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ABSTRACT

Immense amounts of data are collected following earthquake disasters. Yet, it remains

unclear how researchers’ might take full advantage of diverse post-disaster datasets. Using data

from the 2015 Gorkha Nepal earthquake, this dissertation explores three ways in which post-

disaster survey and assessment datasets can be used to inform models of seismic risk, vulnera-

bility, and recovery processes. The first article presents an empirical analysis of scale issues in

disaster vulnerability indices using a novel dataset of 750,000 households. This study finds that

using aggregated household data to create social vulnerability indices can produce results that

are meaningfully different from equivalent indices produced directly with household-level data.

These results inform future development of vulnerability indices. The second article develops a

Bayesian item-response theory modeling framework for estimating household-level reconstruc-

tion behavior from reconstruction progress surveys. This study provides a new way to quantita-

tively assess earthquake recovery, with results showing large differences in reconstruction prob-

abilities among different levels of aid receipt, household willingness to commit additional re-

sources, and geographic location. The final article uses engineering damage assessment data to

develop a model for spatially interpolating geolocated clusters of rapid damage assessments onto

a high-resolution grid. Incorporating ground truthed data significantly improves existing rapid

estimates for completely damaged buildings and is feasible with the current scope of rapid dam-

age assessment collection. Together, these contributions cast a vision for an improved disaster

modeling ecosystem that more effectively integrates novel post-disaster data streams.
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1: INTRODUCTION

1.1 Motivation

Statistical models of earthquake outcomes are crucial elements of disaster risk reduction

(DRR) and management in seismically active areas. Spanning a wide range of subject matter

from hazards to vulnerabilities, models formalize existing knowledge on the factors affecting

earthquake impacts in order to mitigate losses in future events. One of the longstanding chal-

lenges in earthquake modeling efforts is the effective organization and synthesis of relatively

sparse data sets (Kessler and Hendrix, 2009, Zhang et al., 2015, Li et al., 2019). Given that earth-

quakes occur infrequently, the number of relevant datasets in any given area has historically been

limited. As a result, the types of approaches typically seen in DRR studies—vulnerability in-

dices, perception surveys, and empirical damage models to name a few—are tailored to work

with data that is consistently available across multiple events. While favoring incremental devel-

opment and validation of existing models is not problematic in itself, there is a significant lack of

research analyzing how new data streams should be integrated into existing modeling efforts.

In recent years, the amounts of data collected in the wake of earthquake disasters has sky-

rocketed on the backs of crowd-sourcing efforts, data-driven development aid initiatives, and

the broader open data movement (Amin and Goldstein, 2008, Goodchild and Glennon, 2010, Li

et al., 2019). Furthermore, these new streams of post-disaster data are increasingly made openly

available through data repositories like the Humanitarian Data Exchange and ReliefWeb. In the-

ory, a robust set of open data provides the necessary platform for researchers to innovate on dis-

aster models. However, coordination among data-producers is limited, leading to a collection of

heterogeneous, geographically distributed, and thematically variable datasets with multiple for-
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mats and standards. Initiatives like the Humanitarian Exchange Language” (Kessler and Hendrix,

2009) are attempting to provide some standardization and interoperability of various datasets by

providing common data ‘tags’, but adoption is limited and the tags only benefit certain types

of datasets. As it currently stands, the open-data movement offers a promising vision for future

DRR research, but the roadmap for implementation remains unclear (Li et al., 2019).

This dissertation targets this shortcoming by providing three clear examples of how dif-

ferent types of post-disaster data can inform statistical models across the DRR spectrum, includ-

ing social vulnerability assessment, recovery monitoring, and rapid impact evaluation. All three

chapters focus on the 2015 Gorkha, Nepal Earthquake, an event that exemplifies the new types of

data streams that are becoming openly available. The philosophy underlying this dissertation is

one of supporting the innovation or adaption of methods to handle new data rather than attempt-

ing to adapt specific datasets to work with existing methods. The contributions are in no way in-

tended to supplant existing methods or stand alone as a complete framework, but rather to jointly

and independently offer a promising new set of pathways for disaster modeling. For this reason,

the thematic scope of the dissertation is kept intentionally broad, mirroring one of the four main

priorities of the 2015 Sendai Framework for Disaster Risk Reduction in “Understanding all areas

of disaster risk, including ”vulnerability, capacity, exposure of persons and assets, hazard charac-

teristics and the environment,” (UNDRR, 2015).

1.2 Scope and organization of contributions

This dissertation covers three distinct concentrations within disaster risk reduction: social

vulnerability, reconstruction, and rapid impact assessment. However, all three chapters have the

unified goal of using novel post-disaster data sets to improve the types of statistical models used
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in disaster risk reduction research. To increase cohesion between the different models and topics

discussed in each chapter, all three studies utilize data from the 2015 Gorkha, Nepal Earthquake.

Any background and contextual information presented henceforth is generally applicable to all

three studies.

Several guiding principles underlie the model development process used in this disserta-

tion. These principles provide a consistent set of objectives for all chapters and specify the types

of model improvements prioritized in this research. The principles are listed as follows:

1. Prioritize disaggregated results:

Earthquake risks and vulnerabilities are often analyzed at aggregated scales. While there

certain situations where aggregated statistics may be preferable, more often than not the use

of aggregated statistics is simply a matter of data availability. Relying on aggregated data

can mask or bias results when the phenomena of interest operates at a finer scale than the

unit of analysis. Emergency response activities, mitigation efforts, and reconstruction pro-

grams all ideally target specific individuals, households, or communities, but capturing de-

tailed variability at these scales is challenging due to data or resource constraints. All of the

studies in this dissertation focus on using large, geographically distributed household-level

or equivalent datasets to improve the resolution at which disaster processes are modeled.

2. Account for spatial variability:

Earthquakes affect large and diverse geographic areas. While many elements of emergency

response and reconstruction planning are funneled through centralized authorities, most ev-

idence points to strong heterogeneities in disaster impacts. Although many areas of rural

Nepal are physiographically similar, there are distinct differences among cultural histories
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and the impact of dynamic social processes like urbanization and labor migration. There-

fore, it is important to consider potential spatial variations among both environmental and

social components of disaster processes. All present analyses incorporate spatial effects

when relevant, including accounting for spatial autocorrelations in damage levels and mod-

eling geographic variability in disaster aid receipt.

3. Explicitly address uncertainty:

There are numerous sources of uncertainty within earthquake hazard, risk, and vulnerabil-

ity models. From ground motion measurement to survey collection and construct reliabil-

ity, disaster risk management is an exercise in decision making under uncertainty. Rather

than mask any assumptions in the modeling process, all of the work in this dissertation at-

tempts to directly account for and visualize uncertainties. This goal takes several on dif-

ferent forms across the three chapters, including running simulation studies, comparing

multiple hypothesis, and using Bayesian statistical frameworks that include full uncertainty

estimates on model parameters. Additionally, several chapters highlight the current state

of uncertainty representation (or lack there of) in existing model designs and offer tangible

pathways for improvement.

This rest of this report is organized into three primary chapters, each consisting of a self-

contained manuscript with appropriate background, analysis, discussions, and conclusions. Chap-

ter one covers social vulnerability and uses household-level socio-economic data to address scale-

related issues in index-based methodologies. Chapter two focuses on reconstruction and recovery,

developing a model for analyzing reconstruction-related behaviors from household livelihood and

perception surveys. Chapter three addresses impact modeling, using damage assessment data to

4



validate an alternative spatial modeling approach for early-estimation of structural damages. To-

gether, the three chapters cast a vision for an improved disaster modeling ecosystem that more

effectively integrates novel post-disaster data streams. A brief overview of the Gorkha Earth-

quake is provided below followed by a summary of motivations and primary research objectives

for each chapter.

1.2.1 The 2015 Gorkha, Nepal Earthquake

Situated in the middle of the Himalayan mountain belt, Nepal is one of the most earth-

quake prone countries in the world (Dangal, 2011), experiencing at least one deadly earthquake

per century over Nepal’s recorded history. This dissertation focuses on the most recent earth-

quake, a magnitude 7.8 (Mw) event striking central Nepal on April 25, 2015. Several large af-

tershocks followed the main rupture including a magnitude 7.3 (Mw) event on May 12 occur-

ring further east of the mainshock. The primary shallow thrust rupture initiated in the district

of Gorkha and propagated eastward towards the Kathmandu valley, causing extensive damage

across Nepal’s hill and mountain districts. According to official statistics, the Gorkha earthquake

resulted in 8686 deaths, 22300 injuries, and left 2.2 million people homeless (Government of

Nepal, 2015). The earthquake also significantly damaged infrastructure, fully destroying over

500,000 houses and partially affecting another 250,000+ (Government of Nepal, 2015). Total

estimated economic damages are approximately 10 billion USD, roughly 50% of Nepal’s gross

domestic product (Joshi and Joshi, 2018).

Thirty-one of Nepals 75 districts were designated as earthquake-affected by the Nepali

government. Of the 31 districts, fourteen were designated as highly affected: eleven rural districts

and the three districts comprising the Kathmandu Valley. The highly affected districts comprise
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the study region for all three chapters, with two chapters focusing just on the eleven rural dis-

tricts. Most of the damage was spread across Nepal’s hill and mountain regions, where tradition-

ally constructed stone and mud structures account for 50% of all buildings, with totals reaching

closer to 80%-90% in rural areas. Field reconnaissance surveys found buildings constructed on

ridges to be more severely affected than those constructed on shallow slopes (Parajuli and Kyono,

2015). Contrary to expectations, most of the structures in the Kathmandu Valley performed rel-

atively well during the earthquake due to a lack of resonance effects between the dominate low

frequency ground motions and the high natural frequencies of the predominate building types in

the area (Parajuli and Kyono, 2015, Rai et al., 2016). Damage patterns in the valley were highly

clustered, suggesting potential site amplification or localized failures to enforce seismic building

codes (Goda et al., 2015).

Nepal’s recovery from the Gorkha Earthquake has been slow and contentious. The first

year of post-disaster relief and recovery activities was situated against a contentious political

background that delayed recovery activities (Comfort and Joshi, 2017). The National Reconstruc-

tion Authority (NRA)—the governing body designated to oversee the reconstruction process—

was established by political ordinance in late June of 2015, but the associated bill failed to pass

Parliament in August and the NRA was subsequently dissolved. It took several months before the

NRA was reestablished on December 25, 2015, eight months after the earthquake. This intermit-

tent period was characterized by political unrest and transition related to Nepal’s proposed new

Constitution that outlined a new federal structure and administrative boundaries. The Constitu-

tion was formally approved in September despite fierce protests and boundary disputes from the

Madhesi people, one of Nepal’s largest ethnic groups living primarily in the Terai Region border-

ing India. Imports to Nepal from India were dramatically reduced during this period in an alleged
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unofficial Indian blockade. Border issues and extreme fuel shortages continued through March of

2016, severely impacting the Nepali economy and further delaying reconstruction activities. In

May of 2016, the Post Disaster Recovery Framework was published and recovery work formally

started (Government of Nepal, 2016).

1.2.2 Chapter 2: Addressing scale issues in social vulnerability indices

Social science research has uncovered many ways in which individuals, communities,

and societies are differentially impacted by earthquake events. These differences, broadly termed

vulnerabilities if positively associated with more severe impacts or coping capacities if negatively

associated with impacts, focus not only on physically unsafe conditions, but also on the larger

systems, policies, and social conditions that evolve such conditions in the first place (Cutter et al.,

2003, Wisner et al., 2004, Thomas et al., 2013). As a result, the scope of vulnerability research is

quite broad—a feature that has supported multiple divergent research directions but limited clear

consensus building.

The alignment of theory with empirical evidence is a longstanding issue in social vulner-

ability modeling. Social vulnerability research has its roots in qualitative, localized case stud-

ies that sought to understand the context-specific factors contributing to adverse disaster im-

pacts (Cutter et al., 2003, Schmidtlein et al., 2008). A focus on people—individuals, households,

and communities—is a central theme in seminal vulnerability texts. However, the past several

decades have seen marked increases in the number of national or sub-national scale social vulner-

ability indices (Khazai et al., 2014, Beccari, 2016). In theory, areal indices offer generalized, spa-

tially comparable metrics that can meaningfully supplement physical hazard models (Tate, 2012,

2013). However, it is not currently clear whether the characteristics derived from local qualitative
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research generalize well to aggregated scales.

The first chapter of this dissertation contributes to this alignment discussion by providing

an empirical analysis of the consistency of social vulnerability components between household

and aggregated scales. Somewhat surprisingly, there is no consistent rationale for variable inclu-

sion in social vulnerability indices and the assumptions underlying variable selection are rarely

articulated (Beccari, 2016). Many vulnerability indices include aggregated measures of house-

hold characteristics on the basis that it seems reasonable to assume that factors relevant to house-

hold vulnerabilities (e.g. age, gender, poverty, disability status) are equally relevant in aggregate

(Schmidtlein et al., 2008). This study challenges this assumption, using a complete set of house-

hold level micro-data (750,000+ households) collected after the Gorkha Earthquake to show that

social vulnerability dimensions estimated from household-level data are different from those es-

timated at areal scales—using otherwise identical data. The implications of these qualitative and

quantitative differences between household and aggregated scales are discussed both in the con-

text of Nepal and for social vulnerability indices at large.

