
�

AAutonomic Computing
Kevin Curran
University of Ulster, Ireland

Maurice Mulvenna
University of Ulster, Ireland

Chris Nugent
University of Ulster, Ireland

Matthias Baumgarten
University of Ulster, Ireland

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Modern networks offer end-to-end connectivity
however, the increasing amount of traditional offered
services may still not fulfill the requirements of ever
demanding distributed applications and must therefore
be enriched by some form of increased intelligence in
the network. This is where the promise of autonomous
systems comes into play. Paul Horn of IBM Research
first suggested the idea of autonomic computing on
October 15, 2001 at the Agenda Conference in Ari-
zona. The need centers around the exponential growth
of networking complexity. Autonomous systems are
capable of performing activities by taking into account
the local environment and adapting to it. No planning
is required hence autonomous systems simply have
to make the best of the resources at hand. Locality in
this scenario is no longer geographical but rather the
information and applications on the boundary of the
autonomic communicating element, which may be
distributed over a wide area. The most common defini-
tion of an autonomic computing system is one, which
can control the functioning of computer applications
and systems without input from the user, in the same
way that the autonomic nervous system regulates body
systems without conscious input from the individual.
Thus, we attempt here to more clearly identify the need
for autonomous systems, their architecture, the path of
evolution from traditional network elements, and the
future of such systems.

BACKGROUND

Autonomous systems are capable of performing ac-
tivities by taking into account the local environment
and adapting to it. No planning is required hence
autonomous systems simply have to make the best of
the resources at hand. Locality in this scenario is no
longer geographical but rather the information and
applications on the boundary of the autonomic com-
municating element, which may be distributed over a
wide area. The key aim of autonomous communication
systems is that they exhibit self-awareness properties, in
particular self-contextualisation, self-programmability
and self-management (i.e., self-optimisation, self-or-
ganisation, self-configuration, self-adaptation, self-
healing, and self-protection). One of the main drivers
indeed behind autonomous computing is that industry
is finding that the cost of technology is decreasing, yet
IT costs are not. Autonomic systems are designed to
be self-protecting, able to detect hostile or intrusive
acts as they occur and deal autonomously with them
in real time. They can take actions to make themselves
less vulnerable to unauthorized access. Self-protected
systems will anticipate problems based on constant
reading taken on the system, as well as being able to
actively watch out for detailed warnings of attacks
from internet sources. They will take steps from such
reports to avoid or mitigate them. These characteristics
previously stated all come to together to help a system
run more efficiently while reducing costs due to less
human input. An autonomic system for instance can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

Autonomic Computing

help IT administrators deal with software installation by
being aware of what is needed to run and to install those
components, which need installing. It should obviously
also be aware of what applications are installed on the
system already and how to avoid or resolve any conflicts
that would arise once installed. This type of system
would constantly monitor itself for problems and should
a problem arise, then the fault is sought and corrected.
The Internet with its multiple standards and intercon-
nection of components such as decoders, middleware,
databases, and so forth, deserves more than a plug, try,
and play mentality. A key goal for the next generation
Internet is to provide a principled means of allowing
the underlying infrastructure to be adapted throughout
its lifetime with the minimum of effort, thus, the prin-
ciples of autonomic computing provides a means of
coping with change in a computing system as it allows
access to the implementation in a principled manner.
We attempt here to more clearly identify the need for
autonomous systems, the role of middleware, and the
future of such systems.

AUTONOMIC COMPUTING

The Internet is comprised of close to a billion daily us-
ers, each of which can potentially communicate. Hosts
can be anything from desktop computers and WWW
servers, to non-traditional computing devices such as
mobile phones, surveillance cameras, and Web TV.
The distinction between mobile phones and personal
device assistants (PDA’s) has already become blurred
with pervasive computing being the term coined to
describe the tendency to integrate computing and
communication into everyday life. New technologies
for connecting devices like wireless communication
and high bandwidth networks make the network con-
nections even more heterogeneous. Additionally, the
network topology is no longer static, due to the increas-
ing mobility of users. Ubiquitous computing is a term
often associated with this type of networking (Tanter,
Vernaillen, & Piquer, 2002). Thus, a flexible framework
is necessary in order to support such heterogeneous
end-systems and network environments.

