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ABSTRACT 

In experiment 1, 80 steers (197.0 kg initial body weight; BW for fall, 116.9 kg for 

spring), were stocked at 2.45 and 4.1 calves/ha in fall and spring, respectively in 16 tall fescue 

pastures [fall ergovaline (EV) = 1,475 ppb and spring EV = 1,173 ppb] under 2 treatments, 

mineral (MIN) (n = 8) and cumulative management (CM) (n = 8).  Forage allowance did not 

differ (P = 0.76) between CM and MIN during fall but differed during spring (P ≤ 0.05, 2.55 vs. 

3.22 kg DM/kg BW, for MIN and CM, respectively).  For fall, average daily gain (ADG) 

resulted in 0.41 × EV for MIN and 1.05 × EV for CM.  For spring, ADG resulted in 0.80 × EV 

for MIN and 0.94 EV for CM resulting in an increase of ADG for CM as the level of EV 

increased.  In experiment 2, steers (n = 3) were fitted with a device (Icetag; IceRobotics) 

strapped to left metatarsus that measured motion activity while on varying levels of EV toxicity.  

Initial lying bouts for CM were 18.4 but decreased by 0.9 bouts for every 1,000 ppb EV increase.  

Period 2 resulted in standing time for MIN calves of 858.01 min/day (14.3 h/d) whereas CM 

calves spent 792.01 min/day (13.2 h/d) standing and CM calves took 20% more steps daily than 

MIN calves.  For every 1,000 ppb increase in EV, steps decreased by 275.  In experiment 3, 

calves (n = 4) grazed long sward regrowth (LSR) or short sward regrowth (SSR) tall fescue and 

alfalfa paddocks for forage quality, visual observations, rumen volatile fatty acids and diet 

selectivity measurements.  No differences in these behavior measurements were observed for 

either forage (P < 0.05).  Within fescue paddocks, ruminal ammonia, total volatile fatty acids 

(VFA), acetate, and the branch-chain VFA were greater from SSR vs. LSR (P < 0.05), but these 

differences were not observed (P ≥ 0.11) on alfalfa paddocks.  In summary, the effect of 

combined management strategies offers potential to cope with toxicity in tall fescue pastures. 

Grazing activities of cattle grazing tall fescue or alfalfa may influence intake, but further 



 

research is needed to determine these behavioral modifications when differences in sward height 

are small. 
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CHAPTER I 

INTRODUCTION 

North America (Unites States, Canada and Mexico) produces 26% of the beef supply 

worldwide (Galyean et al.,, 2011).  In Northwest Arkansas, beef cattle are produced using 

different forages such as tall fescue, alfalfa, and bermudagrass.  Tall fescue is a common forage 

for producers and farmers because it persists for longer periods, resisting drought and diseases, 

and because it offers a fair amount of forage mass during the winter season being a cool-season 

grass.  However, this promising grass triggers a long-term or chronic disease called “fescue 

toxicosis” caused by an endophyte fungus founded in the plant that produces ergot alkaloids.  

These alkaloids in turn cause animal reproduction and production reductions and alter 

physiological responses.  

Management strategies are needed to minimize toxicity and enhance animal productivity.  

Development of novel fescue cultivars to replace fescue with high levels of toxicity, and legume 

incorporation are strategies implemented at the land and soil level.  Strategic supplementation, 

growth promoting implants and ionophore are potential ways to overcome these difficulties and 

are strategies implemented at the animal level but need to be researched in more detail.  Animal 

growth and behavioral studies were conducted in northcentral Arkansas to investigate how cattle 

growth, motion and grazing is affected by fescue grasses and combination management 

strategies. 

 Overall, improved forage utilization by ruminants needs to be accompanied by human 

interventions by planning strategically the proper forage utilization without having ecological 

impacts, but within a sustainable way to provide food for the animal and for humans.  How 
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forage quality is enhanced and how ruminants make the most of these forages is called the plant-

animal-soil relationship.  This relationship is to be enhanced with research and science put into 

practice. 
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CHAPTER II 

REVIEW OF LITERATURE 

Overall summary 

Forages are “edible plants” offered as feed or grazed by herbivore animals (Wilkins, 

2000).  These forages consist of grasses, legumes, forbs and browse (Phelan et al., 2015).  

Forages are important to herbivores because herbivores possess bacteria, protozoa and fungi in 

their digestive system to breakdown forage cell wall components such as hemicellulose and 

cellulose (Minson, 1990) to produce energy (Wilkins, 2000).  When ruminants graze forages, 

they take advantage of inexpensive herbage food resources that lower input or costs and 

increases sustainability of animal production (Soder et al., 2009).  Ruminant livestock production 

is mainly in grasslands which comprise 26% of the world land area and 70% of the world 

agricultural area (FAO, 2019).  

The availability of forages, or forage mass, is important in animal production.  Forages 

need to have good nutritive value along with adequate forage production.  Forage quality 

comprises components such as palatability, intake, digestibility and nutrient content that 

influence animal performance.  Factors that affect forage quality include plant species and 

cultivar, maturity, environmental conditions, and diurnal effects.  The most influential factor on 

forage quality, or how well forages translate into animal production, is maturity (Buxton, 1996).  

As forage maturity advances, nutrient content and fermentation and digestibility of plant 

components like sclerenchyma and xylem are restricted (Akin, 1989) which reduces their 

conversion into energy. 



4 

 

Some plants have components or chemical compounds that function as a protection 

against overgrazing or overutilization but also affect herbivores when grazing because they cause 

toxicity.  For example, tall fescue pastures may cause toxicity in ruminants.  Management 

strategies such as strategic protein supplementation, the use of implants, knowing the plant 

toxicity level and alkaloid concentration, and grazing pressure are tools to minimize production 

losses in animals grazing toxic plants (Pfister et al., 2001).  Therefore, a number of factors must 

be considered in order to optimize utilization of forages by ruminants. 

Ruminant animals are efficient in selecting their diet depending on the quantity of forage 

offered (Wilkins, 2000).  However, that capability can be constrained or changed if they are 

grazing on homogeneous pastures.  Because both, forage quality and animal condition affect 

animal performance, strategic management in animal production such as adequate grazing 

management, strategic supplementation (Delevatti et al., 2019) and forage demand calculations 

need to be developed by considering animal size, length of time grazing, and number of animals 

(Scott et al., 2018). 

In summary, ruminants are important because they have microorganisms capable of 

breaking down forage components into energy to produce food for human consumption.  

However, forage production has constraints related to the plant itself and related to 

environmental conditions that limit quality and availability of forage.  This results in low forage 

production and therefore forage quality declines.  Therefore, it is necessary to review forages for 

their ability to maintain and improve animal performance. 
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Chemical composition  

Forage chemical components 

Concentrations of certain chemical components of forages are analyzed to assess forage 

quality (Sanderson et al., 1999).  The most common chemical components that are analyzed to 

interpret forage quality are dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber 

(ADF), crude protein (CP), acid detergent lignin (ADL; Wiersma et al., 1998), ether extract and 

mineral content.  Lignin is probably the plant cell wall constituent that is most limiting for 

digestibility (Jung and Allen, 1995).  These forage constituents can be used to calculate total 

digestible nutrients (Weiss et al., 1992) which is a measure of forage energy. 

Some plants contain plant secondary metabolites that influence forage intake and 

digestibility.  For example, condensed tannins decrease the breakdown of proteins in the rumen, 

thereby affecting the microbial population that is necessary to produce energy from 

carbohydrates (Barry and McNabb, 1999; Min et al., 2003).  It therefore may be necessary to 

analyze an expanded number of forage chemical components in order to be more fully aware of 

how a particular forage might affect animal performance. 

Management to alter chemical composition 

Harvest management  

Harvest management of forages includes cut frequency (the less frequent, the less stress 

plants suffer), timing, appropriate plant growth stage and maturity.  These harvest management 

considerations affect yield, quality, and persistence of the plant (Sanderson et al., 1999; Wiersma 

et al., 1998).  Harvest management needs to consider forage quality, nutrient yield, and plant 

longevity to achieve specific production goals (Brink and Marten, 1988).  Furthermore, there are 
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post-harvest factors that affect forage quality such as plant respiration (moisture, temperature, 

nutrient changes,), mechanical damage, and rain damage.  Proper harvest management affects 

digestibility because it may decrease cell wall constituents such as hemicellulose and cellulose 

and affect CP that is necessary for microbial function.  These can also affect forage intake, which 

then translates into less energy for the animal. 

Silage is a method of harvesting and preservation of forages that uses fermentation for 

forage conservation (Heinritz et al., 2012).  Whole plant corn silage is widely used as ruminant 

feed nationwide (Givens and Rulquin, 2004).  Oat silage (Coblentz et al., 2016a) or ensiled 

legumes such as alfalfa are very common as well (Coblentz and Muck, 2012).  Common ensiled 

grasses are tall fescue, meadow fescue and orchardgrass.  Management of silage includes the 

proper maturity to cut the forage, weather conditions, wilting, and moisture; all indicators of 

ensilability (Coblentz and Muck, 2012) that affect silage chemical composition.  However, silage 

quality can be enhanced by using additives that are arranged categorically as bacterial inoculants, 

enzymes, substrate sources, and inhibitors (Jennings, 2017).  

Intake and digestion 

Intake and digestibility are forage quality components, that if altered, interfere with 

animal production.  Intake is the principal factor that determines animal performance.  Intake is 

influenced by many factors including forage physical and chemical characteristics (Coleman and 

Moore, 2003; Fisher, 2002), animal physiological status, environmental factors (Zereu, 2016), 

and short-term physical-chemical mechanisms (Dulphy and Denarquilly, 1994).  Forage related 

factors such as forage specie, stage of growth, and soil fertility, influence intake as well (Minson, 

1990).  Intake is controlled by other mechanisms and external factors such as gut capacity, 

ruminal distension, animal requirements, forage chemical composition, forage morphological 
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characteristics, climate, feed resources and post-ingestive feedback (Decruyenaere et al., 2009).  

The post-ingestive feedback affects not only intake but also behavior of ruminants because it is 

based on a positive or negative experience (Fisher, 2002) that influences the animal to re-graze 

or to reject the forage.  In addition, intake is influenced by animal physiological state and body 

size (Demment and Van Soest, 1985) because if the animal is larger in size it enhances 

gastrointestinal retention and capacity (Van Soest, 1996) and digestion rate and reticulo-rumen 

fill, (Allison, 1985) improving digestibility and animal production (Buxton et al., 1995).  

Digestibility influences gut fill and distention, thereby influencing passage of ruminal 

contents through the rumen and reticulum thereby affecting intake (Allen, 1996).  Digestibility is 

used to compare different forages and how they are consumed.  For instance, Keyserlingk et al., 

(1996) simulated rumen in situ techniques of alfalfa silage, hay and corn to demonstrate dry 

matter and crude protein intestinal disappearance and digestibility.  Ruminal digestion is 

different in small ruminants (Short et al., 1974) than from cattle because of gut capacity.  

Howevr, sheep and cattle comparisons are used as models to predict digestibility when fed either 

concentrate-based or forage-based diets (Chishti et al., 2019). 

Toxicity 

Effects on animals 

When forages contain toxins or highly digestible nutrients, these may cause aversion by 

ruminants (Provenza, 1996).  Anti-quality factors such as secondary plant compounds 

(glucosinolates), nitrates (Dillard et al., 2018), terpenoids, flavonoids, phenols, and alkaloids are 

components that occur in forages and potentially reduce average daily gains (Burns, 1978; 

Hemken, et al., 1984; Laca et al., 2001).  Animal behavior and adaptation studies have evaluated 
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how these anti-quality constituents have led to aversion to plants containing those substances 

(Allen and Segarra, 2001).  

Certain alkaloids are anti-quality factors that interact with environmental temperature 

(Hemken et al., 1981).  These alkaloids should be considered when choosing a forage and 

assigning the stocking rate in a determined area due to toxicity exposure.  The existence of 

Acremonium coenophialum (Morgan-Jones and Gams) in tall fescue [Lolium arundinaceum 

(Schreb.) Darbysh.] pastures affects cattle and sheep productive performance (Allen, 1993) and 

can also cause ergotism in ruminants (Thompson et al., 2001).  Klotz and Smith (2015) reviewed 

literature on ergot alkaloids about challenges in the past, present, and future.  These authors 

concluded that past and present effects of ergot alkaloids in livestock present future challenges in 

agriculture. 

Toxic plants have varied effects on physiological attributes in herbivores (Osborn et al., 

1992).  Eisemann et al., (2014) described widely how physiological responses such as respiration 

rate, heart rate (HR), surface temperature (ST), rectal temperature (RT), blood pressure (BP), 

certain serum hormones, and plasma metabolites are influenced in cattle by environmental 

temperature when offered tall fescue pastures containing high levels of ergovaline.  These high 

levels of ergovaline in tall fescue decreased prolactin concentrations, increased temperature 

(Aldrich et al., 1993a), and increased incidence of fescue foot caused by vasoconstriction in 

peripheral body tissues (Klotz et al., 2016; Yates, 1962). 

For many decades, the fungal endophytes contained in grasses have been of concern 

because of the cost-benefit relationship integrated into grazing management (Hoveland, 1993).  

In North America, tall fescue pasture is grazed probably more than any other cool-season grass 

(Kallenbach, 2015).  This good-quality, persistent, but harmful grass has a mutualistic 
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relationship with the endophyte (Aiken and Strickland 2013; Kallenbach, 2015; Latch, 1993).  

Thus, it is resistant to extreme environmental conditions which increases forage production 

(Hiatt and Hill, 1997; Johnson et al., 1985; Powell and Petroski, 1992) but it has toxic 

compounds that are harmful to ruminants. 

The tall fescue endophytic fungus produces toxins (Browning and Leite-Browning, 1997; 

Klotz, 2015) that have a tendency to prevail over time (Clay, 1993).  Young et al. (2013) 

compiled a vast literature of tall fescue produced and distributed in the United States, New 

Zealand, and Australia and the symbiotic relationships with fungi.  They conclude that as these 

grass-endophyte symbioses have been sustainable in pasture systems to date, and they also need 

to be sustainable for the new grass-endophyte associations in the future. 

Intake 

Level of toxicity in plants has an effect on intake by ruminants. For instance, in tall 

fescue pastures, the use of nonergot alkaloid-producing endophytes have resulted in an increase 

in bite rate and DM intake by cattle , in contrast to endophyte - infected tall fescue pastures 

(Parish et al., 2003).  Animals grazing E+ pastures had lower DMI resulting in lower ADG than 

animals grazing E- pastures (Parish et al., 2003).  Early-life experiences with tannins influenced 

intake later in life (Catanese et al., 2012; Villalba et al., 2012).  These authors concluded that 

lambs offered a balanced diet (beet pulp, oat grain, and a mix of milo:grape pomace, soybean 

meal, alfalfa, corn gluten meal) had greater ADG than lambs offered the same diet plus plant 

toxins with oxalic acid and quebracho tannins due to the fact that toxins decreased feed intake.  

Intake can also be affected by increased body and skin temperature (Carr and Jacobson, 1969), 

long, rough hair coats (Aiken et al., 2011) and foot rot (Prescott et al., 1994) leading to a 
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decrease in daily grazing time and forage intake when ambient temperatures increase in toxic 

fescue fields.  

Digestibility 

Tall fescue infected with the endophyte fungus (E+) contains ergovaline and products of 

lysergic acid that affect digestion in ruminants (Humphry et al., 2002; De Lorme et al., 2007).  If 

rumen normal function is altered, fiber digestion and OM intake can be reduced (Hannah et al., 

1990).  

Studies have evaluated including forages such as alfalfa (Medicago sativa) and birdsfoot 

trefoil (Lotus Corniculatus) into endophyte- infected tall fescue pastures to evaluate how this 

plant configuration may affect nitrogen fixation and plant secondary metabolites such as tannins 

and saponins.  These compounds potentially bind ergovaline produced by the fungal endophyte 

(Clemensen et al., 2016).  These authors concluded that E+ concentrations of ergovaline were 

greater in monocultures than in E+ mixtures with alfalfa.  Therefore, animals may benefit from 

supplementation with alfalfa or birdsfoot trefoil (Owens et al., 2011) because of improved intake 

and digestibility (Clemensen et al., 2016). 

Animal performance 

As mentioned previously, toxicity acquisition from tall fescue is associated with an 

endophytic fungus that limits performance when grazing toxic plants (Schmidt et al., 1982).  