1.2.3 Chapter 3: Developing a modeling framework for household reconstruction behavior

In recent earthquakes, reconstruction frameworks have increasingly shifted towards favor-

ing ‘owner-driven’ approaches where greater decision making authority is given to local actors

(World Bank, 2015). Macro-level reconstruction standards and policies are still organized by a

centralized authority, but individual households are largely free to make their own reconstruction

decisions. Nepal’s reconstruction framework is no exception, explicitly incorporating many prin-

ciples of ‘owner-driven’ reconstruction (Government of Nepal, 2016). One of the key elements

of the framework is the Rural Housing Reconstruction and Recovery Program (HRRP), a multi-
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phase, multi-stakeholder project aimed at providing the support necessary to guide the ‘owner-

driven’ reconstruction process. Eligible households are entitled to financial support in the form of

a NPR 300,000 three tranche grant ($̃3000 USD) and other social and technical support mecha-

nisms contingent upon certain stipulations including payment structure, construction standards,

and grievance redress procedures.

Owner-driven reconstruction frameworks are motivated by a ‘local solutions to local

problems’ mindset and the notion that providing local communities ownership over the recon-

struction process leads to stronger recovery outcomes (Mishra et al., 2017). Despite these inten-

tions, perceptions vary over the extent to which local realities have matched these goals (Daly

et al., 2017, Hall et al., 2017, Mishra et al., 2017, Bownas and Bishokarma, 2018, He et al., 2018).

In Nepal, only a fraction of municipalities have received the full range of social and technical as-

sistance, leading to key shortages in the provision of engineering consultations necessary to ver-

ify reconstruction progress. The grant dispersal agreement requires that certain stages of recon-

struction progress be verified as adhering either to specific building designs or to the minimum

standards of Nepal’s National Building Code prior to disbursement of the 2nd and 3rd tranches.

As a result, household decisions to start the reconstruction process are technically ‘owner-driven’,

but potentially contingent upon certain types of aid receipt.

While aid distribution statistics are tracked, no previous research has attempted to model

how aid receipt and other factors contribute to actual household-level decision making. Build-

ing upon item-response theory models from health geography that use survey responses to esti-

mates of behavioral action (Alegana et al., 2017, 2018), this chapter develops a Bayesian model-

ing framework for understanding household-level reconstruction behavior. The key contribution

lies in linking estimates of latent household-level reconstruction ability to survey item param-
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eters that allow reconstruction probabilities to vary geographically. Just under 6,000 responses

from post-earthquake reconstruction perception and livelihood needs surveys are used to fit the

item-response theory model. This chapter’s findings show the importance of engineer availability

and indicate that households that are able and willing to commit their own resources to recon-

struction receive significantly larger benefits from government provided assistance compared to

other households. Providing robust, quantitative descriptions of these differences is an important

contribution for reconstruction progress monitoring and better understanding how to achieve eq-

uitable aid distribution in owner-driven systems.

1.2.4 Chapter 4: Improving modeled damage estimates with geolocated cluster data

Accurately determining the severity, extent, and location of severe damage is a key chal-

lenge following major earthquake activity (Goodchild and Glennon, 2010, Erdik et al., 2011,

Lallemant et al., 2017). Although remotely sensed imagery and eye-witness reports provide some

early indication of damage levels, spatially consistent assessments of damage remain limited.

Consequently, rapidly modeled damage estimates that rely on ground motion and building fragility

estimates often serve as the best available source of event-level impact despite their limitations

(Lallemant et al., 2017). These types of damage models are generally accurate for ‘order-of-

magnitude’ estimates, but struggle to capture spatial damage variability, often due to limitations

in input data (Erdik et al., 2011, Jaiswal et al., 2011). Averaging shaking intensities and housing

data across large areas neglects local ground motion variability and differences in collapse proba-

bilities among different housing typologies.

Improving the rapid damage models is important because their results inform requests

for international aid. The 2008 Joint Declaration on Post-Crisis Assessments and Recovery Plan-
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ning, signed by the European Commission, United Nations, and World Bank, details a common

process by which disaster impacts are evaluated and recovery assistance is mobilized. Central to

this process is the creation of a multi-sectoral damage and needs assessments. However, as Lalle-

mant et al. (2017) notes, the timeline required to deliver the Post Disaster Needs Assessment is

too short (∼ 1 month) to fully survey event damages and PDNAs often end up based on ad-hoc

collection, analysis, and extrapolation of available data. In the weeks following the Gorkha Earth-

quake, over 60,000 rapid field damage assessments were collected by teams of trained engineers,

yet this information was not used in the damage estimates calculated for the PDNA. Instead, each

affected district was assigned an shaking intensity and housing counts for four different building

typologies and fragility curves were used to estimate the number of partially collapsed and totally

collapsed houses per building type (Government of Nepal, 2015). These estimates suggested that

upwards of 90% of residential structures were completely destroyed across eleven priority dis-

tricts. While these figures were met with skepticism, they were considered the ‘best-available’

event-level statistics available (Lallemant et al., 2017).

The third chapter evaluates an alternative modeling strategy for estimating earthquake

damage that takes advantage of rapidly available field damage assessments. This approach lever-

ages recent computational strategies for spatial modeling that would have previously been in-

tractable (Rue et al., 2009, Lindgren et al., 2011). Instead of relying on fragility curves and areal

shaking estimates, the proposed approach models the statistical relationship between gridded co-

variates and ground-truthed damage states at geolocated survey clusters. These correlations are

combined with estimates of spatial autocorrelation to interpolate damage and uncertainty esti-

mates onto a uniform prediction grid. Model predictions with varying number of simulated sur-

vey clusters are validated against a complete set of damage data collected further along into the

11



reconstruction process. Results show improved predictive capacity with more spatial resolution in

comparison to more standard damage estimation procedures—a promising step towards improv-

ing damage modeling capacities in the pre-PDNA timeframe.
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2: AN EMPIRICAL ANALYSIS INTO THE CONSISTENCY OF

SOCIAL-VULNERABILITY COMPONENTS ACROSS MULTIPLE SCALES

This chapter corresponds to the following published paper: Wilson, B.S. (2019), Overrun by av-

erages: an empirical analysis into the consistency of social-vulnerability components across mul-

tiple scales, International Journal of Disaster Risk Reduction, 40.

2.1 Abstract

Social vulnerability indices have become widely accepted as key elements of disaster risk

reduction (DRR) frameworks despite significant conceptual and technical concerns over their cre-

ation. Despite increasingly complex theorization, it remains commonplace to determine vulnera-

bility dimensions by applying principal component or factor analysis on aggregated, sub-national

level statistical data. The primary focus of this paper is in showing that social vulnerability di-

mensions derived from aggregate statistics may not be consistent with those derived at the house-

hold level. I first provide empirical support for this problem using household level micro-data

from Nepal, then illustrate how differences in determined dimensions impact composite index

creation at both household and regional levels. I show that qualitative differences in index com-

ponents are not required to produce large magnitude changes or sign reversals in index scores.

These findings raise questions over whether regional vulnerability components can be sufficiently

represented with household characteristics. These results reiterate the necessity of addressing is-

sues of scale in the development of empirical social vulnerability indicators.

Keywords: Social vulnerability, Vulnerability indicators, Ecological fallacy, Disaster risk

reduction, Nepal Earthquake
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2.2 Introduction

Models of social vulnerability are becoming integral components of disaster risk reduc-

tion (DRR) frameworks. These models are important for describing the dynamic social, eco-

nomic, and political factors that contribute to differential disaster impacts (Cutter et al., 2003,

Turner et al., 2003, Wisner et al., 2004, Anbarci et al., 2005, Keefer et al., 2011, Neumayer et al.,

2014). Social vulnerability helps inform an understanding that people living at the margins are

vulnerable not simply because they are more likely to live in substandard housing or are located

in a hazardous area, but also because they might lack access to things like social services and po-

litical representation. These complex, multi-dimensional factors interact and compound over time

to limit the ability of individuals, communities, or societies to prepare for, withstand, and recover

from natural disasters.

Empirical vulnerability analyses in particular have increased in prevalence over the past

several decades as part of larger, multi-disciplinary efforts to jointly model vulnerability and

physical hazards (Khazai et al., 2014, Beccari, 2016). Among empirical studies, the development

of vulnerability indices is far and away the most popular approach. Indices rely on various algo-

rithms to manipulate and aggregate demographic data to describe spatial distributions of potential

vulnerabilities (e.g. Wu et al., 2002, Cutter et al., 2003, Chakraborty et al., 2005, Rygel et al.,

2006, Borden et al., 2007). A recent review found over a hundred published risk, vulnerability,

and resilience indices in the DRR and related literature between 1995 and 2015 (Beccari, 2016).

Despite their relative popularity, vulnerability indices have amassed a fair amount of

skepticism (Barnett et al., 2008). Several broad theoretical frameworks have emerged (Cutter

et al., 2003, Turner et al., 2003, Birkmann, 2007), but a lack of consistency over data sources,
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methods, and scales have made it difficult to synthesize results into general practice. Validating

results has also proved challenging, both internally with respect to index uncertainty and sensi-

tivity (Schmidtlein et al., 2008, Damm, 2010, Tate, 2012, 2013), and externally by comparing

results to independently observed measures of harm (Fekete, 2009, Burton, 2010, Schmidtlein

et al., 2011). Although having a diversity of indices does theoretically provide some benefit for

researchers or end-users looking to tailor an approach to a specific situation, it is not clear if cur-

rent index methods generalize well.

Scale issues, both conceptual and methodological, contribute to the generalization prob-

lem. Although semantics vary, vulnerability almost always is defined as to encompass processes

operating at and across multiple scales (Birkmann, 2007, Fekete et al., 2010). For example, Wis-

ner et al. (2004) describes a progression of vulnerability from diffuse ‘root causes’ operating at

institutional or ideological scales to ‘unsafe conditions’ that manifest at the local scale—all the

way down to the individual level. Identifying relevant variables and their interactions is difficult

across such a wide range of potential scales, let alone tracing chains of casual explanation (Wis-

ner et al., 2004). As vulnerability theories are transformed into conceptual models or quantified

with empirical methods, these complex notions of scale hierarchies are often lost (Fekete et al.,

2010). Previous vulnerability research has come a long ways in identifying different qualitative

drivers of vulnerabilities, but there remains a wide range of perspectives over how to best trans-

form available empirical data into adequate representations of complex, multidimensional pro-

cesses.

One of the key methodological challenges in index development is selecting indicator

variables to represent underlying vulnerabilities. Early vulnerability indices, including the orig-

inal Cutter et al. (2003) SoVI, predominately relied on local-scale qualitative research to inform
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variable inclusion. Many of these household or individual level characteristics are now firmly

embedded in empirical vulnerability theory as a result of several decades of incremental develop-

ments on top of these early indices Phillips et al. (2013). It remains common to justify particular

index variables on the basis of previous inclusion in other indices (Beccari, 2016). While it seems

reasonable to assume that some of the latent characteristics relevant to households or individuals

are also relevant to communities or societies, there is a notable lack of research evaluating the sta-

tistical practices associated with such generalizations. Existing sensitivity and uncertainty analy-

ses (e.g. Jones and Andrey, 2007, Schmidtlein et al., 2008, Tate, 2012, 2013) have examined a va-

riety of index construction steps, including scale specification, but few consider local, household,

or individual scales. As a result, the consistency of vulnerability index results between household

and other areal scales is still largely unknown.

Using a novel micro-data set from Nepal, this paper aims to empirically evaluate the con-

sistency of vulnerability index results produced at both aggregated and disaggregated scales. This

methodological analysis probes into the question of whether vulnerability index results produced

with aggregated data adequately represent vulnerabilities of the corresponding households. Fo-

cus is placed on variables that are commonly used in both household and regional analyses. To-

wards this goal, the rest of this paper is organized as follows. Section 2 provides a more detailed

overview of aggregation problems and their relevance to modeling vulnerability, both conceptu-

ally and methodologically. Section 3 provides a basic context of the study area and additional ra-

tionale for the specific choice of micro-data set. In Sections 4 and 5, I outline a general inductive

index approach for comparing vulnerability scores between household and regional levels and

provide the corresponding results. Section 6 contains a more detailed discussion of results, cen-

tering mostly around implications for further aligning empirical vulnerability methods with un-
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derlying vulnerability theory—an active discussion in vulnerability literature (Rashed and Weeks,

2003, Birkmann, 2007, Barnett et al., 2008, Tate, 2013).

2.3 Aggregation issues in vulnerability indices

The empirical concerns related to analysis scale are often described as aggregation or

modifiable areal unit problems. In areal analyses, the relationships between variables are sen-

sitive to aggregation scale, method, and boundaries (Clark and Avery, 1976, Openshaw, 1983).

As a result, variable associations among aggregated populations are not necessarily consistent

with those in the corresponding disaggregated subpopulations. Differences can range from small

changes in association magnitude to sign reversal in extreme cases—a phenomena known as

Simpson’s Paradox. Therefore, it is often recommended that results are interpreted only at the

scale(s) at which the analysis was performed. Common violations of this principle include the

ecological fallacy (Robinson, 1950), where conclusions about individuals are derived from group

analyses, and the individualistic fallacy, where conclusions about groups are derived solely from

individual analyses (Subramanian et al., 2009). Practically, this means most vulnerability in-

dices are developed at a single scale, despite many formal definitions of vulnerability using scale-

invariant language (e.g. ‘the element at risk’) Beccari (2016).

Although terms like ‘ecological fallacy’ are often referenced in an empirical or statisti-

cal context, they have conceptual corollaries that are more broadly discussed. Birkmann (2007)

refers the issue of ‘contextualization’, or the concern that specific variables can be differentially

relevant in different contexts or at different scales. This both describes the case where certain

data captures a particular concept more comprehensively in one context versus another and the

case where certain indicators are only applicable in a specific context. Fekete et al. (2010) also
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discusses contextualization in a comparison of vulnerability assessments produced at different

scales. In this study, the authors detail the informational and contextual differences between vul-

nerability assessments at local, sub-national, and national scales, reiterating concerns over gener-

alizability and unclear causal relations between scale levels.

Several uncertainty and sensitivity analyses have examined the effects of analysis scale on

areal index results. Tate (2012, 2013) found that social vulnerabilities indices are somewhat sen-

sitive to the choice of scale, although the magnitude of the effect varied by model specification.

