 for a

network comprised of N =34 operational nodes.
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Fig. 1. The spatial graph GS (left) and G̃S (right) for a network comprised
of N =34 nodes.

The difference between the graphs GS and G̃S can be

further extended to a nodal perspective. More specifically, a

set of properties is derived, characterising both the relation-

ship between the relative Delaunay awareness of two distinct

nodes, as well as the relationship between ∆̃i and ∆i for a

single node i. These properties, illustrated in the example of

Fig. 2, are listed as follows:

P1. The set ∆̃i of relative Delaunay neighbours is not by

definition subset of ∆i: ∆̃i * ∆i.

P2. ∆̃i ≡ ∆i if αi j = 1, ∀ j ∈ ∆i, when Ptx
i, j← ρmax.

P3. Relative Delaunay edges are not necessarily symmetric.

Equivalently: j ∈ ∆̃i ; i ∈ ∆̃ j.

P4. Symmetric relative Delaunay edges do not imply iden-

tical Delaunay triangles, viewed from the extremes of the

same symmetric Delaunay edge. For example, if m ∈ ∆̃i
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GS G̃k G̃i G̃m G̃ j G̃S

∆i = {k,m, j}, ∆ j = {i,k} Γ̃k = {k, i, j} Γ̃i = {i,k,m, j} Γ̃m = {m, i, j} Γ̃ j = { j,k,m, i}
∆k = {m, j, i}, ∆m = {k, i} ∆̃k = {i, j} ∆̃i = { j,m,k} ∆̃m = {i, j} ∆̃ j = {i,k}

∆̃k ⊂ ∆k ∆̃i ≡ ∆i (P2) ∆̃m 6⊆ ∆m (P1) ∆̃ j ≡ ∆ j (P2)

j ∈ ∆̃m ←→ m /∈ ∆̃ j (P3)
△(i,m,k) 6≡ △(m, i, j) (P4)

Fig. 2. Example of a spatial graph GS for nodes i, j,k,m, the corresponding relative spatial configuration G̃i-∆̃i, G̃ j-∆̃ j , G̃k-∆̃k, G̃m-∆̃m for each node, and

the resulting spatial graph G̃S . The graph G̃S for a set of nodes ΓN = {i, j,k,m} is constructed when direct connectivity links are feasible among all pairs
in ΓN except for the nodal pair (k,m).

and i ∈ ∆̃m the corresponding Delaunay triangles △(m, i, j),
△(i,m,k), viewed from m and i respectively are not nec-

essarily identical. In particular, if j 6∈ Γ̃i (k 6∈ Γ̃m), then

△(m, i, j) 6≡ △(i,m,k) ( j 6≡ k).

The analysis provided so far highlights the fact that,

substituting the knowledge ∆i that each node i has of the

globally calculated spatial representation GS with the triple

Γ̃i-G̃i-∆̃i yields different perspectives of the same network,

when viewed from different nodes. Nevertheless, this relative

spatial and network awareness does not overrule the end-to-

end connectivity condition for the entire network, described

by (1). By contrast, as defined below, each node i undertakes

the calculation of the minimum value of its transmission

power that satisfies the end-to-end connectivity condition (1),

based on its relative network and spatial awareness:

Problem 1. Consider (N,ΓN) WASN. Each node i ∈ ΓN is

characterised by its 2D coordinates and its transmission

power Ptx
i (Ptx

i ≤ ρmax). Based on the triple Γ̃i-G̃i-∆̃i of

relative network and spatial awareness that the i-th node

obtains when Ptx
i ← ρmax, calculate the minimum value of

the transmission power Ptx
i , ∀i ∈ ΓN , that satisfies the end-

to-end connectivity condition (1).

III. END-TO-END CONNECTIVITY BASED ON RELATIVE

DELAUNAY AWARENESS

The establishment of end-to-end connectivity across the
entire network from a distributed, nodal perspective can be
achieved by utilising the relative Delaunay ∆̃i awareness
of the i-th node. The constraint introduced is related to
the characteristics of the spatial graph G̃S. In particular,
the end-to-end connectivity across the entire network is
achievable if G̃S is connected. This condition yields an
essential requirement for extending the ∆i-related sufficient
end-to-end connectivity condition (1) to the case of relative
Delaunay awareness, described by ∆̃i.
Lemma 2. Consider a (N,ΓN) WASN, described by the
relative spatial graph G̃S. If

∑
j∈∆̃i

bi j = 0, via Pi j =
{

{p,q}
∣

∣

∣
{p,q} ≡ epq, p,q ∈ {i}

⋃

∆̃i

}

(2)

over a connected spatial graph G̃S, then condition (1) holds.