Understanding the effects and associations of these alkaloids leads to understand animal 

performance and economic losses (Poore and Washburn, 2013).  Stuedeman and Hoveland 

(1998) stated that ADG increased from 30 to 100% in cattle grazing fescue with low levels of 

endophyte fungus infection compared with high levels of fungus infection.  Average daily gain 
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(ADG) and prolactin concentrations were improved when cattle were fed soybean hulls and 

implanted with steroids while grazing toxic tall fescue (Carter et al., 2010).  However, this 

increase of ADG may not alleviate fescue toxicosis per se (Aiken et al., 2008).  Reductions in 

ADG are more related to intake reduction of 0.045 kg for each 10% accretion in E+ levels 

(Schmidt and Osborn, 1993). 

Mitigating factors 

Reviews of published studies about relieving the toxicity of tall fescue by applying the 

proper management practices have been described by Bacon et al. (1986).  Dilution of tall fescue 

with other forages has been used to reduce the impacts of tall fescue toxicosis (Roberts and 

Andrae, 2004).  Other management strategies to reduce fescue toxicosis and improve the forage 

production and quality are chemical treatment with herbicides to introduce alternative forages 

(Williamson, 2015).  Aiken et al. (2012) utilized chaparral herbicide to suppress seedhead 

emergence in toxic tall fescue and evaluated animal performance.  They concluded that ADG in 

cattle increased after applying chaparral herbicide to suppress reproductive development in tall 

fescue endophyte infected pastures. 

Some studies with metoclopramide resulted in decreasing the skin temperature in cattle 

(Jones et al., 1994) and in sheep (Aldrich et al., 1993b) consuming toxic tall fescue.  Samford-

Grigsby et al. (1997) injected dopamine antagonist Ro 24-0409 into cattle to alleviate fescue 

toxicosis caused by the endophyte-infected fescue because the ergot alkaloids easily bind to 

dopamine receptors (D2) (Larson et al., 1999; Paterson et al., 1995).  

Other production strategies to relieve fescue toxicity that affects weight gain are the use 

of steroidal implants.  For instance, implants and protein supplementation to alleviate toxicosis in 
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cattle and to enhance weight gain has been studied widely (Aiken et al., 2001).  These authors 

found that protein supplementation and implants did not alleviated toxicity in fescue.  

Controlling the stocking rate and applying steroidal implants resulting in an increase in ADG if 

low stocking rates were applied but decreased ADG if the grazing intensity increases (Aiken et 

al., 2006). 

Efforts to reduce the severity of tall fescue toxicosis include new varieties of tall fescue 

that include novel or non-toxic endophytes (NE+; Gunter and Beck, 2004; Nihsen et al., 2004; 

Aiken and Strickland, 2013).  These NE+ associations alleviate fescue toxicosis and improve 

body weight (Aiken and Strickland, 2013).  Comparisons of novel endophyte (NE+) and 

endophyte infected (E+) tall fescue cultivars resulted in enhanced growth performance in cattle 

(Hopkins and Alison, 2006; Parish et al., 2013).  Beck et al. (2008) compared cattle performance 

from endophyte infected (E+) Kentucky-31 with that from Jesup AR542 infected with a non-

toxic, novel endophyte (NE).  Results showed greater performance for cattle grazing NE than 

E+.  Caldwell et al. (2011) evaluated weaning and post-weaning performance of calves grazing 

infected tall fescue pastures, concluding that delaying weaning may benefit weight and immune 

function but careful attention is still needed later in the feedlot period.  

Behavior 

When animals respond to their environment is called behavior; how they respond to their 

natural habitat is called ethology (Arave and Albright, 1981).  Behavioral strategies of grazers 

such as avoidance or tolerance help animals avoid plant secondary metabolites that affect their 

performance (Iason and Villalba, 2006).  These foraging decisions influence grazing episodes 

that affect when and where animals graze and how they distribute their grazing day (Gregorini et 
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al., 2006).  These foraging decisions influence ingestive behavior, which is affected by 

paradigms such as regulation, learning, reward and neural control (Kissileff, 1991).   

Behavior has been studied in ruminants fed different grasses such as tall fescue, alfalfa 

and switchgrass.  For instance, in tall fescue, forage mass and canopy characteristics were 

studied for their effects on steer’s ingestive behavior and performance revealing that selective 

consumption was not altered by forage mass and digestive behavior and that pastures with E+ 

need to be adequately managed to succeed in animal production responses (Burns et al., 2011; 

Burns and Fisher, 2013).  

Grazing behavior in steers grazing endophyte-infected tall fescue (K-31) and offered two 

types of supplements to evaluate ADG and to mitigate fescue toxicosis resulted in no differences 

in ADG between control and supplement as self-fed liquid (Shockey et al., 2006).  Galli et al. 

(2011) studied ingestive behavior by monitoring chewing and biting sounds to determine dry 

matter intake.  The chewing-biting relationship helps to measure grazing behavior and herbage 

intake (Chelotti et al., 2016).  Bite rate is an important foraging process, because animals need to 

acquire their required nutrients daily (Carvalho et al., 2015).   

The grazing animal and the plant characteristics are related by a term called “plant-

animal interface” that encompasses the interaction between plant morphological, physiological 

and chemical features with animal grazing activities (Forbes and Rouquette, 2011).  This plant-

animal interface influences behavioral patterns because the plant structure affects grazing.  

Sward structure such as leaf surface height influences bite size (Forbes, 1988) which is based on 

jaw movements and forage prehension (Ungar and Rutter, 2006).   
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Diet selectivity 

Diet selection is based on a theoretical term called “optimal foraging theory” and relies 

on the assumption that animals select naturally to be fed efficiently.  In other words, they prefer 

an “optimal diet” (Hanley, 1982) coming from a “nutritional wisdom” (Cassini, 1994).  The 

foraging theory states that the animal should graze better if grazing forages are abundant and 

high in quality (Murden and Risenhoover, 1993).  Diet selection in ruminants is accomplished by 

grazing patterns that these animals develop (Lu, 1998; Gregorini et al., 2006).  Ruminants select 

a wide variety of forages that may or may not be of high quality (Provenza and Balph, 1987).  

Animals need to adapt behaviorally to have a better diet quality through enhanced diet selection.  

Gregorini et al. (2011) studied short-term herbage depletion on diet quality by steers and they 

concluded that the steers adapted behaviorally to support diet quality by increasing the number of 

steps per minute and reduced herbage intake per eating step. 

Impacts of palatability 

Palatability is a “complex phenomenon” that involves the animal-plant-environment 

relationship in a feed-offered and plant-preference level (Marten, 1978).  The sense of taste 

influences behavior when ruminants have different flavors in the feed (Villalba et al., 2011).  

Alkaloids present in some plants may interfere with palatability because of a feedback called 

post-ingestive experiences (Provenza et al., 1992).  Taste-feedback interactions are involved with 

food preference and post-ingestive feedback because they have an effect on palatability that may 

cause aversion (Provenza, 1996).   
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Forage mass/sward height 

Structure and herbage shortage influence bite rate, dietary choices (Baumont et al., 2000) 

and animal performance (Carvalho et al., 2015; Fonseca et al., 2013; Mezzalira et al., 2014).  

Swards with greater leaf availability provide for an optimum and efficient herbage intake with 

less time grazing in a determined feeding station in cattle (Gregorini et al., 2009) and in sheep 

(Roguet et al., 1998a).  Sward characteristics influence ingestive behaviors because low-quality 

diets make it difficult to select higher quality portions of the forage (Demment and Greenwood, 

1988).  Ruminants make foraging decisions on where and how to graze based on sward height 

and spatial patterns (Chapman et al., 2007).  Furthermore, patterns of distribution of grazing 

ruminants are explained by the spatial distribution of forage quality and forage mass (Fryxell, 

1991; Senft et al., 1985). 

Motion 

Motion in ruminants while grazing either heterogeneous or homogeneous swards is part 

of their foraging behavior on a feeding station scale because they have to adjust their time spent 

grazing, number of bites, and time spent moving because the forage is shorten or not abundant to 

maximize the energy intake (Roguet et al., 1998b).  Activity and behavioral patterns have been 

studied using storage telemetry in small ruminants (Scheibe et al., 1998).  The use of ear tags has 

also been used to track moving behavior (Trenel et al., 2009).  Furthermore, the use of global 

positioning systems (GPS) have been used widely to track behavioral grazing activities such as 

location and movement (Richeson et al., 2018) and distance traveled (Schlecht et al., 2006) in 

ruminants.  These authors concluded that cattle traveled 25km, goats 20km and sheep 21km daily 

on rangelands.   
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Animal performance 

Forage effects 

Livestock can take advantage of natural resources when grazing different pastures within 

the grazing system.  Ruminants develop strategies to graze forages that enhance their 

performance.  Affordable forage production and forage mass are also factors that influence 

animal production (Aiken, 2016).  However, grazing management strategies such as the 

inclusion of an adequate stocking rate and rotational grazing systems (Bailey and Brown, 2011) 

may or may not enhance forage availability and improve economics (Beck et al., 2016).  If 

forage consumption is altered due to low available forage mass, then animal maintenance will 

decrease due to lower energy input (Burns, 1978).   

Forages have two fractions from a nutritional standpoint.  One fraction contains cellular 

components such as proteins, carbohydrates and lipids.  Another fraction is the plant cell wall 

that contains hemicellulose, cellulose and lignin (Van Soest, 1967) which provide the main 

energy source for ruminants (Wilson, 1994).  This second fraction also restricts digestibility and 

intake influencing energy input to ruminants (Jung and Allen, 1995; Leng, 1990).  

Additional impacts 

Supplementation 

Strategic supplementation is needed mostly in ruminants that are grazing grasses.  

Strategic supplementation is an effective program to ensure food intake and consumption of 

nutrients (Bowman and Sowell, 1997; Bowman et al., 1999).  However, careful attention needs 

to be considered in terms of ADG because sometimes supplementation does not reach the target 

(Moore et al., 1999).  Moore et al. (1999) reviewed a vast number of studies on the effect of 
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supplementation on animal performance and concluded that even though supplementation with 

energy and protein were intended to augment growth rates, the results depended on the amount 

and type of supplement. 

Another supplementation management was researched by Bodine et al. (2001) who 

offered protein supplement to cattle grazing low quality hay to improve digestibility resulting in 

an increase in ADG (Moore et al., 1999).  Some supplementation with concentrates may increase 

growth rate in sheep when grazing forages with low herbage allowance (Prache et al., 1990).  

However, sheep fed diets with different protein supplements, soybean meal and meat meal, had 

no effect on animal performance (Manso et al., 1998).  Supplementation can also modify the 

animal grazing behavior if it is a low protein source (Krysl and Hess, 1993).  Other studies have 

reported improved animal performance by supplementing olive oil (Gomez - Cortez et al., 2008), 

sunflower oil (Gomez - Cortez et al., 2011), safflower seeds (Bottger et al., 2002), crude glycerin 

(Mach et al., 2009), and corn grain (Wright et al., 2015).  These these supplements may improve 

ADG substantially because of the increased volatile fatty acids concentrations in the rumen.  

Implants 

Implants are used to improve animal performance.  The use of growth promoting 

implants had no influence in BW, ADG and immunity in stressed cattle in one study (Richeson 

et al., 2015), but they may reduce costs (Barham et al., 2003; Reinhart, 2007) and increase feed 

efficiency (Duckett and Pratt. 2014).  In ruminants, implanting with anabolic implants resulted in 

accretion of 18% in ADG, 6% in feed intake, 8% in feed efficiency, and 5% in carcass weight 

(Duckett and Pratt, 2014).  In addition, implants may not influence carcass characteristics 

(Torrentera et al., 2017), or meat tenderness (Barham et al., 2003; Scaglia et al., 2004).  

Hutcheson et al. (1993) reviewed several studies on the effects of implants and re-implants 
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containing androgen and estrogen on cattle performance and carcass characteristics, concluding 

that the implant strategies had an effect on ADG response.  In addition, recently, Lean et al. 

(2018) compiled a meta-analysis of 31 experiments on how hormonal growth promotants 

influenced beef quality.  They found out that multiple implants improve tenderness compared to 

a single implant.  

Feed additives 

The use of feed additives is intended to enhance rumen fermentation efficiency and 

reduce methane production.  Some feed additives are plant extracts, dietary lipids, plant 

saponins, garlic oil, nitrates, microalgae, prebiotics, alkalizers and buffers.  Combinations of feed 

additives such as lauric acid, myristic acid, linseed oil, and calcium fumarate may decrease 

protozoa and increase volatile fatty acids (VFA; Zijderveld et al., 2011).  Feed enzyme additives 

improve digestibility of fiber components and feed utilization in ruminants (Beauchemin et al., 

2003). 

Summary 

Forages comprise properties and physical characteristics that affect animal performance.  

Certain forages have chemical compounds that on one side prevent them from over utilization 

but on other side may cause toxicity to herbivores, thereby affecting intake rate and digestibility.  

Management strategies need to be developed to cope with the toxicity in ruminants fed forages 

that compromises their performance and physiological status as well as their behavior.  Changes 

in behavior will be noticed because the animals need to adjust their grazing or feeding behavior 

in such a way to compensate for intake rate and energy input to the animal’s body in order to 

acquire those daily nutrients necessary for optimal animal performance.  This behavior is 
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influenced by diet selection, palatability, and forage mass and animal motion.  Behavior of 

animals can be evaluated to account for diet selectivity and intake.  Furthermore, diet selectivity 

and intake may be influenced by forage quality, type of forage preserved and fertilization type.  

Strategies to improve animal performance are the use of feed additives, the use of growth 

implants and the development of a strategic supplementation that enhances palatability and diet 

selectivity.  For this reason, the objective of this research is to evaluate different common 

northwest Arkansas grasses fed to ruminants to evaluate forage quality, toxicity, grazing 

behavior, digestibility and intake depending on the type of forage offered, on the type of forage 

preserved and on the type of forage fertilized. 
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CHAPTER III 

PERFORMANCE-ENHANCING TECHNOLOGIES FOR STEERS GRAZING TALL 

FESCUE PASTURES WITH VARYING LEVELS OF TOXICITY 

Abstract 

The objective of this study was to evaluate a combination of best management practices 

strategy for steer calves grazing tall fescue pastures with a range of toxicity.  The experiment 

was conducted over 2 grazing seasons (fall 2015 for 91 d and spring 2016 for 84 d). Steers (n = 

80 within season, body weight [BW] = 197.0 ± 15.43 kg [fall] and 116.9 ± 4.88 [spring]) were 

stocked at 2.45 and 4.1 calves/ha in fall and spring, respectively, to 16 pastures with varying 

levels of toxicity based on interim ergovaline (EV) concentration within season.  Pastures were 

assigned to either mineral (MIN, n = 8) only management (MGMT) or a cumulative MGMT 

(CM, n = 8).  The CM treatment included an implant containing 40-mg trenbolone acetate, 8-mg 

estradiol, and 29-mg tylosin tartrate (Component TE-G with Tylan, Elanco Animal Health, 

Greenfield, IN), 150 mg/calf daily monensin (Elanco Animal Health), and 1% BW of a 50:50 

corn gluten feed:soybean hull supplement (as-is basis).  Data were analyzed within season using 

pasture as the experimental unit. For fall and spring, the EV concentration was 1,476 ± 883.2 and 

1,173 ± 620.6 ppb, respectively, and ranged from 90 to 2,180 ppb.  During the fall, forage 

allowance did not differ (P = 0.76) between CM and MIN. In the spring, however, forage 

allowance only differed for the month of June (P ≤ 0.05, 2.55 vs. 3.22 ± 0.177 kg DM/kg BW, 

for MIN and CM, respectively).  In the fall, average daily gain (ADG) responded to the simple 

effects of EV (P = 0.01) and MGMT (P < 0.001), and ADG for MIN steers was explained by 

ADG = 0.41 − 0.000064 × EV, whereas ADG for CM was explained by ADG = 1.05 − 0.000064 

× EV. In the spring, there was an EV × MGMT interaction (P = 0.03) for ADG. For MIN, ADG 
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= 0.80 − 0.000278 × EV, whereas for CM, ADG = 0.94 + 0.000001835 × EV.  In spring, the 

ADG response to CM relative to MIN increased as EV increased.  The CM strategy resulted in 

lower blood urea nitrogen than MIN in fall and spring (P < 0.01), but prolactin and serum Cu 

were not affected by MGMT in either season.  In conclusion, performance was improved within 

the fescue belt by implementing feeding strategies using implants, ionophores, and 

supplementation, but a detailed economic analysis is warranted.  Further research is needed to 

evaluate CM programs under varied stocking rates and in combination with dilution of 

endophyte-infected fescue pastures with nontoxic grasses or legumes. 

