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ABSTRACT 

In the first experiment, alfalfa and novel endophyte-infected tall fescue (NE+) forages 

were harvested after a killing frost, then mixed to formulate 4 different treatments; alfalfa alone, 

67% alfalfa +33% fescue, 33% alfalfa + 67% fescue, or 100% fescue.  After 3 months of storage 

as silage, Dorper ewe lambs (n = 20; mean BW = 34.7 ± 6.65 kg) were fed silage for ad libitum 

consumption, using 5 animals per treatment.  Increasing the proportion of NE+ tall fescue 

improved (P < 0.05) silage total acids and lactic acid concentrations and decreased silage 

ammonia concentration.  Digestible dry matter and organic matter intake and nitrogen utilization 

parameters decreased with increasing inclusion of NE+ in diet.  In the second experiment, 16 

Dorper ewe lambs (41.8 ± 4.61 kg BW) were assigned to 4 different treatments; alfalfa silage 

alone (0 g/kg; CONT) or alfalfa silage mixed with chopped sericea lespedeza (SL) hay to 

provide 90 (LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry matter basis in a randomized 

complete block design experiment with 2 period to provide 4 observations per treatment for each 

experimental period. Increasing the proportion of sericea lespedeza in the diet decreased dry 

matter and organic matter digestibility but did not affect feed intake.  Fecal nitrogen (g/kg N 

intake) increased linearly (P < 0.01) while urinary N (g/ day and g/ kg of N intake) tended to 

decreased linearly and quadratically (P ≤ 0.1) with increasing the proportion of SL in diet. In the 

third experiments, 16 gestating Dorper ewe lambs (49.1 ± 4.61 kg BW) were allocated to 4 

treatments; alfalfa silage alone (0% g/kg; CONT) or alfalfa silage mixed with lablab 

purpureus(LP) hay to provide 90 (LOW), 180 (MED), or 270 g/kg LP (HIGH) on a dry matter 

(DM) basis, in a randomized complete block design experiment with a total 8 replication per 

treatment.  Supplementation of LP in diet increased quadratically (P ≤ 0.04) forage dry matter, 

organic matter intake, digestible dry matter and digestible organic matter intake (P < 0.05).  



 

Nitrogen apparently absorbed and urinary N both decreased linearly (P < 0.01) with adding more 

LP hay in diet. Harvesting and mixing alfalfa and fescue after a killing frost improved silage 

fermentation characteristics and supplementation of tannins from SL and polyphenol from LP 

altered N excretion.  

Key words: lablab, sericea lespedeza, alfalfa silage, nitrogen, sheep.  
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CHAPTER I 

INTRODUCTION  

Forage-based feed source continues to occupy a large part in ruminants’ production 

feeding systems.  However, ruminants are inefficient in terms of feed conversion, especially 

carbon and nitrogen utilization compared to other livestock production systems.  In the US, 

silage producers lose $2 billion each year due to poor silage management practices Grant and 

Adesogan, 2018.  Feeding low quality silage negatively affects forage utilization by ruminants 

(Niyigena et al., 2019).  Variation in temperature, especially during the fall season, limits the 

growth of forage and is associated with forage losses.  In addition, harvesting forage and drying 

hay is challenging than silage making due to limited solar radiation and shorter days (Coblenz et 

al., 2016).  

Silage production could be an alternative to hay making during the fall, and mixing 

grasses and legumes improves silage fermentation quality and utilization by ruminants (Samuil et 

al., 2015).  Feeding a high protein diet to ruminants causes a negative effects on the environment.  

Agriculture accounts for 9% of total greenhouse gas emissions in the US where nitrous oxide 

(N2O) makes 69% of these agricultural GHG emissions (USDA, 2016).  Over a quarter of total 

global methane emissions is released by livestock (Ogino et al., 2007) and these gas productions 

cause negative impacts on animal performance (Johnson and Johnson, 1995).  Different feeding 

strategies have been adopted, including diet manipulation, to mitigate production of these gases. 

Supplementation with tannins and polyphenols in the diet may improve N utilization and reduce 

the release of nutrients into the environment.  Multiple feeding strategies to improve forage 

utilization in ruminants and mitigate negative impact of livestock to the environment were well 

documented in previous studies.  However, producers are challenged to address different 
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environmental conditions of forage production and conservation and protein utilization by 

ruminants.  Therefore, using sericea lespedeza and lablab purpureus as tannin and phenol sources 

to improve forage utilization by ruminants will be worthy of investigation  

OBJECTIVES OF THE STUDY 

1)  To determine the effect of ensiling mixtures of alfalfa and tall fescue harvested after a killing 

frost on silage fermentation characteristics and forage utilization by sheep 

2)  To study the impact of supplementation of different levels of tannins from sericea lespedeza 

to alfalfa silage on forage utilization and nitrogen balance by lambs 

3) To investigate the influence of adding different concentrations of polyphenols from lablab 

purpureus to alfalfa silage on intake, digestibility and nitrogen utilization by ewes  
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CHAPTER II 

REVIEW OF LITERATURE 

Overview of feed utilization by ruminants  

The world currently has 19.6 billion chickens, 1.4 billion cattle, 1.87 billion goats and 

sheep, and 980 million pigs (Robinson et al., 2014).  Ruminants are the main source for red meat, 

milk, and fiber.  Production systems for ruminant animals constitute an advantage because 

ruminant animals use feedstuffs that are mostly inedible by humans.  However, ruminants are the 

most inefficient production system in terms of feed conversion and carbon-nitrogen footprint 

compared to other meat production systems.  The digestive system of ruminants is designed to 

digest fiber from forages, ferment feedstuffs, and obtain energy.  Feeds are digested in the rumen 

by a diverse group of microbes, anaerobic bacteria, fungi and protozoa, which live in a symbiotic 

and anaerobic environment (Forsberg and Cheng, 1992).  Diets of ruminants are mainly 

composed of carbohydrates, especially nonstructural carbohydrates and structural (cell wall) 

polysaccharides such as cellulose, hemicellulose and pectin.  One of challenges that occur in the 

digestion process is the insolubility and the inaccessibility of cell wall components, which limits 

the rumen fermentation process (Nagaraja et al., 1997).   

Ruminants do not utilize protein efficiently especially when they are offered feedstuffs 

with low C: N ratios.  These forages usually result in greater urine N and may cause negative 

impacts on the environment.  Rumen fermentation results in the production of carbon dioxide 

(CO2) and methane (CH4), which also reduces feed efficiency and production by animals.  In 

order to correct this problem, the manipulation of ruminal function to improve efficiency has 

gained an important focus in modern livestock production.  Therefore, the objective of this 
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literature review will be to explore different management practices to improve forage utilization 

and conservation and the subsequent effect on animal performance.  The second objective will 

focus on the impact of livestock on the environment, feeding strategies to improve feed 

efficiency, especially protein, and the role of tannins or polyphenols in ruminant nutrition. 

Alfalfa 

Alfalfa is the one of the most widely grown forage crops in the US and worldwide and 

has multiple benefits: high feed value, yield, and the capacity to fix atmospheric N into the root 

system.  Moreover, alfalfa has high digestible energy and protein, which make it a valuable feed 

source for ruminants, and it can be consumed fresh or as hay or silage (Lacefield et al., 2009).  

Alfalfa is palatable and can be used to stimulate intake by livestock that are fed low quality 

forage.  Supplementation of alfalfa pellets to beef cattle grazing dormant tall grass prairie 

increased forage dry matter intake and digestible dry matter intake (DelCurto et al., 1990).  

Different factors can affect alfalfa forage quality such as maturity, forage conservation, 

and environmental conditions.  Nutrients content of alfalfa can be affected by forage maturity, 

with greater nutrient value occurring during the vegetative stage.  For example, in the vegetative 

stage, crude protein (CP) can range from 24 to 27%, neutral detergent fiber from 25 to 37%, and 

total digestible nutrients from 68 to 75%, while during the late bloom, crude protein can range 

between 9 and 13%, neutral detergent fiber between 56 to 60%, and total digestible nutrients 

from 50 to 57 % (Ball et al., 2007).  

Packaging alfalfa hay can reduce nutrient value through leaf loss, where the effect of 

handling alfalfa hay can cause a dry matter loss of 34 % of the forage mass, and protein content 

loss of 44% of total forage protein. (Lacefield et al., 2009).  Alfalfa can be preserved as silage as 
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well, but ensiling alfalfa is very challenging because of low fermentable carbohydrates, high 

buffering capacity and stem structure that facilitates air absorption while packing forage in silos 

(Marshall et al., 1993).  Producing silage can change the proportion of the forage components as 

well as forage utilization by the animals.  According to Dewhurst and King (1998), forage 

composition, especially fatty acids may change with the forage conservation methods.  In a study 

conducted to compare the effect of feeding fresh or alfalfa silage to Holstein dairy cows on milk 

composition, feeding fresh alfalfa lowered the saturated and increased polyunsaturated fatty 

acids compared with feeding alfalfa silage (Whiting et al., 2004). 

Environmental conditions also can affect alfalfa forage quality and productivity.  

Seasonal changes can affect alfalfa yield and quality, with a sharp decline in crude protein during 

the late summer due the shorter days and low solar radiation which causes a fall dormancy 

response by plants.  Hence, the plant favors root growth more than shoot growth (Putman and 

Ottman, 2013). 

Alfalfa can be mixed with forage grass species for better forage management and 

utilization.  Mixing alfalfa with orchardgrass at 50:50 ratio produced better quality silage than 

ensiling alfalfa alone (Samuil et al., 2015).  Growing grass and legume forage mixtures has 

advantages as well.  For example, growing alfalfa with ryegrass produced more yield than 

planting alfalfa alone (Schneider and Undersander, 2008).  In another study, mixing alfalfa with 

tall fescue improved yields and higher-quality forage compared to growing alfalfa alone (Tracy 

et al., 2016).  
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Tall fescue 

Tall fescue is a perennial, cool-season forage, which occupies over 15 million ha in the 

US and was first brought to the US from Europe in the 1800’S (Young et al., 2013, Ball et al., 

1993).  Two cultivars of tall fescue, Alta and Kentucky 31 (KY-31), were first planted 

extensively in the 1940s, and tall fescue gained popularity because of its resistance to pest and 

diseases.   

Multiple factors can affect nutrient content in tall fescue. Crude protein (CP) in tall 

fescue can range from 14.1% in pasture but during summer it can drop down to below 10%.  

However, different forage management practices can change forage CP composition.  

Fertilization of tall fescue increases CP content and dry matter digestibility (DMD), and 

decreases neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations (Fribourg 

et al., 2009).  

An endophyte fungus found in tall fescue produces ergot alkaloids, which can cause 

negative effects on animal production and performance such as loss of body weight, increased 

body temperature, agalactia, low conception rates, low survival of offspring, and fescue foot 

(Fribourg et al., 2009).  In order to alleviate the toxicity problems, an alternative fescue was 

developed, novel endophyte (NE+) fescue, which contains less toxin than the endophyte-infected 

tall fescue.  Feeding NE+ tall fescue to animals presents the advantage of improving animal 

performance; however, the NE+ does not appear to be as resistant to drought, overgrazing, and 

diseases compared to endophyte-infected tall fescue.  

Several studies have been conducted comparing endophyte-infected and endophyte-free 

fescue.  A study conducted in Georgia compared cattle performance when stocker cattle were 
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grazing endophyte-infected (AR542 or AR502), endophyte-free (E−), or wild-type E+.  Steers 

grazing E+ pastures had lower DMI than steers grazing AR542 and E− pastures during spring 

and lower DMI than steers grazing E− pastures during autumn (Parish et al., 2003).  Another 

study was conducted at the University of Arkansas where grazing NE+ tall fescue improved 

calving rate, calf weaning weight, and resulted in greater economic return per acre compared to 

grazing E+ (Smith et al. 2012; Caldwell et al., 2013).  Other studies (Washburn and Green, 1991; 

Coblentz et al., 2006) also found that cows grazing E+ resulted in lower calving rate than cows 

grazing low or endophyte-free fescue.   