Proof. The proof of Lemma 2 is similar to the proof of

Lemma 1 [13], and it is, thereby, omitted.�

It should be noted that the sufficient conditions described

by (2) are not necessary for the end-to-end connectivity over

ΓN ; if condition (1) holds, the connectivity path among two

relative Delaunay neighbours is not necessarily constructed

by relative Delaunay edges. Nevertheless, as shown below,

Lemma 2 provides the roadmap for solving Problem 1.

A. The Relative Delaunay Connectivity Algorithm

The sufficient connectivity conditions described by

Lemma 2 imply that knowledge of the relative Delaunay

neighbourhood ∆̃i, along with its accompanying tessellation,

is adequate for calculating the minimum transmission power

required to establish end-to-end network connectivity. More

specifically, the Distributed Delaunay Connectivity Algo-

rithm (DDelCA), presented and evaluated in [13] for the case

of the local Delaunay sets ∆i, can be employed when the i-th

node has a relative Delaunay awareness, constrained by its

maximum achievable range.

The resulting Relative Delaunay Connectivity Algorithm

(ReDelCA) is summarised as a two-step process. During Step

1, the value ρi j of Ptx
i , required for realising the shortest

path πi j towards the j-th relative Delaunay neighbour, is

calculated. This calculation is based on ∆̃i (p,q, t ∈ {i}
⋃

∆̃i)

and the apposite tessellation ({p,q} ≡ epq, {q, t} ≡ eqt ).

The path πi j = {i, . . . , p,q, t . . . , j} is constructed by the t-th

relative Delaunay neighbours that minimise the label cl (t)
∣

∣

q :

cl (t)
∣

∣

q , c(q)+Ptx
qt . (3)

In (3) the vertex q is defined as the origin node of vertex t,

while Ptx
qt is the value of the transmission power required on

behalf of node q to establish a link with node t. Considering

the case of symmetric links, this implies Ptx
qt ≡ Ptx

tq . In

addition, if Ptx
tq > ρmax, the link q↔ t is not feasible. Finally,

the term c(q) denotes the length function at the q-th vertex:

c(q) , c(p)+max{Ptx
qp,P

tx
qt }. (4)

The value c(q) of the length function is associated with: (a)

the transmission power Ptx
qp, Ptx

qt that node q should use to

establish with nodes p and t, respectively, (b) the value of

the length function at the c(p) at the p-th vertex. Finally, if

q≡ i, then c(q) = Ptx
it .

During Step 2, the value ρ tx
i (≤ ρmax) is set to the value

that is capable of realising the shortest path πi j, that the i-th
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node calculates at Step 1 for each j ∈ ∆̃i [13] :

ρ tx
i = min

{

ρmax,max
j∈∆̃i

{

ρ tx
i j

}

}

. (5)

Both the calculation of πi j, which minimises the transmission

power required to establish the i↔ j link, as well as the

selection of the ρ tx
i , according to (5), are executed inde-

pendently at each node. The design approach of ReDelCA

reveals also its repeatability within a varying network topol-

ogy, as it is based on completely localised information, intro-

ducing neither additional complexity nor network overhead.

Moreover, as in the case of DDelCA, RDelCA converges in

quadratic time (O
(

N2
)

). Finally, as discussed below, setting

Ptx
i ← ρ tx

i , ∀i∈ ΓN satisfies condition (1), and thereby, solves

Problem 1 under the assumption of a connected graph G̃S.

B. Analysis of the Relative Delaunay Connectivity Algorithm

The backbone of the ReDelCA is the calculation of the

shortest path πi j, ∀ j ∈ ∆̃i, that minimises the transmission

power required by the i-th node to establish a link with its

j-th relative Delunay neighbour, via the relative Delaunay

edges of the i-th node. As each node has a different per-

spective on the same network, the independent and localised

execution of the ReDelCA at different nodes i, j cannot

guarantee that the corresponding paths πi j and π ji will be

symmetric. Nevertheless, this property is proven for the case

of a shortest path that is comprised of a single and symmetric

relative Delaunay edge.