Introduction  

Fescue toxicosis is a term used to qualify the clinical disease associated with reduced dry 

matter (DM) intake, reduced average daily gain (ADG), and elevated body temperature when 

cattle consume tall fescue [Lolium arundinaceum (Schreb.) Darbysh] forage containing 

mycotoxins produced by the Epichloë coenophiala [(Morgan-Jones & W. Gams) C.W. Bacon & 

Schardl] fungus (Aiken and Strickland, 2013).  Several approaches to alleviate fescue toxicosis 

have been studied including those made at the plant level by incorporating complementary 

legumes or fescue replacement and those made at the animal level including treating cattle with 

various pharmacological compounds or pro- viding supplemental dietary nutrients (Roberts and 

Andrae, 2010; Gadberry et al., 2015).  A meta-analysis of research results (Gadberry et al., 2015) 

indicated that cattle grazing toxic tall fescue pastures respond to growth promoting implants, 

medicated feed additives, and feed supplementation. Gadberry et al. (2015) also demonstrated 

supplemental feeding rate and form affected ADG with highly digestible, fiber-based 

supplements providing greater weight gain than starch based supplements.  Most studies have 

focused on singular intervention and little has been published on cumulative strategies with 
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treatments that have independently demonstrated effectiveness.  Roberts and Andre (2010) 

suggested that additive benefits from applying multiple management strategies simultaneously 

may allow cattle grazing toxic fescue pastures to accomplish the same level of productivity as 

cattle on nontoxic pastures, although there would also be benefits to these strategies in the 

nontoxic or minimally toxic environments as well.  It is hypothesized that weight gain would be 

greater for cattle grazing low-toxicity pastures and weight gain response to growth promotion 

management would be improved to a greater extent in cattle grazing highly toxic tall fescue.  

Therefore, the objective of this study was to evaluate the cumulative response of providing a 

growth promoting implant, ionophore, and supplementation with a digestible fiber–based feed 

provided to growing cattle grazing tall fescue pastures with a range of toxicity based on 

ergovaline (EV) concentration. 

Materials and methods 

All animal care and management procedures were approved by University of Arkansas 

Institutional Animal Care and Use Committee (protocol 16023).  

Research Site and Pastures  

The study was conducted at the University of Arkansas, Division of Agriculture 

Livestock and Forestry Branch Station (Batesville, AR; 35°50ʹ N, 91°48ʹ W).  Pastures consisted 

of a gravelly silt loam soil type with 8% to 20% slope at an elevation ranging from 65 to 99 m. 

The pastures (n = 16, 3.24 ha/ pasture) were predominantly tall fescue [L. arundinaceum 

(Schreb.) Darbysh]: 8 pastures were endemic endophyte-infected [E. coenophiala (Morgan-Jones 

& W. Gams) C.W. Bacon & Schardl] Kentucky-31 and 8 pastures had been converted to a 

nontoxic endophyte-infected variety (cv Estancia, Mountain View Seeds, Salem, OR) 1 yr prior 
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to the fall study.  Pastures were fertilized with 60 kg/ha N prior to fall grazing and again in the 

spring, prior to grazing.  

Within each of the 8 endemic and 8 converted pastures, 4 pastures were assigned to either 

mineral (MIN) only management (MGMT) or a cumulative MGMT (CM) resulting in 8 MIN 

pasture replicates and 8 CM pasture replicates.  The original experimental design was a 2 × 2 

factorial of MGMT by pasture type; however, EV test (described later) results on day 42 of the 

first study (fall, 2015) revealed that all pastures were contaminated with endemic toxic 

endophyte-infected tall fescue.  The minimum and maximum EV concentrations were 427 and 

3,060 ppb, respectively. On day 42 of a second study (spring, 2016), the minimum and maximum 

EV concentrations were <100 and 2,180 ppb, respectively. As a result, the idea of analyzing the 

study as a factorial design was abandoned.  EV was therefore compared between MGMT to 

determine whether it could be incorporated into the statistical model as a predictor variable, and 

the following statistics are presented to confirm statistical analysis described later.  Assessment 

of EV between MIN and CM pastures indicated that there was not a statistically significant 

difference between the 2 MGMT treatments in the fall study (P = 0.44), despite the MIN pastures 

(mean ± sem; 1,655 ± 316 ppb EV) having a numerically greater EV concentration than the CM 

pastures (1,296 ± 316 ppb EV).  Assessment of EV on day 42 in a second study with identical 

pasture assignment to the same MGMT treatments (spring, 2016) revealed that EV did not differ 

(P = 0.76) between the 2 MGMT treatments with MIN averaging 1,221 ± 226 ppb EV and CM 

averaging 1,124 ± 226 ppb EV.  Furthermore, fall and spring pastures were compared for EV 

rank using the Kruskal–Wallis rank sum test which indicated that pasture rank for EV did not 

differ (P = 0.39), meaning pastures that were more toxic in the fall study were also the more 

toxic pastures in the spring study.  Given the range in EV among pastures but non-significant 
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difference in EV between the MGMT treatments, an analysis using mixed continuous and 

discrete fixed effects was used and is described in the section titled Statistical Analysis.  

Precipitation and temperature were recorded by the National Oceanic and Atmospheric 

Administration’s (NOAA) U.S. Climate Reference Network weather stations located at the 

Livestock and Forestry Research Station near the study site.  The mean monthly temperatures 

and precipitation from fall through spring study months as well as the deviations from the 

historical reference period are reported in Table 1. 

Animals and treatment allocation  

Crossbred steers were used for this experiment in 2 separate grazing seasons.  In the fall 

of 2015, spring born steers (n = 80, 197.0 ± 15.43 kg) were stocked at 2.5 steers/ha.  In the spring 

of 2016, fall born steers (n = 80, 116.9 ± 4.88 kg) were stocked to pastures at 4.1 steers/ha.  

Steers were assigned randomly at 5 steers/pasture to each of the 16 pastures.  Stocking rates were 

established by modifying the size of each of the original pastures using single-strand polywire 

electrified fencing (Gallagher USA, Riverside, MO).  Pasture layout was created using QGIS 

software (http://www.qgis.org/en/site/, last accessed August 22, 2017) and fence perimeter 

waypoints transferred to a GPS (GPSMAP 64s, Garmin, Olathe, KS). 

Pastures were allocated, as described previously, to either the MIN treatment where steers 

were allowed access to only pasture and free choice nonmedicated MIN (Vigortone 3V6 S; 

Provimi North America, Inc, Brookville, OH, Table 2); or were allocated the CM strategy.  The 

CM strategy included the following: application of a growth promoting implant, on day 0, 

containing 40-mg trenbolone acetate, 8-mg estradiol, and 29-mg Tylosin tartrate (Component 

TE-G, Elanco Animal Health, Greenfield, IN); 150-mg monensin/d (Rumensin, Elanco Animal 

Health); 115 g/d of the MIN premix (Vigortone 3V6 SR; Provimi North America Inc., Table 2); 
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and 1% BW (as-fed basis) 50:50 corn gluten feed:soybean hull pellet supplement (Table 3).  

Prior to placement on pastures, steers were treated for internal parasites (Cydectin Pour-On; 

Boehringer Ingelheim Vetmedica, Inc, Duluth, GA for the fall and Dectomax injectable solution 

Zoetis, Inc, Kalamazoo, MI for the spring).  Calves were weighed initially and at 28-d intervals 

following a 16-h removal from pasture and water.  While grazing, all steers were allowed ad 

libitum access to water sourced from a well. 

Feeding strategies  

Cattle in MIN treatment were allowed free choice access to the MIN provided in a 

covered ground feeder (Sioux Steel Company, Lennox, SD). Calves were given a weekly 

allotment of MIN (114 g/calf, daily equivalent).  MIN was weighed weekly, and quantity 

replenished was based on any uneaten portion. For CM, the monensin and MIN was incorporated 

into the supplemental feed at each morning feeding.  For CM, feeding was pro-rated for a 

Monday through Friday delivery (7-d feed quantity fed over a 5-d period) and it was adjusted 

every 28 d based on shrunk BW.  Supplement feed samples were collected weekly and 

composited for wet chemistry nutrient composition determination (Dairy One, Inc., Ithaca, NY). 

Physiological measurements  

Physiological measurements were taken on initial (day 0), interim (day 42), and final 

dates (day 91 or 84) of the fall and spring study following 16-h removal from pasture, without 

access to water.  Rectal temperature was measured as a proxy for core body temperature using a 

GLA M700 Digital Thermometer (Agricultural Electronics, San Luis Obispo, CA).  Skin 

temperature was measured near the tailhead with an infrared digital thermometer with scan 

averaging capabilities (IR1000, Klein Tools, Lincolnshire, IL).  The tail skin temperature was 

taken, as a proxy for vasoconstriction effects on temperature exchange, approximately 10 to 12 
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cm below the drop of the tail-head region proximate the anus.  Prior to scanning, a small area 

was clipped using an Oster (Jarden Consumer Solutions, Boca Raton, Florida) Cryogen-X size 

10 blade leaving approximately 1.6-mm hair length.  The mean temperature captured for each 

animal scan was recorded for analysis.  Hair shedding score was evaluated during the spring 

study.  Shedding was visually scored on a 1 to 5 scale using the shedding score system reported 

by Gray et al. (2011). 

Blood samples were collected into 10-mL BD (Becton, Dickinson and Company, 

Franklin Lakes, NJ) vacutainer red top and 7-mL BD vacutainer blue top trace element tubes 

with clot activator by jugular venipuncture and centrifuged at 1,200 × g for 20 min in a Heraeus 

Megafuge 16R (Thermo Fisher Scientific, Inc., Waltham, MA) followed by freezing until 

analysis. Blood urea nitrogen (BUN) was analyzed within the University of Arkansas, Animal 

Science Nutrition Laboratory using the Urea Nitrogen Colorimetric detection kit (TECO 

diagnostics, Anaheim, CA), following the colorimetric method instructions.  The interassay 

coefficient of variation (CV) was 13.69 mg/dL and intraassay was 3.11 mg/dL (reference values: 

7 to 23 mg/ dL). For Cu analysis, blood samples were diluted 1:9 (vol/vol) with 1 N nitric acid 

and water to separate proteins from serum (protein precipitation), vortexed vigorously followed 

by centrifugation at 1,200 × g for 20 min at 20 °C (Beckman CS-6R, Palo Alto, CA).  Copper 

(Cu) determination was completed at the University of Arkansas, Division of Agriculture, 

Altheimer Diagnostic Laboratory using a Spectro (Spectro Analytical Instruments, Kleve, 

Germany) Arcos inductively coupled plasma spectrophotometer with a detection limit of 0.03 

mg/liter.  Nonesterified fatty acid (NEFA) concentrations were analyzed at the University of 

Tennessee using commercially available kits (Wako Chemicals USA, Inc., Richmond, VA) 

according to the procedures described by Stratman et al. (2016). The NEFA intraassay and 
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interassay CV was 6.52% and 8.64%, respectively.  Serum prolactin was also analyzed at the 

University of Tennessee according to the procedures outlined by Bernard et al. (1993).  The 

prolactin intraassay and interassay CV was 6.65% and 8.28%, respectively.  Due to centrifuge 

malfunction, fall 2015 initial samples for Cu and BUN were lost. 

Pasture sampling and analysis 

At the time of animal data collection, pastures were sampled for forage mass and forage 

nutritive quality.  Forage mass in each pasture was determined using a calibrated rising-plate 

(RP) meter (Michell and Large, 1983).  Twenty height measurements were recorded within 

pasture on each sampling date; an additional set of samples were measured for calibration by 

clipping the forage within a 50 × 50 cm, fall, or 43.2 × 43.2 cm, spring, quadrant leaving a 

residual plant height of 2.5 cm. RP samples were dried to a constant weight at 50 °C in a forced-

air oven.  Forage mass predictions were developed separately for fall and spring, resulting in the 

following formulas: fall forage mass, kg/ha = 39.201 × RP and spring forage mass, kg/ ha = 

189.379 × RP.  The linear regression solution for predicting forage mass from RP height had a 

R2 ≥ 0.88 (P ≤ 0.01). 

Additional forage samples were collected on each sampling date by hand plucking to 

mimic forage consumed.  Prior to sampling, areas were visually scanned for grazing patches and 

bite depths of plants apparently grazed. Samples were dried to a constant weight at 50 °C prior to 

storage for nutrient determination.  Prior to nutrient analysis, the samples were ground to pass a 

2-mm screen in a Wiley Laboratory Mill (Model 4, Thomas Scientific, Swedesboro, NJ) at the 

Southwest Research and Extension Center, Hope, AR. Plant composition of crude protein (CP), 

acid detergent fiber (ADF), and neutral detergent fiber (NDF) was determined by near-infrared 

reflectance spectroscopy (Feed & Forage Analyzer model 6500, FOSS North America, Eden 
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Prarie, MN).  The CP calibration equation had a standard error of calibration (SEC) of 0.92, a 

standard error of cross validation (SECV) of 0.93, and R2 of 0.96.  The NDF calibration equation 

had a SEC of 2.63, a SECV of 2.73, and an R2 of 0.95.  The ADF calibration equation had a 

SEC of 1.66, a SECV of 1.70, and an R2 of 0.93.  

Plant stand counts were conducted at the interim point of each study.  Stand count 

determination was accomplished by traversing a zig-zag pattern across each pasture in a utility 

vehicle while dragging a rod with a metal pointed tip.  At random stops, either the plant species 

in contact with the metal point or a record of bare ground was recorded.  The objective was to 

capture a minimum of 50 and maximum of 100 random points per pasture.  

Fescue tiller and leaf samples were collected on 12 November 2015 and 6 May 2016 for 

EV determination.  Each pasture was sampled at 20 sites, traveling in a zig-zag pattern with a 

utility vehicle.  At each stop, plants were cut by knife at the base of the crown and material was 

placed in a plastic sealable bag.  Sample bags were kept on ice throughout the sampling process 

and then frozen.  Frozen samples were shipped overnight in an ice chest with dry ice to the 

University of Kentucky Veterinary Diagnostic Laboratory (Lexington, KY) for EV plus 

ergovalinine concentration according to the procedures of Lea et al. (2014) modified for ultra-

high performance liquid chromatography (UHPLC) with fluorescence detection.  Briefly, fresh 

forage samples were flash frozen with liquid nitrogen (Scott Gross, Lexington, KY) and milled 

to a fine powder (Stein M-2 Mill, Steinlite Corp., Atchison, Kansas). Duplicate 1.25-g 

subsamples (0.25 g for freeze-dried samples) were extracted for 1 h with 5-mL extraction 

solution (50% aqueous 2-propanol/1% lactic acid containing 0.1- μM ergotamine) on a rotating 

mixer (Multi-Mixer & Rotator, United Products & Instruments, Inc., Dayton, NJ).  The 

extraction solution supernatant was then syringe-filtered (PVDF 0.22 μm, Restek, Bellefonte, 
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PA) into autosampler vials until UHPLC fluorescence analysis.  A separate subsample was dried 

at 95 ± 5 °C overnight to determine moisture content (typically 75% to 80% for fresh forages and 

4% to 8% for freeze-dried material).  

The UHPLC system (Dionex Ultimate 3000 UHPLC, Thermo Fisher Scientific, 

Waltham, MA) utilized a Zorbax Eclipse Plus C18 RRHD analytical column (2.1 × 50 mm 1.8 

μm, Agilent Technologies, Santa Clara, CA) with the fluorescence detector set to maximum 

sensitivity at 310 nm (excitation) and 410 n (emission).  Mobile phases consisted of A (1:3) and 

B (3:1) mixtures of acetonitrile: 0.1 M aqueous ammonium acetate.  Sample extracts and 

standard solutions (2 μL) were injected into the initial gradient conditions of 95% mobile phase 

A/5% mobile phase B with a 0.600 mL/ min flow rate.  Immediately following injection, the 

mobile phase B was increased at a linear rate to 20% over the next 3.5 min, then further 

increased to 50% over the next 2.6 min, and finally increased to 90% over the next 2.7 min.  The 

gradient profil was then held at 90% mobile phase B for 1 min.  At 10.0 min after injection, the 

initial gradient conditions were resumed (11.0 min total run time).  