The accumulation of non-structural carbohydrates (NSC) in a plant occur when 

carbohydrates produced during the photosynthesis process exceed the required amount for plant 

growth and maintenance (Watts and Chatterton, 2004).  Cool-season forages store a large 

amount of NSC as fructan in their stems (Longland and Byrd, 2006).  Cool-season grasses 

produces more fructan and total non-structure carbohydrates compared to warm-season forages 

and legumes (Jensen et al., 2014).  Environmental conditions can change the extent of 

carbohydrate storage in the plant.  Previous studies have found some important variables in 

accumulation of carbohydrates such as seasonal variations (Shewmaker et al., 2006) and diurnal 

variation (Lechtenburg et al., 1972).  Tall fescue stores more water soluble carbohydrates at 

temperatures ranging from 10 and 16oC compared to the temperature range of 21 and 26oC 

(Labhart et al. (1983).  Low temperatures, especially the first killing frost, can improve the 

retention of carbohydrates in the stems of the plant.  Low temperatures reduce plant respiration 

and growth and minimize plant metabolite losses such as water and CO2 but allow photosynthesis 

to continue and plants to store more carbohydrates (Pollock et al., 1983).   
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On the other hand, higher temperatures speed the maturity of the plant, stimulate seed-

head formation, and depress plant height, which in turn can have negative impacts on forage 

yield.  Forage dry matter digestibility was reported to decline due to warmer experimental 

conditions (Donaghy et al., 2008).   

Weather conditions that favor the production of WSC are critical in order to improve 

forage quality.  Ensiling forage with high content of WSC improves fermentation characteristics 

by reducing pH through increasing lactic acid content and silage total acids (Downing et al., 

2008).  Under silage fermentation, some of the WSC are converted into lactic acid which is 

necessary for preserving silage.  

Environmental concerns from agriculture  

Agriculture commodities bring in $330 billion of gross income each year and livestock 

contributes half of this value (USDA, 2007), but changes in climate conditions alter the stability 

of the food supply (Hatfield et al., 2014).  Agriculture accounts for 9% of total greenhouse gas 

emissions in the US, where nitrous oxide (N2O) makes 69% of these agricultural GHG emissions 

(USDA, 2016).  

Greenhouse gas emissions from livestock 

Methane makes up to 50% of greenhouse gas (GHG) emissions from livestock (Ogino et 

al., 2007) and production of methane reduces feed efficiency and energy utilization by cattle 

(Johnson, 1995).  Reducing enteric methane emissions through dietary manipulation can enhance 

forage utilization as well as increase production and performance by ruminants while optimizing 

environmental protection.  Reducing methane emission by 25% can increased body weight (BW) 
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gain of growing cattle by approximately 75 g/d or milk production of dairy cows by 1 L/d (Lee 

and Beauchemin, 2014).  

Ruminants can convert a large part of organic N from plant biomass into the reactive and 

bioavailable forms, which are mainly excreted in the urine (Chadwick et al., 2018).  Nitrous 

oxide emissions related to deposition of urine N in grazing environments are a major greenhouse 

emission from livestock (Selbie et al., 2015).  The excess application of N in environment above 

the plant requirements can also result in N losses in forms of nitrate leaching (Di and Cameron, 

2007), and ammonia volatilization (Burchill et al., 2017).  Reducing N losses can be 

accomplished by using nitrification inhibitors (Hatch et al., 2005), increasing the proportion of 

hippuric acid in the urine (Clough et al., 2009), or limiting feeding protein above animals’ 

requirements because increasing protein intake above the requirement can lead to an increases of 

N excretion in urine (Reed et al., 2015)    

Different approaches have been attempted in order alter rumen function and mitigate the 

effect of livestock on the environment.  Tannins have the affinity of binding to proteins and 

make them less available in the rumen, thereby changing rumen microbial populations, which 

can also change the proportion of rumen volatile fatty acids (Barry, 1983).  Supplementation of 

tannins from sericea lespedeza was reported to reduce methane emission in goats (Puchala et al., 

2005) and in cattle (Beauchemin et al., 2007) compared with feeding diets without tannins.  

However, feeding greater tannin concentrations (5-9% of total diet DM) was reported to depress 

intake and digestibility in lambs (Tiemann et al. 2008).  
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Plant secondary metabolites 

 Plant secondary metabolites are produced by the process of elicitation. These compounds 

include alkaloids, glycosides, flavonoids, volatile oils, tannins, and resins, and they improve 

plant survival, persistence and competitiveness (Namdeo, 2007).  

Polyphenols 

 Polyphenols have gained much attention in recent years due to their important role in 

human health as anti-oxidants, and their consumption was linked to protection against 

development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative 

disorders (Pandey and Risvi, 2015).  Polyphenols are mostly found in fruits, vegetables and 

cereals.  Some plants, such as grapes and cherries contain between 200 and 300 mg of 

polyphenols per 100 g of fresh weight. Polyphenols also plays an important role in ruminant 

nutrition, especially by improving protein utilization and N use efficiency (Broderick and 

Albrecht, 1997). 

Type of polyphenols 

There are over 8000 phenolic compounds that are found in different plant species.  

Polyphenols are classified in different categories based on number of phenol rings that they 

contain and on the basis of structural elements that bind these rings to one another.  The main 

classes comprise phenolic acids, flavonoids, stilbenes and lignans (Spencer et al., 2008).  

Phenolic acids are divided into two categories, derivatives of benzoic acid and derivatives of 

cinnamic acid, while flavonoids are divided in six subclasses, including flavonols, flavones, 

flavanones, flavanols, anthocyanins, and isoflavones.  Flavonoids are responsible for color 

attraction in fruits, leaves, and flowers. 
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Polyphenols in animal production  

Polyphenols can bind to protein and increase rumen-escape protein and thereby have 

potential to have significant impacts on ruminal fermentation (Mueller-Harvey, 2019) and fecal 

and urine N excretion (Powell et al., 2009).  Polyphenol peroxidase in red clover was reported to 

decrease protein degradation in silos during silage production, improve true protein content in 

silage, and subsequently, improve N-use efficiency when the silage was fed to ruminants 

(Michael and Lee, 2014).  Moreover, polyphenols reduced lipolysis in silos, thereby increasing 

the deposition of C18 polyunsaturated fatty acid (PUFA) in animal products.  

The effect of polyphenols on protein metabolism in ruminants is mainly to induce the 

complexing of leaf proteins, which in turn reduces the solubility and degradability of protein in 

the rumen.  The suppression of protein degradation in the rumen increases the flow of non-

ammonia-N and undegraded dietary protein to the small intestine, which in the end leads to a 

decline in the absorption of ammonia across the rumen wall and urinary-N excretion.  

Feeding polyphenols from essential oils decreases methanogenesis by altering protein 

degradation in the rumen (Newbold et al., 2004).  Dietary manipulation by feeding polyphenols 

can change the nitrogen partitioning, especially urea.  Urea constitutes 78% of the total N-

containing urine components on average.  Other urine components include hippuric acid at 5.5% 

and ammonia at 2% (Dijkstra et al., 2013), and altering the proportion of these urine components 

has an impact on N volatilization in the environment.  Urinary N is mostly lost through ammonia 

and nitrous oxide volatilizations, and urea is the urine constituent that is more prone to 

volatilization. 



 

13 

Previous studies have reported an increase in hippuric acid content of the urine after 

consumption of diets containing phenolic compounds (Toromanović et al., 2008).  Increasing the 

concentration of hippuric acid in urine decreased nitrous oxide emissions by 65% when urine 

was applied to the soil (Bertram et al., 2009).  Therefore, identifying different forages that 

contain polyphenols and understanding how best to include them in animal diets can be a 

sustainable approach to mitigate greenhouse gases emissions from livestock production systems.  

 Considerable effort has been expended to promote the use of polyphenols from plant 

species, but some of these forages have lower productivity and diseases resistance.  Lablab 

purpureus is a forage legume that presents numerous advantages: adaptability, drought resistant, 

the ability to grow in a diverse range of environmental conditions, and a good source of 

polyphenols (Murphy and Colucci, 1999).  A study conducted by Gwanzura et al. (2012) 

comparing nutrient composition and tannin content found that lablab preperus had greater total 

polyphenol compound content (1.24 mg/ g) than sorghum Sudanese (0.17mg/g,) cowpea (0.05 

mg/g) and mucuna pruriens (0.35 mg/g).  In addition, feeding lablab hay mixed with Katambora 

hay to goats reduced enteric methane emissions (Washaya et al., 2018).  

Tannins 

 There are two main categories of tannins: proanthocyanidins (PA) or condensed tannins 

and hydrolyzable tannins (HT).  Proanthocyanidins are flavonoid polymers.  Hydrolyzable 

tannins are polymers of gallic or ellagic acid esterified to a core molecule, mostly glucose or a 

polyphenol such as catechin (Reed, 1995).   
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Condensed tannins 

 Condensed tannins (CTs) make up to 20% of the dry matter in forage legumes that are 

used in ruminants’ diets.  The CT play an important role in forage-livestock production systems 

by reducing bloat, improving farm profitability, controlling parasites, and reducing greenhouse 

gas and ammonia emissions (Mueller-Harvey et al., 2019).  Another important role of CT is to 

protect dietary protein from excessive fermentation in the rumen.  Tannins have the capacity to 

bind to proteins, thereby reducing rumen proteolysis, which results in greater proportion of 

protein escaping the rumen to the small intestine (Waghorn, 2007).  However, when dietary CT 

are too large and protein content is too small, CT may reduce forage utilization by the animal 

(Cooper et al., 1988).  The CT forage can be grazed but CT should be diluted with other tannin-

free forages (Waghorn and Shelton, 1997).  The N loss is greater in urine than in feces, 

generally, but supplementing CT in the diet can cause a reduction in urinary N and increase fecal 

N excretion and thereby reduce N loss by the animal (Terrill et al., 1994).  Previous studies from 

an integrated farm system model have shown that a shift of N from urine to feces can reduce a 

quarter of N losses, thereby reducing fertilizer input (Zeller and Grabber, 2015).  The CT can 

improve animal health by suppressing gastrointestinal nematodes.  This suppression stems from 

the ability of CT to bind with proteins (Hoste et al., 2012) or by inhibiting key parasite enzymes 

such as glutathione-S-transferases that play a crucial role in detoxification (Hansen et al., 2016).  

Silage fermentation can reduce apparent concentration of CT by 30% (Mena et al., 2015) but 

sericea lespedeza silage still exhibited anthelmintic properties by decreasing fecal  worm egg 

counts (Whitley et al.,2018).  There are many different forages that contain tannins.  Sericea 

lespedeza, a perennial woody legume that is found mostly in the western and southern US has 

18% tannins (Mueller-Harvey, 2006); however, it is considered a weed species in some areas.  
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Conclusion  

It has been documented extensively that understanding the role of different forage species 

and their effects on forage quality and utilization by ruminants are critical for forage production 

and conservation management.  Ruminants are not efficient in terms of protein utilization, and N 

excretion from ruminants pose a threat to environment. Feeding plants that produce secondary 

metabolites, such as tannins and polyphenols, can improve nitrogen use and efficiency in 

ruminants, but further work is needed to optimize nitrogen use through determination of optimal 

forage combinations that have the greatest impact at the animal and landscape level.   
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ABSTRACT 

The objective of this study was to determine the effect of harvesting alfalfa (Medicago 

sativa) and tall fescue (Schedonorus arundinaceus) after frost and ensiling mixtures of these 

forages on silage fermentation characteristics, intake, digestibility and ruminal fermentation by 

ewes.  Forages were harvested in October of 2018, wilted, and blended as either alfalfa alone, 

67% alfalfa + 33% novel endophyte-infected tall fescue, 33% alfalfa + 67% fescue, or 100% 

fescue.  Twenty bins were lined with 2 plastic bags, packed (n = 5/trt) with the respective 

forages, stored for 3 months, and then assigned randomly to Dorper ewe lambs (n = 20; mean 

BW = 34.7 ± 6.65 kg) and offered for ad libitum consumption.  Lambs were allowed 17 d of 

adaptation followed by 5 d of total feces and urine collection.  Data were analyzed using PROC-

MIXED of SAS and orthogonal polynomial trends were used to identify the effects of different 

proportions of fescue-to-alfalfa silage.  Silage total acids, lactate, and acetate increased linearly 

(P < 0.01), while silage ammonia decreased linearly (P < 0.01) with increasing proportions of 

fescue in the silage.  The proportions of lactate-to-total acids (mole/100 moles) increased linearly 

(P < 0.01) and quadratically (P < 0.05) with increasing fescue-to-alfalfa ratio.  Intake (g/kg BW), 

digestibility (%), and intake of digestible dry matter and organic matter (g/kg BW) decreased 

linearly (P < 0.01) as fescue proportion increased in the silages.  Ruminal acetate increased (P < 

0.01) and butyrate and valerate decreased linearly (P < 0.01) with increasing fescue 

concentration in the silage.  All N utilization measurements decreased with increasing fescue 

concentration in the silage (P < 0.01).  Ensiling alfalfa with fescue may improve forage 

fermentation characteristics, but may reduce intake and digestibility by sheep compared to 

feeding alfalfa silage alone.  
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INTRODUCTION 

Harvesting forages after the first killing frost is advantageous because under freezing 

conditions, forages reduce plant respiration (Rotz and Muck, 1994) and minimize plant 

metabolite losses such as water and CO2, thereby increasing the retention of non-structural 

carbohydrates (Kelly, 2017).  However, negative impacts on the plant that follow a killing frost 

can be plant leaf loss and a decline in forage yield (Andews, 1987).  Additionally, harvesting 

forage and drying as hay in the fall season is very challenging due to short days and low intensity 

of solar radiation.  Ensiling forages after a first killing frost can be an alternative approach to 

reduce the risks associated to wet and unfavorable weather conditions, but ensiling alfalfa alone 

is challenging due to greater buffering capacity than grasses resulting from greater concentration 

of organic acids and proteins (McDonald et al., 1991).  Alfalfa is one the most popular forage 

legumes grown in the US while tall fescue occupies a large part of the grass species grown in 

southeastern of the part of the US.  Mixing alfalfa and tall fescue after harvesting can be an 

alternative solution to improve silage fermentation quality.  Tall fescue stores considerable 

concentrations of soluble carbohydrates in the leaves during the fall (Mayland et al., 2000; 

Lacefield et al., 2003), which should enhance silage fermentation (Downing et al., 2008).  