Among the three most common vulnerability index designs (deductive, inductive, and hierarchi-

cal), inductive methods were the most sensitive to changes in analysis scale. Schmidtlein et al.

(2008) also included analysis scale in a sensitivity analysis performed on the Social Vulnerabil-

ity Index (SoVI), a prominent inductive index algorithm. The authors found that the algorithm’s

results explain less of the total variance in the data as the scale of analysis decreases, but other-

wise the qualitative interpretation of results remains similar. On the whole, these studies suggest

analysis scale is an important consideration in vulnerability assessments, but the associated sensi-

tivities are relatively modest. Importantly, however, these particular analyses only consider U.S.

census block groups and census tracts as potential analysis scales. The differences between ag-

gregated and disaggregated index results remain under-explored.

It has been suggested that an idealized vulnerability assessment would a detailed qualita-

tive identification of vulnerability drivers and selection of variables accordingly (Phillips et al.,

2013, Tate, 2013). However, evidence from Beccari (2016) indicates this practice is not the norm.

Among 106 reviewed methodologies, variable inclusion in other indices and data availability

were common reasons for variable selection. While there is nothing inherently wrong about using

similar indicators between studies, it can be problematic to assume that data sources or variables

18



from one study show statistically similar trends in another context. There is a crucial difference

between the proxy variables used in vulnerability assessments and the underlying constructs they

represent. The data used in vulnerability assessments are indicative rather than absolute repre-

sentations of constructs. However, few studies consider the measurement reliability of specific

data sources, particularly with respect to scale. As Schmidtlein et al. (2008) notes, the relation-

ship between aggregated and disaggregated measures of the same construct are often unknown.

Thus, although it seems sensible to assume similar trends across scales, the potential implications

of aggregation problems need to be considered—especially given the long-standing theoretical

importance of household-level characteristics to vulnerability research.

2.4 Study Area & Data

This study uses micro-data from Nepal’s Household Registration for Housing Reconstruc-

tion Survey (HRHRP). The HRHRP survey, led by Nepals Central Bureau of Statistics with sup-

port from the Ministry of Foreign Affairs and Local Development and National Reconstruction

Authority, was designed to collect structural engineering and socio-economic information for

households affected by the 2015 Nepal earthquake (also called the Gorkha earthquake) (Ghimire,

2016 (accessed October 7, 2018). The Gorkha earthquake had severe impacts across rural Nepal,

destroying over 500,000 buildings, displacing 2.6 million individuals (NSET, 2015). Several

post-disaster case studies have pointed to social vulnerabilities as a key factor in understanding

the impacts of the Gorkha earthquake and associated recovery processes (DeYoung and Penta,

2017, He et al., 2018, Shapira et al., 2018).

Phase I of the HRHRP survey covers the study region, and was implemented using a

census model where the household(s) associated with every residential building in the 11 most
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severely-affected rural districts (Figure 2.1) were surveyed regardless of the level of earthquake

damage or household grant eligibility. The 11 included districts cover all of the rural priority af-

fected districts by the Government of Nepal. Thus, this data provides a unique set of non-sampled

household-level data for rural Nepal, regions where mountainous terrain and poor road connectiv-

ity have historically made it difficult to collect data at scale. This is not unlike other countries,

where detailed socio-demographic data is often limited in scope to a relatively small number of

locations. That said, the HRHRP data is somewhat limited in categorical scope compared to more

traditional census data. For this study, eleven household-level variables (see Appendix A) are

used in the analysis. This is fewer variables compared to other indices, but most common the-

oretical constructs are represented, including gender, poverty, age, education, family structure,

disability status, and migration.

In Nepal, many of the common indicators used in vulnerability assessments are linked

to the country’s transitional social landscapes (Gentle and Maraseni, 2012, Jaquet et al., 2016,

Mainali and Pricope, 2017, He et al., 2018). Nepal is the least urbanized country in South Asia,

but is rapidly urbanizing. As a result, both domestic and international migration have become im-

portant features of Nepali society. Domestic migration includes both ‘push migrants’ displaced

by natural disasters, civil conflict, lack of job opportunities, or poor public services, and those

searching for better economic or educational opportunities (Fafchamps and Shilpi, 2009). Inter-

national migration is dominated by labor migration (Muzzini and Aparicio, 2013). Nepal has one

of the highest labor exportation rates in the world and ranks third globally for remittance income

proportion of gross domestic product (30%). From 2001 to 2011 alone, Nepals absentee popula-

tion increased from 760,000 to 1.9 million individuals, increasing the national absent population

percentage to over 7% percent (Muzzini and Aparicio, 2013).
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Figure 2.1: Location of the eleven rural districts included in the Nepal’s HRHRP Phase
I survey dataset. Data for the Kathmandu Valley is not included in the open dataset because of
differences in sampling methodology.

Migration has had cascading effects on the demographic and social structures present

in many rural communities. Although a ban on women’s labor migration was partially lifted in

2002, outmigrants remain overwhelmingly young and male (90%) (Thieme and Wyss, 2005). In

addition to skewing demographic distributions, a gender and age-related shift away from agri-

cultural livelihoods towards remittance livelihoods has feminized Nepal’s agricultural sector and

contributed to increased land abandonment (Gartaula et al., 2012, Tamang et al., 2014, Paudel

et al., 2014, Jaquet et al., 2016). This has placed greater responsibility on female and elderly

household heads and has been linked to changes in land management and agricultural decision

making. There is also some evidence that these types of social changes may exacerbate poverty
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and contribute to spatial inequalities between sustenance farmers on degraded land and those who

have migrated to urban areas (Sunam and McCarthy, 2016). Thus, although fewer total variables

are present in the HRHRP micro-data, the available socio-demographic variables (gender, age,

migration, family structure, etc.) are likely reflective of the predominate social characteristics in

the study area.

The HRHRP micro-data tables were downloaded from the 2015 Nepal Earthquake Open

Data Portal ([dataset] Kathmandu Living Labs). These include data for both households and in-

dividuals, with the individual records nested in a corresponding household. For this analysis, the

individual records were processed to add several household level variables (household size, per-

cent of household physically present, outmigration presence, presence of children/elderly, disabil-

ity presence). Additionally, each variable was numerically coded and re-leveled such that increas-

ing values are directionally associated with increasing social vulnerability in a matter consistent

with previously published associations. This ensures that the individual components are not can-

celing each other out in composite score calculations. After processing the data and removing

incomplete records (.01% of total), the data covers 741,067 households in 110 municipalities

across 11 districts. Survey data for the Kathmandu Valley (Kathmandu, Bhaktapur, Lalitpur) is

not included in the open-data because of differences in sampling methodology.

2.5 Methods

The overarching goal of this paper is to empirically analyze the underlying aggregation is-

sues present in vulnerability indices. To these ends, this paper uses household level micro-data to

evaluate the consistency of social vulnerability index scores estimated using a principal compo-

nent analysis (PCA) based inductive model structure at both household and municipality levels.
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This process involves applying PCA to both the household micro-data and municipality-upscaled

equivalents to determine vulnerability components and associated variable loadings. These load-

ing schemes are then used to compare composite vulnerability scores calculated in several ways

at both household and municipality levels. An inductive index design was selected because the

process of dimension identification step is governed by statistical techniques rather than choices

made by the index designer. This decision does not guarantee more accurate or reliable results

compared to other models, but it does provide an algorithm that is both applicable and intuitive

to use at both household and regional levels. Additionally, previous sensitivity analysis research

highlighted inductive approaches as the most sensitive model structure with respect to analysis

scale (Tate, 2012), making them a prime candidate for further study. It is worth emphasizing here

that the focus of this paper is methodological—it is not intended to be vulnerability assessment.

While every attempt has been made to use relevant data and simulate a realistic index design pro-

cess, the social vulnerability ‘scores’ presented here are not intended for use in an applied setting.

2.5.1 Comparing inductive component consistency

The inductive approach adopted for this study uses principal component analysis (PCA)

to reduce a set of variables into linearly uncorrelated components that serve as proxies for vul-

nerability dimensions. In general, for a given n-by-k data matrix X with row vectors xi for i =

1, ...,n, PCA uses a set of k-dimensional weight vectors wf = (w1, ...,wk) to produce modified

row vectors yi = (y1, ...yg) where y f = wf · xi for i = 1, ...,n and f = 1, ...,g. The weight vectors

are defined such that the maximal variance of X is explained while each component y f is orthog-

onal to all previous components.

This basic framework is used to determine the individual components and associated vari-
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able weights for both the household and municipality levels. Given a set of khousehold-level

variables for N households distributed in m areal units, two data matrices are defined: a N-by-k

household data matrix, and a m-by-k̃ aggregate data matrix where k̃ are the municipality-upscaled

equivalents of k. The upscaled versions are calculated as regional means for each variable. while

it might seem counterintuitive to upscale household-level data as opposed to simply using other

regional data sources, doing so ensures that both levels are more directly comparable.

Performing PCAs on each these data matrices produces unique components and weight-

ing vectors wfh and wfm for households and municipalities, respectively. In order to maximize

comparability with previous vulnerability literature, component loadings are calculated with a

Varimax orthogonal rotation and Kaiser normalization. The Varimax rotation improves the inter-

pretability of components by maintaining orthogonality while ensuring that variables are strongly

loaded on a single component and as close to zero as possible on the others. Subsequently, vari-

able loadings are used to contextually interpret each of the components. These component results

are used to determine whether first-order qualitative or quantitative differences between scale lev-

els exist. Some differences are to be expected on the basis of variable correlations increasing with

aggregation level, but large qualitative differences would point to a lack of measurement equiv-

alence between scales. To further facilitate comparison between levels, the correlations between

regionally averaged household component scores are also calculated. These correlations indi-

cate whether uncorrelated household dimensions become interrelated at larger scales (Härnqvist,

1978, Subramanian et al., 2009, Puntscher et al., 2016).
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2.5.2 Regional composite index consistency

In most inductive indices, some number of principal components are combined to form

composite vulnerability scores. In formal terms, the vulnerability index score for some units i =

1, ...,m is defined as a weighted sum of the components above some cutoff threshold:

SVi =
g∗

∑
f=1

s f · y f i (2.1)

where g∗ is the number of retained components and s f is a vector of component weights.

Usually dimensions are equally weighted, but some studies have used the percentage of total vari-

ance explained as a weighting factor instead.

This approach is used to calculate baseline social vulnerability index rankings for each

municipality. Then, an alternative method is implemented where composite scores are first calcu-

lated at the household level (i.e. with weights wfh) and then averaged to regions. The conceptual

idea here is to—quite literally—define a given region’s social vulnerability as the average vulner-

ability of all the households it contains. This is distinct from Eq. (1) in that index components are

uncorrelated between households because the aggregation occurs after the PCA implementation.

As a result, referring to the ‘average household’ in this case is not an instance of the ecological

fallacy. Formally, for some units i = 1, ...,m each with n households, social vulnerability index

scores are given by:

SVi ∼
∑

n
j=1 ∑

g∗
f=1 s f · y f j

n
(2.2)

Both sets of social vulnerability scores are z-score standardized and each municipality
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assigned a rank based on its relative position within each index. These ranks are then compared

with particular focus placed on identifying cases where ranks change significantly or index scores

change sign. Like before, it is expected that there will be some variation in the scores produced

with the two methods—one approach is maximizing variance across municipalities and the other

across households. However, the degree to which this is the case is currently unknown. Evaluat-

ing rank changes provides a mechanism to characterize this particular scale sensitivity, informing

further discussion over the relevance of aggregation issues for vulnerability index interpretation.

2.5.3 Household composite index consistency

A similar rank-change approach is implemented at the household level, leveraging equally

sized weighting vectors. Baseline index scores are first produced for each household (i = 1, ...,N)

using Eq. (1) where y f = wfh · xi. These are compared to alternative scores also calculated using

Eq. (1), but the regional weighting vectors wfm are used such that y f = wfm ·xi. The standardized

scores and ranks for each household are then compared both within municipalities and across the

entire study area. The rationale for swapping weight vectors is to estimate household vulnerabil-

ity scores along the dimensions of maximal variance at the regional level. This is conceptually

similar to the approach taken in the previous section where composite household scores are aver-

aged within regions.

While it is unlikely that this approach would be preferred for an actual household-level

vulnerability assessment, it makes for a useful comparison. For example, it is plausible that max-

imizing variance between regions produces strong conceptual factors that do not arise from the

household analyses but nonetheless are relevant at the household level. In this case, the differ-

ences between composite household scores reflect a household’s relative ranking along different
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dimensions. Alternatively, it is possible that the regional components are simply noisy versions of

the household components. In this situation, the rank differences between composite household

scores are more akin to error measurements. Either way, comparing rank changes at the house-

hold level provides another way to evaluate differences between aggregated and disaggregated

versions of the same data.

2.6 Results

2.6.1 Principal component analysis results

The PCA results at the household level are shown in Table 2.1. Six components are iden-

tified using an eigenvalue threshold of 1.0, capturing 76% of the total variance in the data spread

roughly evenly across all six components. Each of the components has relatively straightforward

interpretations derived from the loading variables, thematically consistent with previous stud-

ies on vulnerability-related themes in Nepal (Gentle and Maraseni, 2012, Muzzini and Aparicio,

2013, Tamang et al., 2014, Dewan, 2015, Jaquet et al., 2016, Mainali and Pricope, 2017). The

components are described as follows:

1. Old Age: Loaded positively by households with elderly household heads or other elderly

family members present in household.

2. Migration: Loaded positively by households with fully present members (lack of internal

migration) and negatively by households with a member living abroad. Affected positively

to a lesser degree by large households.