EV calibrant solutions were prepared in methanol, ranging from 0.02 to 0.50 μM, in 

addition to an ergotamine internal standard concentration of 0.1 μM. Total EV concentration in 

each forage sample was interpolated from a calibration curve produced by plotting the peak area 

ratio of total EV to total ergotamine vs. total EV concentration.  Final results were corrected for 

moisture content and reported in parts per billion (equivalent to ng/g) on a DM basis.  Results 

were reported to a minimum resolution of 100 ppb.  Assay coefficients for sample variation were 

not reported with the EV results. 
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Statistical analysis 

Eight of the 16 pastures were anticipated to be low-toxicity or nontoxic; however, animal 

performance and EV testing revealed contamination with Kentucky 31 tall fescue among the 

pastures that had been renovated with the nontoxic fescue.  Given the amount of variation among 

EV pasture concentration, it was decided to model study responses using an analysis of 

covariance approach (Littell et al., 2006).  This approach combined discrete and continuous fixed 

effects for model intercept and slope parameter estimation, respectively.  Responses to MGMT, 

EV, and MGMT × EV were modeled using the MIXED procedure of SAS (SAS Ins., Inc., Cary, 

NC).  The model statement solution option was used to output fixed-effect intercept and slope 

parameter estimates.  Plant stand counts were fitted to the same model using the GLIMMIX 

procedure for a binomial response distribution.  In addition, hair score was also modeled using 

the GLIMMIX procedure fitted to a logit model for ordered response data and included an over-

dispersion parameter.  Pasture was the experimental unit for all responses.  Pasture EV was 

modeled as a continuous covariate and model solutions were used to evaluate the EV slope effect 

on responses and whether the slope differed for MIN vs. CM (MGMT × EV).  When appropriate, 

the model also included a repeated measures effect for month (pasture measurements) or period 

(temperature and blood chemistry measurements).  Repeated measures were modeled with an 

autoregressive correlation structure and the denominator degrees of freedom estimation method 

was set to Kenward–Rogers.  The initial, full model included all 2-way and 3-way interactions. 

Nonsignificant interactions were removed from the model.  When an EV by period effect was 

detected for a response variable, simple correlations were used to describe relationships between 

the response variable and EV for each period.  For table presentation, when at least one of the 2-
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way interactions was significant for a response type, nonsignificant 2-way interaction P-values 

were also shown for table layout consistency.  

Results and Discussion 

Environmental conditions and forage characteristics 

During the first half of the fall study, harsh growing conditions were encountered with 

above-average temperatures and below-average rainfall (Table 1).  However, growing conditions 

improved during the second half of the study as rainfall amounts increased and temperatures 

remained well above normal. Fall 2015 EV levels were in a range between 427 and 3,060 ppb, 

averaging 1,475 ± 883.1.  Research with EV as low as 260 and 520 ppb during heat stress was 

sufficient to suppress prolactin in lambs (Gadberry et al., 2003).  Belesky et al. (1988) reported 

EV represented more than 80% of ergopeptines measured in tall fescue.  Parish et al. (2003) 

measured 836 and 1,208 ppb total alkaloids at 2 study locations during fall in Georgia.  At these 

levels of total alkaloids, reductions in prolactin and weight gain occurred by comparison to 

fescues containing endophytes that produced minimal toxin loads (≤28 ppb total alkaloids).  In 

general, it appears the minimal fall EV in our study was at a level that would likely cause 

physiological and weight change.  

Temperatures during the spring study, similar to the fall study, were above normal.  

There was a surplus of rain in March and May but a deficit in April and June compared with the 

normal reported at this location (Table 1).  During the spring, EV levels ranged from <100 (90 

ppb was used as a proxy for <100 ppb for the statistical analysis) to 2,180 and averaged 1,172 ± 

620.6 ppb.  As noted earlier, 100 ppb was the EV assay detection limit and EV was reported as 

<100 ppb.  Given the previous fall level of EV within these same fields, we would anticipate EV 

to be closer to 100 than 0.  Belesky et al. (1988) reported that ergopeptine alkaloid 
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concentrations were greater in tall fescue with a high level of infection, and samples taken over a 

228-d growing season showed greatest levels of ergopeptine alkaloids in the fall, similar to the 

EV difference in our study between November 2015 and May 2016.  In addition to observing a 

lower EV in spring compared with the previous fall, the variation was also less among the spring 

samples.  

The fall plant counts revealed 70.5 ± 2.32% tall fescue for MIN and 68.9 ± 2.43% tall 

fescue for CM which did not differ with MGMT (P = 0.6) or EV × MGMT (P = 0.9), but overall 

percent fescue increased as EV increased (P < 0.01).  In the spring, the percentage fescue as 

influenced by level of EV tended to differ among pastures assigned to the MIN treatment 

compared with the CM treatment (EV × MGMT, P = 0.06).  It is however unlikely that this 

interaction was attributed to MGMT creating a short-term effect on plant population diversity at 

different levels of pasture toxicity, especially after considering available forage. 

Reducing the model to simple effects indicated no difference (P = 0.96) in fescue 

percentage between MIN (76.2 ± 1.73%) and CM (76.0 ± 1.70%).  Similar to fall, EV levels 

were positively associated with fescue percentage (P = 0.01).  

Forage mass (Table 4) during the fall and winter (October through January) was not 

affected (P ≥ 0.65) by MGMT, EV, or an MGMT × EV interaction.  Forage mass was greatest at 

the start of the fall grazing season and declined each month until the end of the grazing season (P 

< 0.001).  Similar to forage mass, forage allowance (kg forage DM/kg steer BW) did not differ 

(P ≥ 0.13) due to MGMT, EV, or an MGMT × EV interaction.  Forage allowance was at its 

greatest level in October and declined as the season progressed, due to both declining forage 

mass and increasing steer BW.  Forage allowance during the fall and winter was above the point 

identified by Beck et al. (2013) and NRC (2016) that would be limiting to performance of steers 
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grazing pasture in the fall at full DM intake.  It could be assumed that performance of steers 

grazing cool-season perennial pastures in the fall and winter would be affected by a similar 

break-point in forage allowance; thus, forage allowance would not be considered limiting in the 

present experiment.  It should also be noted that exceptionally high-forage allowance which 

should provide ample opportunity for selective grazing did not prevent the effects of fescue 

toxicosis. 

During the spring grazing season (March through June), forage mass (Table 4) was not 

affected by MGMT, EV, or an MGMT × EV interaction (P ≥ 0.18).  Forage mass was lowest at 

the beginning of the spring grazing season and increased as the season progressed (P < 0.01).  

Forage allowance, however, was affected (P ≤ 0.04) by month, EV, and an MGMT × month 

interaction.  As forage growth increased during the spring, forage allowance also increased, from 

1.7 kg/ kg steer BW in March to over 3 kg/kg steer BW in April, May, and June.  Forage 

allowance also increased (P = 0.04) 0.37 ± 0.165 kg/kg BW for every 1,000 ppb increase in EV.   

The increase in forage allowance with increasing toxicity is likely related to a combination of 

reduced forage DM intake (Beck et al., 2009; Aiken and Strickland, 2013) and reduced steer 

weight gain with increasing EV concentration.  The MGMT × month interaction stems from lack 

of differences (P ≥ 0.10) in forage allowance due to MGMT treatment in March, April, and May; 

yet, CM had lower (P = 0.03) forage allowance than MIN in June.  The reduction in forage 

allowance for CM in June is related to increased steer weight and numerical reduction in forage 

mass at that time.  Across all months and treatments, the forage allowance provided for steers in 

this grazing experiment were in excess of the 1 kg/kg steer BW indicated to maximize steer 

performance for spring growth cool-season annual pastures by Rouquette et al. (2012).  Forage 

nutritive quality constituents were not affected by any of the 2- or 3-way interactions evaluated 
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(P ≥ 0.07), but was affected by month within the grazing season; thus, the forage chemical 

analysis is presented by MGMT treatment and month in Table 5.  During the fall and winter 

grazing season, forage CP increased (P ≤ 0.05) as the season progressed until January.  The 

concentration of ADF and NDF generally decreased (P ≤ 0.05) with the progressing grazing 

season, leading to an increasing estimate of total digestible nutrient (TDN) content as the season 

progressed with better moisture for growth during late season.  In January, CP of MIN pastures 

was less (P = 0.04) than CP of CM pastures and NDF of MIN was greater (P = 0.05) than CM.  

Since the phenological growth stage at this time of year would not be different, this indicates that 

leaf age during January was likely less for CM pastures than MIN, leading to reduced NDF and 

increased CP.  During the spring grazing season, CP and TDN decreased (P ≤ 0.05), whereas 

ADF and NDF increased (P ≤ 0.05) as the grazing season progressed, which is related to 

advancing forage maturity associated with stem elongation and seed head development which 

normally occurs at this time of year (Beck et al., 2013).  

Animal growth performance 

Fall grazing season  

Initial BW of steers was 194 ± 5.7 kg for MIN and 199 ± 5.7 kg for CM steers (P = 0.53).  

Final BW for MIN steers was 28% less (P < 0.001) than CM (223 ± 5.6 vs. 286 ± 5.6 kg for MIN 

and CM, respectively).  Cumulative management and MIN differed in overall ADG response (P 

< 0.001), ADG decreased with increasing EV (P = 0.01), and the magnitude of difference 

between MIN and CM did not differ across all levels of EV (MGMT × EV, P = 0.19).  The 

weight gain of steers grazing tall fescue in the fall (Figure 1) was explained by ADG = 1.05 − 

0.000064 × EV for CM and ADG = 0.41 − 0.000064 × EV for MIN.  The expected performance 

of steers grazing tall fescue at the lowest level of toxicity (500 ppb EV) was 1.02 kg/d for CM 



46 

 

and 0.38 kg/d for MIN, a 0.64 kg/d advantage for CM. At 2,500 ppb EV, expected performance 

of steers was 0.89 kg/d for CM and 0.25 kg/d for MIN.  Performance of MIN steers during the 

fall was less than expected based on observations made by Beck et al. (2008, 2009) who reported 

gains in the fall and winter with steers grazing toxic tall fescue to be from 0.5 to 0.7 kg/d and 

gains of steers grazing nontoxic fescue to be from 0.8 to 0.9 kg/d.  The reduced performance of 

steers grazing tall fescue during the fall in the current experiment is likely due to the growing 

conditions (Table 2) possibly resulting in different levels of toxicity between the fall and spring 

studies. 

Spring grazing season   

Initial BW of steers grazing in spring 2016 averaged 167 ± 1.6 kg for MIN and CM (P = 

0.88). Final BW in the spring was 17% greater (P = 0.01) for CM than MIN (206 ± 4.9 vs 245 ± 

4.9 kg for MIN and CM, respectively).  ADGs (Figure 2) were affected by an MGMT × EV 

interaction (P = 0.03).  The ADG of steers during the spring was explained for MIN by ADG = 

0.80 − 0.000276 × EV, whereas for CM, ADG = 0.94 + 0.000001835 × EV indicating that EV 

had much greater impact on ADG of MIN steers compared with CM.  Thus, at the lowest EV 

concentration, MIN gained 0.77 kg/d compared with 0.94 kg/d for CM and a 0.17 kg/d 

advantage for CM, whereas at the greatest EV concentration, CM gained 0.7 kg/d more than 

MIN (0.94 vs. 0.24 kg/d for CM and MIN, respectively).  The performance of steers in the MIN 

treatment grazing tall fescue with a range in EV concentration in the current experiment is in line 

with observations made by Beck et al. (2008, 2009) with steers grazing nontoxic and toxic tall 

fescue in the spring.  Contrarily, the gains of steers in the CM treatment were similar to gains by 

steers grazing nontoxic tall fescue reported by Beck et al. (2008, 2009) regardless of EV 
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concentration, indicating that the combination of supplementation and growth-promoting 

technologies counterbalanced the negative weight gain response to increasing EV.   

Hoveland (1986) indicated that steer performance declines precipitously as levels of toxic 

endophyte infection increase in a stand, indicating that steers grazing endophyte-free tall fescue 

had gains in excess of 0.9 kg/d, whereas steers grazing 90% toxic endophyte tall fescue had gains 

of only 0.6 kg/d.  The reduced impact of EV on performance of steers with CM confirms the 

findings of the meta-analysis of growth promoting technology use for steers grazing toxic tall 

fescue reported by Gadberry et al. (2015) who found an average response of 0.1 kg/d with 

implants and 0.06 kg/d with feed additives.  The additive effect of these growth promoting 

technologies is in agreement with observations of additive response to implants and feed 

additives by steers grazing wheat pasture (Beck et al., 2014).  Based on the growth response 

reported by Gadberry et al. (2015), at the lowest level of spring EV, there appears to be a 

response level that would align with the expected response from implants and feed additives but 

not supplementation.  At greater levels of toxicity, providing supplemental feed appeared to 

offset possible reductions in DM intake often associated with tall fescue toxicosis (Aiken and 

Strickland, 2013) along with the additive weight gain effects of implants and feed additives. 

Results showed an improvement in performance that substantiates the additive approach 

idea suggested by Roberts and Andre (2010).  Gadberry et al. (2015) indicated that digestible 

fiber–based supplemental feed response was ADG = 0.06 × % BW0.75 + 0.13.  In the present 

study, the average supplementation rate in spring and fall was 4% shrunk metabolic weight.  

Based on the work of Gadberry et al. (2015), the theoretical additive response in this study was 

0.53 kg/d (0.37 kg from supplementation, 0.1 kg from implant, and 0.06 kg from ionophore). 

Applying the current study fall and spring mean EV and ADG prediction equations, the average 
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benefit to enhanced management (CM – MIN) in fall and spring was 0.64 and 0.47 kg/d, 

respectively, which falls above and below the theoretical additive response, supporting the 

concept of an additive approach.  Furthermore, Carter et al. (2010) observed a 0.51 kg/d 

improvement in ADG with steroidal hormone–implanted steers fed 2.3 kg/d soybean hulls.  

Their study did not include an ionophore but complements the observed weight gain in this 

study.  

Predicted weight gain response was also modeled using formulas published in the NRC 

(2016) and supporting software.  Mean shrunk weight, ADG, supplement nutrient composition, 

supplemental feeding rate, and pasture nutrient composition were available for basic empirical 

model assessment.  Standard model adjustment for growth implant and ionophore was used in 

the CM evaluation.  Forage intake was unknown but also was not restricted in fall or spring.  The 

NRC predicted intake, adjusted to mimic the observed overall mean ADG for MIN during fall 

(0.3 kg/d) and spring (0.46 kg/d), was predicted at 1.8% shrunk BW, despite differences in mean 

shrunk weight and forage TDN between the 2 seasons.  Using the predicted forage intake for 

MIN and the known overall mean supplemental feed rate in fall (2.0 kg/d DM), fall 

metabolizable energy allowable gain for CM exceeded the observed average (1.14 vs. 0.96 kg/d) 

and input DM intake exceeded predicted DM intake by 9%.  Similarly, using the overall mean 

supplemental feed rate for spring (1.78 kg/d DM), spring metabolizable energy allowable gain 

for CM exceeded the observed average (1.2 kg vs. 0.94 kg/d) and input DM intake exceeded 

predicted DM by 11%.  Modeled responses suggest that DM intake on fescue pasture without 

supplementation was likely restricted and therefore resulting in the observed ADG being less 

than expected for the quality (protein and fiber) of the forage.  Introducing supplemental feed at 

1% BW increased weight gain; however, the model suggested that forage substitution may be 
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occurring at this level of supplemental feeding or fescue toxins were limiting weight gain 

response to the feed supplement.  

Blood chemistry 

Copper status   

There were no effects (P ≥ 0.12) of MGMT, EV, Period within the grazing season, or 

MGMT × EV on serum Cu (Table 6) during the fall study.  Although there were no effects (P ≥ 

0.09) of MGMT or EV on serum Cu status during the spring study, serum Cu concentrations 

decreased as the grazing season progressed (Period, P < 0.01).  