Lemma 3. If πi j = {i, j} and i ∈ ∆̃ j, then π ji = { j, i}.
Proof. Since πi j = {i, j}, j ∈ Γ̃i and, thus, Ptx

i j ≤ ρmax. In

addition, for k ∈ ∆̃i, which determines the triangle △(i, j,k):

cl ( j)) |i < cl ( j) |k ⇒ 2Ptx
i j < cl ( j) |k . (6)

Based on (3)-(4) , (6) implies that ∀o(k) ∈ {i}
⋃

∆̃i:

2Ptx
i j < cl (k)

∣

∣

∣o(k) +max{Ptx
o(k)k,P

tx
k j}+Ptx

k j ⇒

2Ptx
i j < Ptx

ik +max{Ptx
ik ,P

tx
k j}+Ptx

k j , when o(k) = i. (7)

Assume that π ji 6= { j, i}. In this case π ji is formulated as

π ji = { j, . . . ,k
′
, i}, where k

′
∈ ∆̃ j and

(

i, j,k
′
)

determines

the Delaunay triangle △
(

j, i,k
′
)

from the perspective of the

j-th node. Since π ji 6= { j, i}:

cl (i)
∣

∣

k
′ < 2Ptx

i j ⇒ 2Ptx
i j > Ptx

ik
′ +max{Ptx

ik
′ ,Ptx

k
′
j
}+Ptx

k
′
j
. (8)

The following cases are examined:

A. k
′
∈ ∆̃i⇒ k

′
≡ k. In this case condition (7) contradicts to

condition (8) and, thus, the assumption that π ji 6= { j, i} is
negated.

B. k
′
6∈ ∆̃i⇒ k 6≡ k

′
. Due to P4, k

′
6∈ Γ̃i. Consequently, the

transmission power Ptx

ik
′ is constrained by the upper threshold

ρmax. This observation leads to:

Ptx
ik
′ > ρmax⇒ Ptx

ik
′ +max{Ptx

ik
′ ,Ptx

k
′
j
}+Ptx

k
′
j
> 3ρmax⇒

2Ptx
i j > Ptx

ik
′ +max{Ptx

ik
′ ,Ptx

k
′
j
}+Ptx

ki j
> 3ρmax > 2ρmax, (9)

due to (8). Inequality (9) violates the constraint Ptx
i j < ρmax.

Therefore, the assumption that π ji 6= { j, i} is negated.

Consequently, if πi j = {i, j} and i ∈ ∆ j, then π ji = { j, i}. �

Based on Lemma 3, Corollaries 1, 2 and 3 are derived:

Corollary 1. If πi j = {i,k, . . . , j} and i∈ ∆̃k, then πik = {i,k}.
Corollary 2.If πi j = {i, j} and i ∈ ∆̃ j, then αi j = 1 for Ptx

i ←
ρ tx

i , Ptx
j ← ρ tx

j .

Corollary 3. If πik = {i, j,k}, for i ∈ ∆̃k

⋂

∆̃ j and j ∈ ∆̃k,

k ∈ ∆̃ j, then π jk 6= { j, i,k}.
Lemma 3 and the resulting Corollaries are utilised to

prove that the transmission power ρ tx
i , which results from

employing ReDelCA at each node i ∈ ΓN , yields end-to-end

network connectivity over a connected G̃S:

Theorem 1. Consider a (N,ΓN) WASN, described by a

connected spatial graph G̃S. If Ptx
i = ρ tx

i , ∀i ∈ ΓN , then

condition (1) is satisfied.

Proof. Due to Lemma 2, it is sufficient to prove that when

Ptx
i = ρ tx

i for each i ∈ ΓN over a connected spatial graph G̃S

then the connectivity condition described by (2) is satisfied

within the relative Delaunay neighbourhood.
Without loss of generality, we consider a network com-

prised of four nodes ΓN = {i,m,k, j} and characterised by
G̃S shown in Fig. 2. The relative spatial awareness per node
is resumed bellow:

i: Γ̃i = {i,m,k, j}, ∆̃i = {m,k, j} m: Γ̃m = {m, i, j}, ∆̃m = {i, j}
k: Γ̃k = {k, i, j}, ∆̃k = {i, j} j: Γ̃ j = { j, i,m,k}, ∆̃ j = {i,k}