However, selected silage fermentation parameters are not necessarily good predictors of intake 

by ruminants (Huhtanen et al., 2007; Krizsan et al., 2007).  Therefore the objective of this study 

was to investigate the effect of alfalfa and tall fescue mixtures harvested after a killing frost on 

silage fermentation characteristics, and subsequent effects on silage intake, digestibility and 

nitrogen balance by sheep.  
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MATERIALS AND METHODS 

Forage harvest, silage making and storage 

Alfalfa and tall fescue were both grown at the University of Arkansas North farm located 

in Fayetteville, AR, USA (36°4’N, 94°9’W).  The tall fescue used in this study was an 

established stand and was infected with the MaxQ novel endophyte (NE+).  Alfalfa was 

harvested 5 weeks from the previous forage cutting, and both NE+ fescue and alfalfa were 

harvested the same day at the end of October of 2017.  Each forage was harvested separately and 

then they were mixed afterwards according to the specified proportion on a dry matter basis.  

Alfalfa was harvested using a plot harvester machine (Wintersteiger, Cibus S.,Wintersteiger Inc., 

Salt Lake City, UT), chopped at < 5 cm particle size, and was wilted on a concrete slab to reach a 

moisture content of 35%.  Tall fescue was harvested using a mower, and was also wilted in the 

field to reach a 37% moisture content.  

After wilting, the forages were divided into one of four different treatments based on the 

proportion of each forage to comprise the diet.  Alfalfa and tall fescue were packaged alone or in 

mixtures of 67% alfalfa +33% fescue, or 33% alfalfa + 67% fescue on a dry matter (DM) basis 

after wilting.  Dry matter content was determined using microwave oven techniques (Anderson, 

2019). The mixtures were made by weighing specified amounts of each forage and blending the 

forage thoroughly on a concrete slab.  Forages were then packed in plastic trash containers (167 

l) lined with two plastic bags (3 mil) by walking on the forages as it was being placed into the 

containers.  Five containers were packed for each treatment, with mixing and packing for all four 

treatments occurring simultaneously in order to minimize the effects of field or moisture 

variation because of time delay.  A thermocouple wire was inserted geometrically in the center of 

each trash can in order to monitor temperature inside the containers during storage.  After 
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packing the silage into the containers, a vacuum (Wet/Dry Vacuum, Mod. L 250, Shop – Vac. 

Corporation, Williamsport, Pennsylvania, USA) was used to remove as much air as possible, and 

plastic bags were tied individually with strings.  The silage containers were stored for four 

months in an open space building with a roof and concrete floor.  Using a thermocouple 

thermometer, the temperature was measured and recorded daily for 30 d beginning 31 October 

2017, then weekly until 15 January 2018. 

Digestion study  

Animal and design 

The study protocol was approved by Institutional Animal Care and Use Committee at the 

University of Arkansas (Protocol #16031).  The digestion study was carried out at the University 

of Arkansas North Farm located within Fayetteville, AR, USA (36°4’N, 94°9’W), in the same 

location as the forage was produced.  Twenty Dorper ewe lambs with mean BW = 34.7 ± 6.65 kg 

were used in the study.  Prior to the study, sheep were checked with FAMACHA score, and 

lambs with score ≥ 3 were dewormed with Cydectin (Bayer HealthCare, LLC, Animal Health 

Division, Shawnee Mission, Kansas, USA) based on animal body weight and drug 

recommendations.  Then lambs were stratified by BW and each group was assigned randomly to 

treatments.  Within each treatment, lambs were assigned randomly to one silage container such 

that each lamb in the study was offered silage from only one container for the duration of the 

study.  Lambs were given 17 d of adaptation at ad libitum consumption followed by 5 d of total 

feces and urine collection.  Rumen fluid was collected on the last day of the study using rumen 

collection tubes.  
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Housing and sample collection 

 During the digestion study, lambs were housed in a temperature-controlled facility (15 to 

16 °C) with 14 h of light and 10 h of darkness each day.  Lambs were housed in individual 1 × 

1.5-m pens with plastic-coated, expanded metal grate flooring.  After every 7 days, lambs were 

removed from their pens and co-mingled in a pen with a concrete floor for a 3-h exercise period 

with access to water only but no feed.  After 17 days, prior to total collection, pens were cleaned 

carefully in order to remove debris occurring from the adaptation period.  

Feeding and sample collection 

 Lambs were given access to water and feed for ad libitum consumption (10% minimum 

refusal; DM basis).  Total daily feed amount was weighed initially, then offered in smaller 

portions throughout the day in order to minimize forage selectivity and spillage by animals.  

Daily feed was offered beginning at 1600 h; orts and feed were collected at 1600 as well.  Lambs 

were given 30 g/day of a commercial mineral1 that did not contain an antibiotic immediately 

before feeding.  Two samples of each feed were collected daily beginning 2 d prior to fecal and 

urine collection; one sample was dried to a constant weight at 50° C, while the other feed sample 

was immediately frozen for later fermentation analysis.  Feed refused was weighed daily 

beginning 1 d before fecal collection and subsamples were dried to a constant weight at 50° C. 

 Trays with a solid corrugated polyvinyl chloride (PVC) sheet on the underside and covered 

with fiberglass screening were placed underneath each individual pen.  Total feces was gathered 

from the screens into plastic gutters at the end of each screen, then weighed and dried to a 

                                                             
1 Preferred Mineral for Sheep and Goats (Ragland Mills, Inc., Neosho, MO, USA) The mineral 
contained 350-400 g/kg salt, 90-100 g/kg Ca, and not less than 80 g/kg P, 10 g/kg Mg, 10 g/kg 
K, 125 ppm Co, 150 ppm I, 5,000 ppm Fe, 10 ppm Se, 140 ppm Zn, 352,000 IU/kg of Vitamin 
A, 88,000 IU/kg of Vitamin D3, and 330 IU/kg of Vitamin E.   
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constant weight at 50° C.  Total urine was collected directly into plastic containers.  

Hydrochloric acid (50% v/v, ~20 mL) was added to collection containers prior to urine collection 

in order to prevent microbial activity and ammonia volatilization.  An Acumen Basic AB15 

portable pH meter (Fisher Scientific, Atlanta, GA, USA) was used to verify urine pH then 10% 

of the urine collected daily was stored frozen (-20° C) in small jars for later lab analysis.  

 Rumen fluid was collected via stomach tube on the last day of the study prior to feeding 

(1600 h), 3 h after feeding (19000h) and 8 h after feeding (2300h).  Rumen fluid was then 

strained through two layers of cheesecloth, and pH was measured immediately with a pH meter. 

The collected rumen fluid was placed immediately into 12 × 75 mm polypropylene tubes, and 

stored on ice during 8 hours of sample collection.  Then samples were thawed, mixed well, and 

approximately 4 mL of fluid was transferred into 12 × 75 tubes and centrifuged at 12000 × g for 

5 min.  After centrifugation, 0.8 mL supernatant was transferred into new micro-centrifuge tubes  

and 0.4 mL of 12.5% m-phosphoric acid/2-ethyl butyric acid solution was added to each tube, 

mixed, and stored in a freezer at –20 oC for 2 months for later volatile fatty acids analysis.  

Chemical analysis 

  Dried samples of forage, orts, and feces were allowed to equilibrate to atmospheric 

moisture, then ground through a Wiley mill (Arthur H. Thomas, West Washington Square, PA, 

USA) to pass through a 1-mm screen.  Forage, ort, and fecal sample DM was determined by 

drying samples at 100oC overnight.  Sample ash concentrations were determined by ashing 

forage samples at 500oC in a muffle furnace, and organic matter (OM) was calculated as DM 

weight - ash weight.  Neutral detergent fiber (aNDF) and acid detergent fiber (ADF) content in 

forage, orts, and feces were analyzed sequentially using a 200 Ankom Fiber analyzer (ANKOM 

Technology Corporation, Macedon, NY, USA; Vogel et al., 1999).  Nitrogen content in feed, 
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orts, feces and urine were measured using the Dumas total combustion method (Elementar 

Americas, Mt. Laurel, NJ, USA; Method 990.03; AOAC, 2000). 

 Silage fermentation profiles were analyzed by Cumberland Valley Analytical Services 

(Hagerstown, MD, USA).  All frozen samples collected daily during the feeding trial were 

composited by animal.  Silage samples (25 g) were diluted with 200 mL deionized water, 

allowed to sit overnight, at room temperature mixed for 2 min and filtered through coarse (20- 25 

um particle retention) filter paper.  Silage pH was measured directly and titratable acidity was 

determined by titrating samples to a pH of 6.5 with 0.1 N NaOH using a Mettler DL12 Titrator 

(Mettler-Toledo, Inc., Columbus, Ohio, USA).  Extract was diluted 1:3 with deionized water and 

ammonia was determined by titrating with 0.1 N HCl using a Labconco Rapidstill II model 

65200 analyzer (Labconco. Inc., Kansas City, MO, USA).  Lactic acid was measured following a 

1:1 dilution with deionized water using a YSI 2700 Select Biochemistry Analyzer (YSI, Inc. 

Yellow Springs, OH, USA).  Silage acetic, propionic, butyric, and iso-butyric acids were 

determined by filtering 3 mL of extract through a 0.2-μm filter membrane, then injecting a 1.0-

μL sub-sample into a Perkin Elmer AutoSystem gas chromatograph fitted with a Restek column 

packed with Stabilwax-DA ( Perkin Elmer, Inc., Shelton, CT, USA). 

 Rumen fluid samples were analyzed for volatile fatty acid content. Samples were thawed 

and centrifuged at 30,000 × g for 5 min and then supernatant was transferred into gas 

chromatography vials.  Volatile fatty acids (VFA) were analyzed with an automated Hewlett 

Packard 5890 gas chromatograph that was fitted with a NukolTM fused silica capillary column 

(30m × 0.25mm I.D. × 0.25um film thickness; Supelco Inc, Bellefonte PA; part# 24107).   
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Statistical analysis 

Silage fermentation, intake, digestibility and rumen fermentation data were analyzed 

using PROC MIXED of SAS (SAS Institute, Cary, NC) as a completely randomized design.  The 

proportions of alfalfa in diet (treatment) were treated as a fixed effect and animal as a random 

effect.  Orthogonal polynomial trend analyses were used to detect the linear and quadratic trends 

among treatments.  Rumen fermentation data were treated as repeated measures where animal 

within treatment was considered as the error term for treatment effects.  The time of sampling 

was treated as a repeated measure and the statistical model included fixed effects of treatments, 

time of sampling and their interactions.  

RESULTS 

Forage composition data are presented in Table 1.  Dry matter content of the silage (% of 

total wet weight) was not different (P ≥ 0.23) among treatments. Organic matter, aNDF and ADF 

(% of DM) increased linearly (P ≤ 0.03) with increasing proportion of fescue, while N content 

decreased linearly (P < 0.01) with greater proportion of fescue in the silage mixture.  

 The temperature inside silage containers was not different (P ≥ 0.63) across fescue and 

alfalfa combinations (Table 2).  Silage pH decreased linearly (P < 0.01) while silage total acids 

(g/kg DM) and lactic acid (g/kg DM) increased linearly (P < 0.01) with increasing level of 

fescue in the silage.  The proportion of lactic acid to total acids (mole/ 100 moles total acids) 

increased linearly and quadratically (P ≤ 0.02) with additional fescue in the silage, reaching a 

maximum concentration in the silage with 66% fescue and 34% alfalfa.  Acetate concentrations 

(g/kg DM), increased linearly (P < 0.01) and propionate concentrations (g / kg DM) increased 

linearly and quadratically (P ≤ 0.03) with increasing tall fescue proportion in the silages.  
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Ammonia-N concentrations decreased linearly and quadratically (P < 0.01) with increasing the 

proportion of tall fescue in silage and were greatest in ensiled alfalfa without fescue.  