The Internet is built on the DARPA protocol suite
transmission control protocol/Internet protocol (TCP/
IP), with IP as the enabling infrastructure for higher-
level protocols such as TCP and the user datagram pro-
tocol (UDP). The Internet protocol is the basic protocol

of the Internet that enables the unreliable delivery of
individual packets from one host to another. It makes
no guarantees about whether or not the packet will be
delivered, how long it will take, or if multiple packets
will arrive in the order they were sent. Protocols built
on top of this add the notions of connection and reli-
ability. One reason for IP’s tremendous success is its
simplicity. The fundamental design principle for IP
was derived from the “end-to-end argument,” which
puts “smarts” in the ends of the network—the source
and destination network hosts—leaving the network
“core” dumb. IP routers at intersections throughout the
network need do little more than check the destination
IP address against a forwarding table to determine the
“next hop” for an IP datagram (where a datagram is
the fundamental unit of information passed across the
Internet). However, the protocols underlying the Internet
were not designed for the latest generations of networks
especially those with low bandwidth, high error losses,
and roaming users, thus many “fixes” have arisen to
solve the problem of efficient data delivery (Saber &
Mirenkov, 2003). Mobility requires adaptability mean-
ing that systems must be location-aware and situation-
aware taking advantage of this information in order to
dynamically reconfigure in a distributed fashion (Solon,
Mc Kevitt, & Curran, 2005). However, situations, in
which a user moves an end-device and uses informa-
tion services can be challenging. In these situations, the
placement of different cooperating parts is a research
challenge. The heterogeneity is not only static but also
dynamic as software capabilities, resource availability,
and resource requirements may change over time. The
support system of a nomadic user must distribute, in an
appropriate way, the current session among the end-user
system, network elements, and application servers. In
addition, when the execution environment changes in
an essential and persistent way, it may be beneficial to
reconfigure the co-operating parts. The redistribution
or relocation as such is technically quite straightfor-
ward but not trivial. On the contrary, the set of rules
that the detection of essential and persistent changes
is based on and indeed the management of these rules
is a challenging research issue which to date has not
been solved by the traditional “smarts in the network”
approach (Chen, Ge, Kurose, & Towsley, 2005).

A bare bones traditional communication system
can be seen as consisting of three layers, as illustrated
in Figure 1. End systems inter-communicate through
layer T, the transport infrastructure. The service of layer

 �

Autonomic Computing

A

T is a generic service corresponding to layer 2, 3, or
4 services in the OSI reference model. In layer C, the
end-to-end communication support adds functionality
to the services in layer T. This allows the provision of
services at the layer A for distributed applications (A-C
interface). Layer C is decomposed into protocol func-
tions, which encapsulate typical protocol tasks such
as error and flow control, encryption and decryption,
presentation coding, and decoding among others. A pro-
tocol graph is an abstract protocol specification, where
independence between protocol functions is expressed
in the protocol graph. If multiple T services can be used,
there is one protocol graph for each T service to realize
a layer C service. Protocol functions (modules) can be
accomplished in multiple ways, by different protocol
mechanisms, as software or hardware solutions with
each protocol configuration in a protocol graph being
instantiated by one of its modules. Layering is a form
of information hiding where a lower layer presents
only a service interface to an upper layer, hiding the
details of how it provides the service. A traditional
network element such as the previous could form part
of the architecture of an adaptable middleware. Here
the flexible protocol system could allow the dynamic
selection, configuration, and reconfiguration of protocol
modules to dynamically shape the functionality of a
protocol in order to satisfy application requirements or
adapt to changing service properties of the underlying
network. Some uses that these dynamic stacks may be
used for could include increasing throughput where
environmental conditions are analyzed and heuristics
applied to decide if change would bring about optimal
performance (Bradshaw, Kurose, Shenoy, & Towsley,
2005).

Many such dynamically reconfigurable conventional
middleware systems exist (Becker, Schiele, Gubbels, &
Rothermel, 2003; Blair, Coulson, & Andersen, 2001;
Curran & Parr, 2004; Gill et al., 2004), and which
enable systems to adapt their behavior at runtime to
different environments and applications requirements.
The resource restrictions on mobile devices prohibit
the application of a full-fledged middleware system
therefore one traditional approach is to restrict ex-
isting systems and provide only a functional subset
(e.g., OMG, 2002; Schmidt, 2004), which leads to
different programming models or a subset of avail-
able interoperability protocols. Another option is to
structure the middleware in multiple components, such
that unnecessary functionality can be excluded from
the middleware dynamically. One such example is the
Universally Interoperable Core UIC (Roman, Kon, &
Campbell, 2001), which is based on a micro-kernel that
can be dynamically extended to interact with various
middleware solutions but the protocol is determined
prior to communication and dynamic reconfiguration
is not possible. However, even in the case of most
existing dynamically reconfigurable middleware,
which concentrate on powerful reconfiguration inter-
faces—the domain that they are applied in is simply
too narrow (e.g., multimedia streaming). It seems that
future proofing for future uses is not built in (Fry &
West, 2004). It must be noted that the authors are not
claiming that this is trivial rather that an alternative
approach for handling change in complex networks
seems called for.