3. Income-Education: Loaded positively by households with access to a bank account, high

household incomes, and educated household heads.
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4. Children: Loaded positively by households with children (<5 years of age) present. Af-

fected positively to a lesser degree by large households.

5. Female Head of Household (HOH): Loaded extremely strongly by female household

heads. Weakly loaded by large households and household members living abroad.

6. Disability: Loaded almost exclusively by households with one or more disabled member(s)

present.

Table 2.1: Varimax rotated component matrix for PCA of household data.
n=741,067 Component

1 2 3 4 5 6
Gender 0.03 -0.07 -0.04 0.01 0.92 0.00
Income Level -0.02 -0.34 0.67 -0.09 0.10 0.06
Education Level 0.47 0.13 0.65 -0.02 -0.23 0.03
Size of Household 0.13 0.59 0.03 0.53 0.32 0.09
Bank Account -0.02 0.04 0.81 0.08 -0.02 -0.03
Household Head Age 0.84 0.10 0.17 -0.20 0.10 0.02
Members Abroad 0.02 -0.70 0.05 -0.11 0.33 0.02
Household Presence -0.01 0.83 -0.07 -0.24 0.07 -0.00
Disabilities 0.04 0.01 0.02 0.00 0.01 1.00
Children Presence -0.14 -0.09 0.00 0.91 -0.04 -0.02
Elderly Presence 0.85 -0.09 -0.07 0.05 -0.01 0.02
Variance Explained (%) 15 15 14 11 10 9
Cumulative Variance Explained (%) 15 31 45 56 67 76
Bolded values values > 0.5

The Pearson’s correlation coefficients between the household components aggregated to

Nepal’s municipality and district levels are shown in Figure 2.2. These associations highlight the

specific dimensions along which household components become correlated at aggregated levels.

Although the effect sizes are difficult to compare across scale levels, some general trends emerge.

At the municipality level, regional correlations are most evident for the income-education and old

age dimensions. Income-education becomes positively correlated with the children and female
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Figure 2.2: Pearson’s correlation coefficient of household component scores averaged to
municipality and district boundaries.

head of household dimensions while old age becomes moderately correlated with migration and

income dimensions. At the district level, almost all of the dimensions become correlated to some

degree, suggesting that household components (with the exception of disability status) would be

difficult to extract from district-level analyses.

The PCA results at the municipality level are shown in Table 2.2, with six components ex-

plaining 89% of the variance in the data. Considering the strongest variable loadings, the compo-

nents are in large part qualitatively similar to those at the household level (Table 2.2). However,

there are quite a few smaller changes in variable loadings, explained by the component correla-

tions in Figure 2.2. For example, household presence transitions from strongly loading the migra-

tion dimension in the household results to weakly loading several dimensions in the municipality

results. Similarly, presence of children has zero contribution to the income-education dimension

at the household level compared to a 0.3 loading at the municipality level. It is not clear, given
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the extent of these small differences, whether the municipality and household components should

be considered equivalent.

Table 2.2: Varimax rotated component matrix for PCA of municipality data.
n=110 Component

1 2 3 4 5 6
Gender -0.13 0.10 0.08 0.20 0.92 0.09
Income Level -0.04 0.74 0.27 0.26 0.01 0.36
Education Level -0.09 0.62 0.40 -0.36 0.31 -0.06
Size of Household 0.18 0.27 0.84 -0.08 0.16 0.08
Bank Account 0.06 0.88 0.14 -0.05 0.02 -0.02
Household Head Age 0.95 0.00 -0.16 -0.09 -0.07 -0.07
Members Abroad -0.18 -0.02 -0.07 0.90 0.27 -0.07
Household Presence 0.60 -0.04 -0.36 -0.49 0.34 0.20
Disabilities -0.10 0.09 0.08 -0.09 0.08 0.95
Children Presence -0.46 0.30 0.80 0.08 -0.11 0.11
Elderly Presence 0.90 0.03 0.17 -0.09 -0.15 -0.09
Variance Explained (%) 22 17 16 12 11 10
Cumulative Variance Explained (%) 22 39 55 67 78 89
Bolded values values > 0.5

2.6.2 Municipality composite score rank changes

As mentioned previously, this paper is focused on comparing the methodological ap-

proaches and is not intended to be a vulnerability assessment. Nevertheless, index results are

mapped to assist in visualizing and interpreting results. The standardized composite social vul-

nerability index scores calculated at the municipality level using both methodologies described in

section 4.2 are shown in Figure 2.3. Positive scores (red) indicate higher degrees of social vulner-

ability, relative to the study area and variables included in the analysis.

There is some similarity between the two approaches’ results in terms of broad spatial

trends of positive and negative scores. In general, southern and eastern municipalities tend to

score as more vulnerable than those in the north and west. In terms of specific municipality scores
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Figure 2.3: Composite social vulnerability index scores for each municipality calculated
with equally weighted municipality PCA component scores (left) and municipality averaged
household composite scores (right).

however, there are notable differences between the two approaches. These differences are quanti-

fied in Figure 2.4, with specific focus placed on magnitude and sign changes. Here, a magnitude

classification is assigned to a municipality with a relative rank change of greater than 20% (22

positions). A sign classification identifies cases where municipalities switch from positive index

scores to negative index scores or vice versa. These classifications provide a baseline set of crite-

ria by which to identify cases where index interpretations might plausibly vary between scores.

Of the 110 municipalities in the study area, 37% are classified with either magnitude and

sign changes, or both. If the magnitude percent threshold is relaxed to 10% or increased to 30%,

the percentages change to 57% and 22%, respectively. Accordingly, for anywhere between one

fifth and one half of municipalities, index rankings generated from municipality aggregated data

are substantially different from their household equivalents. Thus, while the scores from both

methods are correlated, the relative ranking of municipalities is sensitive to the aggregation scale
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Figure 2.4: Classification of potential interpretation issues due to rank differences in
magnitude, sign, or both. Municipalities plotted by rank (left) and mapped by classification type
(right).

of the data. In context with Tables 2.1 and 2.2, these results also provide evidence that even quali-

tatively similar components can produce quite different composite index scores.

2.6.3 Household composite score rank changes

The distribution of standardized household-level composite scores calculated accord-

ing to section 4.3 are shown in Figure 2.5. The composite scores are grouped by municipality

and visualized as overlain density curves due to the size of the household data set. Each curve

shows the relative distribution of household composite scores in a given municipality. The dis-

tributions using the household weighting vectors are slightly positively skewed with a median

just below zero (-0.15). This particular shape makes sense in the context of vulnerability where

the ‘most vulnerable’ households occur in low probabilities but are significantly more vulnera-

ble than other households on the spectrum. When using the municipality weighting vectors, the
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composite scores are bi-modally normally distributed with symmetric peaks just above and below

zero. In both cases the distribution shapes are similar across municipalities, indicating that the

demographic distributions between municipalities are alike.

Figure 2.5: Density curves of household level composite social vulnerability index
scores, grouped by municipality.

The differences between scores produced with the two different weighting vectors are

seen in Figure 2.6 as both z-score differences and index rank changes for each household rela-

tive to its municipality. The percent rank change specifies where a household would be positioned

on the index relative to all the other households in the same municipality. The median z-score

change is 0.16, with a maximum positive and negative changes of 1.99 and -3.43, respectively. In

terms of ranks, the median change is -3%, with maximum positive and negative changes of 90%

and -76%, respectively. The rank change distributions are heavy-tailed, indicating that while most

households are not significantly affected by the weighting adjustment, those that are affected are

impacted to a great degree. For example, the maximum rank changes imply a household could
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theoretically be characterized as the least vulnerable household along one weighting scheme and

in the top 10% vulnerable households of another—even when both weighting schemes are de-

rived from same variables. To an even greater degree than before, these results reflect significant

index score sensitivities to changes in component variable loadings.

Figure 2.6: Density curves of differences in z-score (left) and rank (right) between house-
hold and municipality weighted composite scores.

The household rank changes are also visualized by mapping the percentage of households

in each municipality classified with magnitude or sign changes according to the criteria intro-

duced above. These results are shown in Figure 2.7. On the whole, anywhere between 21%-48%

of households are classified with potential interpretation issues in any given municipality. More

often than not, these issues are related to both sign and magnitude. Averaging across all munic-

ipalities, 6% of households have sign reversals, 12% of households see a rank change of 20% or

more, and 15% experience both. There is some spatial variation in these percentages across the

study area, but in general the results are consistent. These findings follow from the consistency of
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Figure 2.7: Percent of households per municipality that are classified as having potential
interpretation errors in magnitude, sign, or both.

the household index distributions between municipalities (Figure 2.5).

2.7 Discussion & Conclusions

This study provides empirical results that help characterize the relevance of aggregation

issues to modeling social vulnerability with inductive index methods. Section 5.1 showed that

otherwise identically designed PCAs can produce different results at the household level (Ta-

ble 2.1) and regional levels (Table 2.2). For the two scales considered in this study, these dif-

ferences manifest as subtle quantitative differences in variable loadings rather than large qual-

itative changes. Similar trends were found in the PCA-based sensitivity analysis of the SoVI

(Schmidtlein et al., 2008). Somewhat intuitively, the differences between components derived

from household and regional levels reflect the correlations between household components when

aggregated to regional levels. While these results are not particularly interesting by themselves,
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Sections 5.2 and 5.3 show that even small quantitative differences in component loadings can

massively affect how regions or households are ranked with composite index scores. This sug-

gests that qualitative similarity between vulnerability dimensions is not sufficient evidence to

assume that subsequent index scores are similar.

It is not completely clear how these differences should be interpreted in the context of a

vulnerability assessment, or at what magnitude they become relevant. Many previous vulnerabil-

ity index studies constrain their interpretations to the scale at which the analysis was performed,

assuming that index components reflect relevant processes operating at the given scale (Beccari,

2016). However, based on the results of this study, it is not clear whether the components derived

from regional means indicate regional vulnerability dimensions or are simply coarse approxima-

tions of household characteristics. Figure 2.4 shows that a non-trivial number of municipalities

rank quite differently if social vulnerabilities are calculated by maximizing variance along indi-

vidual households rather than municipality averages. The same is true for households when the

regional PCA weights are used instead of household weights (Figure 2.7). These are important

results because they challenge the practice of using local-scale studies to justify the associations

of variables at aggregated scales. As soon as data is stratified into regions (or any type of subpop-

ulation), there is no guarantee that the associations between variables maintain their directions

and magnitudes.

That is not to say that a pure household-level analysis should be the preferred approach.

The notion of scale hierarchies is foundational to vulnerability theory (Turner et al., 2003, Wis-

ner et al., 2004, Birkmann, 2007, Fekete et al., 2010). Analyzing a pooled version of household

data potentially neglects the regional characteristics that form the back bone of many vulnerabil-

ity studies, particularly those using a ‘vulnerability of places’ based approach. Thus, the question
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here is not whether regional characteristics should be considered, but whether aggregated data on

household characteristics are sufficiently strong indicators for such factors. Framed another way,

it is hard to determine at what point a particular series of variables stops measuring one construct

and starts measuring another. For example, in a household-level case study in Western Nepal,

Thieme and Wyss (2005) found that labor migration contributes to livelihood sustainability and

increases financial capital, educational attainment of children, and social capital. On the other

hand, Sunam and McCarthy (2016) argues that labor migration in Nepal at large contributes to

structural processes that deepen inequality. Although these types of differences could technically

be identified with the present methods, it is not obvious that aggregating household data produces

clear indicators of regional processes. Household-level index components are correlated at re-

gional levels to some degree (Figure 2.2), but it is difficult to evaluate whether these correlations

are meaningful, spurious, or some combination of both.

In Nepal and other countries with abundant social and development programs, these find-

ings are particularly relevant for government agencies and NGOs looking to incorporate measures

of vulnerability into their decision making frameworks. Based on the results of this study, it is not

clear that targeting an intervention at a highly socially vulnerable municipality would include the

most socially vulnerable households ranked along the same criteria. While this variability may

or may not be important in different contexts, it should be understood that socio-demographic

variability within municipal or other administrative units can affect the trends seen in aggregated

indices. These reverse concept—generalizing local household vulnerabilities to larger regions—is

also important with respect to pilot programs and other local initiatives. Choosing variables for

a regional social vulnerability assessment based on select household outcomes alone may not be

sufficient for characterizing broader processes. As a general rule, quantitative assessments of vul-
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nerabilities would benefit from more attention being placed on evaluating the scale consistency

of proxy variables against the constructs they intend to represent. This is especially true in places

like Nepal that are undergoing rapid social changes dominated by multi-scalar processes like la-

bor migration and urbanization. Other studies have come to similar conclusions, recommending

the use of qualitative, local-scale case studies as a means to validate sub-national vulnerability in-

dices and ensure that results are consistent with local contexts (Schmidtlein et al., 2008, Fekete,

2009, Fekete et al., 2010).

The alignment of vulnerability theory and empirical methods has been an relevant sub-

ject of discussion in DRR literature for some time now (Cutter et al., 2000, Rashed and Weeks,

2003, Birkmann, 2007, Jones and Andrey, 2007, Barnett et al., 2008, Tate, 2013). Yet, as Fekete

et al. (2010) notes, conceptual models of vulnerability are often vague with respect to how differ-

ent scales should be handled. As a result, vulnerability indices have predominantly been tailored

for application at a single scale despite underlying statistical concerns (Beccari, 2016). Using a

micro-data set of over 740,000 households in rural Nepal, this study implemented a comparison

of inductive index results at the household and municipality levels. On the whole, this analysis

re-echoes existing concerns in the literature over variable contextualization. Even with a large

micro-data set, determining which components adequately represent vulnerabilities and which

result from aggregation effects is not a straightforward process. Small quantitative differences at

this stage can result in large differences in composite scores, further complicating the interpre-

tation process. These findings add to a growing body of literature examining issues of sensitiv-

ity and uncertainty in the measurement of vulnerability. While this paper considers aggregation

issues in the context of an inductive index design, the results have implications for other index

designs as well. Because deductive and hierarchical index structures involve similar decisions
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over analysis scale, both approaches also face potential issues of changing variable associations.