The byproduct feed supplement was low in Cu (6 ppm); therefore, for both MIN and CM, 

the main contribution to supplemental Cu was the MIN supplement (1,000-ppm Cu).  The CM 

mineral was incorporated into the daily supplemental feed, whereas MIN was free choice.  

During the fall study, mineral disappearance for MIN was 91 ± 8.1 g/d (91-mg Cu), whereas 

during spring, mineral disappearance for MIN was 127 ± 3.7 g/d (127-mg Cu).  For a 211- kg 

calf with an estimated dietary requirement of 10 ppm (NRC, 2016), the MIN group was 

consuming approximately 216% and 301% of their requirement in fall and spring study, 

respectively, at a 2% BW intake.  The serum Cu observed in the current experiments, however, 

would be considered deficient (Lopez-Alonso et al., 2006).  

It is thought that exposure to tall fescue toxins leads to reduced Cu status (Coffey et al., 

1992; Saker et al., 1998; Stewart et al., 2010).  Exposure of spring calving cows to toxic 

endophyte tall fescue pastures resulted in decreased blood Cu compared with cows grazing only 

nontoxic endophyte-infected tall fescue (Caldwell et al., 2013).  Cattle that graze toxic endophyte 

tall fescue pastures may be Cu deficient in plasma and liver tissues (Coffey et al., 1992) with 
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below normal serum Cu concentrations (Lopez-Alonso et al., 2006) leading to a decrease in 

immune responses in stress-challenged animals (Saker et al., 1998).  

Results from Saker et al. (1998) demonstrated that steers grazing toxic endophyte-

infected tall fescue pastures had lower Cu status than steers grazing endophyte-free tall fescue 

from July through September, ranging from normal (0.7 to 1.1 mg/ kg) to deficient (0.2 to 0.4 

mg/kg).  Contrary to the observations in the current experiment, Oliver et al. (2000) found Cu 

levels at about 0.7 mg/kg for steers grazing endophyte-free tall fescue and 0.6 mg/kg for steers 

grazing toxic endophyte-infected tall fescue.  Likewise, Stewart et al. (2010) found that beef 

steers grazing endophyte-free tall fescue had greater liver Cu concentrations than steer grazing 

toxic endophyte-infected tall fescue pastures.  Copper status in the current experiment was 

generally not associated with pasture level of toxicity (P = 0.98 and 0.09 for fall and spring 

study, respectively).  

Blood urea nitrogen   

During the fall, there were no effects (P ≥ 0.07) of EV, Period, or MGMT × EV on BUN 

(Table 6), but MIN steers had greater (P < 0.01) BUN concentrations than CM steers, despite the 

CM steers receiving supplemental feed that contained a greater percentage protein content 

(19.4% DM) in comparison to the protein content of available forage (12.3% to 17.3% DM).  

During the spring, the same reduction (P < 0.01) in BUN was observed for CM compared with 

MIN. But, BUN concentrations were found to increase (P < 0.01) as the spring grazing season 

progressed, even though forage CP concentrations decreased during this time (Table 5).  Unlike 

fall, the forage CP ranged from 15.4% to 25% while the supplemental feed averaged 16.9% CP.  

BUN concentration is a metabolic indicator of protein-energy status, which can indicate 

dietary problems (Kohn et al., 2005) and ammonia production in the rumen (Torell et al., 1974).  
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Levels of BUN greater than 19 or 20 mg/dL indicate high dietary protein intake and BUN 

concentrations lower than 7 mg/dL indicate protein deficiency (Hammond, 1992).  Blood urea N 

concentrations were within the adequate range for dietary N (Hammond, 1992) at all times 

during the current experiment (Table 6).  In the current study, EV did not affect BUN; likewise, 

Oliver et al. (2000) observed similar BUN levels among steers on endophyte-free and endophyte-

infected pastures.  

Nonesterified fatty acid   

The concentration of NEFA (Table 6) was less (P < 0.01) in CM steers compared with 

MIN steers during the fall study.  During the spring study, however, the magnitude of the mean 

NEFA concentration was half of the difference observed in fall and therefore did not differ (P = 

0.32) between treatments.  Level of EV did not influence NEFA in the fall study (P = 0.57) or 

spring study (P = 0.23). NEFA did change (P < 0.01) throughout both the fall and spring seasons.  

In the fall, NEFA increased as the season progressed, whereas in the spring, NEFA decreased as 

season progressed. Diet, DM intake, and other nutritional and non-nutritional factors affect 

NEFA (Bowden, 1971). Overall, it appears that changes in pasture conditions greatly influenced 

NEFA.  Generally, forage protein concentration increased and fiber concentration decreased as 

the fall study progressed, whereas forage protein concentration decreased and fiber concentration 

increased as the spring study progressed.  Pasture quality (based on protein and fiber 

concentrations) in the fall study was not as good as the levels observed during the spring study 

and it was during the fall study that CM resulted in lower NEFA levels and thus improved 

metabolic status.  The samples collected for blood chemistry were collected following a 16-h 

fasting period; therefore, the reduced NEFA concentrations in CM compared with MIN may 

have been due to greater adipolysis by MIN (Grummer and Carroll, 1991).  
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Prolactin   

Serum prolactin concentrations (Table 6) during the fall study were not affected (P ≥ 

0.19) by MGMT, EV, or the MGMT × EV interaction.  However, serum prolactin in the fall 

differed throughout the season (P < 0.01) with interim study prolactin being less (P < 0.05) than 

initial and final values.  Final winter prolactin values had returned to initial levels (P = 0.5).  

Further data are needed to determine whether EV had diminished in these late season pastures. 

Kallenbach et al. (2003) observed a reduction in stockpiled fescue EV from early to late winter.  

 During the spring, serum prolactin was not affected (P ≥ 0.79) by MGMT or the MGMT × EV 

interaction.  There was, however, an EV × Period interaction (data not shown) for prolactin in 

the spring (P = 0.01).  

Reduced serum prolactin concentration is the most recognized physiological change 

associated with fescue toxicosis (Hurley et al., 1980; Hoveland et al., 1983) and these results are 

consistent with previous studies involving comparisons of toxic endophyte, nontoxic endophyte-

infected, and endophyte- free tall fescue (Parish et al., 2003; Nihsen et al., 2004) and sheep fed 

endophyte-infected and endophyte-free tall fescue seed (Gadberry et al., 2003).  In the fall study, 

there was not a statistically significant relationship between EV and prolactin which suggests 

that the low end of the EV range (427 ppb) was just as detrimental to prolactin production as the 

fescue pastures at the greatest end of the EV range.  In the spring, EV was generally associated 

with prolactin (P = 0.03), whereby, as EV increased, prolactin decreased.  This may have 

occurred in the spring, unlike the fall, because EV was as low as 100 ppb in certain spring 

pastures, and numerically, the overall mean EV at spring sampling was less than the overall 

mean EV at fall sampling.  As previously mentioned, the EV effect on prolactin was not 

consistent across the 3 measurement periods in spring.  Initial prolactin would not be expected to 
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correlate with EV because the study had not started.  The interim prolactin mean was less than 

initial prolactin, evident to the effect of grazing toxic fescue.  The interim period exhibited the 

greatest correlation (data not illustrated) between EV and prolactin (r = −0.66, P = 0.006).  

Prolactin at the end of the spring study was at its lowest and did not correlate (data not 

illustrated) with EV (r = −0.33, P = 0.22).  In the spring, end of study, mean prolactin was 

numerically more similar to the fall study mean prolactin levels and there was no EV effect on 

prolactin in the fall study.  The reduced correlation at the end of the spring study was likely due 

to fields becoming more toxic as the season progressed.  

A MGMT effect on prolactin was not detected in either the fall or spring study.  Carter et 

al. (2010) reported soybean hulls fed at 2.3 kg, daily (as-fed basis), increased serum prolactin but 

steroidal implants did not affect prolactin in steers.  The supplemental feeding rate in that study 

was approximately 0.7% of average study body weight. Shappell et al. (2015) found increased 

estrogenic activity within serum of steers fed soybean hulls and the level of estrogenic activity 

was greatest for steers fed soybean hulls in combination with a steroidal implant.  Research with 

rats (Gudelsky et al., 1981) demonstrated that estrogen had some dopamine sparing effect on 

prolactin and ergot alkaloids are considered dopaminergic (Larson et al., 1995).  Current research 

indicates that estrogen and estrogen- like compounds may help ameliorate fescue toxicosis; 

however, prolactin did not respond to CM in the current study.  This may be due to lesser 

soybean hull consumption and implant estradiol level in the present study.  

Rectal and tail skin temperatures and hair score  

Temperatures   

Rectal and tail skin temperatures (Table 7) were not affected (P ≥ 0.16) by EV in the fall 

study. Rectal temperatures were affected (P ≤ 0.04) by MGMT, Period, and the MGMT × Period 
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interaction.  Initial and final rectal temperatures for CM and MIN did not differ, but interim 

rectal temperatures during the fall study were less (P ≤ 0.05) for MIN compared with CM. Rectal 

temperatures in the spring did not differ (P ≥ 0.46) due to MGMT or EV, but were lowest (P < 

0.01) at the intermediate sampling period.  These results parallel studies reported by Aiken et al. 

(2008) who found no difference between rectal temperatures in steers fed soybean hulls or 

nonsupplemented steers on toxic tall fescue pastures.  Aldrich et al. (1993) found that cattle 

grazing endophyte-free tall fescue had lower rectal temperatures than cattle grazing or toxic 

endophyte-infected tall fescue; however, rectal temperatures were elevated in response to 

environmental temperature change as was observed during the spring in the current experiment. 

A similar MGMT × period interaction (P = 0.01) was found for tail skin temperatures 

(Table 7) in the fall and winter grazing season.  Initial and intermediate tail skin temperatures did 

not differ between MIN and CM in the fall, but tail skin temperatures at the end of the grazing 

season were less (P ≤ 0.05) for MIN compared with CM.  Tail skin temperatures in the spring 

were less (P < 0.01) for MIN than for CM, and increased as the grazing season progressed (P < 

0.01) which is likely due to the increased ambient temperatures observed in the late spring (Table 

1) and observations of increased grazing activity of CM steers (Diaz et al., 2017).  Aldrich et al. 

(1993) confirmed that environmental temperature influenced skin temperature at a fixed level of 

toxicity, and Gadberry et al (2003) demonstrated that toxicity level influenced skin temperature 

at a fixed level of heat stress.  There were no sufficient slope differences over the spring season 

to result in an MGMT × Period interaction; however, as season progressed, the difference in tail 

skin temperature between CM and MIN increased, contributing to the observed MGMT effect.  

The CM management strategy appears to have interceded in steers to allow them to cope with 

higher ambient temperatures by vasodilation and physical relief to dissipate body heat through 
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increasing peripheral blood flow (Al-Haidary et al., 2001) and thus skin temperature.  It is 

unclear if there was beneficial effects from increased estrogenic activity (Shappell et al., 2015) of 

the treatments in the current study.  Aiken et al. (2016) demonstrated that forage isolflavones 

improved vascular blood flow in goats (Aiken et al., 2016).  

Hair score   

Hair score was numerically high and hair shedding was not evident among calves until 

the end of the spring study in mid-June.  Hair shedding score in June was affected by MGMT (P 

= 0.03) but not EV (P = 0.39), and the mean final hair coat score was 4.5 ± 0.24 and 3.7 ± 0.21 

for MIN and CM, respectively.  Nihsen et al. (2004) reported improved hair coat scores with 

nontoxic endophyte-infected fescue compared to toxic, Kentucky 31.  Carter et al. (2010) also 

observed an improvement in hair coat due to supplementation with soybean hulls or with 

steroidal implants but not an additional benefit for combining these practices. Others have 

speculated that prolactin may influence hair growth and retention (McClanahan et al., 2008; 

Gray et al., 2011); unlike hair score, prolactin did not differ according to MGMT in the spring 

study.  

In conclusion, it is unlikely that the majority of toxic tall fescue pastures throughout the 

fescue region of the southeastern United States will be converted to nontoxic fescue in the near 

future.  Based on experience in the current experiment, some efforts to convert fields from toxic 

to nontoxic endophyte-infected tall fescue will not be successful.  Cumulative management 

strategies including growth promoting implant, ionophore, and supplemental feeding offer a best 

management practice solution to improve the welfare and weight gain of growing cattle grazing 

toxic tall fescue.  Further research is needed to evaluate this program at varied stocking rates and 

in combination with dilution of endophyte-infected fescue pastures with other nontoxic grasses 
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or legumes.  In addition, carry-over effects of cumulative management strategies on calf 

performance throughout the feedlot finishing phase of production and carcass composition need 

assessment to establish protocols for cattle producers that stocker cattle on fescue pastures and 

market after the stocker phase of production or retain ownership through feedlot finishing. 
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Table 1. Record of climatological observations at the University of Arkansas, Division 

of Agriculture, Livestock and Forestry Research Station Batesville, AR.  

 Temperature, ° C Departure from 

long-term 

average, ° C 

Precipitation, mm Departure from long-

term average, mm 

September, 

2015 
21.94 + 1.1 

 

30.73 - 85.9 

October1 15.83 + 1.0 54.61 - 71.1 

November1 10.56 + 2.1 253.49 + 133.1 

December1 8.33 + 5.1 231.39 + 144.3 

January 2.50 + 0.8 23.37 - 63.8 

February 6.39 + 2.1 42.16 - 72.7 

March2 11.67 + 2.8 178.31 + 37.3 

April2 15.00 + 1.3 104.39 - 13.1 

May2 18.33 -  0.7 108.71 + 14.1 

June2 25.28 + 1.6 46.74 - 53.8 

July 27.22 + 1.4 95.00 + 19.8 

1Fall study began October 6, 2015 and ended January 5, 2016. 
2Spring study began March 22, 2016 and ended June 14, 2016. 
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Table 2. Guaranteed analysis of the self-fed mineral supplement offered to MIN steers 

and mineral premix included in supplement fed to CM steers. 

 MIN1 CM2 

Monensin (as Monensin Sodium) g/kg - 1.32 

Calcium (Ca), % minimum 18.60 18.60 

Calcium (Ca), % maximum 22.30 22.30 

Phosphorus (P), % minimum 3.00 3.00 

Salt (NaCl), % minimum 18.20 18.20 

Salt (NaCl), % maximum 21.80 21.80 

Magnesium (Mg), % minimum 1.00 1.00 

Copper (Cu), minimum, mg/kg 1,000 1,000 

Selenium (Se), minimum, mg/kg 26.40 26.40 

Zinc (Zn), minimum, mg/kg 3,750 3,750 

Vitamin A, minimum, IU/kg 300,000 300,000 

Vitamin D3, minimum, IU/ kg 44,092 44,092 

Vitamin E,minimum, IU/ kg 220.46 220.46 

1Vigortone 3V6 S, Provimi North America, Inc., Brookville, OH                                                   

2Vigortone 3V6 SR w/monensin active drug ingredient, Provimi North America, Inc., 

Brookville, OH. 
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Table 3. Ingredient composition of the 50:50 soybean hull pellet:corn gluten feed supplement 

fed to steers grazing tall fescue during the fall of 2015 and spring of 2016. 

Component (dry matter basis) Fall Spring 

Crude protein,%   20.1   16.9 

Acid detergent insoluble crude 

protein, % 

    0.7     1.5 

Acid detergent fiber, %   27.5   31.4 

Neutral detergent fiber (ash-free), %   45.9   50.3 

Crude fat, %     3.4     3.5 

Total digestible nutrients, %   74   69 

Net energy for maintenance, Mcal/kg     1.70     1.54 

Net energy for gain, Mcal/kg     1.08     0.95 

Calcium, %     0.32     0.33 

Phosphorus, %     0.60     0.62 

Copper, ppm     6     6 
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Table 4. Forage mass (kg DM/ha) and forage allowance (kg forage DM/kg steer BW) 

for tall fescue pastures with varying ergovaline concentrations (EV) grazed by growing 

steers fed mineral only (MIN) or cumulative growth promoting management (CM) 

including supplementation, ionophore, and hormonal implant. 