Autonomic computing systems will manage com-
plexity, possess self-knowledge, continuously tune
themselves, adapt to unpredictable conditions, prevent
and recover from failures, and provide a safe environ-
ment (Murch, 2004):

• The autonomic nervous system frees our conscious
mind from self management and is the fundamen-
tal point of autonomic computing thus “freeing”
up system administrators and normal users from
the details of system operation and maintenance.
If a program can deal with these aspects during
normal operation, it is a lot closer to providing
users with a machine what runs 24x7 and its op-
timal performance. The autonomic system will
change anything necessary so as to keep running
at optimum performance, in the face of chang-
ing workloads, demands and any other external

Figure 1. 3 layer model

 A
AC interface

End-to-End
communication

suport

Physical Wire

Application

C

T

CT interface

Transport infrastructure

Application C service
access point

Protocol
function

Dependency

T service
access point

�

Autonomic Computing

conditions it faces. It should be able to cope with
software and or hardware failures whether they
are due to an unforeseen incident or malicious
acts.

• Installing and configuring systems can be ex-
tremely time consuming, complex, and can be
open to human error no matter how qualified the
administrator is. Autonomic systems could config-
ure themselves automatically by incorporate new
components seamlessly (Tanter et al., 2002).

• Modern systems may contain large amounts of
different variables/options/parameters, which a
user can change to optimize performance. Few
people, however, know how to use these and even
fewer know how to get them exactly right to get
100% performance. An autonomic system could
continually monitor and seek ways of improving
the operation efficiency of the systems in both
performance and/or cost. It is faster at this than
a person and is able to dedicate more time to
finding ways of improving performance.

• Autonomic systems are designed to be self-pro-
tecting, able to detect hostile or intrusive acts as
they occur, and deal autonomously with them in
real time. They can take actions to make them-
selves less vulnerable to unauthorized access.
Self-protected systems will anticipate problems
based on constant reading taken on the system,
as well as being able to actively watch out for
detailed warnings of attacks from internet sources.
They will take steps from such reports to avoid
or mitigate them (Murch, 2004).

The characteristics stated above all come to together
to help a system run more efficiently while reducing
costs due to less human input.

The IBM autonomic computing toolkit1 enables
developers to add self-configuring and other autonomic
capabilities to their software. The autonomic computing
toolkit is a collection of technologies, tools, scenarios,
and documentation that is designed for users wanting
to learn, adapt, and develop autonomic behavior in
their products and systems. Microsoft aims to develop
self-healing, autonomic computing under its Visual
Studio product line, and presently claim to be in the
process of software releases designed to reduce data
centre complexity.

FUTURE TRENDS

As systems become more advanced, they tend to
become more complex and increasingly difficult to
maintain. To complicate matters further, there has
been and for the foreseeable future, will be a scarcity
of IT professionals to install, configure, optimize, and
maintain these complex systems. Therefore, the aim of
autonomic computing is to reduce the amount of main-
tenance needed to keep systems working as efficiently
as possible, as much of the time as possible (i.e., it is
about making systems self-managing). Future trends in
network design, which will support the need for more
“open networks,” include the increasing popularity
of component architectures that reduce development
time and offer freedom with choice of components.
This allows alternative functionality to be deployed
in various scenarios to combat differing QoS needs.
Another trend is introspection, which provides run-time
system information allowing applications to examine
their environment and act accordingly. Autonomic
computing systems can provide an infrastructure for
building adaptive applications that can deal with drastic
environment changes. The Internet with its various
standards and interconnection of components such as
decoders, middleware, and databases deserve more
than a plug, try, and play mentality. The introduction
of mobility will also increase the complexity due to
the proliferation in possible actions. A key goal for
next generation networks is to provide a principled
means of allowing the underlying infrastructure to
be adapted throughout its lifetime with the minimum
of effort thus the principles of autonomic computing
provides a means of coping with change in a comput-
ing system as it allows access to the implementation
in a principled manner

CONCLUSION

Modern networks offer end-to-end connectivity,
however, the increasing amount of traditional of-
fered services may still not fulfill the requirements
of ever demanding distributed applications and must
therefore be enriched by some form of increased in-
telligence in the network. This is where the promise
of autonomous systems comes into play. One of the

 �

Autonomic Computing

A
main drivers indeed behind autonomous computing is
that Industry is finding that the cost of technology is
decreasing, yet IT costs are not. Autonomous systems
are capable of performing activities by taking into
account the local environment and adapting to it. The
key aim of autonomous communication systems is that
they exhibit self-awareness properties, in particular
self-contextualisation, self-programmability and self-
management (i.e., self-optimisation, self-organisation,
self-configuration, self-adaptation, self-healing, and
self-protection). Autonomic computing refers to the
ability of a system to self-diagnose without the need for
operator intervention. Traditionally, systems manage-
ment has focused on monitoring and measurement, with
an emphasis on end-to-end management but autonomic
computing focuses on the self-managing capabilities
of the infrastructure itself.