 Dry matter and OM intake (g/day and g/kg BW) decreased linearly (P < 0.01) with 

increasing addition of fescue in the silages (Table 3).  Digestibility of DM and OM also 

decreased linearly (P < 0.01) as the amount of fescue was increased.  This resulted in decreasing 

digestible DM and OM intakes (g/day and g/kg BW) with increasing proportions of fescue in the 

silages (linear effect; P < 0.001).  Digestibility of aNDF and ADF were not different (P ≥ 0.12) 

across the different alfalfa – tall fescue combinations. 

 The interaction between time of sampling and treatment affected (P ≤ 0.01) ruminal 

propionate concentrations and the acetate to propionate ratio, where the greatest propionate 

concentrations were from lambs offered alfalfa silage alone during 6 hours of sampling (Figure 

1). Rumen acetate to propionate ratio deceased during the first 3 hours after feeding and spiked 

in lambs fed alfalfa 33% mixed with 66% fescue 6 hours after feeding (Figure 2).  Ruminal pH 

was not different (P ≥ 0.21) across the different silages (Table 4). Total VFAs (mM) decreased 

linearly and quadratically (P ≤ 0.02) with increasing proportion of fescue in the silages with the 

minimum concentrations of total VFA occurring with 66% fescue and 34% alfalfa.  Acetate 

concentrations increased (P < 0.01) while rumen butyrate and valerate decreased linearly (P < 

0.01) with increasing proportion of tall fescue in the silages.  Ruminal isobutyrate increased 

quadratically (P < 0.05) with increasing fescue in the silages.  The total branched chain fatty 

acids in the rumen decreased linearly and quadratically (P < 0.01), when more fescue was added 

in the diet, with the greatest concentrations from lambs fed 66 % alfalfa and 34 % fescue.  

 Nitrogen intake (g/day) and fecal (g/day) and urinary N excretion (g/day) decreased 

linearly (P < 0.01) with fescue in the silage, but urine N excretion expressed as a portion of N 
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intake (g/kg N intake) increased linearly (P = 0.01) and quadratically (P = 0.04) with increasing 

fescue in the silages.  This resulted in linear decreases (P < 0.01) in N absorption (g/kg N intake 

and BW) and linear (P < 0.01) and quadratic (P < 0.05) declines in retained N (g /kg N intake, 

g/kg N absorbed) with increasing fescue in silages.  These quadratic decreases in N absorption 

were characterized by small to moderate decreases in N retention with the initial addition of 

fescue with alfalfa, but a sharp decrease in N retention from silages that were entirely tall fescue. 

DISCUSSION 

Fiber content of silages increased while nitrogen decreased with increased proportion of 

NE+ tall fescue in the silage, which can be explained by a greater content of fiber in grasses and 

smaller protein content than in legumes.  This trend is consistent with the results of Lee (2018).  

Lee (2018) compared nutritive values of 136 different forage species grown in 30 different 

countries, and determined that grasses contained the most fiber while herbaceous legumes had a 

larger protein content.  The forages used in silage making were harvested during the fall after a 

killing frost, which could change the accumulation of sugars in forage.  According to Pollock et 

al. (1983), freezing temperature reduces plant respiration but allows the accumulation of more 

soluble carbohydrates.  Moreover, tall fescue stores more water soluble carbohydrates (WSC) in 

a cool environment, e.g. temperatures below 10o C compared to temperatures above 21o C 

(Labhart et al., 1983).  During silage fermentation, lactic acid-producing bacteria convert WSC 

into organic acids, primarily lactic acids, which helps silage pH drop, suppresses proliferation of 

undesirable microorganisms (Pang et al., 2012) and promotes silage fermentation and 

preservation (Humphreys, 1994).  In the present study, the total acid and lactic acid 

concentrations (g/kg DM, mole/100 moles total acids) increased with greater percentage of tall 

fescue in the silages, and these greater concentrations were probably related to a greater 
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accumulation and fermentation of sugars from tall fescue.  However, sugar content was not 

measured in the pre-ensiled samples.  The proportion of acetate in silage increased with 

increasing fescue proportion, probably due to more oxygen exposure in silage while packing 

because packing alfalfa silage alone was easier than packing alfalfa fescue mixture or fescue 

alone.  According to Kung and Shaver (2001), loose silage packing can lead to a greater 

production of acetate in silage.  Ammonia-N decreased with adding more fescue in diet.  The 

production of ammonia in silage can be attributed to metabolism of protein (McDonald et al., 

1991). 

The greater DMI and OMI of the alfalfa silage alone than alfalfa-fescue mixtures or 

fescue alone may be explained by the rapid rate of digestion of alfalfa silage compared to tall 

fescue due to smaller particle size.  The alfalfa silage fed during this study was chopped in small 

particle size of 2 cm while the tall fescue was shredded.  Intake measurements were not 

associated positively with concentration of lactic acid.  The greater lactic acid concentration in 

this study was 7.6 g/kg DM and this value is lower than 52g/kg DM, which was reported by 

Krizsan and Rand (2007) to improve intake.  Moreover, selected silage intake by ruminants is 

predicted by multiple fermentation factors (Huhtanen et al., 2007; Krizsan et al., 2007).  The 

greater digestibility of alfalfa silage may have reduced the retention time in the rumen allowing 

animals to consume more feed, thereby increasing forage intake.  In a study conducted with 

Holstein cows involving feeding different physical forms of alfalfa hay, shorter rumen retention 

time was related to greater feed intake (Shaver et al., 1986).  

Dry matter and OM digestibilities and digestible DMI and DOMI were also greater for 

animals offered alfalfa silage alone or alfalfa with 34% tall fescue.  These measurements 

decreased dramatically when tall fescue was included at greater than 34% of the silage.  This 
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trend may be attributed to the greater aNDF and ADF in tall fescue than alfalfa silage but the rate 

of change in digestibility with increasing proportion of tall fescue was not consistent with that of 

fiber concentrations.  Likewise, these trends do not follow fermentation profiles as increasing the 

proportions of fescue in the silages improved silage fermentation characteristics.  The particle 

size of the alfalfa was smaller compared to shredded tall fescue.  This was an issue with the 

forage plot harvester being able to chop the alfalfa, whereas it tended to simply pull the fescue 

through the chopping mechanism without chopping it.  According to Marsh (1978), chopping 

forage increases the surface area, which facilitates microbial attachment and fermentation of the 

forage. Similarly, in a study that involved feeding gestating sheep alfalfa silage alone, digestible 

DMI was positively associated with feed intake (Niyigena et al., 2019).  

In the present study, the production of rumen VFA were measured over an 8-h period.  

Rumen total VFA were greater in sheep offered alfalfa silage alone compared with the other 

treatments probably due to rapid rumen fermentation and degradability of alfalfa silage 

compared to tall fescue.  In addition, chopped alfalfa had also a greater contact surface for 

microbial attachment compared to shredded tall fescue.  Conversely, a study conducted to 

investigate the rumen fermentation characteristics utilizing temperate forage legumes and grasses 

revealed that mixing alfalfa: tall fescue on a dry matter (DM) basis at 0:100, 25:75, 50:50 75:25 

and 100:0 had no effect on total rumen VFA (Pizzola et al., 2017) but increased rumen isoacid 

production. 

In this study, ruminal acetate was greater from sheep offered fescue silage or fescue and 

alfalfa mixtures compared with sheep offered alfalfa alone and this trend was similar to that of 

the NDF concentration in the silages evaluated in this study.  Increased rumen acetate 

concentrations were reported in Holstein dairy cows fed a diet with greater NDF content 
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compared with a lower NDF diet (Poorkasegran and Yansari, 2014).  Rumen isobutyrate 

increased with increasing proportion of alfalfa in the diet, which is consistent with results of 

Pizzola et al. (2017).  The production of isoacids, such as valerate and isobutyrate may be 

associated with amino acid degradation especially in alfalfa silage (Andries et al., 1987).  

Nitrogen utilization measurements decreased with reduced proportion of alfalfa in silage.  

This trend is associated with silage composition because the N content was greater in alfalfa than 

in tall fescue.  Urinary N excretion is normally greater in forage legumes with high rumen 

degradation, which produce a large amount of ammonia.  A portion of the ammonia released in 

the rumen is absorbed and circulates to the liver, ending in the urea cycle and is excreted in 

urine.  According to Hammond (1996), increasing the amount of protein in diet results in rise of 

blood urea N, which in turn increases N excretion in the urine.   

 

Conclusion 

In this study, harvesting alfalfa and tall fescue after a killing frost and mixing both 

forages improved silage fermentation characteristics, especially the production of lactic acid, 

which is critical in preserving silage.  Intake, digestibility and N utilization improved with 

mixing alfalfa and tall fescue rather than feeding tall fescue alone.  Rumen fermentation 

characteristics were also affected by the proportion of fescue in the diet, with a greater acetate 

production from animals fed the higher-fiber diet.  Harvesting and ensiling alfalfa and tall fescue 

after a killing frost may be an alternative approach to hay making, but inclusion of tall fescue 

into alfalfa may have serious negative impacts on utilization by ruminants. 
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TABLES AND FIGURES  

Table 1. Composition of alfalfa and tall fescue silage mixtures harvested after a killing frost 

 Treatments1    

% Alfalfa 100 66 34 0  Effect2 

% NE fescue 0 34 66 100 SEM Linear Quadratic 

Item3        

DM, g/ kg 
fresh weight 

670 656 634 654 13.6 0.26 0.23 

g/kg DM 

OM 890 910 910 915 10.0 < 0.01 0.05 

aNDF 300 405 450 510 20.4 < 0.01 0.12 

ADF 246 322 388 338 34.0 0.03 0.08 

Nitrogen 35 30 28 25 4.0 < 0.01 0.14 

  
1Forages were harvested in October of 2018 after a killing frost, wilted, and blended as either 

alfalfa alone, 66% alfalfa +34% novel endophyte infected tall fescue, 34% alfalfa + 66% fescue, 

or 100% fescue. 
2 Probabilities for linear and quadratic orthogonal contrasts for means across all four different 
treatments. 
3DM = Dry matter, OM = Organic matter, aNDF= neutral detergent fiber inclusive of ash, ADF = 

acid detergent fiber. 
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Table 2. Silage fermentation profile of alfalfa and tall fescue harvested and ensiled 
separately or in mixtures after a killing frost  

 Treatments1   

% Alfalfa 100 66 34 0  Effect2 

% NE fescue 0 34 66 100 SEM Linear Quadratic 

Item3        

Maximum 
temp, °C 19.7 19.5 19.6 19.8 0.29 0.85 0.63 

pH 5.8 5.6 5.6 5.5 0.03 < 0.01 0.90 

TA, g/kg DM 2.9 9.0 14.0 15.2 0.27 < 0.01 0.39 

Lactic, g/kg 
DM 

1.0 4.2 7.6 7.6 0.14 < 0.01 0.29 

LTA, g/kg TA 342 464 534 484 34.7 < 0.01 0.02 

Ace., g/kg DM 1.9 4.8 6.4 7.5 1.40 < 0.01 0.55 

Pro., g/kg DM < 0.1 < 0.1 0.1 0.6 0.09 < 0.01 0.03 

NH3N-CPE, 
g/kg DM 

20 10 12 14 1.2 < 0.01 < 0.01 

 
1Forages were harvested in October of 2018 after a killing frost, wilted, and blended as either 

alfalfa alone, 66% alfalfa +34% novel endophyte infected tall fescue, 34% alfalfa + 66% fescue, 

or 100% fescue. 
2 Probabilities for linear and quadratic orthogonal contrasts for means across all four different 
treatments. 
3Tempmax = maximum temperature reached during the fermentation process; TA = total acids; 
Lactic = lactic acid; LTA = lactic acid expressed in g/kg of total silage acids; Ace. = acetic acid; 
Pro. = propionic acid; NH3N-CPE = ammonia N expressed in crude protein equivalents.  
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Table 3. Intake and digestibility in sheep offered alfalfa or tall fescue alone or in mixtures 
harvested and ensiled after a killing frost 