    P-value 

Item MIN CM SEM MGMT1 EV2 Month Month × 

MGMT 

Forage mass, kg DM/ha 

Fall study 0.73 0.65 < 0.001 0.91 

  Octobera 2,794 2,769 116.6     

  Novemberb 2,471 2,472 116.6     

  Decemberc 2,234 2,300 116.6     

  Januaryd 2,031 2,169 116.6     

Spring study 0.69 0.13 < 0.001 0.18 

  Marcha 1,156 1,190 130.2     

  Aprilb 2,348 2,416 130.2     

  Mayc 2,524 2,771 130.2     

  Junec 2,686 2,564 130.2     

Forage allowance, kg DM/kg BW 

Fall study    0.13 0.67 < 0.001 0.78 

  Octobera 5.84 5.65 0.253     
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(Table 4 (Cont.)...) Forage mass (kg DM/ha) and forage allowance (kg forage DM/kg 

steer BW) for tall fescue pastures with varying ergovaline concentrations (EV) grazed by 

growing steers fed mineral only (MIN) or cumulative growth promoting management 

(CM) including supplementation, ionophore, and hormonal implant. 

 

    P-value 

Item MIN CM SEM MGMT1 EV2 Month Month × 

MGMT 

  Novemberb 4.99 4.61 0.253     

  Decemberc 4.33 3.76 0.253     

  Januaryd 3.70 3.04 0.253     

Spring study    0.36 0.04 < 0.001 0.03 

  Marcha 1.68 1.73 0.177     

  Aprilb 3.02 2.94 0.177     

  Mayb 3.01 2.94 0.177     

  Junec 3.22e 2.55f 0.177     

1MGMT – effect of cumulative growth promotion management CM vs MIN. 
2Effect of ergovaline concentration. 
abcdLeast squares means for month within grazing season with differing superscripts differed at P 

≤ 0.05.  
efLeast squares means within rows differed at P ≤ 0.05. 
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Table 5. Forage nutritive quality for tall fescue pastures with varying ergovaline 

concentrations (EV) grazed by growing steers fed mineral only (MIN) or cumulative growth 

promoting management (CM) including supplementation, ionophore, and hormonal implant.  

 

   P-value1 

Item MIN CM MGMT2 EV 

Fall grazing season 

Crude protein, % of DM     

  Octobera 12.3 ± 0.64 13.7 ± 0.65 0.75 0.64 

  Novemberb 14.4 ± 0.35 15.8 ± 0.35 0.73 0.47 

  Decemberc 15.8 ± 0.39 17.3 ± 0.39 0.29 0.43 

  Januaryb 12.3 ± 0.64e 15.1 ± 0.34f 0.04 0.80 

Acid detergent fiber, % of DM     

  Octoberc 38.9 ± 0.93  37.0 ± 0.95 0.79 0.91 

  Novemberc 39.3 ± 0.62  37.0 ± 0.63 0.56 0.78 

  Decemberb 35.5 ± 0.88  31.5 ± 0.89  0.08 0.97 

  Januarya 32.1 ± 1.06 28.9 ± 1.07  0.07 0.95 

Neutral detergent fiber, % of DM     

  Octoberd 66.6 ± 1.19 63.9 ± 1.20  0.93 0.85 

  Novemberc 64.9 ± 0.61 62.7 ± 0.62 0.97 0.84 

  Decemberb 60.6 ± 0.94  56.9 ± 0.95 0.13 0.74 

  Januarya 56.5 ± 1.25f  52.8 ± 1.27e 0.05 0.88 

Total digestible nutrients, % of DM     

  Octobera 59.0 ± 1.04 61.1 ± 1.05  0.79 0.91 

  Novembera 58.5 ± 0.69  61.1 ± 0.70  0.56 0.78 

  Decemberb 62.8 ± 0.98  67.2 ± 0.99  0.08 0.97 
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(Table 5 (Cont.)…) Forage nutritive quality for tall fescue pastures with varying ergovaline 

concentrations (EV) grazed by growing steers fed mineral only (MIN) or cumulative growth 

promoting management (CM) including supplementation, ionophore, and hormonal implant.  
 

   P-value1 

Item MIN CM MGMT2 EV 

  Januaryc 66.6 ± 1.18  70.1 ± 1.20 0.07 0.95 

Spring grazing season 

Crude protein, % of DM     

  Marchd 24.9 ± 0.28 25.0 ± 0.29 0.21 0.10 

  Aprilc 20.2 ± 0.56 20.9 ± 0.56 0.68 0.51 

  Maya 15.4 ± 0.52 15.6 ± 0.52 0.86 0.08 

  Juneb 18.6 ± 0.26 19.2 ± 0.27 0.26 0.23 

Acid detergent fiber, % of DM     

  Marcha 16.0 ± 0.51  15.2 ± 0.52  0.53 0.93 

  Aprilb 29.3 ± 0.64  28.8 ± 0.65  0.89 0.73 

  Mayd 33.9 ± 0.65 34.4 ± 0.66 0.83 0.10 

  Junec 32.6 ± 0.35  32.1 ± 0.36 0.87 0.16 

Neutral detergent fiber, % of DM     

  Marcha 35.2 ± 0.60  33.9 ± 0.61 0.28 0.33 

  Aprilb 52.9 ± 0.92  51.5 ± 0.94 0.92 0.34 

  Mayd 60.0 ± 0.80 60.1 ± 0.81 0.86 0.06 

  Junec 57.3 ± 0.58 56.0 ± 0.58 0.79 0.02 

Total digestible nutrients, % of DM     

  Marchd 84.5 ± 0.57 85.4 ± 0.58  0.53 0.93 

  Aprilc 69.7 ± 0.72 70.3 ± 0.73 0.89 0.73 

  Maya 64.5 ± 0.73 64.0 ± 0.73  0.83 0.10 
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(Table 5 (Cont.)…)  Forage nutritive quality for tall fescue pastures with varying ergovaline 

concentrations (EV) grazed by growing steers fed mineral only (MIN) or cumulative growth 

promoting management (CM) including supplementation, ionophore, and hormonal implant.  

 

   P-value1 

Item MIN CM MGMT2 EV 

  Maya 64.5 ± 0.73 64.0 ± 0.73  0.83 0.10 

  Juneb 65.9 ± 0.39  66.5 ± 0.40 0.87 0.16 

1 There were no significant 2- or 3-way interactions (P ≥ 0.07) so all were removed from the final 

model. There was a month effect (P < 0.01) for all forage nutritive quality components. 
2MGMT – effect of cumulative growth promotion management CM vs MIN. 
abcd Months with least-squares means for forage nutritive quality components within grazing season 

with  differing superscripts, differ (P ≤ 0.05). 
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Table 6. Cu, blood urea N, and prolactin analyses of steers fed mineral only (MIN) or 

cumulative growth promoting management (CM) including supplementation, ionophore, 

and hormonal implant while grazing tall fescue pastures with varying ergovaline 

concentrations (EV). 

 MGMT1 Season P-value 

 MIN CM SEM2 Initial Interim Final SEM3 MGMT EV   

Period 

 

Serum 

Cu, 

mg/L 

          

  Fall 0.10 0.10 0.003 - 0.09 0.10 0.003 0.49 0.98 0.12 

  Spring 0.09 0.10 0.003 0.12c 0.10b 0.08a 0.003 0.11 0.09 < 0.01 

Blood 

urea 

nitrogen

, mg/dL 

         

  Fall 12.5 9.5 0.42 - 11.6 10.4 0.41 < 0.01 0.65 0.07 

  Spring 11.0 8.7 0.42 8.6a 9.6b 11.3c 0.52 < 0.01 0.23 0.01 

Non-

esterifie

d fatty 

acid, 

ug/dL 

         

  Fall 432 343 21.1 292a 377b 493c 25.5 0.01 0.57 < 0.01 

  Spring 518 477 27.9 520b 561b 411a 34.1 0.32 0.23 0.01 

Prolacti

n, 

ng/mL 

         

  Fall 10.0 16.5 3.29 20.6b 2.3a 16.8b 3.98 0.19 0.29 < 0.01 

  Spring 50.6 48.3 5.87 83.8b 39.4a 25.2a 7.18 0.79 0.03 0.01 
1MGMT = effect of cumulative growth promotion management CM vs. MIN. 
2Standard error of the mean for MGMT. 
3Standard error of the mean for Period.  
a–cLeast squares means within row for season effect differ (P ≤ 0.05). 
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Table 7. Rectal and tail skin temperatures of steers fed mineral only (MIN) or cumulative growth 

promoting management (CM) including supplementation, ionophore, and hormonal implant 

while grazing tall fescue pastures with varying ergovaline (EV) concentrations. 

MIN 

 

 Initial Interim Final Initial 

CM 

 

Interim Final SEM2 

 P-value  

MGMT EV Period 

MGMT ×  

Period 

Rectal  

temp. 

°C 

Fall 39.2c 38.4a 39.2c 39.2c 38.9b 39.4c 0.09 <0.01 0.16 <0.01 0.04 

Spring 39.3a 38.6b 39.7c 39.2a 38.6b 40.0c 0.13 0.46 0.47 <0.01 0.27 

Tail skin  

temp. 

 °C 

Fall 26.6d 20.8a 23.4b 26.3cd 21.0a 25.4c 0.39 0.08 0.56 <0.01 0.01 

Spring 24.6a 27.7b 31.5c 25.1d 29.3e 33.4c 0.51 <0.01 0.48 <0.01 0.37 

1MGMT = effect of cumulative growth promotion management CM vs. MIN. 
2Standard error of the mean for MGMT × Period. a–eLeast squares means within row 

differ (P ≤ 0.05). 
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Figure 1. Effect of growth promoting management (CM = cumulative growth promoting 

management including hormonal implant, ionophore, and supplementation versus mineral (MIN) 

(free choice access to a non-medicated mineral only) and ergovaline (EV) concentration on 

performance of steers grazing tall fescue in the fall.  
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Figure 2. Effect of management (MGMT) as cumulative management (CM, including hormonal 

implant, ionophore, and supplementation) or mineral (MIN) (free choice access to a non-

medicated mineral only) and ergovaline (EV) concentration on ADG during the spring.  

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

400 600 800 1000 1200 1400 1600 1800 2000 2200

A
v
er

ag
e 

d
ai

ly
 g

ai
n
, 

k
g

Ergovaline, ppb

MIN CM Linear (MIN) Linear (CM)



73 

 

CHAPTER IV 

MANAGEMENT PROGRAM FOR STEERS GRAZING TOXIC FESCUE ALTERS 

ACTIVITY 

Abstract 

Grazing toxic, endophyte-infected tall fescue influences grazing activity.  The objective 

was to assess activity of steers grazing tall fescue pastures varying in toxicity and managed with 

and without a combination of management practices including supplemental feed, ionophore, 

and steroidal implant.  Activity of steers was monitored using IceQube (IceRobotics, Ltd., 

Edinburg, UK) accelerometers.  Steers ( n = 45, 116.9 ± 4.88 kg initial BW) grazed 1 of 15 

pastures differing in ergovaline concentration (EV) in spring, 2016.  For 7 pastures, steers were 

offered mineral (MIN) only management (MGMT).  In the remaining pastures, steers received a 

cumulative (CM) MGMT strategy including 1% BW of a 1:1 corn gluten feed:soybean hulls 

mixture, 150-mg/d monensin and a steroidal implant containing 40-mg trenbolone acetate, 8-mg 

estradiol, and 29-mg Tylosin tartrate.  Physical activities of lying bouts, steps and standing time 

were reported in two periods of 27 and 26 d.  In period 1, lying bouts were not different for 

MGMT (P = 0.11) or EV (P = 0.26).  Period 2 lying bouts exhibited a MGMT × EV interaction 

(P = 0.02).  Time steers spent standing was not different between CM and MIN during period 1 

(P = 0.79) but were lower for CM during period 2 (P < 0.01).  Behavioral changes due to EV and 

MGMT appeared more prevelant during period 2 when warmer weather and changing forage 

quality would be expected to worsen the effects of fescue toxins.  The CM may elicit greater 

satiety or reduced heat stress.  Strategies that improve productivity of cattle on toxic fescue may 

also improve welfare as expressed through physical activity changes.  

Key words: Activity, Fescue, Management, Steers  
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Introduction 

Cattle consuming tall fescue [Lolium arundinaceum (Schreb.) Darbysh] forage containing 

mycotoxins produced by the Epichloë coenophiala [(Morgan-Jones and Gams) C.W. Bacon and 

Schardl] fungus (Aiken and Strickland, 2013) exhibit reduced dry matter intake, average daily 

gain, and increased body temperature.  Parish et al. (2003) observed cattle grazing non-toxic 

fescue, either endophyte-free or nonergot-alkaloid producing endophyte-infected, spent less time 

standing during spring months compared to those grazing toxic fescue.  Howard et al. (1992) 

also noted greater standing activity by cattle grazing toxic fescue.  Standing is a behavior to cope 

with heat stress in cattle (Allen et al., 2013). 

Gadberry et al. (2015) showed through meta-analysis that cattle consuming toxic fescue 

respond to growth promoting implants, medicated feed additives, and supplemental feed.  There 

may be additive benefits to stacking management strategies (Roberts and Andre, 2010).  Diaz et 

al. (2018) reported that a cumulative management strategy increased performance and in some 

instances sustained performance as fescue toxins increased.  Although efforts to alleviate fescue 

toxicosis often document growth rate and physiological responses, most have not reported 

changes in behavior.  Today, assessment of behavior is important in understanding impacts of 

various treatments on animal welfare. 

Data logging accelerometers are used to remotely monitor behavior and modifications in 

behavior associated with disease, oestrus, and management (Richeson et al., 2018).  The IceQube 

(IceRobotics, Ltd., Edinburg, UK) is a triaxial accelerometer that functions mainly as a 

pedometer attached to the leg and has been validated in both cows and calves (McGowan et al., 

2007; Trénel et al., 2009).  This device is capable of logging motion data including standing and 
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lying time, lying bouts, and steps.  This allows capturing data during times that might not 

otherwise be observed or collecting more data than practical when human observation is limited.  

Scalgia et al. (2009) used this technology to study the effect of supplement feed and feed 

timing on behavior.  They observed similar lying time and steps among calves grazing ryegrass 

and either not supplemented or supplemented at 0.5% BW either morning, noon, or evening. 

Our hypothesis is management that improves the metabolic status of steers grazing toxic 

fescue would result in a change in physical activity.  Our objective was to determine activity 

differences for steers grazing toxic fescue and provided a combination growth promotion 

management strategy consisting of supplemental feed, ionophore, and steroidal implant to steers 

grazing toxic fescue without intervention. 

Materials and Methods 

The study was conducted at the University of Arkansas, Division of Agriculture 

Livestock and Forestry Research Station (Batesville, AR; 35°50’ N, 91°48’ W), and all 

procedures involving animal care and management were conducted within the guidelines of the 

University of Arkansas Institutional Animal Care and Use Committee (protocol 16023).  Diaz et 

al. (2018) described the experimental design in great detail.  In brief, the study compared the 

effects of a cumulative (CM) management (MGMT) strategy to a supplemental mineral (MIN) 

only MGMT program for steers grazing fescue pastures with varying levels of toxicity.  Pasture 

toxicity was based on ergovaline (EV) concentration on d 42 (study mid-point).  The minimum 

and maximum EV concentrations were <100 and 2,180 ppb, respectively, and did not differ 

between CM and MIN pastures (P = 0.76).  The CM strategy included 1% BW, as-fed, 

supplemental feed (1:1 corn gluten feed:soybean hulls), 150 mg monensin/d (Rumensin, Elanco 
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Animal Health), 115 g/d of the MIN premix (Vigortone 3V6 SR; Provimi North America Inc.), 

and a growth promoting implant, on d0, containing 40 mg trenbolone acetate, 8 mg estradiol, and 

29 mg Tylosin tartrate (Component TE-G, Elanco Animal Health, Greenfield, IN).  The MIN 

steers had access, through a self-feeder, to a non-medicated version of the mineral formulation 

offered to CM steers.  The CM steers were offered their supplement for a Monday through 

Friday delivery (7-d feed quantity prorated over a 5-d period) in a feed trough adjacent to the 

perimeter fence and near the pasture gate entrance based on 1% of BW/d.  Steers had access to 

water from a trough and little to no shade was available in pastures. 

Steer activity was monitored during the spring study.  The study began March 21 and 

continued for 84 d; however, activity monitoring did not begin until d 28.  Activity was recorded 

using an IceQube (IceRobotics, Ltd., Edinburg, UK) affixed to the left metatarsus.  The IceQube 

continuously records standing and lying activity, step count, and a motion index for up to 60 d. 