Scale specification is also indirectly linked to variable selection and representation, issues that

have received relatively more focus in the index literature (Jones and Andrey, 2007, Schmidtlein

et al., 2008, Tate, 2012, 2013, Rufat et al., 2015). Choosing to include a particular variable does

not necessarily mean the underlying construct is well represented. On the whole, this research

furthers understanding on the representation of vulnerabilities in aggregated and disaggregated

contexts, but there remain significant methodological challenges in the treatment of vulnerabil-

ity as a multi-scalar process. Continued work in this area is likely to remain a promising future

direction—especially as more micro-data sets become available in the future.
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2.10 Appendix

Table 2.3: Variable categories used in PCA computations.
Variable Name Scale-Level Label(s)
Gender of Household Head 1 Male

2 Female
Average Monthly Income** 1 Rs 50,000 or more

2 Rs 30,000-50,000
3 Rs 20,000-30,000
4 Rs 10,000-20,000
5 Rs 10,000 or less

Education Level (Household Head) 1 Secondary
2 Primary
3 Pre-Primary
4 Non-Formal
5 Illiterate

Size of Household* Continuous NA
Bank Account Status 1 Has Bank Account

2 No Bank Account
Age of Household Head Continuous NA
Household Members Abroad* 1 None

2 > 1 Member
Household Presence* Percentage
Disability Status* 1 No Disabled Members

2 > 1 Members
Children Presence* 1 No Children (< 5 years old) Present

2 Children (< 5 years old) Present
Elderly Presence* 1 No Elderly (> 65 years old) Present

2 Children (< 5 years old) Present
*Merged from individual table to household level
**Using conversion rate at time of submission, Rs 10,000 is equivalent to $86 USD

The eleven socio-demographic variables used for this analysis are shown in Table 3.2. R

scripts for formatting the raw HRHRP data tables are available in this paper’s corresponding code

repository.
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3: A BAYESIAN MODELING APPROACH FOR ESTIMATING EARTHQUAKE

RECONSTRUCTION BEHAVIOR

This chapter corresponds to the following in-review paper: Wilson, B.S. (2019), A Bayesian

modeling approach for estimating earthquake reconstruction behavior. Annals of the American

Association of Geographers.

3.1 Abstract

Rebuilding and repairing damaged physical infrastructure is a primary source of disas-

ter aid spending following major earthquakes. While aid distribution is monitored, it is not well

understood how economic support and technical assistance affect reconstruction behavior. This

study develops and evaluates a Bayesian Item Response Theory modeling framework for esti-

mating the probability of reconstructive action from household-level survey data. Household re-

sponses on reconstruction status, aid received, and willingness to commit additional resources

from Inter-Agency Common Feedback Project surveys (n=5913) collected 11, 12, and 14 months

after the Gorkha, Nepal Earthquake are used to estimate the probability of reconstructive ac-

tion. Results show differences in marginal reconstruction probabilities ranging from 2-78 percent

across varying combinations of aid receipt and household willingness to commit additional re-

sources. Estimated reconstruction probabilities are lowest for households with low willingness to

commit additional resources and households that have not received a reconstruction-related engi-

neering consultation. All model results showed strong variability with geographic location. These

findings provide detailed quantitative estimates of earthquake recovery that have not previously

been available and offer a promising methodology for utilizing future post-disaster household-
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level survey data.

Bayesian modeling; item response theory; earthquake reconstruction; disaster recovery;

Nepal Earthquake

3.2 Introduction

Effectively coordinating the inflow of aid resources is a major challenge for post-earthquake

reconstruction efforts, especially in low and middle income countries where many households

rely on disaster aid as their primary means for recovery. While aid distribution is increasingly

monitored, the processes by which households undertake reconstruction actions are poorly under-

stood. Previous research has shown that access to resources is a key determinant of housing re-

construction (Wu and Lindell, 2004, Epstein et al., 2018), but data from recent earthquakes shows

large variations in reconstruction rates at the household level independent of disaster aid (Dun-

ford and Li, 2011, Daly et al., 2017, He et al., 2018). Thus, it is important to better understand

the connections between aid distribution and other household factors as they relate to reconstruc-

tion actions.

Current guidelines in the Sendai Framework for Disaster Risk Reduction recommend that

reconstruction program standards, policies, and macro-level coordination are driven by a lead-

recovery agency, while implementation of recovery activities take place by distributed actors at

the local level (Bank, 2015). This quasi-decentralized approach promotes a ‘local solutions to

local problems’ mindset where communities and households have ownership over the reconstruc-

tion progress. However, the extent to which local realities end up aligning with these goals is of-

ten debated, particularly with respect to material resource access and the availability of technical

assistance—two necessary forms of support for many households (Daly et al., 2017, Hall et al.,
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2017, Mishra et al., 2017, Bownas and Bishokarma, 2018, He et al., 2018). Coordinating these

support mechanisms is a major function of the lead-recovery agency, especially in the context

of ‘build back better’ reconstruction programs that require adherence to seismic building codes.

For this reason, household decisions to rebuild are influenced to some degree by both centralized

and decentralized authority, even in owner-driven systems (Comfort and Joshi, 2017, Daly et al.,

2017).

Household reconstruction progress is typically monitored in two primary ways. Aid dis-

bursement is tracked and reported following the guidelines set forth in Post-Disaster Recovery

Frameworks, covering the primary governmental support mechanisms (reconstruction grant fund-

ing, engineering consultations, material availability, etc.) (Bank, 2015). These statistics are useful

for broadly evaluating the stage of reconstruction progress (Chang et al., 2010), but do not cap-

ture important heterogeneities at the household level—where reconstruction decisions are being

made. These data are supplemented by household livelihood needs and perception surveys that

assess whether local populations feel their reconstruction needs are being met. However, sur-

vey differences in demographics, aid access, and personal capabilities, among other factors, have

limited comparative conclusions. Notably missing in the reconstruction space are any modeling

approaches for transforming these types of data into actual estimates of reconstruction behavior.

This research uses data from the 2015 Gorkha, Nepal earthquake to develop and evaluate

a Bayesian Item Response Theory (IRT) model framework for estimating earthquake reconstruc-

tion probabilities from survey data. For the most part, Nepal’s reconstruction policies are consis-

tent with the standards and recommendations described above. One of the primary components

of Nepal’s reconstruction framework is the Rural Housing Reconstruction and Recovery Program

(HRRP), a multi-phase, multi-stakeholder project aimed at providing the technical and economic
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support necessary to guide the ‘owner-driven’ reconstruction process. A NPR 300,000 (∼ $3,000

USD) three tranche grant is disbursed to eligible households at different phases of rebuilding con-

tingent upon adherence to specific construction standards. Beneficiaries are also eligible for tech-

nical and social support during the reconstruction progress in accordance with the HRRP stan-

dards. However, provision of this support is decentralized and only a small number of areas have

received the full range of services. These differences in aid availability, along with variability in

household characteristics, form the backbone of the model framework. Reconstruction ability is

predicted at the household level using survey data on aid receipt and self-reported willingness to

commit additional resources to reconstruction collected approximately one year after reconstruc-

tion activities began. Estimated ability levels subsequently interact with regionally variable item

response functions to estimate the probability of reconstructive action.

3.3 The Gorkha Earthquake Reconstruction Framework

Nepals recovery from the Gorkha Earthquake has been slow and contentious. The first

year of recovery was situated against a contentious political background that delayed reconstruc-

tion activities (Comfort and Joshi, 2017). The National Reconstruction Authority (NRA)the gov-

erning body designated to oversee the reconstruction process was originally established by polit-

ical ordinance in late June of 2015, but failed to attain sufficient legal status and was suspended

until formal legislation was passed in December 2015. The publication of the official Post Dis-

aster Recovery Framework followed five months later in May of 2016. A lack of information on

recovery policies, beneficiary eligibility, and new building codes, among other factors, limited

reconstruction progress during this transitory period (Comfort and Joshi, 2017, Daly et al., 2017).

Within Nepals reconstruction framework, the NRA is responsible for allocating recon-
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struction aid to partner agencies and ministries, while project implementation is coordinated

across several levels including 7 sub-regional offices, 14 district-level project implementation

units, 160 local resource centers, and individual village development committee and ward of-

fices (of Nepal, 2016). Local implementation units have significant authority in this system, in-

cluding the ability able to partner with external donors and NGOs. Under NRA guidelines, most

field-level reconstruction activitiesincluding grant disbursement and technical or social support-

are coordinated by local institutions (Daly et al., 2017). Household eligibility for grant funding

and other government support is determined from the results of official engineering damage as-

sessments collected by Nepals Central Bureau of Statistics. The first tranche of grant funding is

disbursed upon enrollment in the program, while the second and third tranches require that cer-

tain stages of reconstruction progress are verified as adhering to specific building designs or to

the minimum standards of the national building code by an approved engineer.

Within these requirements, individual households are largely free to make their own re-

construction decisions, with local ward and village development committee offices serving as the

primary access point for individual households seeking social or technical assistance during the

reconstruction process. However, despite intentions to provide households with equal support

through decentralized offices and local governments, the actual availability of reconstruction sup-

port has varied widely across the affected area. Local governments have the authority and onus to

provide reconstruction support, but they often lack the capacity to effectively do so (Daly et al.,

2017). Asymmetrical reconstruction governance, combined with shortages in engineers, has left

many households without promised supporta key deficiency for those in areas that are resource

poor and multi-dimensionally vulnerable (The Asia Foundation, 2017, Mishra et al., 2017, He

et al., 2018).
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3.4 Materials & Methods

3.4.1 Summary of reconstruction data

Household-level data on earthquake reconstruction and aid distribution were obtained

from Nepal’s Inter-Agency Common Feedback Project Surveys collected in April, May, and July

of 2017. The Inter-Agency CFP, a joint effort organized by the United Nations Humanitarian

Cluster for the Gorkha Earthquake, coordinated data collection and aggregation efforts across

various partner agencies to provide a cohesive set of surveys in support of the entire humani-

tarian community. These surveys broadly address issues related to reconstruction perceptions,

livelihood needs, food security, and protection concerns. These surveys were carried out in vil-

lage development committees (henceforth VDCs—now municipalities under Nepal’s new federal

structure) across the 14 priority affected districts with 60% or greater of households eligible for

governmental reconstruction funding. In each month, district level populations were used to pro-

portionally allocate 2100 individual surveys to random VDCs using a probability proportionate to

size methodology with a minimum of ten surveys collected per ward visited. A small percentage

of surveys (∼ 5%) for each iteration were saved to boost responses in low population districts.

Survey enumerators were instructed to collect individual responses from a demographically di-

verse set of respondents to ensure a reflective sample. Additionally, twenty-five percent of survey

responses were reserved for municipalities to ensure an adequate representation of urban versus

rural populations. In total, the three survey months include responses for 5,913 households in 245

VDCs across the 14 districts.

The CFP surveys include a diverse set of information on the earthquake reconstruction

process, including data on housing status, technical assistance and economic aid receipt, liveli-
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hood needs, and perceptions on varying aspects of the reconstruction process. For the purposes

of this study, data on direct cash support, engineering consultations, and self-assessed ability to

commit additional resources to reconstruction are used (details in Appendix A). These covari-

ates capture most of the primary identified reasons for slow rebuilding rates one year into the

reconstruction process (The Asia Foundation, 2017) while balancing computational complex-

ity and minimizing the risk of overfitting. Figure 4.2 shows the percentages of households hav-

ing taken reconstructive action across each level of aid distribution and household willingness to

commit additional resources to reconstruction. The increase in reconstruction rates with both co-

variates is consistent with previous research emphasizing the importance of resource availability

for household reconstruction progress (Wu and Lindell, 2004, Epstein et al., 2018). Case studies

have suggested that in places like Nepal, households with alternative economic strategies (remit-

tances, crop diversification, access to community-based resources, etc.) are more likely to rapidly

progress through housing recovery (Chatterjee and Okazaki, 2018, Epstein et al., 2018).

3.4.2 Bayesian modeling framework

Originally developed for psychometric application in psychology and education research

(Fox, 2010), IRT models describe the probability of a keyed response for a given individual to

an item in question using an item response function that links a person’s latent ability to item-

specific parameters. Hierarchical extensions to IRT, including adopting random effects for groups

or individuals, modeling item parameters as correlated (Glas and van der Linden, 2003), or adding

predictor variables on ability (Alegana et al., 2017, 2018), allow for flexible model specifications

(Fox, 2010, Sulis and Toland, 2017). Although IRT models are well established in other disci-

plines, they have not yet been applied in a disaster recovery context.
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Figure 3.1: Reconstruction rates by aid level and household willingness to commit addi-
tional resources.

IRT models can be implemented in both frequentist and Bayesian frameworks, with both

approaches seeing decades of application (Bock, 1972, Swaminathan and Gifford, 1985, 1986).

This study adopts a Bayesian approach to more completely account for uncertainty in latent trait

estimation and to clearly articulate the modeling assumptions. Reconstruction outcomes in an

owner-driven system are expected to be somewhat uncertain and modeling full distributions are

therefore valuable for interpreting results. Additionally, quantitatively modeling reconstruction is

a new research direction and using a Bayesian framework allows for existing qualitative domain-

knowledge to be incorporated into the model building process through the use of prior distribu-

tions (Gelman et al., 2017, Gabry et al., 2019). Defining a generative model is useful for incorpo-

rating specific contextual features of the reconstruction framework that are not present in the data

itself.