Item3 Treatments1   

% Alfalfa 100 66 34 0  Effect2 

% NE fescue 0 34 66 100 SEM Linear Quadratic 

Intake         

DMI, g/day  1665 1610 1191 930 86.7 < 0.01 0.25 

DMI, g/kg BW 51 43 36 27 2.8 < 0.01 0.82 

OMI, g/day 1484 1460 1086 851 76.0 < 0.01 0.18 

OMI, g/kg BW 45 39 33 25 2.58 < 0.01 0.72 

Digestibility        

DMD, g/kg DM 720 693 649 647 7.7 < 0.01 0.12 

OMD, g/kg DM 756 726 663 670 12.7 < 0.01 0.18 

NDFD, g/kg DM 516 589 527 567 22.0 0.36 0.45 

ADFD, g/kg DM 493 506 537 445 65.8 0.70 0.12 

Digestible intake        

DDMI, g/day 1198 1114 773 603 57.5 < 0.01 0.46 

DDMI, g/kg BW 39 30 24 18.0 2.1 < 0.01 0.82 

DOMI, g/ day  1120 1060 722 571 54.7 < 0.01 0.42 

DOMI, g/kg BW 34 29 22 17 2.0 < 0.01 0.90 

 
1Forages were harvested in October of 2018 after a killing frost, wilted, and blended as either 

alfalfa alone, 66% alfalfa +34% novel endophyte infected tall fescue, 34% alfalfa + 66% fescue, 

or 100% fescue , OM = Organic matter, NDF= neutral detergent fiber.  
2 Probabilities for linear and quadratic orthogonal contrasts for means across all four different 
treatments. 
3 DMI= dry matter intake, OMI= organic matter intake, DMD = dry matter digestibility, OMD = 
organic matter digestibility, NDFD = neutral detergent fiber digestibility, ADFD= acid detergent 
fiber digestibility, DDMI= digestible dry matter intake, DOMI = digestible organic matter intake. 
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Table 4. Ruminal volatile fatty acids from sheep offered alfalfa or tall fescue alone or in 
mixtures harvested and ensiled after a killing frost  

 Treatments1   

% Alfalfa 100 66 34 0  Effect2 

% NE fescue 0 34 66 100 SEM Linear Quadratic 

Item3        

Rumen pH 7.0 7.1 7.0 7.1 0.07 0.21 0.64 

Total VFA, mM 130 96 91 99 8.5 0.01 0.02 

 Mole/100 mole total VFA    

Acetate 61 65 65 69 1.0 < 0.01 0.85 

Propionate  25 21 22 21 1.2 0.06 0.27 

Isobutyrate 1.5 1.6 1.6 1.2 0.10 0.09 0.02 

Butyrate  8.9 8.4 7.9 5.9 0.61 < 0.01 0.25 

Valerate 1.6 1.5 1.5 1.2 0.09 < 0.01 0.08 

TBCFA 4.9 5.1 5.0 3.73 0.29 0.01 0.01 

 
1Forages were harvested in October of 2018 after a killing frost, wilted, and blended as either 

alfalfa alone, 66% alfalfa +34% novel endophyte infected tall fescue, 34% alfalfa + 66% fescue, 

or 100% fescue. 
2 Probabilities for linear and quadratic orthogonal contrasts for means across all four different 
treatments. 
3VFA = Volatile fatty acids, TBCFA = Total branched chain fatty acids.   
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Table 5. Nitrogen intake, absorption and retention in sheep offered alfalfa or tall fescue 
alone or in mixtures harvested and ensiled after a killing frost  

 Treatments1    

% Alfalfa 100 66 34 0  Effect2 

% NE fescue 0 34 66 100 SEM Linear Quadratic 

Item3        

N intake, g/day 60 49 33 23 3.0 < 0.01 0.86 

Fecal N, g/day 13 11 9 8 0.97 < 0.01 0.92 

N absorption, 
g/kg intake 

790 760 720 660 2.0 < 0.01 0.44 

N app. abs, 
g/day 

47 37 24 15 2.4 < 0.01 0.80 

N app. abs, g/kg 
BW 

1.5 1.0 0.7 0.5 0.07 < 0.01 0.27 

Urinary N, g/day 10 8 6 7 0.8 < 0.01 0.06 

Urine N, g/kg N 
intake 

177 173 176 301 29.6 0.01 0.04 

Retained N, 
g/day 

40 29 18 8 2.7 < 0.01 0.70 

N. retained, g/kg 
BW 

1.1 0.8 0.5 0.3 0.06 < 0.01 0.80 

N retained, g/kg 
N intake 

611 591 548 362 38.4 < 0.01 0.04 

N. retained, g/kg 
N absorbed 

775 772 756 536 44.0 < 0.01 0.02 

 
1Forages were harvested in October of 2018 after a killing frost, wilted, and blended as either 

alfalfa alone, 66% alfalfa +34% novel endophyte infected tall fescue, 34% alfalfa + 66% fescue, 

or 100% fescue. 
2 Probabilities for linear and quadratic orthogonal contrasts for means across all four different 
treatments. 
3 N= Nitrogen, BW = body weight, N app. abs = nitrogen apparently absorbed.  
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CHAPTER IV 

Effect of supplementing different proportions of tannins from sericea lespedeza to alfalfa 

silage on intake, digestibility and nitrogen balance in sheep 
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ABSTRACT 

 Dietary manipulations to include tannins can change the proportion and amounts of N 

excreted in the urine and feces as well as improve nitrogen use efficiency by the animal.  This 

study was conducted to investigate the effects of adding different proportions of sericea 

lespedeza hay (SL) containing tannins to alfalfa silage.  Alfalfa was harvested in June, 2018 at 

75% bloom, chopped, then packed at 55% moisture into plastic containers lined with two plastic 

bags and allowed to ensile for 3 months.  Alfalfa silage was either offered alone (0 g/kg; CONT) 

or mixed with chopped SL to provide 90 (LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry 

matter (DM) basis.  These diets were offered randomly for ad libitum consumption to 16 Dorper 

ewe lambs (41.8 ± 4.61 kg BW) in a randomized complete block design experiment with two 

periods to provide four observations per treatment for each experimental period.  Each period 

consisted of a 14-d dietary adaptation period followed by 5 d of total fecal and urine collection.  

Data were analyzed using PROC MIXED of SAS.  Dry matter (DM) and organic matter (OM) 

digestibility decreased linearly and cubically (P < 0.05) with increasing SL and digestible DM 

and OM intake (g/day or g/kg BW) decreased linearly (P < 0.05) with increasing SL addition to 

the diet.  Neutral detergent fiber digestibility decreased linearly and cubically (P < 0.01) and acid 

detergent fiber digestibility decreased linearly (P < 0.01) with increasing SL.  Apparent N 

absorption (g/kg N intake) decreased linearly (P < 0.05) with increasing SL in the diet.  Urinary 

N excretions (g/kg N intake) tended (P = 0.10) to decrease quadratically while fecal N (g/kg N 

intake) increased linearly (P < 0.01) with increasing SL proportion in the diet.  Hippuric acid 

concentration (g/L) was not affected (P > 0.43) by the addition of SL in diet.  Proportion of 

ruminal acetate increased quadratically (P = 0.01) and butyrate decreased (P < 0.01) 

quadratically with increasing levels of SL.  In this study, supplementation with sericea lespedeza 
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as a tannin source to alfalfa silage decreased forage digestibility without affecting feed intake, 

and significantly increased N excreted in feces and tended to decrease urine N excretion.  

Therefore, feeding tannins in diet can alter N excretion route from urine to feces.  

INTRODUCTION 

 Three quarters of nitrogen harvested from crops is consumed by livestock (Sutton et al., 

2013).  Increase in world population has also increased food demand consequently leading to the 

demand of using greater amount of N in agricultural systems (Groenestein et al., 2019).  Feeding 

excessive dietary protein above requirements and high stocking rates contribute to N losses in the 

form of NO2 and NH3 in the air and nitrate leaching in soil (Tamminga, 1992).  Poor N 

utilization by ruminants also contributes to NO2 emissions (Dijkstra et al., 2013).  Different 

dietary manipulation strategies have been attempted in order to reduce N losses from ruminant 

production systems.  For instance, decreasing the crude protein (CP) content in cow diets from 

19 to 10.8 % [dry matter (DM) basis], decreased N, NH3 and P content in the resulting slurry 

(Van der Stelt et al., 2008).  In addition, dietary manipulation by including phenolic compounds 

in the diet increased hippuric acid production in the urine, which is an alternative approach to 

mitigate NO2 emissions (Dijkstra et al., 2011).  Alfalfa is a forage legume with high protein 

content and high rumen degradation rate.  Degradation of alfalfa (Medicago sativa) and other 

proteins in the rumen produces ammonia, which is converted to urea and a large part of the urea 

is lost in urine (Hammond, 1996).  Previous studies have shown that supplementation with 

tannins reduced protein degradation in the rumen and shifted N excretion from urine to feces 

(Patra and Saxena, 2011).  For instance, adding tannins extracted from quebracho at 2% of a 

forage based diet (DM basis) decreased protein digestibility in beef cattle from 63.4 to 54.5% 

(Beauchemin et al., 2007).  Sericea lespedeza (Lespedeza cuneate) is a perennial forage legume 
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with an average tannin content of 180 g/kg DM.  Feeding sericea lespeza (SL) to Angora goats 

reduced methane emissions compared to goats that were fed tall fescue (Puchala et al., 2005).  

Using SL as a forage source may be beneficial to improve protein utilization.  Therefore, the 

objective of this study was to investigate the effect of feeding alfalfa silage and SL hay mixtures 

on feed intake, digestibility, and N balance in sheep. 

MATERIALS AND METHODS 

Forage management and harvest  

 Sericea lespedeza hay grown in northwest Arkansas was purchased from a forage 

producer in August, 2018.  The SL hay was harvested at full bloom and had 24 g/kg N and 644 

g/kg NDF on a DM basis (Table 1).  Alfalfa was harvested in June of 2018, 4 weeks after a 

previous forage cutting, and was at the first bloom maturity stage.  Forage was fresh cut using a 

forage plot harvester (Wintersteiger, Cibus S.,Wintersteiger Inc., Salt Lake City, UT) that 

produced an average 5-cm particle size.  After harvesting, the alfalfa spread onto an outdoor 

concrete slab and allowed to dry to 55% moisture content.  Then the forage was packed in plastic 

containers (167 L) that were lined with a double layer of plastic bags (5 mil).  Alfalfa was 

packed tightly by walking on the forage as it was placed into the containers.  Excess air was 

removed using a vacuum device (Wet/Dry Vacuum, Mod. L 250, Shop – Vac. Corporation, 

Williamsport, Pennsylvania, USA), then plastic bags were tied.  A total of 32 barrels were 

packed having an average weight 68 kg and the alfalfa was stored for 3 months inside an 

enclosed metal building to allow a good fermentation process.  
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Animals and design 

 The Institutional Animal Care and Use Committee at the University of Arkansas 

approved the study protocol (Protocol #18118).  The digestion study was carried out at the 

University of Arkansas North Farm located within Fayetteville, AR, USA (36°4’N, 94°9’W) 

from September to October of 2018.  Before the digestion study, SL was chopped to a small 

particle length of approximately 5 cm using commercial straw chopper (SB 5400; Harper 

Industries, Inc., Harper, KS, USA).  

 In this study, 16 Dorper ewe lambs [41.8 ± 4.61 kg body weight (BW)], were stratified by 

body weight and randomly assigned to 1 of 4 treatments in order to provide 4 

replication/treatment in each of two periods.  Treatments consisted of alfalfa silage alone 

(CONT) or mixed with chopped SL hay to provide 90 (LOW), 180 (MED), or 270 g/kg SL 

(HIGH) on a DM basis.  Sericea hay contained 168 g/ kg DM of tannin content and the 

proportions of SL to mix with alfalfa silage was based on attempting to provide 15, 30, and 45 

g/kg tannin for low, medium and high treatments, respectively. 

Each period consisted 14 days of adaptation followed by 5 days of total urine and feces 

collection.  During the second period, ewes were randomized to treatments with the condition 

that they were not offered the same treatment they were offered during the previous period.  

Ewes were removed from the facility for 5 days between periods and they were offered alfalfa 

silage alone.  

Housing and sample collection 

 During the digestion study, lambs were housed in a controlled-temperature facility (15 to 

16°C), with ventilation that was lighted for 14 h daily.  Lambs were housed in individual 1 × 1.5-
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m pens with plastic coated expanded metal grate flooring.  After every 7 days, ewes were 

removed from their pens and co-mingled in a pen with a concrete floor for a 3-hour exercise 

period.  Water, but no feed, was provided during that break. 

Feeding and sample collection 

 Ewe lambs were allowed access to water and feed for ad libitum consumption.  The 

amount of feed offered was adjusted daily in order to achieve a minimum 10% refusal (DM 

basis).  Orts were removed and daily feed was offered beginning at 0900 h.  Total daily feed was 

offered in different portions throughout the day in order to minimize forage spillage by animals.  