REFERENCES

Becker C., Schiele, G., Gubbels, H., & Rothermel, K.
(2003, July). BASE—A micro-broker-based middle-
ware for pervasive computing. In Proceedings of the
IEEE International Conference on Pervasive Comput-
ing and Communication (PerCom), Fort Worth.

Blair, G. S., Coulson, G., & Andersen, A. (2001). The
design and implementation of OpenORB version 2.
IEEE Distributed Systems Online Journal, 2(6), 45-52.
Bradshaw, M., Kurose, J., Shenoy, P., & Towsley, D.
(2005, June). Online scheduling in modular multimedia
systems with stream reuse. In Proceedings of NOSS-
DAV, Skamania, Washington.

Chen, W., Ge, Z., Kurose, J. , & Towsley, D. (2005).
Optimizing event distribution in publish/subscribe
systems in the presence of policy-constraints and
composite events. IEEE ICNP 2005.

Curran, K., & Parr, G. (2004, October 20-22). Introduc-
ing IP domain flexible middleware stacks for multicast
multimedia distribution in heterogeneous environments.
In MATA 2004—International Workshop on Mobility
Aware Technologies and Applications, Florianopolis,
Brazil (LNCS, pp. 313). Springer-Verlag Heidelberg.

Fry, G., & West, R. (2004, May 25-28). Adaptive routing
of QoS constrained media streams over scalable overlay
topologies. In Tenth IEEE Real-Time and Embedded

Technology and Applications Symposium, Le Royal
Meridien, Toronto, Canada.

Gill, C. M., Gossett, J., Corman, D. P., Loyall, J. E.,
Schantz, R., Atighetchi, M., et al. (2004, May 25-28).
Integrated adaptive qos management in middleware:
An empirical case study. Submitted to the Tenth Real-
Time Technology and Application Symposium, Le Royal
Meridien, Toronto, Canada.

Murch, R. (2004). Autonomic computing. IBM Press,
Prentice Hall PTR.

Object Management Group. (2002, July). The common
object request broker: Architecture and specification,
Revision 3.0.

Roman, M., Kon, F., & Campbell, R. (2001, July).
Reflective middleware: From your desk to your hand.
IEEE Distributed Systems Online Journal. Special is-
sue on Reflective Middleware.

Saber, M., & Mirenkov, N. (2003, September 24-26).
A multimedia programming environment for cellular
automata systems. In Nineth International Confer-
ence on Distributed Multimedia Systems (DMS’2003),
Florida International University Miami, Florida, USA
(pp. 104-110).

Solon, A., Mc Kevitt, P., & Curran, K. (2005, February).
TeleMorph: Bandwidth determined mobile multimodal
presentation. Information Technology and Tourism,
7(1), 33-47.

Tanter, E., Vernaillen, M., & Piquer, J. (2002). Towards
transparent adaptation of migration policies. Position
paper submitted to EWMOS 2002, Chile (pp. 34-39).

KEY TERMS

Autonomic: Relating to, or controlled by the au-
tonomic nervous system.

Closed Control Loop: This technique stems from
process control theory. A closed control loop in a
self-managing system monitors some resource and
autonomously tries to keep its parameters within a
desired range.

Distributed Computing: A system where tasks are
divided among multiple computers rather than having

�

Autonomic Computing

all processes originating from one main central com-
puter. Client/server systems are one type of distributed
computing. It can also be described as a system in
which services are provided by teams of computers
collaborating over a network.

Grid Computing: A computing model that provides
the ability to perform higher throughput computing
by taking advantage of many networked computers to
model a virtual computer architecture that is able to
distribute process execution across a parallel infrastruc-
ture. GRID Computing is basically taking a number of
inexpensive personal computers and connecting them
via a network to build a supercomputer, which can utilize
the idle processing time on each machine to carry out
tasks that would have previously required an expen-
sive mainframe. One comparison that is often used to
describe a computational GRID is that of the electrical
GRIDs responsible for providing electricity.

Pervasive Computing: This is the trend toward
increasingly ubiquitous connected computing devices

in the environment and particularly, wireless technolo-
gies and the Internet. Pervasive computing devices are
not broadly speaking personal computers as we tend to
think of them, but rather small (often micro like)—elec-
tronic mobile embedded devices in almost any type
of real world object, including cars, tools, household
appliances, clothes, and so forth—all communicating
through increasingly interconnected networks.

Self Healing: Having the power or property of
healing one’s self or itself. Autonomic computing refers
to the ability of systems to self-diagnose and self-heal
without the need for operator intervention.

Self-Management: The process by which computer
systems manage their own operation without human
intervention.

ENDNOTES

1 http://www-03.ibm.com/autonomic/