Here, a unidimensional Bayesian IRT framework is used to estimate the probability of
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positive survey response for reconstruction actions, considering a single survey question on household-

level housing status. For households i = 1, ..., I in districts j = 1, ...,J responding in survey month

k, the probability of positive response (Yi jk = 1) is modeled as:

P(Yi jk = 1|θi,a jk,b jk,c) = c+(1− c)
exp[a j(θi−b jk)]

[1+ exp[a jk(θi−b jk)]
(3.1)

where Yi jk is a dichotomous response variable reflecting whether a household i has started

the reconstruction process, θi is the estimated latent ability parameter for household i, and a jk,b jk,c

are the item discrimination, difficulty, and threshold parameters, respectively. In this context, the

item discrimination parameter (a jk) regulates the rate at which the probability of reconstruction

initiation changes with different ability levels. The item difficulty parameter (b jk) is equal to the

point of median probability, describing the relative relationship between an item and the abil-

ity scale. The lower threshold parameter introduces a lower-bound on the response, allowing for

households with low ability levels to have non-zero probability of positive response. For this ap-

plication, variable intercepts are included on both the discrimination and difficulty parameters for

both district and survey month. This accounts for the spatial and temporal variance in the proba-

bility of positive response at otherwise equal ability levels.

In a similar fashion to Fox and Glas (2001), Alegana et al. (2017, 2018), the ability pa-

rameter is modeled at a second level with a series of linear predictor variables (X1, ...,XQ). Vary-

ing intercepts for VDCs (v = 1, ...,V ) are included to account for potential geographic effects:
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θiv = β0 +β1X1i + ...+βQXQi +αv + eiv (3.2)

eiv ∼ N(0,σ2
e )

αv ∼ N(0,σ2
α).

with varying intercept α and regression coefficients β . The joint distribution on ability

parameters is also multivariate normal with variance hyperparameters σ2
e , and σ2

α . Aid receipt

(economic and technical) and self-reported ability to commit additional resources to reconstruc-

tion are included as predictor variables. Willingness to commit additional resources is modeled as

an ordinal predictor variable while aid receipt is an unordered categorical predictor.

Proper prior distributions are specified for all parameters such that a prior marginal dis-

tribution exists for the data. To evaluate prior selection, a prior predictive simulation is imple-

mented where MCMC draws are made from the joint prior distribution to evaluate whether sim-

ulated data is consistent with domain expertise. Following recommendations in (Gelman et al.,

2017, Gabry et al., 2019), the objective here is to allow for improbable, but not impossible data

to be drawn from the joint prior distribution Gabry et al. (2019). Several principles inform a re-

alistic data generating process for the purposes of this study. First, the model is restricted such

that item discrimination is positive. This helps with model identifiability, but also ensures that in-

creases in reconstruction ability always result in increased reconstruction probability. Second, the

lower threshold is specified to strongly favor values closer to zero based in an understanding that

few rural households in Nepal have the financial or technical capacity to reconstruct their houses

without assistance.
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Weakly informative Student’s T prior distributions with three degrees of freedom are used

for the item discrimination and difficulty parameters with normal priors (∼ N(0,1)) on the stan-

dard deviations to constrain inter-district variability. As mentioned above, the prior on discrimi-

nation is truncated via an indicator function to constrain values to be positive. A beta distribution

prior (α = 1,β = 10) is placed on the lower-threshold parameter to constrain values between 0

and 1. The priors for coefficients on the θ parameter are treated separately to account for the dif-

ference in variable type. A weakly informative normal prior (∼ N(0,1)) is used for the aid receipt

coefficients, and a Dirichlet prior is used for willingness to commit of additional resources coef-

ficients with variable simplex parameters such that the change in response ”partial no” to ”partial

yes” is a-priori more influential than changes from ”no/partial no” or ”yes/partial yes”.

The Hamiltonian Monte Carlo (HMC) engine in Stan software (Carpenter et al., 2017),

interfaced using the brms package in R (Brkner, 2017), is used to fit the model. HMC sampling

has improved sampling efficiency for many hierarchical distributions compared to more tradi-

tional Markov-Chain Monte-Carlo (MCMC) methods like Gibbs sampling or Metropolis-Hastings.

Convergence is evaluated with Stan’s implementation of the potential-scale reduction factor (R̂)

and inspecting MCMC trace plots. Posterior predictive checks and leave-out-out cross-validation

are used to evaluate model performance.

3.5 Results

The three parameter IRT model is fit using four MCMC chains running for 2000 itera-

tions, 1000 of which are used as warm-up iterations. The model shows convergence on all param-

eters (R̂ = 1.00) and does not show signs of any pathologies. Prior predictive simulation results,

all parameter and uncertainty estimates, and model diagnostics are included in Appendix B. Vali-
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dation was performed on a split 75-25 percent training-test data set to evaluate model calibration

and accuracy (Appendix C). The data generated by the posterior predictive distribution (Figures

3.7, 3.8, 3.9) is consistently similar to the observed data and balanced across all predictor vari-

ables, districts, and survey months. In almost all cases, the observed data is centered within the

100 simulated predictions, indicating good model fit (Gabry et al., 2019). There are isolated cases

(e.g. Kathmandu, July) where the distribution of simulated data does not contain the observed

values, but on the whole the model appears well calibrated across grouping variables and does not

show any clear biases towards particular combinations of covariate levels. These results suggest

that the proposed model is able to generate accurate predictions for the probability of households

starting the reconstruction process provided the requisite covariate data is available.

3.5.1 Reconstruction probabilities by ability level

Figures 2A and 2B shows the estimated median reconstruction probability along with

corresponding variation by districts and 50%, 80%, and 95% quantile intervals across the abil-

ity spectrum. The median estimated ability levels for each combination of predictor variables

are presented in 2C, with spatial variations by VDC variations shown in 2D. Estimated recon-

struction probabilities are very low across the lower end of the ability range (lower-threshold 1%)

corresponding to households that have not received an engineering consultation and do not have

the ability to commit additional resources. Reconstruction probabilities rise over 50% at latent

ability levels above two, generally corresponding to households that can fully commit additional

resources (regardless of aid receipt) or households that can partially commit resources and have

received both sources of aid. The uncertainties associated with reconstruction probabilities in-

crease in the middle-range of the ability spectrum.
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Figure 3.2: Posterior estimates for reconstruction probability. A: Item response curves
by district, incorporating median random effects on difficulty and discrimination parameters.
B: Population-level median item response curve with corresponding uncertainty windows. C:
Median ability levels for each combination of predictor variables, marginalized across survey
months. D: Median VDC level effects on estimated ability. E, F: Median District level variations
in discrimination and difficulty parameters.
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These trends are relative to a household’s location. VDCs exert considerable influence

on reconstruction ability, as shown in Figure 2D (standard deviation 0.79). Although some lo-

cal clustering is present, the VDC variations do not indicate the presence of distance-decay or

other spatial effects. Additionally, both discrimination and difficulty parameters vary by district

(Figure 2E and 2F) with a variability of approximately 25% between minimum and maximum

probabilities at equal ability levels. The highest and lowest difficulty parameter estimates are for

Kavrepalanchok and Dolakha, respectively. Okhaldhuga and Dhading have the highest and low-

est discrimination estimates.

3.5.2 Marginal effects of predictor variables

Figure 3.3: Estimated marginal effects of predictor variables. The black point and inter-
val bars summaries the median posterior estimate and corresponding 50% and 95% uncertainty
intervals. The colored distributions segment the densities by additional resource contribution.

Figure 3.3 shows the marginal effects on reconstruction probability for each of the predic-

tor variable combinations across all three survey months. Although there are slight differences in
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the probabilities between the survey months, the same trends are seen across predictor variables.

Comparing across aid receipt differences, the probability of positive reconstruction action with-

out an engineering consultation is very low across all months and levels of additional household

resource contribution. If households in this position are not able to commit additional resources,

the estimated probability of reconstruction action(s) is effectively zero. These probabilities in-

crease as households are able to commit additional resources, but the overall estimated probabili-

ties remain low.

The additional resource dimension shows measurable gaps at every level of aid receipt,

with the largest difference between partial no and partial yes responses. The effect of increasing

additional resource contribution is quite strong, equivalent to or greater than receiving additional

economic or technical aid. Notably, the resource gap increases as households receive more aid,

suggesting that government assistance might have a greater benefit to those households already

in an advantageous position. These differences evolve differently over time, with probabilities in-

creasing for households able to commit additional resources while probabilities remain relatively

stable for households unable to commit additional resources. These differences underscore the

necessity of including additional information beyond aid receipt to characterize reconstruction

progress.

3.6 Discussion & Conclusions

Monitoring household-level reconstruction progress is an important element of managing

the rebuilding and recovery process in owner-driven frameworks. Yet, no previous studies have

attempted to provide quantitative estimates of reconstructive action. Using household-level data

from reconstruction livelihood and perception surveys collected after the 2015 Nepal Earthquake,
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this study finds considerable variation in the probability of households starting the rebuilding pro-

cess along several dimensions, including aid receipt, self-reported willingness to commit addi-

tional resources, and geographic location. These results are largely consistent with qualitative

findings from the social-science literature on earthquake reconstruction (Wu and Lindell, 2004,

Chatterjee and Okazaki, 2018, Epstein et al., 2018) and are useful for comparing reconstruction

progress across the affected areas.

Increasing levels of aid receipt and additional household resource contributions increase

the probability of a household taking reconstruction-related action. However, the marginal ef-

fect of cash support alone is relatively small (8%), suggesting that the first tranche of reconstruc-

tion funding or comparative I/NGO aid is not by itself a sufficient source of assistance for most

households to begin reconstruction. These results hold across all survey months and all levels

of additional resource contribution. This does not necessarily imply that the first tranche is not

adequate financial support, but rather that financial support alone does not significantly increase

the probability that a household starts rebuilding. It is also plausible that some households might

refrain from starting reconstruction until they feel they have the resources (financial, technical,

etc.) necessary to proceed towards the second and third tranche requirements which require ad-

herence to specific seismically resistant building designs. The marked increase in probability of

reconstruction action with receipt of an engineering consultation points toward this reality.

Another important finding is the asymmetric reconstruction probabilities across differ-

ent levels of additional resource contribution. Across all aid levels, there are clear gaps between

households with existing resources and those without. More importantly however, the relative

differences in reconstruction probabilities increase as households receive more government aid.

Based on 3.3, households with no or partial no responses for additional resource contribution
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have median probability increases of approximately 10-25% when comparing no aid to full aid,

while households with partial yes or yes responses have increases of 50-70%. While these results

are not surprising, they raise questions over how reconstruction aid should be allocated following

major earthquakes. In Nepal, grant funding and other technical and social support mechanisms

are intended to be provided equally to eligible households independent of socio-economic condi-

tions (of Nepal, 2016). This study clearly shows that equal aid distribution does not correspond

to equal reconstruction probabilities for households with different socio-economic conditions,

at least for the first year of the reconstruction process. Understanding that equal aid distribution

does not necessarily correspond to equitable recovery is important for communicating reconstruc-

tion progress. Although statistics on tranche disbursement are important for managing the recon-

struction process, these findings suggest that they do not fully represent local recovery progress.

The Bayesian IRT modeling approach adopted here is a promising method for studying

earthquake reconstruction progress. One of the key strengths of the IRT approach lies in esti-

mating household-level latent reconstruction ability as a means to connect disparate survey re-

sponses. Reconstruction perception surveys are already collected regularly for monitoring re-

construction feedback, but have not previously been used in such an application. In this study,

it is assumed that geographic location, household willingness to contribute resources to recon-

struction, and aid receipt adequately predict latent reconstruction ability. These variables are sup-

ported by evidence from other longitudinal reconstruction Nepal (The Asia Foundation, 2017) but

may not fully capture all of the factors relevant for household reconstruction. Regardless, com-

pared to other types of models, the IRT approach offers the distinct advantage of modeling non-

linear responses between household ability and the probability of reconstruction with differen-

tially functioning item-response curves. This is important for the reconstruction context because
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it is unlikely that rebuilding is equally difficult in all areas, even for households that have received

similar levels of assistance. Using a Bayesian multi-level model to account for these differences

models both the population-level estimate of reconstruction probabilities and regional deviations

while directly quantifying the associated uncertainties. For the CFP survey data, this approach

leverages the strength of three survey rounds to improve parameter estimates rather than treating

each month as a separate dataset.

However, there are several limitations in the CFP survey data that informed model design

and are worth mentioning for informing future survey design. The CFP surveys incorporated both

reconstruction progress and housing damage state into a single question. Therefore, the response

variable used in this study defines a positive response as any reported reconstruction progress (i.e.

repairs or rebuilding), irrespective of the initial damage level. This is still a useful comparison,

particularly in the context of evaluating early-phase reconstruction progress, but more detailed

analysis could be performed if initial damage state data were collected for every household re-

gardless of whether rebuilding had begun. Specifically, it would be useful to know whether a

structure needed repairs or full reconstruction, given that the associated household’s decision

making almost certainly varies under these different circumstances. In the IRT framework im-

plemented in this study, the effects of these differences get embedded into district-level estimates

of discrimination and difficulty. This has the potential to bias results for isolated areas that were

disproportionately damaged or undamaged relative to their surroundings.

The CFP surveys are also missing information on the timing of both aid receipt and re-

construction actions. Without timing on reconstruction actions, the model probabilities are rel-

ative to the timing of the surveys (11, 12, and 14 months after the post-disaster recovery frame-

work was finalized). While the one-year time frame seems reasonable for assessing initial re-
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covery progress, the reconstruction probabilities presented here are likely to change over time.

Additionally, the current model has no way to distinguish between a household that received aid

as soon as possible versus a household who received aid the day before being surveyed. In theory

damage surveys and grant enrollment were complete before April 2017, but many households in

the surveys report disbursement delays and ongoing redress of grievances. Some of these uncer-

tainties might be ameliorated by the random effects components if households in the same areas

received aid at similar times, but it is not clear the extent to which this is the case. In either case,

all model parameters have full uncertainty estimates to account for these shortcomings.