Fresh feed was offered each day.  Diets containing both alfalfa and SL were mixed thoroughly 

prior to feeding.  Sheep were offered 30 g of a commercial mineral2, which did not contain an 

antibiotic, every day after removal of orts and before offering their respective diets.  Feed 

collection began 2 d prior to fecal and urine collection.  Feed refused was weighed daily 

beginning 1 d before fecal collection and subsamples were collected.  Two samples of feed and 

orts were collected daily.  One sample was dried to a constant weight at 50° C and the other 

sample was immediately frozen for later fermentation or tannin content analysis. 

 Trays in rectangular shape with solid corrugated polyvinyl chloride (PVC) sheets beneath 

and covered with fiberglass screening were placed underneath each individual pen.  Total feces 

was gathered from the screens into plastic gutters at the end of each screen then weighed and 

removed twice daily and stored frozen (-20 °C).  Total urine was collected directly into plastic 

containers submerged in ice packs that were changed every 8 h.  The urine was then weighed, 

                                                             
2 Preferred Mineral for Sheep and Goats (Ragland Mills Inc., Neosho, MO, USA) The mineral 
contained 350-400 g/kg salt, 90-100 g/kg Ca, and not less than 80 g/kg P, 10 g/kg Mg, 10 g/kg 
K, 125 ppm Co, 150 ppm I, 5,000 ppm Fe, 10 ppm Se, 140 ppm Zn, 352,000 IU/kg of Vitamin 
A, 88,000 IU/kg of Vitamin D3, and 330 IU/kg of Vitamin E.   
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and an aliquot (100 g/1000 total g) of the urine collected daily was placed in small jars and 

stored frozen (-20 °C) for later lab analysis.  Rumen fluid was collected via stomach tube on the 

last day of each period immediately prior to feeding (0900 h), and 3 (1200 h) and 6 h after 

feeding (1500 h).  The process of rumen collection, storage and analysis was discussed in chapter 

3.  

Chemical analysis 

 All collected samples were stored and analyzed in the same process as described in 

details in the chapter 3.  Feed, orts and feces were analyzed for DM, OM, aNDF, ADF, and N 

content.  Urine samples were analyzed for N content.  Fermentation profiles in silage samples 

were analyzed by Cumberland Valley Analytical Services, Waynesboro, PA.  Tannin 

concentration in feed and orts were analyzed by the University of Missouri in Columbia forage 

lab service. 

 Hippuric acid in urine was determined by a spectrophotometric procedure. After diluting 

1 volume of the urine with 4 volumes of water, 0.5 mL of urine was mixed with 0.5 mL of 

pyridine in a centrifuge tube. Then 0.2 mL of  benzenesulfonyl chloride was added, mixed for 5 

seconds on a vortex, then was allowed to settle for a half hour at room temperature. The reaction 

was stopped by adding 5 mL of ethanol, which was followed by mixing on a vibration mixer. 

The samples were centrifuged at 2000 × g for 5 minutes. The supernatant was removed and 

placed in 1-cm cuvette and absorbance was read using a spectrophotometer set at a 410 nm 

wavelength. 
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Statistical analysis 

 Intake, digestibility and silage fermentation data were analyzed using PROC MIXED of 

SAS version 9.4 (SAS Inst. Inc., Cary, NC, USA) as a randomized complete block design with 

ewe as the experimental unit.  The four treatments were considered fixed effects while ewe and 

period were treated as random effects.  Linear, quadratic, and cubic polynomial trends were used 

to determine the effects of different proportions of SL in the diet.  Rumen fermentation data were 

analyzed as repeated measures with animal within treatment as the error term for treatment 

effects.  Sampling time was treated as a repeated measure and the model included fixed effects of 

treatment, time of sampling, and an interaction. 

RESULTS 

Forage composition and silage fermentation measurements by sheep are presented in 

tables 1.  Organic matter and N content (g/kg DM) were greater, and aNDF and ADF were lower 

in alfalfa silage compared to SL hay. However, NDF and ADF concentrations (% DM) were 

greater in SL hay compared to alfalfa silage.   

Dry matter intake and OMI (g/day, and g/kg BW) were not affected (P > 0.14) by adding 

different proportion of SL in the diet (Table 2).  Dry matter and NDF digestibilities decreased 

linearly (P < 0.01) and cubically (P ≤ 0.02) with increasing the proportion of SL in the diet and 

ADF digestibility decreased (P < 0.01) linearly with increasing SL in the diet.  Greater 

digestibility was observed in ewes that were fed alfalfa silage alone and the lowest digestibility 

was from sheep offered alfalfa mixed with high (270 g/kg) concentration of SL.  Organic matter 

digestibility decreased linearly (P < 0.01) with greater concentration of SL in the diet, and the 

greater digestibility was measured in sheep fed alfalfa silage alone.  Digestible DM intake, g/day 
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or g/kg BW, and digestible OM intake decreased linearly (P ≤ 0.03) with addition of more SL in 

the diet.  

 Supplementation of tannins from SL to alfalfa silage did not affect (P ≥ 0.48) N intake (g/ 

day or g/ kg BW; Table 3).  Nitrogen excreted in feces (g/ kg of N intake) increased linearly (P < 

0.01) with increasing SL. Nitrogen absorption (g/kg N intake) decreased linearly (P < 0.01) with 

increasing SL in the diet.  Urinary N (g/day) decreased linearly (P = 0.05) with increasing SL in 

the diet.  Nitrogen retained (g/day, g/kg BW, g/kg of N intake) was not affected (P ≥ 0.14) 

increasing SL hay in the diet.  However, the proportion of absorbed N that was retained tended 

(P = 0.1) to increase dramatically with 90 g/kg SL followed by small decreases with subsequent 

increases in SL concentration in the diet. Hippuric acid concentration in urine was not affected 

with addition of SL in the diet. 

 Rumen pH, total VFA and propionate (g/kg total VFA) were not affected (P ≥ 0.24) by 

SL hay level in the diet (Table 4).  Ruminal acetate (g/kg total VFA) concentrations increased 

with the initial SL addition (90 g/kg SL), then decreased slightly with additional SL additions 

(quadratically P = 0.01).  Ruminal butyrate concentrations decreased with the smaller 

concentrations of SL (90 and 180 g/kg) and then increased with the addition of 270 g/kg SL 

(quadratic effect P < 0.01). The concentrations of isobutyrate and isovalerate decreased linearly 

(P = 0.02), and that of valerate tended (P = 0.06) to decrease linearly with added SL in the diet.  

DISCUSSION 

 In this study, fiber content was greater in SL hay compared to alfalfa silage.  Sericea 

lespedeza hay used in this study was mature.  The woody nature of SL reduces nutritional value 

of the forage due to accumulation of structural carbohydrates.  The proportion of leaf mass 



 

54 

fraction to the total plant biomass decreases with plant maturity (Haring et al., 2007), which 

increases the fraction of fiber content in forage.  Feeding diets with greater NDF increases rumen 

retention time.  Lignin, which is one part of NDF in forage, can limit ruminal forage cell wall 

digestion by preventing the enzymatic hydrolysis of polysaccharides, which thereby decreases 

intake and digestibility (Jung and Allen, 1995).  Chemical composition of the plant also has an 

impact on forage palatability.  Protein content in forage is positively associated with diet 

preference by sheep and cows, while lignin accumulation in forage is negatively associated with 

diet preference by animals (Heady, 1964).  Moreover, regarding the palatability of different parts 

of the plant, animals prefer to consume leaves than stems (Waghorn and Molan, 2001).  

 Dry matter intake and OMI (g/day and g/kg BW) were not affected by proportion of SL 

in the diet.  In contrast, supplementation 3% of quebracho condensed tannin extract to diets with 

either a high or low forage-to-concentrate ratio decreased intake of DM in dairy cattle (Dschaak 

et al., 2011).  The inconsistency in intake response of forage containing condensed tannins in 

ruminants was attributed to the complexity of plants containing tannins and different responses 

either when CT-forage was fed solely or in combination with other plants (Harvey et al., 2019).  

Digestibility of DM, OM, NDF, ADF, DDMI, and DOMI decreased with increased SL in the 

diet.  Our results are not consistent with those of Hervás et al. (2003) where merino sheep were 

fed alfalfa hay supplemented with different levels of condensed tannins from quebracho extract. 

In that study (Hervás et al., 2003) no differences were detected in DM, CP, NDF and ADF 

digestibilities.  The difference in results may be explained by the fact that SL fed during this trial 

was mature.  According to Cherney (1991), plant maturity increases lignification, which in turn 

results in reduced forage digestibility. 
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 Nitrogen excreted in feces increased while urinary N decreased with addition of SL in the 

diet.  These results were consistent with a previous study of Patra and Saxena (2011), who 

reported that supplementation of tannins in the diet reduced protein degradation in the rumen and 

changed N excretion from urine to feces.  Alfalfa silage that was offered in this study had 24% 

CP.  The rapid degradation of alfalfa in the rumen produces ammonia, which in turn is channeled 

to the liver and is partially excreted in urine as urea.  Therefore, greater N excretion in urine from 

sheep that were fed alfalfa alone compared to N in urine from sheep that were fed alfalfa and SL 

hay mixtures can likely be explained by greater ruminal binding of dietary protein.  The retained 

N (g/kg of absorbed N) tended to increase with increased SL in the diet.  This improved N-use 

retention can be explained by the properties of tannins to bind to the protein in the rumen, 

thereby increasing rumen undegradable crude protein furthering absorption of protein in the 

small intestine and retention of N by the animal.  Our results are consistent with those of Aerts et 

al. (1999) and Schwab (1995), who reported that feeding tannins improves protein utilization. 

 Rumen pH across all treatments was above 7, which creates favorable condition for 

microbes in the rumen to digest fiber.  According to Mertens (1977), rumen pH less than 6.2 can 

inhibit fiber digestion.  No significant variation in rumen total volatile fatty acids were detected 

in this study, probably because sheep were fed all fibrous forage source diets.  Variation in 

ruminal degradation is usually greater in lower-fiber diets due to differences in retention time 

(Firkins, 1997).  Rumen acetate increased with increased SL in the diet.  Greater acetate may be 

related to a greater degradation of fiber, especially cellulose, which produced more acetate 

during rumen fermentation.  When cows are fed solely a forage-based, high-fiber diet, fermenters 

of cellulose and hemicellulose in the rumen produces acetate as the main energy source (Kung, 

2014).  
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Conclusion 

 In this study, supplementation of different levels of sericea lespedeza hay to alfalfa silage 

did not affect forage intake.  Dry matter, organic matter, and fiber digestibilities decreased with 

increased concentrations of SL in the diet.  Nitrogen excretion increased in feces and decreased 

in urine with increased SL in the diet, resulting in minimal differences in N absorption when 

expressed as a proportion of N ingested.  Forage selectivity by sheep especially selective refusal 

of stems of SL hay should be taken under consideration while feeding a mature SL forage based 

diet.  Moreover, due to the complex response of tannins and forage combinations in animals, the 

impact of supplementing tannins from SL on animal responses should be interpreted broadly. 
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TABLES 

Table 1. Chemical composition of alfalfa silage and sericea lespedeza (SL) fed to ewes1.  