The following cases are examined:
A. Symmetric Delaunay Edges: i ∈ ∆̃k and k ∈ ∆̃i.
Let us assume that αik =0, when the i-th and k−th trans-
mission power is set to ρ tx

i , ρ tx
k respectively. This implies

that πik 6= {i,k}, and, thus, πik is equal to either {i, j,k}, or
{i,m,k}. Considering the path πik = {i,m,k} leads to:

2Ptx
ik > cl (k) |m ,and (10)

cl (k) |m = Ptx
im +max{Ptx

im,P
tx
mk}+Ptx

mk ≥ 2Ptx
mk⇒

cl (k) |m > 2ρmax, (11)

as m 6∈ Γ̃k, or equivalently Ptx
mk > ρmax. Equations (10)-

(11) imply that 2Ptx
ik > 2ρmax, which violates the initial

assumption that k ∈ Γ̃i. Therefore, πik = {i, j,k}, which leads

to:

πik = {i, j,k} ⇒ πi j = {i, j} ⇒ αi j = 1,

due to Corollary 1 and Corollary 2 respectively. In addition:

πik = {i, j,k} ⇒ π jk = { j,k} ⇒ α jk = 1,

due to Corollary 3 and Corollary 2 respectively. As a result,

for Ptx
i ← ρi, Ptx

j ← ρ j and Ptx
k ← ρk, the connectivity path

Pik = {i, j,k} is characterised by bi j = 1−αi jα jk = 0. Thus,

nodes i and k are connected.

B. Non-symmetric Delaunay Edges: j ∈ ∆̃m and m 6∈ ∆̃ j.

As previously shown αi j =1, thus, a valid connectivity path

Pm j = {m, i, j} ensuring that bm j = 0 exists if αim = 1.

Considering that m ∈ ∆i, this implies that it is sufficient to

show that πim = {i,m}.
Let us assume the opposite, i.e. that πim 6= {i,m}. Conse-

quently, path πim is either equal to {i, j,k,m} or to {i,k,m}.
This observation leads subsequently to:

2Ptx
im > cl (m) |k ⇒

2Ptx
im > c(o(k))+max{Ptx

o(k)k,P
tx
km}+Ptx

km, where o(k) = { j, i}.

Therefore 2Ptx
im > 2Ptx

km. This inequality is invalid, since

Ptx
im ≤ ρmax (m ∈ Γ̃i) and Ptx

mk > ρmax (k 6∈ Γ̃m). As such, the
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initial assumption that πim 6= {i,m} is negated, and thereby

αim =1. Consequently, bm j = 0, via the connectivity path

Pm j = {m, i, j}, when the transmission power Ptx
i , Ptx

j and

Ptx
m equals to ρ tx

i , ρ tx
j and ρ tx

m respectively. �

It should be noted that the localised policy of ReDelCA

yields optimal conditions constrained to the relative aware-

ness that each node has on the network. With respect to

global perspective of the network, ReDelCA provides a sub-

optimal approach on the solution for Problem 1. Neverthe-

less, as shown in Section IV, the gap among the proposed

sub-optimal conditions and some optimal conditions is not

severe.

IV. SIMULATION STUDIES

The proposed scheme calculates the minimum transmis-

sion power required for end-to-end connectivity. Although

the minimum transmission power does not necessarily yield

the optimal configuration for a power-conservative and

varying network, its awareness is essential as it provides

the connectivity potentiality of the network. Based on this

observation, the evaluation of the network behaviour that

results from applying the solution ρ tx
i of ReDelCA at the

transmission power Ptx
i , ∀i ∈ ΓN relies on an extensive

simulation procedure. This procedure employs 10 different

cases of normal distribution on the nodes deployment per

network size N = {4,9,14, . . . ,299}, within a fixed bounded

2D region. The network topology is not considered static,

however during the calculation of ρ tx
i the relative network

and spatial awareness per node are assumed to be constant.

The performance of a network resulting from the trans-

mission power configuration based on ReDelCA is evaluated

against the performance of the same network that results

from: (a) a transmission power configuration with Ptx
i =

ρmax, (b) the transmission power configuration based on

DDelCA [13], (c) the transmission power configuration based

on the Localised Minimum Spanning Tree (LMST) [8].