To conclude, this study provides estimates of household-level reconstruction actions us-

ing Bayesian IRT modeling and data from Nepal’s Inter-Agency CFP surveys. In translating

household-survey data to population and district level estimates of reconstruction probabilities

across varying ability levels, the model framework presented here represents a tangible step for-

ward in bridging the gap between local qualitative case studies and coarse reconstruction statis-

tics. The findings for Nepal suggest that households with existing resources are able to utilize the

government-provided reconstruction assistance to a much greater degree than other households.

It is hoped that elaborating these differences quantitatively serves as a guide for future research

into recovery equity and provides an additional mechanism for evaluating earthquake reconstruc-

tion and recovery progress.
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3.10 Appendix

3.10.1 CFP Survey Data

Table 3.1 shows the survey questions used in the analysis and the coding scheme applied

to the responses. Survey questions and possible responses are consistent across all three survey

months. The aid and home status questions are coded into binary responses for suitability in the

modeling framework. Willingness to commit additional resources is already structured as an ordi-

nal variable and is not modified. Responses that include NAs (n=387) are left out of the analysis

because they are ignored in Stan’s No U-Turn Sampler algorithm. Each survey month originally

included 2100 responses, leaving n=5913 complete responses for analysis.
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Table 3.1: Inter-Agency Common Feedback Survey questions and corresponding codings
used for analysis.

Question: Response Options: Coding:
What is the current status of your home? Reconstruction Completed Rebuilding

Reconstruction Started Rebuilding
Minor Damaged Not Rebuilt

Heavily Damaged Not Rebuilt
Completely Destroyed Not Rebuilt

(Rubble Cleared)
Completely Destroyed Not Rebuilt
(Rubble Not Cleared)

Not Damaged NA
What types of housing reconstruction Direct Cash Support Cash Yes/No
support have you received?*
Have you consulted an engineer for Have Consulted Engineer Yes
your housing reconstruction needs?** Have Not Consulted Engineer No

Plan to Consult Engineer No
Don’t Plan to Consult Engineer No
Don’t Know/Refused NA

Have you been able to commit your Completely Yes Yes
own resources? Somewhat Yes Partial Yes

Not Very Much Partial No
Not At All No

*Only direct cash transfers (housing grant, I/NGO, etc.) were considered.
**The source of an engineering consultation was not considered.

3.10.2 Model Diagnostics

Prior Predictive Simulation

As mentioned in section 3.2.2, a prior predictive simulation draws MCMC samples di-

rectly from the joint prior distribution and therefore can be used to visually evaluate prior choices.

This process is useful for understanding how the model behaves before any data is added. The

objective here is to verify that draws from the prior predictive distribution represent data that

could actually be observed given relevant domain knowledge, ideally with some mass for im-

probable data and no mass for impossible data (Gelman et al., 2017, Gabry et al., 2019). Figure
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3.4 shows 100 simulated item-response curves drawn from the prior predictive distribution. The

curve shapes reflect the prior choicespositive discrimination values and the lower-threshold fa-

voring lower valueswhile allowing for a wide range of other possibilities. Although nearly flat or

nearly step-function curve shapes are implausible, they are permitted here because they are tech-

nically possible given domain knowledge.

Figure 3.4: 100 simulated draws from the prior predictive distribution.

Model Parameters and Convergence Diagnostics

Table 3.2 provides posterior parameter estimates, confidence intervals, and convergence

statistics for the model. Considering 4,000 post-warmup iterations, effective sample sizes for all

parameters are well above levels of concern. R̂ values indicate convergence for all parameters.

MCMC trace plots and densities for each parameter are shown in Figures 3.5 and 3.6. The trace

plots appear well mixed and do not indicate any obvious pathologies. Model computation in Stan

did not produce any divergent transitions or other runtime warnings.
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Figure 3.5: MCMC parameter density estimates and trace plots.
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Figure 3.6: MCMC parameter density estimates and trace plots.
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Table 3.2: Posterior parameter estimates.
Group Level Effects:
Month (n=3) Estimate Est. Error 95% CI Eff. Sample R̂
sd(a) 0.45 0.33 (0.12 - 1.40) 2086 1.00
sd(b) 0.43 0.34 (0.08 - 1.38) 2554 1.00

District (n=14)
sd(a) 0.28 0.09 (0.14 - 0.48) 1398 1.00
sd(b) 0.36 0.15 (0.14 - 0.71) 1232 1.00

VDC (n=245)
sd(θ ) 0.79 0.21 (0.41- 1.25) 1318 1.00

Population Level Effects:
a 0.59 0.44 (-0.23 - 1.48) 1340 1.00
b 2.43 0.89 (0.83 - 4.27) 1320 1.00
c 0.02 0.01 (0.01 - 0.03) 2016 1.00
θNoAid -1.04 0.57 (-2.18 - 0.06) 2120 1.00
θGrantOnly -0.58 0.52 (-1.59 - 0.42) 2099 1.00
θEngineer 0.42 0.52 (-0.60 - 1.47) 1795 1.00
θGrantEngineer 1.15 0.60 (-0.01 - 2.33) 1507 1.00
θCommitOwnResources 2.03 0.53 (1.08 - 3.13) 1494 1.00

Simplex Parameters*:
θCommit−No,PartialNo 0.22 0.06 (0.11 - 0.34) 4196 1.00
θCommit−PartialNo,PartialYes 0.55 0.06 (0.44 - 0.68) 3327 1.00
θCommit−PartialYes,Yes 0.23 0.06 (0.10 - 0.34) 3188 1.00
*Simplex parameters specify the differences between adjacent categories

3.10.3 Model Validation

Posterior predictive checks compare data generated from the posterior distribution to a

set of observed data to evaluate model fit. A well calibrated model will generate data that resem-

bles observed data and performs consistently across grouping levels (Gabry et al. 2019). To eval-

uate model performance, a random 25 percent sample (n=1478) of the data are reserved as an

independent test set and the model is fit to the remaining 75 percent (n=4435). Reconstruction

outcomes are then estimated from the posterior distribution and compared to the observed data.
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Figure 3.7a show 100 predicted draws in black compared to the observed data in red for the entire

test set. The same predictions are separated out by predictor variable in Figures 3.7b and 3.7c,

and districts and months in Figures 3.8 and 3.9.

Figure 3.7: 100 draws from the posterior predictive distribution compared to observed
data. (a) Results for the entire test set, (b) Results separated by aid receipt variable, (c) Results
separated by ability to commit own resources variable.
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Figure 3.8: 100 draws from the posterior predictive distribution compared to observed
data, separated by survey month and district.
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Figure 3.9: 100 draws from the posterior predictive distribution compared to observed
data, separated by survey month and district.
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4: A SPATIAL INTERPOLATION MODEL FOR HIGH-RESOLUTION MAPPING OF

EARTHQUAKE DAMAGES FROM GEOLOCATED CLUSTER DATA

This chapter corresponds to the following in-preparation paper: Wilson, B.S. (2019). A spatial

interpolation model for high-resolution mapping of earthquake damages from geolocated cluster

data.

4.1 Abstract

Modeled damage estimates are an important source of information in the hours to weeks

following major earthquake disasters, but often lack sufficient spatial resolution for highlighting

specific areas of need. Using damage assessment data from the 2015 Gorkha, Nepal Earthquake,

this paper evaluates a spatial regression model for interpolating geolocated damage survey data

onto a 1 x 1 km2 grid. The proposed approach uses a combination of geospatial covariate data

and Gaussian spatial process random effects modeling to estimate the percentage of structures

attaining complete damage states from sparse survey clusters using the INLA-SPDE method.

Model performance is evaluated across fifty iterations of 100, 250, and 1000 simulated survey

clusters and compared to observed damage assessments and model predictions using more tra-

ditional fragility-based methods. Results show strong model fit to observed values, with mean

absolute errors of .17, .13, and .11 and correlation coefficients of .75, .82, and .85 for increasing

numbers of survey clusters. These results show significant improvements over existing methods

with a fraction of the damage surveys that were available within several weeks after the Gorkha

event. Thus, with sufficient rapid damage assessment mobilization, the proposed spatial model-

ing framework offers improved damage estimates and higher spatial resolution while remaining
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tractable within the time frame required to deliver a Post Disaster Needs Assessment.

4.2 Introduction

In the hours to weeks following major earthquake disasters, detailed information on the

spatial variability, extent, and severity of damages is often sparse. This lack of consistent and

verifiable post-disaster information poses major challenges for rapid emergency response efforts

(Comfort et al., 2005, Goodchild and Glennon, 2010, Lallemant et al., 2017). Until field survey-

ors can be mobilized at scale, disaster response decisions are informed by coarse modeled dam-

age estimates, scattered eye-witness reports, and any remotely-sensed damage assessments that

might be available (Goodchild and Glennon, 2010, Xie et al., 2016, Lallemant et al., 2017). How-

ever, it is not well understood how these disparate sources of information should be synthesized,

in part due to significant scale differences between event-scale impact assessments produced by

systems like the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Re-

sponse (PAGER) and more localized sources of information. Understanding how to effectively

model post-disaster damages has important applications for informing post-disaster needs assess-

ments and requests for international development aid.

Common model-based approaches for estimating earthquake damages rely on building

stock records and functions that describe the probability of damage at various shaking levels for

different housing typologies (Whitman et al., 1997, Yeh et al., 2006, Kircher et al., 2006, Robin-

son et al., 2018). These relationships can be derived empirically, semi-empirically, or analyti-

cally depending on the availability of relevant local seismological studies (Jaiswal et al., 2011,

Porter, 2014). While modeled areal damage estimates are successfully applied for rapid order-of-

magnitude impact estimates in systems like PAGER, their accuracy at high spatial resolutions is
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strongly dependent on the quality of input data (Erdik et al., 2011, Jaiswal et al., 2011, Lallemant

et al., 2017). On the other hand, field-based engineering assessments provide detailed ground-

truthed damage data, but are relatively sparse in the weeks following a major earthquake. Over

60,000 rapid visual assessments were collected in several weeks following the 2015 Gorkha,

Nepal Earthquake to inform the post-disaster needs assessment (PDNA), yet still represented less

than 10% of affected structures. As a result, the damage statistics that inform requests for dis-

aster aid are often based on modeled estimates. The timeline for delivery of a PDNA to funding

stakeholders (approximately a month) is simply too short to fully survey the damages (Lallemant

et al., 2017).

With significant focus in the Sendai Framework for Disaster Risk Reduction placed on

leaving no one behind and accounting for vulnerable populations, improving the capacity of dam-

age models to capture spatial heterogeneities is an important goal. Accordingly, this paper devel-

ops a spatial interpolation damage modeling framework that uses geolocated clusters of surveyed

damages and readily available geospatial covariates to estimate the probability of complete struc-

tural damage on a high resolution grid. The proposed framework is explicitly designed designed

to be implementable within the timeline for PDNA delivery, only requiring a U.S. Geological

Survey Shakemap, readily available gridded covariate layers, and sparse clusters of rapid damage

assessments that could be feasibly collected in several weeks. The model is developed using the

Integrated Nested Laplace Approximation (INLA) and Stochastic Partial Differential Equation

(SPDE) approaches. The INLA methodology efficiently implement approximate Bayesian infer-

ence for a subset of models that can be defined with latent Guassian Markov random fields (Rue

et al., 2009). The SPDE approach provides a computationally convenient way to implement mod-

els with spatial effects using INLA methods (Lindgren et al., 2011). Similar spatial interpolation
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models have been applied to a wide variety of development and demographic contexts (Tatem

et al., 2014, Bhatt et al., 2015, Bosco et al., 2017, Utazi et al., 2018b), leveraging the correlations

of particular response variables with geographic, environmental, or socio-demographic variables

for which higher resolution data is available.

This study uses data from the Gorkha Earthquake to illustrate the proposed approach, an

event for which field surveyed post-earthquake damage state designations are available. The rest

of the paper is organized as follows. Section 2 reviews the fragility-based damage modeling ap-

proaches used in many applications. This section provides relevant background for understanding

the damages statistics in the Gorkha Earthquake PDNA and motivates the proposed improve-

ments. Section 3 covers the input data sources used in the model and their relevance to damage

estimation. The details of the INLA-SPDE approach and model evaluation are described in sec-

tion 4, with model results for different numbers of simulated survey clusters presented in section

5. The final section discusses model performance, limitations, and some recommendations for

future work.

4.3 Motivation

Earthquake-related building damages are a function of both shaking intensity at a given

location and the seismic resistance of exposed structures. Fragility curves capture this relation-

ship, specifying the probability of of a structure exceeding a certain damage state at a given shak-

ing level (Porter, 2014). A standard approach for estimating damages combines fragility curves,

ground motions, and data on housing type distributions to estimate the percentages of structures

attaining specific damage states for a given area (Whitman et al., 1997, Yeh et al., 2006, Kircher

et al., 2006, Robinson et al., 2018). The damage estimates included in Nepal’s PDNA used this
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type of methodology, drawing average Modified Mercalli Intensity values from the most recent

USGS Shakemap, housing counts for four different building typologies from Nepal’s 2011 Hous-

ing Census, and fragility curves from Guragain (2015) (of Nepal, 2015).