Item  alfalfa Sericea lespedeza 

DM, g/ kg fresh weight 423 936 

 g/kg of DM 

OM 910 872 

aNDF 381 644 

ADF 319 561 

Nitrogen 39 24 

Condensed tannins  0.0 168 

Unbound condensed tannins, g/kg 0.0 24 

Bound condensed tannin, g/kg 0.0 2.4 

Fermentation profile of alfalfa silage 

Total acids, g/kg DM 76  

Lactic acid, g/kg DM 55  

LTA, g/kg total silage acids 735  

Acetic acid, g/kg DM 19  

Propionic acid, g/kg DM  0.7  

NH3N-CPE, g/kg DM 25  

Silage pH 4.6  

 
1Alfalfa silage was either offered alone (0 % CONT) or mixed with chopped SL to provide 90 
(LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry matter (DM) basis  
2DM = Dry matter, OM= organic matter, aNDF= neutral detergent fiber inclusive of ash, ADF= 
acid detergent fiber 

LTA = lactic acid expressed in g/kg of total silage; NH3N-CPE = ammonia N expressed in crude 
protein equivalents. 
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Table 2. Intake and digestibility by sheep offered alfalfa silage alone or alfalfa mixed with 
different proportions of sericea lespedeza hay 

 Treatments1  Effect2 

Item3 Control Low Med High SEM Linear Quadratic Cubic 

Intake         

DMI, g/day  1320 1288 1255 1225 62.2 0.20 0.98 0.98 

DMI, g/kg BW 31 31 30 30 1.5 0.75 0.75 0.89 

OMI, g/day 1203 1170 1136 1105 52.6 0.14 0.98 0.97 

OMI, g/kg BW 28 27 27 27 1.3 0.58 0.75 0.91 

Digestibility         

DMD, g/kg DM 672 624 635 600 0.1 < 0.01 0.54 0.02 

OMD, g/kg DM 697 645 653 615 0.1 < 0.01 0.43 0.01 

NDFD, g/kg DM 551 470 510 428 25.5 < 0.01 0.99 < 0.01 

ADFD, g/kg DM 594 523 539 493 38.0 < 0.01 0.47 0.07 

Digestible intake         

DDMI, g/day 889 808 798 737 51.2 0.01 0.79 0.49 

DDMI, g/kg BW 21 19 19 18 1.2 0.03 0.63 0.31 

DOMI, g/ day  839 757 742 681 39.8 < 0.01 0.77 0.48 

DOMI, g/kg BW 19 18 18 16 1.0 0.01 0.59 0.31 

  
1Alfalfa silage was either offered alone (0 % CONT) or mixed with chopped SL to provide 90 
(LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry matter (DM) basis  
2 Probabilities for linear, quadratic and cubic orthogonal contrasts for means across all four 

different treatments 

3 DMI= dry matter intake, OMI= organic matter intake, DMD = dry matter digestibility, OMD = 
organic matter digestibility, NDFD = neutral detergent fiber digestibility, ADFD= acid detergent 
fiber digestibility, DDMI= digestible dry matter intake, DOMI = digestible organic matter intake. 
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Table 3. Nitrogen balance by sheep offered alfalfa silage alone or alfalfa mixed with 
different proportions of sericea lespedeza hay 

 Treatments1  Effect2 

Item3 Control Low Med High SEM Linear Quadratic Cubic 

N intake, g/day 48 50 47 45 3.3 0.48 0.51 0.71 

N Intake, g/kg 
BW 

1.1 1.2 1.1 1.1 0.07 0.90 0.63 0.75 

Fecal N, g/day 11 13 13 13 0.9 0.08 0.20 0.26 

Fecal N, g/kg N 
intake 

229 269 270 291 69.5 < 0.01 0.18 0.07 

N absorption, 
g/kg N intake 

770 730 729 708 7.0 < 0.01 0.18 0.07 

N app. abs, g/day 37 36 34 32 2.5 0.15 0.66 0.91 

N app. abs, g/kg 
BW 

86 85 83 79 5.8 0.27 0.81 0.10 

Urine N, g/day 18 13 13 14 2.6 0.05 0.06 0.40 

Urine N, g/kg 
intake 

47 26 28 31 7.3 0.15 0.10 0.40 

Retained N, 
g/day 

18 23 21 18 2.7 0.81 0.16 0.59 

N retained, g/kg 
BW 

42 54 64 64 6.4 0.91 0.18 0.61 

N retained, g/kg 
N intake 

30 50 45 40 7.2 0.37 0.14 0.59 

N retained, g/kg 
N absorbed 

38 64 61 56 9.3 0.24 0.10 0.52 

Hyppuric acid, 
g/L 

2.0 1.7 1.9 2.1 0.44 0.69 0.43 0.68 

1Alfalfa silage was either offered alone (0 % CONT) or mixed with chopped SL to provide 90 
(LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry matter (DM) basis  
2 Probabilities for linear, quadratic and cubic orthogonal contrasts for means across all four 
different treatments. 
3 N= Nitrogen, BW = body weight, N app. abs = nitrogen apparently absorbed.  
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Table 5. Rumen volatile fatty acids from sheep offered alfalfa silage alone or alfalfa mixed 
with different proportions of sericea lespedeza hay 

Item3  Treatments1  Effect2 

 Control Low Med High SEM Linear Quadratic Cubic 

Rumen pH 7.00 7.01 7.15 7.50 0.696 0.24 0.73 0.30 

Total VFA, mM 80.2 77.1 78.0 80.1 5.87 0.98 0.44 0.87 

ace:pro 3.5 3.6 3.6 3.6 0.09 0.60 0.34 0.76 

 Mole/100 mole total VFA     

Acetate 64.0 66.0 65.5 65.2 0.45 0.05 0.01 0.57 

Propionate  19.2 19.0 19.2 19.1 0.55 0.92 0.85 0.66 

Butyrate 9.7 8.6 8.6 9.5 1.08 0.66 < 0.01 0.97 

Isobutyrate  2.3 2.2 2.1 1.9 0.29 0.02 0.83 0.96 

Valerate 1.9 1.8 1.7 1.7 0.11 0.06 0.41 0.97 

Isovalerate 2.9 2.8 2.5 2.4 0.46 0.02 0.99 0.67 
 

1Alfalfa silage was either offered alone (0 % CONT) or mixed with chopped SL to provide 90 
(LOW), 180 (MED), or 270 g/kg SL (HIGH) on a dry matter (DM) basis  
2 Probabilities for linear, quadratic and cubic orthogonal contrasts for means across all four 

different treatments 

3VFA = Volatile fatty acids, ace:pro =  Acetate to propionate ratio  
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CHAPTER V  

Effect of supplementing different proportions of polyphenols from Lablab purpureus hay to 

alfalfa silage on intake, digestibility, and nitrogen balance in gestating sheep 

Niyigena1,V., Coffey1, K. P., Coblentz2, W. K., Philipp1, D., Savin1, M.C., Zhao1, J., Diaz1, J. S. 

Park1, S.P., Shelby1, S.L.  
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ABSTRACT 

 The manipulation of diets by including forages containing moderate to high 

concentrations of polyphenolic compounds can change nutrient-use efficiency by ruminants.  

This study was conducted to investigate effects of adding different proportions of Lablab 

purpureus hay (LP) to alfalfa silage on the subsequent voluntary intake and digestibility by 

gestating sheep.  Alfalfa was harvested in October 2018 at 750 plants blooming/1000 plants, 

chopped, and then packed at 550 g/kg moisture into plastic-lined bins, where it was allowed to 

ensile for 3 months.  Alfalfa silage was either offered alone (Control; C), or mixed with 90 (low; 

L), 180 (Medium; M), or 270 g/kg (high; H) LP on a DM basis.  Diets were assigned randomly 

and offered for ad-libitum consumption to 16 gestating ewes (49.0 ± 4.61kg BW) in a 

randomized complete block design experiment with two periods to provide four observations per 

treatment per experimental period.  Each period consisted of a 14-d dietary adaptation period 

followed by 7 d of total fecal and urine collection.  Data were analyzed using PROC MIXED of 

SAS and tested orthogonally for linear, quadratic and cubic trends.  Dry matter (DM) and 

organic matter (OM) intake (g/kg BW) increased with the initial inclusion of LP, then declined 

with increasing inclusion of LP (quadratic response; P < 0.05).  Digestibility of DM and OM 

were not affected (P ≥ 0.11) by adding different levels of LP to the diet.  Digestible DM intake 

(g/kg BW) tended to increase with the initial inclusion of LP, then declined with subsequent 

additions of LP in the diet (quadratic; P = 0.08).  Digestible OM intake (g/kg BW) tended to 

increase linearly (P = 0.09) and quadratically (P = 0.10) with increasing amounts of LP in the 

diet.  Nitrogen intake (g/kg BW), N apparently absorbed (g/kg BW) and urinary N (g/day) 

decreased linearly (P < 0.01) with increasing LP in the diet.  In this study, supplementation with 
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90 g/kg LP as a source of phenolic-compounds improved forage DM and OM intake but did not 

affect DM and OM digestibilities.  Therefore, adding a forage with moderate concentrations of 

polyphenols can improve forage utilization by ruminants.  

Key words:  Alfalfa, Lablab purpureus, Sheep  

 

INTRODUCTION 

 Ruminants have the ability to convert feedstuffs with low or no value to humans into high 

quality human food.  The consumption and demand for ruminant protein has been increasing and 

likely will continue increasing in the future as the world population increases where protein 

demand is expected to double by 2050 ( Henchion et al., 2017).  In past decades, the 

consumption of beef decreased from 43 kg in 1975 to 24 kg in 2015 per capita each year while 

the consumption of pork and poultry gained much popularity (USDA 2016).  Feed conversion, 

especially protein, is more efficient in chickens than other livestock species; however, a greater 

part of chicken diet is from human edible food sources (Wilkinson, 2011).  On the other hand, 

pasture and non-edible byproducts are the major feed sources for ruminants.  Protein degradation 

in the rumen is the main factor affecting protein and feed utilization and efficiency by ruminants 

(Owens and Pettigrew, 1989).  The rapid degradation of some forage legumes, such as alfalfa and 

red clover in the rumen (Messman et al., 1996) increases the synthesis of ammonia, which is 

excreted in urine as urea (Noeck and Russell, 1988).  The consequence is reduced protein use 

and efficiency by ruminants.  Methane production in ruminants is also a major loss of feed 

energy and constitutes a threat to the environment because domestic ruminants contribute 

emissions into the atmosphere accounting for 25% of the total anthropogenic methane in the US 

(EPA, 2019). 
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 Plants that contain secondary metabolites, such as polyphenols, reduce protein 

degradation in the rumen.  Red clover contains polyphenol oxidase (PPO) that produces 

equinones, which reduces forage protein degradation in silos (Fijałkowska et al., 2015) as well as 

protein degradation in the rumen (Broderick and Albrecht, 1997).  Moreover feeding red clover 

silage improved milk yield more than feeding alfalfa silage (Broderick et al., 2001).  

Additionally, supplementation of polyphenols to a grass-based diet increased N retention and 

performance by lambs (Rajabi et al., 2017).  The presence of polyphenols in the diet potentially 

enhances the concentration of hippuric acid in the urine, which reduces emissions of N2O, a 

potential greenhouse gas, from soil (Van Groenigen et al., 2005; Bertram et al., 2009; Dijkstra et 

al., 2013).   

 There are multiple benefits of feeding polyphenols from different plant species to animals 

during production, but the low productivity and weak disease resistance in certain plant species 

is a challenge.  It is important to investigate the use other alternative forage legumes containing 

polyphenols such as Lablab purpureus in ruminant nutrition.  Lablab is resistant to drought and 

diseases, is a potential source of polyphenols (Murphy and Colucci, 1999), and can reduce 

methane emissions when fed to goats (Washaya et al., 2017).  Although some progress has been 

made, there is a large research gap investigating the effects of mixing different forages 

containing phenolic compounds with other forage legumes on improvement of protein utilization 

and N partitioning in urine and feces of ruminants.  Therefore, the objective of this study was to 

investigate the effect of supplementing different levels of polyphenols from Lablab purpureus to 

alfalfa silage on intake, digestibility and nitrogen balance in gestating sheep.  
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MATERIALS AND METHODS 

The research study was conducted at the University of Arkansas North Farm located in 

Fayetteville, Arkansas USA.  After field preparation, LP seed; Tecomate variety were planted on 

1 June 2018 in a loamy soil with a seeding rate of 22 kg per hectare at 2.5 cm deep.  The LP was 

grown in a dryland soil, the rainfall was adequate, and no irrigation was required.  After 3 

months of growth, LP was mowed, sun dried to attain 900 g/kg DM, baled in large round bales, 

and stored in a large, open barn with a concrete floor.  After 4 month of storage, prior to feeding, 

the LP hay was chopped to a particle size of approximately 5 cm using a commercial straw 

chopper (SB 5400; Harper Industries, Inc., Harper, KS, USA).  Alfalfa was harvested, using a 

plot harvester, machine chopped, and wilted on outdoor concrete flooring to reach 55% moisture 

during October of 2018.  Alfalfa was packed in trash containers of 167 L volume, lined with 2 

layers of plastic bags, and stored for 3 months.  Details about silage production and storage were 

described in chapter 4. 

Animals and feeding 

 In January of 2019, prior to the digestion study, blood samples were collected from a 

flock of 40 sheep and sent to County Service Lab in Farmington, AR USA to confirm pregnancy 

via blood test for pregnancy-specific protein B (Redden and Passavant, 2013).  Sheep were 

evaluated for body condition score, FAMACHA, and number of teeth, and 16 gestating sheep 

that were 1 year of age and relatively similar body weight (BW) and body condition score (BCS) 

were selected for the digestion study.  Prior to feeding each day, alfalfa silage was offered alone 

(C), or mixed with 90 (low; L), 180 (Medium; M), or 270 g/kg (high; H) LP on a DM basis.  The 

amount of lablab hay to include in a diet was calculated based on the levels of sericea lespedeza 

that were offered in the previous experiment (chapter 4).  Daily feed offered were calculated for 
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each ewe to maintain the correct proportion of alfalfa and LP on a DM basis and to ensure a 

minimum of 100 g/kg refusal (DM basis).  Forages were mixed thoroughly, and were offered to 

the 16 gestating sheep in small portions throughout the day to minimize feed wastage.   