With respect to the connectivity status, the evaluation met-

rics for the performance of the network are (a) the number

of disjoint parts of the network (clusters) and (b) the number

of direct connectivity links. The behaviour of the network is

additionally evaluated against the mean value of the lifetime

τi. More specifically, the calculation of the lifetime τi is

based on the estimation model presented in [10], considering

unslotted CSMA-CA as the medium access mechanism, and

fixed transmission fT X and reception fRX rate per duty cycle,

while each node utilises the local broadcasting model.

A. Simulation Results

An example of the connectivity status of a network

comprised of N =54 nodes for the aforementioned cases

of transmission power configuration is shown in Fig. 3.

All schemes examined offer end-to-end connectivity. On

the contrary to the network resulting from the maximum

transmission power configuration (Fig. 3(a)), the ReDelCA-

based network configuration (Fig. 3(d)) accomplishes end-to-

end connectivity without introducing extraordinary network

links. The different perspective on the spatial information

results into slightly different network connectivity status

when DDelCa (Fig. 3(c)) and ReDelCA are employed. Nev-

ertheless, in both cases the redundant edges are a result of the

localised nature of these algorithms, contrasting the optimal

configuration described by the LMST-based configuration

(Fig. 3(b)). This paradigm highlights that despite the sub-

optimality offered by ReDelCA, the gap between the apposite

solution and the solution provided by LMST is not severe.

1) End-to-End Connectivity: The mean value of isolated

clusters and the mean value of direct connectivity links are

are presented in the left and middle diagram of Fig. 4 respec-

tively. As shown in the left diagram of Fig. 4, the connectivity

status achieved when the transmission power configuration

is based on ReDelCA is identical to the connectivity status

achieved when the three remaining benchmarking algorithms

are employed for configuring the transmission power of the

network. This implies that relative Delaunay awareness, with

no additional network overhead, is adequate for establishing

end-to-end connectivity across the entire network, given

that connectivity is achievable when nodes operate at their

maximum allowable transmission power.

The benefits of the ReDelCA are additionally highlighted

in the middle diagram of Fig. 4, whereby the mean value

of direct connectivity links is presented. The end-to-end

connectivity status that relies on the LMST-based transmis-

sion power configuration results into the most minimalistic

network graph, with the expense of introducing additional

network overhead in the operation of the network. The

connectivity status of the network resulting from ReDelCA

converges to the connectivity status of the network resulting

from DDelCA, as the network size increases. This obser-

vation implies that as the network becomes more dense,

the relative Delaunay awareness converges to the globally-

derived Delaunay awareness (∆̃i ≡ ∆i).

2) Lifetime: The mean value of lifetime τi per node

is presented at the right diagram of Fig. 4, highlighting

the benefits that transmission power configuration based on

ReDelCA has on the mean value of the nodal lifetime. When

N ≤ 150, the transmission power configuration resulting

from RelDelCA yields better lifetime performance than the

nodal lifetime resulting from the DDelCA-based transmis-

sion power configuration. Nevertheless, as the network be-

comes more dense (N > 150), the mean value of τi resulting

from the employment of ReDelCA converges to the mean

value of τi when either LMST or DDelCA are utilised for

the transmission power configuration.

V. CONCLUSIONS

In this work, end-to-end connectivity issues have been

addressed for the case of a WASN with dynamic attributes,

modelled by the relative spatial and network awareness

per node. The Relative Delaunay Connectivity Algorithm,

presented herein, is employed by each node to calculate

the transmission power required to establish end-to-end

connectivity. Under the assumption that connectivity of the

network is achievable when all nodes operate at their max-

imum transmission power, this localised transmission range
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Fig. 3. The connectivity status of a network comprised of N =54 nodes, resulting from the transmission power configuration based on (a) static / maximum
transmission power, (b) the LMST, (c) the DDelCA and (d) ReDelCA.
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Fig. 4. Simulation results: The mean value of isolated clusters (left), the mean value of direct connectivity links (middle), the mean lifetime per node
(right) for fRX = fT X =1000bps, versus the network size N.

adjustment satisfies the end-to-end connectivity conditions.

The simulation results empower the theoretical outcome,

highlighting the advantages that the proposed scheme has

in terms of connectivity and lifetime.

The consideration of temporal characteristics that elimi-

nate the symmetrical character from the connectivity links

yield the roadmap for further research, therefore introducing

a more realistic approach, in terms of autonomic network

reconfiguration.
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