Within each pasture, 3 of 5 steers were randomly selected to wear an IceQube device.  There 

were 15 pasture replicates; 8 CM pastures and 7 MIN pastures.  An 8th MIN pasture was 

excluded from activity monitoring due to not being able to restrict steers from a small pond 

adjacent to the water trough.  By d 84, 7 of 8 CM pastures had complete data for 3 of 3 steers; 1 

pasture had complete data for 2 of 3 steers.  Four of 7 MIN pastures had complete data for 3 of 3 

steers; 3 MIN pastures had complete data for 2 of 3 steers.  Data losses were attributed to unit 

failure, unit movement on the leg, or complete unit loss.  The IceQube strap design was large for 

the size of steers used in this study (116.9 ± 4.88 kg initial BW).  

Activity was partitioned into 2 periods based on the idea that forage quality would be 

greater, temperature milder, and effects of fescue toxins less severe for early compared to late in 

the season.  The accelerometers were affixed on April 20 (d 29).  Period 1 activity began April 
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21 and ended May 17 (d 30).  Period 2 began May 18 (d 57) and continued through June 21 (d 

82).  June 12 was the last day for complete 24 h records because the accelerometers were 

activated before shipment from West Texas A&M University (Amarillo, TX).  Period 1 and 2 

consisted of 27 d and 26 d, respectively.   

Pasture was the experimental unit.  Responses were aggregated within pasture prior to 

statistical analysis.  Responses analyzed included number of daily lying bouts, daily standing 

time (minutes), and number of daily steps.  Responses were modeled by period.  Study mid-point 

ergovaline (EV) was modeled as a continuous covariate.  The full model included MGMT, EV 

and MGMT×EV to test for different slopes for each MGMT treatment.  Removal of non-

significant interactions were based on an acceptance criteria of P ≤ 0.10.  Linear models were fit 

with the lm function within the R (www.r-project.org) stats package.  Analysis of variance type 

III sum of squares and F-tests were computed using the car package. Management effects on 

activity were more prevalent during period 2 than period 1 and to a greater extent than the effect 

of EV.  Therefore, period 2 standing data was subset and averaged within treatment, pasture, and 

hour to study the repeated measures response of standing as affected by MGMT, hour, and 

MGMT × hour.  The model included a first-order autoregressive correlation structure for the 

repeated measure of hour.  The experimental subject was pasture.  The model was fit using the 

lme function of the nlme package for R. 

Results and Discussion 

Daily lying bouts 

Lying bouts are the number of unique lying events that occur daily.  During period 1, the 

lying bouts averaged 21.2 ± 0.3, daily and were not affected by MGMT (P = 0.11) or EV (P = 

0.26) nor the MGMT × EV interaction (P > 0.05) (Figure 1a).  During period 2, lying bouts were 
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influenced by MGMT × EV (P = 0.02; Figure 1b).  The base lying bouts for CM steers was 18.4 

and decreased by 0.9 bouts for every 1000 ppb increase in EV.  The base lying bouts for MIN 

steers was 11.1 and increased by 3.5 for every 1000 ppb increase in EV.  Interestingly, the lying 

frequency was greater with CM across most of the EV concentrations, but the effects of EV 

appeared greater with MIN.  Lying bouts appeared more similar at high levels of pasture toxicity 

during period 2.  

Daily steps 

The number of daily steps per steer was also determined within each period.  During 

period 1, there was a tendency for MGMT × EV (P = 0.08) indicating the effect of pasture 

toxicity differentially affected the number of daily steps taken for MIN and CM (Figure 2a).  

Step counts decreased rapidly in MIN pastures as pasture toxicity increased in period 1.  During 

period 2, steps taken were influenced by MGMT (P = 0.01) and tended to be affected by level of 

EV (P = 0.09) but not MGMT × EV (P = 0.31) (Figure 2b).  During period 2, CM steers 

exhibited 20% more steps daily than MIN steers, and for every 1000 ppb increase in EV, steps 

decreased by 275. 

Daily standing time 

The total minutes per day spent standing was determined for each steer each period.  

During period 1, steers stood for 792.6 ± 9.37 minutes throughout the day.  Amount of time 

spent standing during period 1 was not affected by MGMT (P = 0.68), EV (P = 0.55), or MGMT 

× EV (P = 0.79).  During period 2, MGMT (P < 0.01) but not EV (P = 0.87) affected standing 

time and the interaction MGMT × EV was not significant.  Steers fed MIN spent 858.01 ± 10.4 

min/d standing while CM steers spent 792.01 ± 9.73 min/d standing.  Therefore, MIN spent 60% 

of their day standing, while CM spent 55% of their day standing.  Period 2 standing time for CM 
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resembled period 1 standing time.  Similar to our CM response, steers on toxic fescue had a 

greater percentage standing time compared to steers grazing non-toxic fescue in spring (Parish et 

al., 2003).  The greater standing time with MIN may be associated with coping with heat stress. 

Hourly standing time (Period 2) 

Recognizing MIN steers spent 8% more time standing during period 2, we further 

examined the hourly difference in standing behavior to determine if this additional standing time 

was clustered around particular hours of the day.  A MGMT × hour (P = 0.005) interaction 

occurred during period 2 (Figure 3).  Hourly MGMT comparisons indicated MIN exhibited 

greater standing time at 000 (P = 0.07), 0400 (P = 0.06), 0500 (P = <0.01), and 2100 h (P = 

0.06).  It appears MIN steers were standing more frequently near the start and end of civil 

twilight but not throughout the entire day length nor entire nighttime. 

While Scaglia et al. (2009) did not see a significant change in activity associated with 

calves grazing ryegrass and supplemented at 0.5% BW, our CM strategy that included 1% BW 

supplementation for steers grazing toxic fescue did alter activity.  Overall, the CM strategy 

resulted in activity differences that included greater step counts, more time at rest during the 

latter part of the study, and more lying bouts during period 2.  The lying activity may 

demonstrate greater satiety under CM management.  Tail temperature but not rectal temperature 

differences were noted (Diaz et al., 2018) which may suggest thermoregulatory influence as well.  

Allen et al. (2013) reported heat stress results in greater standing time.  We believe the greater 

step counts was partly attributed to either the addition of monensin to the feed, feed palatability, 

or a combination thereof which needs objective assessment.  Steers would come to the bunk at 

morning feeding but not completely eat the entire feed portion immediately.  We observed steers 

would leave feed in the trough and return to eat later.  Troughs were typically clean by the next 
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morning.  Monensin can affect intake, eating and ruminating behavior (Baile et al., 1979; 

Deswysen et al., 1987).   

The CM calves were supplemented 5 d of the week.  While our primary objective and 

hypothesis was focused on CM compared to MIN; we subset the CM data from the dataset and 

aggregated responses to the level of pasture and a feed-day category [fed (Monday through 

Friday average) or not fed (Saturday and Sunday average)].  There were 8 weekends (16 of 53 d) 

CM calves did not have feed placed in the trough.  Our goal was not to present this as a valid 

experimental design to study the effect of skipped meals on behavior but to determine if and by 

how much not feeding on the weekend influenced our CM responses.  Overall, there was no 

difference in standing time (P = 0.21) or steps (P = 0.27) between the days CM calves received 

supplement or did not receive supplement.  There was a tendency (P = 0.07) for more lying bouts 

on days fed; however, the mean and standard error of the difference was 0.67 ± 0.345.  These 

comparisons suggest not feeding on the weekend minimally influenced our assessment of the 

effect of CM on behavior.  Morais et al. (2014) studied the effect of supplementation frequency 

(daily, Monday through Friday, or Monday-Wednesday-Friday) on performance and foraging 

behavior on a warm-season grass in a tropical environment.  Overall, supplementation frequency 

did not affect average daily gain, mean forage intake or mean supplement intake.  Morais et al. 

(2014) also reported Monday through Friday grazing time increased 0.96 h on the day not 

supplemented, but the additional grazing time did not differ from the grazing time of daily 

supplemented calves.  The grazing time of daily supplemented calves increased 0.48 h on the day 

the alternative supplementation frequency treatments were not supplemented.  It is possible that 

fence-line contact among treatments may have influenced the grazing time of supplemented 

calves on the day supplementation was not provided to the remaining treatments. 
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It is plausible to think the non-significant difference in standing and steps between 

supplemented days and non-supplemented days with CM treatment in our study may be due to 

foraging activity replacing activity visiting the feed trough.  Morias et al. (2014) observed more 

grazing activity early during observation hours on the day supplement was not offered.  Further 

research is needed to establish how daily versus alternative supplementation frequencies alters 

grazing behavior, in addition to motion activities such as steps, standing, and lying bouts, with 

cattle grazing toxic fescue. 

Implications 

The objective of this study was to assess the physical activity changes associated with a 

CM strategy to improve metabolic status of steers grazing toxic fescue.  The CM strategy 

increased lying bouts and reduced standing time during the second half of the study when fescue 

nutritive value would be lesser and environmental temperatures greater, making fescue toxins 

more detrimental to production.  The physical activity change is probably the result of greater 

satiety and/or reduced heat stress.  Management that improves performance may concomitantly 

benefit the overall welfare of steers grazing toxic, endophyte-infected fescue.   
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Figure 1a.  Effect of management (MGMT) as either mineral only (MIN) or cumulative 

management (CM) including a growth promoting implant, ionophore, and 1% body weight 

supplementation with a 1:1 blend of corn gluten feed and soybean hulls on lying bouts with 

pastures of varying levels of ergovaline (EV).  Period 1 lying bouts did not differ for MGMT (P 

= 0.11) or pasture (P = 0.26).   

 

 

 

19

20

21

22

23

24

0 500 1000 1500 2000

L
y
in

g
 b

o
u
ts

 p
er

 s
te

er
, 
d
ai

ly

Ergovaline, ppb

Period 1

CM MIN



85 

 

 

Figure 1b. Effect of management (MGMT) as either mineral only (MIN) or cumulative 

management (CM) including a growth promoting implant, ionophore, and 1% body weight 

supplementation with a 1:1 blend of corn gluten feed and soybean hulls on lying bouts with 

pastures of varying levels of ergovaline (EV).  In period 2, there were an interaction between 

MGMT × EV (P = < 0.05). 
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Figure 2a.  Effect of management (MGMT) as either mineral only (MIN) or cumulative 

management (CM) including a growth promoting implant, ionophore, and 1% body weight 

supplementation with a 1:1 blend of corn gluten feed and soybean hulls on step activity with 

pastures of varying levels of ergovaline (EV).  In period 1 there were significant interaction 

MGMT × EV (P < 0.05).  

 

 

 

 

 

0

1000

2000

3000

300 800 1300 1800 2300

S
p
et

s 
p
er

 s
te

er
, 

d
ai

ly

Ergovaline, ppb

Period 1

MIN MIN Linear (MIN) Linear (MIN)



87 

 

 

Figure 2b. Effect of management (MGMT) as either mineral only (MIN) or cumulative 

management (CM) including a growth promoting implant, ionophore, and 1% body weight 

supplementation with a 1:1 blend of corn gluten feed and soybean hulls on step activity with 

pastures of varying levels of ergovaline (EV).  Period 2, MGMT × EV had no significant 

differences (P > 0.05) but EV response had a tendency (P = 0.007).  
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Figure 3.  Effect of management (MGMT) as either mineral only (MIN) or cumulative 

management (CM) including a growth promoting implant, ionophore, and 1% body weight 

supplementation with a 1:1 blend of corn gluten feed and soybean hulls on hourly (0 hour = 

12am) standing time during period 2. 
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CHAPTER V 

EFFECT OF ALFALFA AND TALL FESCUE SWARD HEIGHT ON GRAZING BEHAVIOR 

AND DIET PREFERENCES BY STEERS 

Abstract 

Sward heights influence ingestive behavior in cattle.  The objective of this experiment 

was to evaluate the effects of two different sward heights, long sward regrowth (LSR) and short 

sward regrowth (SSR) with target heights of 12 and 10 cm respectively, on diet composition, 

rumen fermentation, and grazing behavior of 3 heifers and 1 steer (402 ± 30.1 kg BW) grazing 

novel endophyte fescue and (493 ± 26.57 kg BW) grazing alfalfa.  For both experiments, forage 

samples were taken to evaluate forage nutritive value prior to stocking animals.  Visual 

observations, grazing time per minute, and bites per min were recorded for two days every hour 

from 0700 to 1900 h in two periods (d 1 and 2 of each period).  Rumen fluid was collected every 

2 hrs on d 3 to measure pH, ammonia and volatile fatty acids.  A rumen evacuation followed by a 

20-min grazing time was conducted on d 4.  Diet selectivity from grazing was measured by 

analyzing neutral detergen fiber (aNDF), acid detergent fiber (ADF), and N  content.  For tall 

fescue, forage nutritive value and diet selection did not differ between treatments (P ≥ 0.07) for 

NDF (55.0 ± 1.43), ADF (26.8 ± 0.53), CP (22.6 ± 6.65) and OM (91.9 ± 0.001).  No differences 

(P ≥ 0.19) in grazing behavior between treatments were observed.  However, ruminal ammonia, 

total VFA, concentrations of acetic, isobutyric, butyric, isovaleric and valeric acids were greater 

(P < 0.05) from SSR vs LSR.  Alfalfa forage nutritive value and diet selectivity were not 

different (P ≥ 0.24) between LSR and SSR.  No differences were observed (P ≥ 0.65) with 

regard to grazing behavior; time spent grazing averaged 6.33 min/10 min and bite rates averaged 

13 bites/min.  No treatment differences (P ≥ 0.11) were observed for ammonia and for total VFA 
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between LSR and SSR but ruminal pH was greater from LSR than SSR (P = 0.03).  Variability 

of grazing behavior is high among animals and further research is needed to detect differences 

based on forage sward heights and to increase sample size in order to get a power test.  

Key words: Behavioral activities, diet composition, rumen fermentation, sward height 

 

Introduction 

  

Sward height influences diet choice and voluntary intake (Galyean and Gunter, 2016) in 

grazing animals through their influence on activities such as bite weight and bite depth 

dimensions (Ungar et al., 1991; Ungar et al., 2002), movements or motion indices, and steps per 

minute (Gregorini et al., 2011).  The behaviors are called ingestive behaviors and measure the 

rate of bites, chewing, and motion, the animal uses to get the highest energy intake per unit of 

time (Demment and Greenwood, 1988).  These foraging dynamics vary by swards height 

(Gregorini et al., 2009) and by previous experiences of the animals (Villalba et al., 2015).  Diet 

selection by cattle is, thus, influenced by forage structure and foraging strategies in forages such 

as tall fescue and alfalfa.  Sward height and regrowth length influence forage quality 

measurements such as N content and fiber content resulting in differences in diet selectivity in 

ruminants because the way the amount of forage acquired daily. Lower plant N should result in 

lower rumen ammonia concentrations, bacterial growth and fermentation (Erdman et al., 1986).  

If ruminal ammonia is low, digestion may be suppressed, which in turn reduces forage intake 

(Krysl and Hess, 1993; Scaglia et al., 2009; Swanson et al., 2017).  Legumes such as alfalfa have 

higher crude protein but they may cause digestive problems if intake greatly exceeds animal 

needs (Netto et al., 2014).  Tall fescue and alfalfa consumed at two canopy heights, 12 cm and 25 

cm, influenced the number of bites in cattle (Galli et al., 2017).  In other research, sward height 
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influenced bite dimensions and grazing movements in sheep and cattle when grazing 

homogeneous ryegrass (Rook et al., 2004).  

Materials and Methods 

Both studies were conducted at the University of Arkansas, Agricultural Research and 

Extension Center, Fayetteville, (36º18’N, 94º16’W) and all procedures involving animal care and 

management were conducted within the guidelines of the University of Arkansas Institutional 

Animal Care and Use Committee, approval number 18005.  The tall fescue study was conducted 

in fall of 2017, and alfalfa study was conducted in spring 2018.  

Pasture management 

Existing stands of fescue and alfalfa used for the experiments were planted in 2014 and 

2011 respectively.  To conduct each experiment, respective fields were split into eight paddocks 

measuring 30.48 m wide and 45.72 m length representing 2 sward treatments replicated with 2 

animals per period for 2 periods.  To achieve similar grazing times with different canopy heights, 

paddocks were mowed at 12 cm (LSR) and 10 cm (SSR) 7 days apart for long sward regrowth 

(LSR) and 14 days apart for short sward regrowth (SSR) representing 28 days and 21 days of 

regrowth, respectively.  