Ewes were housed in individual pens (1 × 1.5 m) with housing temperature maintained at 

14oC with ventilation.  This provided four sheep per treatment for each of two periods.  Each 

period consisted 14 days of adaptation and 7 days of total fecal and urine collection.  Feed 

samples were collected daily beginning 2 days prior to fecal collection and orts samples were 

collected daily beginning 1 day prior to fecal collection. 

Sample collection and analysis  

 Feed, orts, feces and urine collection procedure and chemical analysis were discussed in 

detail in chapter 4.  Details for chemical analysis were discussed in chapter 3 where feed, orts, 

fecal samples were analyzed for DM, OM, NDF, ADF, N content while urine samples were 

analyzed for N.   

Statistical analysis 

Intake and digestibility data were analyzed using PROC MIXED of SAS (SAS Institute, 

Cary, NC) procedures for a randomized complete block design.  The proportion of Lablab 

purpureus in the diet was considered a fixed effect, while period and animal were treated as 

random effects.  Contrasts for orthogonal polynomial trend analyses were used to detect the 

linear, quadratic and cubic differences among treatments.  
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RESULTS 

Forage composition data are presented in table 1and were not analyzed statistically.  

Neutral detergent and acid detergent fiber (aNDF and ADF, respectively) concentrations were 

greater in Lablab purpureus hay compared to alfalfa silage, but N content was greater in alfalfa 

silage than lablab hay.  

Intake and digestibility data are presented in table 2.  Dry matter and OM intake (g/d) 

both tended to increase quadratically (P = 0.08), and DM and OM intake (g/kg BW) increased 

quadratically (P ≤ 0.04) with increasing level of LP in the diet.  The greatest intakes were from 

sheep that were offered 90 g/kg lablab in the diet and the lowest intake was from sheep offered 

the highest proportion of LP in their diet.  Dry matter and OM digestibilities were not affected (P 

≥ 0.11) by the proportion of lablab in the diet.  Digestible DM and OM intakes (g/kg BW) tended 

(P ≤ 0.10) to increase quadratically while digestible OM intake (g/day or g/kg BW) tended to 

increase linearly (P ≤ 0.09) with greater additions of lablab hay in the diet.  

Nitrogen intake (g/kg BW) decreased linearly and quadratically (P ≤ 0.04) with greater 

concentrations of LP hay in the diet (Table 3).  Fecal N excretion was not affected (P ≥ 0.17) by 

feeding greater concentrations of LP, but N apparently absorbed (g/day and g/kg BW) decreased 

linearly (P < 0.01) with increased addition of LP in the diet.  Nitrogen excreted in the urine 

(g/day) decreased linearly (P < 0.01) with increased supplementation of LP hay to the ewes.  

Retained N (g/day, g/kg BW, g/kg N of intake, g/kg of N absorbed) was not affected (P ≥ 0.15) 

by inclusion of LB in alfalfa silage. 
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DISCUSSION 

Lablab hay that was fed during this study was harvested at late maturity due to a rainfall 

pattern that did not allow favorable conditions for hay making.  The concentration of NDF and 

ADF in this study were lower in alfalfa compared to Lablab purpureus, likely due to different 

stages of maturity at harvesting.  Washaya et al. (2017) compared the variation of NDF and ADF 

of lablab at different maturity stages and found that the fiber concentrations were greater in post-

anthesis compared to pre-anthesis stages.  However, NDF and ADF values at maturity were 520 

and 390 g/ kg DM, respectively, which are lower than the fiber concentrations of LP hay that 

was fed in the present study.  Therefore, the greater fiber concentration of LP in this study may 

be attributed to the more advanced maturity of the forage.  The N content of lablab is this study 

was less (13 g/kg) than that reported by Murphy et al. (1999), where the N concentration of 

lablab was above 33 g/kg, again indicative of a more advanced stage of maturity in the forage in 

the present study.  Guanzura et al. (2012) compared nutrient composition of lablab with other 

forage species and found that the total polyphenols content in lablab was 1.24 mg/g, which is less 

than the total polyphenolic content (1.4 mg/g) that was fed in this study.  

In the present study, dry matter and organic matter intake increased with feed containing 

a moderate amount of polyphenols, while feed with the greatest amount of polyphenols 

decreased intake.  Feeding 60 mg/kg of flavonoids extract from lablab to dairy cows resulted in 

greater intake than feeding cows a diet supplemented with 100 mg/kg of flavonoids (Zhan et al., 

2017).  Contrary to the results of this study, a study involving feeding cannulated dairy cows 

different levels of polyphenols from propolis-based products reported no difference between 

treatments on dry matter intake (Aguiar et al., 2014).  Increasing the amount of polyphenols in 
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the diet depressed feeding intake by sheep during this study which is in agreement with Reed 

(1995) who stated that forages containing tannins or polyphenols may reduce feed intake.  

In this study, DMD and OMD were not affected by supplementation of different levels of 

lablab.  Similarly, supplementation of mulberry leaves in sheep diets as a source of flavonoids 

did not affect digestibility of DM and OM (Chen et al., 2016).  On the other hand, feeding 

different concentrations of polyphenols from propolis improved digestibility in dairy cows 

(Aguiar et al., 2014).  The responses of supplementing polyphenols in diet on intake and 

digestibility measurements are not consistent.  Variation in phenolic compound responses on 

forage utilization by animals were suggested to be attributed to the differences in plant species 

that produce the phenolic compounds (Zhan et al., 2017).  

Nitrogen intake by sheep decreased with increased LP hay in the diet. This decline can be 

attributed to difference in N content between the two forages where alfalfa silage had a greater 

concentration of N compared to LP.  Fecal N was not altered with supplementation of LP in the 

diet.  In contrast, Powell et al. (2009) reported that feeding polyphenols increased fecal N 

excretion in lactating Holstein dairy cows. Urinary N excretion decreased with increased LP in 

the diet.  These results agree with those of Reed et al. (1995), who reported that increasing N 

intake above animal’s requirement leads to an increase in urinary N excretion. 

Conclusion 

In this study, feeding a low concentration of Lablab prupureus, defined as 90 g/kg in an 

alfalfa silage diet improved both dry matter and organic matter intake but did not affect 

digestibility measures.  Increasing the proportion of LP hay in the diet reduced N excretion in 

urine and N apparently absorbed but did not affect other N balance parameters.  However, the 
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lablab used in the present study was excessively mature due to the harvesting delays caused by 

weather interference which was not favorable for harvesting and hay drying.  Lablab prupureus 

can be an alternative source of polyphenols to improve forage utilization, but the amount of 

polyphenol and forage quality should considered while supplementing lablab hay in the diet.  
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TABLES 

Table 1. Chemical composition of alfalfa silage and lablab purpureus (LP) hay 1 
2Item  Alfalfa silage Lablab Purpureus hay 

DM  40.5 90.2 
OM, g/kg DM 917 895 
aNDF, g/kg DM 443 631 
ADF, g/kg DM 332 481 
Nitrogen, g/kg DM 32 13 
Total polyphenols, mg gallic acid equivalent/g  0 1.4 
Antioxidant Capacity, mmol Trolox equivalent/g 0 7.3 

 
1Alfalfa silage was either offered alone (CONT) or mixed with chopped LP to provide 90 
(LOW), 180 (MED), or 270 g/kg (HIGH) LP on a dry matter (DM) basis, 
 2 DM = dry matter, OM= organic matter, aNDF= neutral detergent fiber inclusive of ash, ADF= 
acid detergent fiber. 
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Table 2. Intake and digestibility by sheep offered alfalfa silage alone or alfalfa mixed with 
different proportions of lablab purpureus 

 Treatments1  Effect2 
Item3 Control Low Med High SEM Linear Quadratic Cubic 
Intake          
DMI, g/day  1420 1534 1430 1284 86.3 0.12 0.08 0.60 
DMI, g/kg BW 29 31 30 26 1.7 0.13 0.04 0.09 
OMI, g/day 1301 1407 1311 1163 76.2 0.11 0.08 0.63 
OMI, g/kg BW 26 29 27 24 1.5 0.11 0.03 0.69 
Digestibility         
DMD, g/kg DM 620 612 612 611 10.0 0.51 0.71 0.86 
OMD, g/kg DM 654 620 648 623 14.7 0.40 0.69 0.11 
NDFD, g/kg DM 572 575 587 579 76.1 0.64 0.70 0.72 
ADFD, g/kg DM 519 529 532 544 17.8 0.32 0.96 0.81 
Digestible intake         
DDMI, g/day 881 940 874 786 53.5 0.12 0.14 0.64 
DDMI, g/kg BW 18 19 18 16 1.0 0.13 0.08 0.70 
DOMI, g/ day  852 868 849 730 48.1 0.08 0.17 0.77 
DOMI, g/kg BW 17 18 18 15 0.9 0.09 0.10 0.71 

 
1Alfalfa silage was either offered alone (CONT) or mixed with chopped LP to provide 90 
(LOW), 180 (MED), or 270 g/kg (HIGH) LP on a dry matter (DM) basis. 
2 Probabilities for linear, quadratic and cubic orthogonal contrasts for means across all four 
different treatments. 
3 DMI= dry matter intake, OMI= organic matter intake, DMD = dry matter digestibility, OMD = 
organic matter digestibility, NDFD = neutral detergent fiber digestibility, ADFD= acid detergent 
fiber digestibility, DDMI= digestible dry matter intake, DOMI = digestible organic matter intake 
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Table 3. Nitrogen balance by lamb offered alfalfa silage alone or alfalfa mixed with 
different proportions of lablab purpureus hay 

 Treatments1  Effect2 
Item3 Control Low Med High SEM Linear Quadratic Cubic 
N intake, g/day 47 48 43 37 3.3 < 0.01 0.09 0.60 
N Intake, g/kg BW 0.94 0.98 0.89 0.75 0.066 < 0.01 0.04 0.64 
Fecal N, g/kg N 
intake 

314 336 330 337 17.1 0.17 0.48 0.36 

N absorption, g/kg 
N intake  

685 663 669 662 17.2 0.17 0.48 0.36 

N app. abs, g/day 32 32 28 24 2.8 < 0.01 0.18 0.78 
N app. abs, g/kg 
BW 

0.64 0.65 0.59 0.50 0.056 < 0.01 0.10 0.83 

Urine N, g/day 16 15 13 11 1.7 < 0.01 0.42 0.90 
Urine N g/kg N 
intake 

358 327 317 321 62.0 0.20 0.41 0.96 

N retained g/day 16 17 15 13 4.2 0.15 0.36 0.83 
N retained, g/kg 
BW 

0.31 0.33 0.31 0.26 0.085 0.15 0.23 0.84 

N retained,  g/kg N 
intake 

327 335 352 340 77.1 0.58 0.66 0.71 

N retained, g/kg N 
absorbed 

477 499 525 509 104.1 0.41 0.54 0.75 

 
1Alfalfa silage was either offered alone (CONT) or mixed with chopped LP to provide 90 
(LOW), 180 (MED), or 270 g/kg (HIGH) LP on a dry matter (DM) basis, 
2 Probabilities for linear, quadratic and cubic orthogonal contrasts for means across all four 
different treatments 
3 N= Nitrogen, BW = body weight, N app. abs = nitrogen apparently absorbed  
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CHAPTER VI 

CONCLUSION 

Harvesting and ensiling alfalfa and NE+ fescue mixtures resulted in increased silage total 

acids and lactic acid while ammonia decreased linearly with increasing tall fescue proportion. 

However adding the tall fescue decreased digestible DM and OM intake, which will affect 

animal performance negatively.  Ruminal acetate increased and ruminal propionate and butyrate 

decreased with increasing fescue concentrations in the silage.  The results from this experiment 

proved that mixing alfalfa and fescue after a killing frost improved silage fermentation 

characteristics which can help to avoid forage yield losses and reduce the production of ammonia 

which is an undesired product in silage, but mixing alfalfa and fescue can negatively affect 

forage utilization by ruminant animals.  

Supplementation of tannins from sericea lespedeza to alfalfa silage decreased forage 

digestibility but did not affect feed intake while feeding low amount of lablab purpureus with 

alfalfa silage improved intake by sheep.  Dietary manipulation by including tannins from sericea 

lespedeza and polyphenol from LP altered N excretion route, specifically reducing N excretion in 

urine.  Feeding strategies used in these studies may be used as viable options to improve forage 

nitrogen utilization by ruminants and a sustainable approach to reduce negative impact of 

livestock production in the environment.  
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APPENDIX 
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