Forage sampling 

Prior to stocking animals, initial sward heights were measured with a ruler; fescue 

measured 33 cm for LSR and 28 cm for SSR, and alfalfa measured 55 cm and 45 cm for LSR 

and SSR, respectively.  Forage grab samples were obtained immediately prior to the start of 

grazing 1 d before the behavior and fermentation measurements began.  Samples ( n = 5) were 

hand-clipped using a 0.5 m × 0.5 m square and in harvested randomly throughout the field to 

provide a representative sample, placed in paper bags and transported to an oven and dried to a 
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constant weight at 50° C prior to subsequent analysis. Content of OM was obtained by ashing in 

a muffle furnace at 500 °C for 6 h (procedure no. 942.05; AOAC, 2000). 

Animal handling 

Four ruminally-cannulated calves, 1 steer and 3 heifers, with an initial body weight (BW) 

of 402 ± 30.1 kg for the fescue study and 494 ± 26.6 kg initial BW for alfalfa study were 

randomly assigned and stocked on experimental paddocks on October 6, 2017 to initiate the tall 

fescue study and May 4, 2018 to initiate the alfalfa study.  Prior to the 4-d experimental period, 

animals were kept in an adjacent pasture of a similar forage type for a 10-d adaptation period.  

During the alfalfa study in period 1 on the rumen fermentation collection day, one calf was 

removed because of bloat issues.   

Visual observations 

After a 10-d adaptation period, calves were individually allocated randomly to 4 of the 8 

individual paddocks the evening prior to 4 d of data collection.  Visual observations were 

recorded for two consecutive days from 0700 h through 1900 h by two experienced observers.  

At the beginning of each hour, grazing activity was recorded for 10 minutes as either grazing 

(GR), ruminating (RM), lying (LY) or idling (ID).  If animals were grazing, the total number of 

bites was recorded, then divided by the total grazing time during the 10-minute period to 

determine bite rate.  At the end of the first period, calves were co-mingled on a common fescue 

or alfalfa adjacent pasture for 10 days.  Calves were then reallocated to the remaining 4 paddocks 

for a second period but to a different sward height than they grazed in period 1, and procedures 

were repeated. 

 

 



93 

 

Rumen fluid collection and chemical analysis 

For both studies, rumen fluid was collected every 2 h from 0700 to 1900 h on d 3 of each 

period and analyzed for ammonia, VFA, and pH.  Rumen samples were taken from four different 

areas in the rumen, placed in a rubber bucket, mixed thoroughly, squeezed through 4 layers of 

cheesecloth, and drained gently into a cup.  The pH was measured immediately using a portable 

pH meter (Toledo EL2 model, Greifensee , Switzerland).  Samples were then placed on ice in an 

insulated container for transportation to the lab for later analyses. Calves were moved to a corral 

to collect the rumen fluid (10 meters distance from the padock), then were placed back onto their 

respective paddocks to continue grazing immediately following collection of ruminal fluid.  

Rumen fluid and a metaphosphoric acid solution (125 mL/L) containing 2-ethylbutyric 

acid as an internal standard were combined (5:1 ratio) for subsequent VFA analysis.  A second 

aliquot of rumen fluid was combined (2:1 ratio) with 0.1 N HCl for subsequent ammonia N 

analysis.  Ammonia N concentrations were colorimetrically determined (Broderick and Kang, 

1980).  Volatile fatty acids were analyzed by gas–liquid chromatography using the method and 

equipment described by Akins et al. (2009). 

Diet selectivity and chemical analysis 

Following the last rumen sampling at 1900 h, calves were individually placed into cattle 

working pens to facilitate rumen evacuation the following morning (d 4).  Immediately after 

emptying the rumen, calves were placed onto their respective paddocks to graze for 20 to 30 

minutes and then transported to a working facility to remove a representative sample of the 

consumed forage.  This forage masticate was then placed into zip-lock bags and transported to 

the laboratory.  Samples were lyophilized for subsequent laboratory analyses.  All values were 

corrected to a DM basis based on drying the samples overnight at 100° C.  All samples were 

https://en.wikipedia.org/wiki/Greifensee
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ashed in a furnace at 500 ºC to determine OM.  Samples were also used to determine aNDF, 

ADF and N content.  After forage samples were ground 1mm, a representative sample was 

weighed and placed in an Ankom 200 fiber analyzer for fiber analysis following Van Soest 

method (Van Soest, 1967.  For N analysis, a representative sample ( ̴ 0.15 g) was placed in a 

Leco FP-528 N analyzer. 

Statistical analysis 

Data was analyzed using the PROC MIXED procedure of SAS version 9.3 (SAS Institute 

Inc., Cary, NC).  Forage samples, rumen fluid and diet selectivity data were analyzed as a cross-

over design.  Visual observations were analyzed using repeated measures using calf within 

treatment as a sub-variable.  Each experimental paddock was considered as the experimental unit 

and calf considered as observational unit.  

Results  

There were no differences in forage CP, aNDF or ADF for either fescue or alfalfa for 

LSR or SSR before animals were stocked on the experimental units (P ≥ 0.05; Table 1).  Alfalfa 

OM (P = 0.04) was greater for LSR vs. SSR prior to grazing, and that of fescue tended (P = 

0.07) to be greater from LSR vs. SSR, but this difference was small (≤ 0.6 percentage units).  

Foraging behavior data from visual observations are summarized in Table 2.  Grazing time spent 

(per 10 min) by calves was not different between sward height treatments (P ≥ 0.35) in either 

fescue or alfalfa.  Bite rate (bites/min) in calves grazing tall fescue did not differ (P = 0.38) 

between treatments, showing the generally large variability in behavior between animals.  Bite 

rates in alfalfa (14 bites/min) were numerically different from those in tall fescue (32 bites/min) 

although they were not compared statistically because the measurements were gathered in 
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different seasons.  Similar to tall fescue, bite rates did not differ between those grazing LSR and 

SSR (P = 0.67).  

In fescue paddocks, the total time spent ruminating per 10 minutes was not different 

between LSR and SSR (P = 0.19).  Lying periods were likewise not different between LSR and 

SSR (P = 0.78) and calves idling under LSR and SSR treatments did not differ (P = 0.45) 

between treatments.  In alfalfa paddocks, no differences were observed in ruminating, lying and 

idling grazing activities (P ≥ 0.75).   

Rumen fermentation 

Ruminal ammonia concentrations from calves grazing fescue were greater (P < 0.05) 

from calves grazing SSR compared with those grazing LSR (Table 3).  Total VFA were also 

greater (P < 0.05) from calves grazing SSR vs. LSR.  Concentrations of acetic, propionic, 

isobutyric, butyric, isovaleric and valeric acids from calves grazing fescue were greater from 

SSR than LSR (P ≤ 0.05).  Conversely, concentrations of total VFA, ammonia, acetic, propionic, 

isobutyric, butyric, isovaleric and valeric acids from calves grazing alfalfa were not different 

between SSR and LSR (P ≥ 0.11).  Ruminal pH tended to be greater from LSR than SSR (P = 

0.06) when calves grazed tall fescue, but was greater (P = 0.03) from SSR when calves grazed 

alfalfa.  

Diet selectivity  

Masticate samples collected on tall fescue paddocks following rumen evacuation resulted 

in no differences (P = 0.11) in aNDF and averaged 52.8 % across LSR and SSR, respectively.  

There were no differences (P = 0.83) in ADF averaging 24.5 % across LSR and SSR 

respectively.  Crude protein was not different in LSR from SSR (P = 0.52), averaging 25.9 % 
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between LSR and SSR respectively.  Organic matter did not differ from LSR and SSR (P = 0.99) 

averaging 89.7 % across LSR and SSR respectively.  

Selectivity of animals grazing alfalfa did not influence aNDF between treatments (P = 

0.47) averaging 33.9 % for LSR and SSR masticate samples.  Similar to NDF, ADF, CP, and 

OM were not different (P ≥ 0.16) between treatments on alfalfa paddocks. 

Discussion  

Despite the fact that the two studies were conducted separately, CP, aNDF and ADF 

content were not affected by the sward heights imposed in this study in either forage.  This could 

be attributed to the small (5 cm difference between the two sward heights for fescue and 10 cm 

difference for alfalfa) or the seasonal influence.  Belesky et al. (1998) studied the nutritive value 

of swards on clipping frequency and concluded that sward growth declined between 3 and 6 

week intervals affecting forage composition and nutrient inputs.  The masticate aNDF from tall 

fescue samples is only slightly less than the aNDF of hand-clipped samples gathered before 

grazing.  This could be a result of animals grazing more desirable plant parts during the first 3 d 

of grazing the individual paddocks.  Alfalfa aNDF in masticate was greater than in hand-clipped 

samples, probably due to rapid fermentation of masticates in rumen and selectivity during the 

first days leaving lower quality forage.  The lack of significant differences in fiber content 

between LSR and SSR in tall fescue and alfalfa could be attributed to the short time frame in 

days of regrowth between treatments leading them to have similar fiber contents.  Stem NDF is 

impacted by the environment (Lamb et al., 2014).  Forage characteristics influence diet 

selectivity and grazing behavior affecting daily nutrients acquisition (Baumont et al., 2000).  The 

CP concentrations from tall fescue masticate were slightly more than from the hand-clipped 

forage samples taken before the study, and can be attributed to short time difference between 
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forage sampling and diet selectivity data collection.  The CP concentration of the alfalfa 

masticate was slightly greater than from the hand-clipped probably due to the difference in days 

between sample collection and masticate collection.  The difference in VFA’s in the present 

study coincide with the ones from Morvay et al. (2010) that VFA may vary largely among diets, 

especially acetate.  

Conclusions 

The objective of this study was to evaluate the effects of two different sward heights on 

diet composition, rumen fermentation, and behavior of calves grazing novel endophyte fescue 

and alfalfa in separate experiments.  Ammonia concentration and total VFA were the only 

observed differences in tall fescue between forage heights.  Differences in VFA with no 

difference in chemical composition could be attributed to low metabolism and digestion in 

rumen and reticulum.  The expectations were that sward height would influence forage 

composition and therefore influence the ingestive behavior and diet selectivity by calves.  The 

results of the present study did not reflect any differences between the two sward heights and 

further research is needed.  
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Table 1. Forage nutritive value of two different sward heights (LSR and SSR) of tall fescue and 

alfalfa stands before animals were stocked1.  

 

 Tall fescue Alfalfa 

 Treatment   Treatment   

Item2 LSR SSR SEM
3 

P- value LSR SSR SEM P- 

value 

 % of DM   % of DM   

aNDF 54.3 55.8 1.43 0.52 27.7 24.7 1.44 0.24 

ADF  26.2 27.4 0.53 0.21 23.0 21.1 1.82 0.52 

CP 22.5 22.7 6.65 0.84 31.3 32.8 0.75 0.25 

OM 91.7 92.0 0.001 0.07 89.6 89.0 0.001 0.04 
1Initial forage heights were 33 cm and 28 cm for tall fescue LSR and SSR, respectively, and 55 

cm and 45 cm for LSR and SSR for alfalfa, respectively. 
2 aNDF = neutral detergent fiber inclusive of residual ash; ADF = acid detergent fiber; CP = 

crude protein; OM = organic matter percentages. 
3SEM = standard error of the mean.  
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Table 2. Visual observations of cannulated calves grazing long sward regrowth (LSR) or short 

sward regrowth (SSR) in tall fescue and alfalfa pastures1.  

 

 Tall fescue Alfalfa 

 Treatment   Treatment   

Item2 LSR SSR SEM3 P- value LSR SSR SEM P- value 

Grazing/10 min 3.8 4.3 0.34 0.35 2.8 3.0 0.37 0.65 

Bites/10 min 335 308 0.37 0.38 144 130 33.04 0.67 

Ruminating/10 

min 

2.8 2.1 0.34 0.19 0.5 0.5 0.21 0.96 

Lying/10 min 1.5 1.6 0.28 0.78 3.1 3.0 0.49 0.97 

Idling/10 min 1.9 1.9 0.47 0.45 3.7 3.5 0.59 0.75 
1Initial forage heights were 33 cm and 28 cm for tall fescue LSR and SSR, respectively, and 55 

cm and 45 cm for LSR and SSR for alfalfa, respectively. 
2Grazing time activities refer to the number of minutes within a 10-min window around each full 

hour.  Data was collected at each full hour for 10 min per animal. Minute values do not add to 

full 10 min, as below values are averages across all sampling times between 0700 h and 1900 h. 
3SEM = standard error of the mean. 
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Table 3. Rumen fluid concentration from cannulated calves grazing long sward regrowth (LSR) 

or short sward regrowth (SSR) in tall fescue and alfalfa pastures1 

 

 Tall fescue Alfalfa 

 Treatment   Treatment   

Item2 LSR SSR SEM3 P- 

value 

LSR SSR SE

M 

P- 

value 

Ammonia/mM 28.1 31.8 1.36 0.03 49.7 43.7 6.68 0.11 

VFA/mM 71.8 80.5 5.22 0.01 125 118 9.54 0.63 

Acetic acid/mM 47.6 52.4 3.68 0.01 74.1 71.2 5.65 0.72 

Propionic acid/ mM 12.1 13.8 0.89 0.05 25.7 24.1 1.68 0.52 

Isobutyric acid/ mM 1.1 1.2 0.04 <0.01 2.2 1.1 0.17 0.62 

Butyric acid/ mM 8.6 10.1 0.56 0.01 17.6 16.1 1.56 0.52 

Isovaleric acid/ mM 1.6 1.8 0.08 <0.01 3.1 3.0 0.30 0.75 

Valeric acid/ mM 1.0 1.1 0.06 0.04 2.3 2.2 0.22 0.55 

pH 6.8 6.6 0.09 0.06 5.7 5.9 0.10 0.03 
1Initial forage heights were 33 cm and 28 cm for tall fescue LSR and SSR, respectively, and 55 

cm and 45 cm for LSR and SSR alfalfa, respectively. 

2Rumen fermentation values are averages across all sampling times between 0700 h and 1900 h 

(every 2 hours). 
3SEM = standard error of the mean. 
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Table 4. Diet selectivity by cannulated steers grazing long sward regrowth or short sward 

regrowth in tall fescue and alfalfa pastures1. 

 

 Tall fescue Alfalfa 

 Treatment   Treatment   

Item2 LSR SSR SEM3 P- 

value 

LSR SSR SEM P- 

value 

 % of DM   % of 

DM 

   % of 

DM 

aNDF 51.2 54.3 1.14 0.11 30.9 36.1 3.94 0.47 

ADF 24.1 24.8 0.61 0.83 25.1 31.1 5.13 0.51 

CP 25.6 26.2 0.60 0.52 24.7 23.7 2.47 0.81 

OM 88.9 88.9 0.003 0.99 84.1 78.2 0.02 0.16 
1Initial forage heights were 33 cm and 28 cm for tall fescue LSR and SSR, respectively, and 55 

cm and 45 cm for LSR and SSR alfalfa, respectively. 

2 aNDF = neutral detergent fiber inclusive of residual ash; ADF = acid detergent fiber; CP = 

crude protein; OM = organic matter percentages. 

3SEM = standard error of the mean.  
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CHAPTER VI 

CONCLUSION 

In steers grazing tall fescue pastures that contain the toxic endophyte (E+) fungus, 

management strategies may alleviate toxicosis caused by different levels of the ergot alkaloid 

ergovaline.  Average daily gain increased when a cumulative management that included an 

implant, ionophore and supplemental feed were offered.  Conversely, in when only mineral 

supplementation was offered, steer weight gains responded negatively to increasing levels of 

ergovaline in the pasture.  Motion activity by steers while on pastures with varying levels of 

toxicity, may or may not be reduced depending on the extra management strategies imposed.  

Displacement and number of steps daily increased by about 20% in steers under a combined 

management strategy.  Lying bouts decreased when toxicity levels increased. 

Forage sward heights influence diet selectivity because animals need to graze enough to 

acquire their daily nutrient requirements.  Thus, grazing strategies need to be developed 

strategically throughout the grazing period.  In the present study, no differences were observed in 

diet selection, rumen fermentation and behavioral grazing activities by calves grazing different 

sward heights in alfalfa and in tall fescue pastures, but this is likely because differences in sward 

height were not great enough to elicit a response.  It is also possible that animal to animal 

variability was too great to elicit response differences.  
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CHAPTER VIII 

APPENDIX 
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