A slightly modified version of the PDNA estimate is implemented here to illustrate the

performance for the 2015 Gorkha event. The methodological details provided in the PDNA are

not sufficient to reproduce the exact estimates. Consequently, instead of estimating both fully

damaged and partially damaged structures, only the most severe damage state is estimated (also

termed ‘complete’). This is assumed to be similar to the ’fully damaged’ classification in the

PDNA and is the quantity of interest for the spatial interpolation model. Nepal-specific fragility

curves from Guragain (2015) are used for stone and brick buildings with mud or concrete mortar,

the predominate building types in rural areas. For concrete and wood buildings, fragility curves

are drawn from HAZUS-MH (FEMA, 2013). Ground motion and housing typology data are

drawn from the same sources as the PDNA, a USGS Shakemap and the 2011 Housing Census,

respectively. The PDNA estimates were calculated at the district level, but are reproduced here

for village development committees (VDCs)—the finest spatial unit for which housing typology

data is available. It is not clear why the PDNA used district-level estimates when VDC level data

was available.

Figure 4.1 maps the modeled and observed damage levels across the eleven most-affected

districts. The model predictions severely overestimate the percentage of completely damaged

structures, showing nearly 90-100% damage rates across significant portions of the affected area.

The mean absolute error (MAE) and root mean squared error (RMSE) across all VDCs are 42%

and 52%, respectively, suggesting that traditional stone and mud structures performed better

than estimated in many VDCs. This margin of error might be acceptable for an event-level ‘or-
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Figure 4.1: Modeled damage estimates using fragility curves and aggregated ground
motions at the village development committee level (left) compared to observed damage levels
(right).

der of magnitude’ estimate produced within minutes to hours of an earthquake, but it is not clear

whether these modeled estimates should be considered accurate enough to inform aid allocation

decisions. Any modeling approach that does not have the ability to update model predictions with

ground-truth damage assessments is tethered to the accuracy of uncertain ground motions and

fragility curves.

4.4 Materials & Methods

4.4.1 The INLA-SPDE Approach

This study proposes an alternative damage modeling framework that integrates randomly

sampled post-earthquake engineering damage assessments with gridded geospatial covariates to

predict earthquake damages on a uniform grid. Consider a study region A ∈ R2 discretized into a

uniformly spaced grid with np grid points s1, ...,snp . For any given location i in the study region,

let Yi represent the number of structures at a specified damage state given Ni total structures. In

this application, quantities Yi and Ni are assumed to be observed for a given set of survey clusters
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nc with known locations and otherwise unknown at the grid point level. To estimate probabilities

pi at the grid point level, the model is defined by:

Yi|Fi,α,xi,θ ∼ Binomial(Ni, pi) i = 1, ...,nc +np

logit(pi) = α + f (Fi)+ xi

x∼ GF(0,∑)

(4.1)

where Fi is the vector of covariate values, θ is a vector of hyperparameters, and x is the

spatial latent Gaussian field that defines spatial random effects xi. In this application, spatial ran-

dom effects ∑ are specified with a Matérn covariance function defined by a smoothness parame-

ter v, scaling parameter k, and marginal variance σ2
η (Lindgren et al., 2011). A single latent Gaus-

sian field is used for both the observed point-referenced data and the estimations on the predic-

tion grid. Covariate values are defined across the survey area such that values exist for survey and

prediction points.

Approximate Bayesian inference via the INLA-SPDE approach is used to fit the model in

Equation 1.1) Rue et al. (2009). Principally, the INLA approach is an computationally efficient

alternative to Markov chain Monte Carlo methods that produces numerical approximations of

posterior parameters. For the vector of model hyperparameters θ = (Fi,k,σ2
η), the joint posterior

is given by:

nc+np

∏
i=1

Binomial(Yi;Ni, pi)×N(η ;0,∑)× p(θ) (4.2)

where p(θ) is the joint prior distribution of model parameters. The SPDE methodology
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(Lindgren et al., 2011) is used for estimating the Gaussian field (η). This approaches defines a

triangular mesh across the study region A using basis functions that provide a sparse representa-

tion of a Gaussian field with Matérn covariance at each triangulation node. A projector matrix is

then used to linearly map values from triangulation nodes to points of interest inside the mesh.

For full details on the SPDE approach, readers are referred to (Lindgren et al., 2011).

4.4.2 Geospatial Covariates

A set of gridded geospatial covariates are used to guide interpolation between damage

levels at observed survey clusters. Covariates are chosen to capture ground motions and the spa-

tial variability of housing types with different fragilities. Ground motions are included via a U.S.

Geological Survey (USGS) Shakemap for Modified Mercalli Intensity. USGS Shakemaps are

produced globally in near-real-time for all major earthquakes. Variability in housing types is re-

flected across three covariate layers: Shuttle Radar Topography Mission-derived elevation, Vis-

ible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights, and distance to Open-Street

Map major roads. These data are freely available from the WorldPop Project (WorldPop, 2018)

and were selected based on the basis of domain knowledge about social, structural, and physio-

graphic variation in Nepal (Muzzini and Aparicio, 2013, Chaulagain et al., 2015, Gautam and

Chaulagain, 2016, Robinson et al., 2018). All Worldpop covariate values are re-sampled onto 1 x

1 km2 grid cells to match the resolution of the USGS Shakemap.

VIIRS nighttime lights data is used as a proxy for urbanization. A majority of engineered

structures and other reinforced concrete buildings in Nepal are located in urbanized areas (Gau-

tam et al., 2016, Gautam and Chaulagain, 2016). Although population density could also be used

to similar effect, nighttime lights provides a more direct signal for urbanization of the built en-
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vironment. Distance to major roads is used as a proxy for remoteness and access to non-local

building materials. Large portions of rural Nepal are only accessible on foot and are restricted in

the types of building materials available (Muzzini and Aparicio, 2013). Most houses that are far

from roads are traditionally constructed with stones and mud mortar. Elevation captures two po-

tentially important variations in building materials. At coarse scales, elevation reflects differences

between the predominate building types in the low-lying Terai region (wood and bamboo) versus

the mid-hills region (stone with mud/cement mortar). At finer scales, there is a general tendency

for reinforced concrete and other engineer structures to be located at lower relative elevations

than more traditional construction built into terraced hillslopes. Together, these three covariates

capture the dominant features distinguishing housing typologies in Nepal.

4.4.3 Post-Earthquake Damage Estimation from Simulated Survey Clusters

As previously mentioned, in the month following the Gorkha earthquake over 60,000

rapid visual building inspections were performed by volunteer engineers and architects trained

by Nepal’s National Society for Earthquake Technology (NSET) (Lallemant et al., 2017). While

these original data are not openly available, a similar type of dataset can be simulated from dam-

age surveys collected further along in the reconstruction process. In this paper, the proposed

model is evaluated with simulated datasets containing increasing numbers of surveyed damage

clusters (100, 500, and 1000) drawn from a complete set of damage assessments collected for all

households across eleven rural districts as part of Nepal’s Household Registration for Housing

Reconstruction program. While detailed engineering assessments typically assign ordinal damage

grades (Lallemant and Kiremidjian, 2015), PDNAs use a less detailed partial-complete damage

spectrum (of Nepal, 2015). Accordingly, this study focuses only on predicting ‘complete damage
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Figure 4.2: The four gridded covariates used in the spatial interpolation model: (a) Mod-
ified Mercalli Intensity, (b) elevation, (c) distance to OSM major roads, (d) VIIRS Nighttime
Lights.
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states’, assumed to be those structures assigned the maximum possible damage grade (5 out of 5)

in the existing surveys. These structures are priorities for emergency response and often require

full reconstruction as opposed to repairs.

The cluster simulation procedure is described as follows. Cluster centroids are first drawn

as random samples of all household locations in the study area. Each cluster is then assigned a

fixed buffer of 250 meters and all households within the buffered zone are assumed to be sur-

veyed irrespective of damage level. The decision to use a 250 meter buffer distance is somewhat

arbitrary, but is chosen to be small enough such that a cluster could be surveyed by a small team

of engineers reasonably quickly. Other sized clusters or even variable size clusters are usable as

long as every structure in a cluster is surveyed. 1,000 surveyed clusters at 250 meters each in-

cludes approximately 55,000 households—close to the number of rapid damage assessments that

were actually collected in a few weeks following the earthquake. 500 and 100 surveyed clusters

cover approximately 28,000 and 5,500 households on average, respectively.

An iterative model fitting procedure with fifty instances for each number of survey clus-

ters is implemented using the R-INLA package in R (Lindgren and Rue, 2015). Iteratively fit-

ting the model to different randomly sampled cluster locations averages out the bias associated

with predictions at any single cluster location to give a stronger overall picture of average model

performance. For each iterations, a cluster set is generated and covariate values are extracted at

the centroid locations. These data are used to fit Equation (1) with a SPDE triangular mesh con-

structed as a convex hull around the study area (see details in Appendix). Penalized complexity

priors with the range set to the median distance between grid points are specified on the spatial

random field (Simpson et al., 2017, Fuglstad et al., 2019) and weakly informative normal priors

(∼ N(0,1e5) are placed on the covariate coefficients. Predictive performance is evaluated across
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all iterations for each number of survey clusters with a combination of three metrics: root mean

square error, mean absolute error, correlations between observations and predictions at the grid

level. Spatial plots for the median posterior estimates, standard deviations, and differences be-

tween predicted and observed values are also included.

4.5 Results

Figure 4.3A-E shows the median posterior estimates and standard deviations for the per-

centage of buildings sustaining complete damage in each 1 x 1 km2 grid cell for 250, 500, and

1000 clusters. The corresponding parameter estimates are included in Table 1 in the Appendix.

Damage patterns are positively correlated with MMI and distance to roads and negatively cor-

related with VIIRS nighttime lights, supporting prior assumptions for the covariates. Elevation

switches from positive to negative correlations at 500 grid clusters, likely reflecting the lack of

damage in the high mountain regions with no surveyed structures. Among included variables,

shaking intensity has the strongest effect on modeled damage percentages. The estimates for the

spatial range parameter vary between 1.18 and 1.48 (corresponding to an approximate distance of

112 to 152 kilometers), indicating strong spatial dependence in damage levels.

As expected, increasing the number of survey clusters increases the level of spatial het-

erogeneity in the modeled estimates and decreases the estimated uncertainties. Moving from 100

to 500 clusters has a larger impact on model estimates than the corresponding increase from 500

to 1000 clusters. This is predominately seen as reduction in uncertainty rather than a significant

change among estimated damage levels. Uncertainties remain high in the Himalayas where few

if any households are located. Compared to the areal damage model (Figure 4.1), all three cluster

models more accurately capture the lower percentages of complete damage at moderate latitudes.
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However, it is worth noting that the model predications and uncertainties from any single sce-

nario will be affected to some degree by the survey cluster locations, with higher uncertainties

further away from surveyed clusters. Optimizing cluster placement for interpolation accuracy is

beyond the scope of this study, but could be a worthwhile direction in future work.

The mean absolute errors for the 100, 500, and 1000 cluster models are .17, .13, and .11,

respectively (.23, .18, .15 RMSE). Correlations between predicated and observed damages (see

Figure 4.6 in Appendix) are .71, .82 and .85. The MAE values imply an average difference be-

tween observed and predicted values at the grid cell level of 11-17%—a 25%+ improvement over

the areal model with improved spatial resolution. As mentioned previously, model performance

improves with additional survey clusters but reasonably accurate predictions can be obtained with

a modest number of surveyed clusters. The average number of households included amongst the

simulated 100 cluster models is less than 10% of the actual number of households surveyed fol-

lowing the Gorkha Earthquake.

Figure 4.4 shows the percent differences between predicted and observed values at the

grid cell level. On the whole, all three models do a reasonable job of reproducing the observed

damage levels without any major biases. However, the 100 cluster model shows more correlated

errors compared to the 500 and 1000 cluster models. Including additional geospatial covariates

or altering the included covariates could potentially improve model fit, although errors may also

stem from ground motion uncertainties. USGS Shakemaps are themselves a modeled data prod-

uct and often interpolate across large areas with no strong motion observations. Figure 4.4 also

shows that all thee models contain cells where estimates are off by a significant margin (50-80%).

These prediction errors are concentrated in cells that neighbor survey observations but have large

differences in damage levels. The spatial random field favors smooth transitions between obser-
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Figure 4.3: Median posterior estimates and standard deviations for the probability of
complete damage at the grid cell level across fifty simulations using 100 (a-b), 500 (c-d), and
1000 (e-f) survey clusters.
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Figure 4.4: Median percentage difference between predicted and observed complete dam-
age states at the grid cell level for 100, 500, and 1000 survey clusters (left to right).

vations and is not well suited for capturing rapid changes between neighboring pixels. Similar is-

sues may also occur at sharp boundaries in the covariate layers. Although major prediction errors

only exist in a small fraction of total model cells, they should be taken into account when inter-

preting results. Pixel to pixel differences are generally reliable, but the proposed model should

not be used for targeting individual cells.

4.6 Discussion & Conclusion

Providing accurate models of earthquake damages on short-term timelines is a critical

element for both disaster response and recovery planning. Requests for international aid follow-

ing major earthquakes rely on the best damage assessments available approximately one month

post-event. It is common for rapid damage assessments to be collected at varying locations across

impacted areas to inform a post disaster needs assessment, but these data are not currently used

in damage models due to their sparse distribution. This study developed a spatial interpolation

damage modeling framework for estimating complete damage states on a high resolution predic-

tion grid from this type of geolocated cluster-level data. The proposed model is based in linking
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surveyed damage states to gridded covariates that correlate with ground motions and building

fragilities. The INLA-SPDE approach is used to fit the model in a computationally efficient man-

ner. Results show improved performance over existing damage modeling approaches with as few

as 100 clusters or approximately 5,500 surveyed structures. However, the true value of a spatial

interpolation framework becomes apparent with closer to 500 or 1000 clusters (28,000 - 55,000

surveyed structures) where predictions capture detailed spatial heterogeneities and correlations

between observed and predicted damage maps reach 85%.

The biggest advantage of a spatial interpolation approach compared to other damage

models is the use of ground-truthed data. Damage models based using only ground motions and

fragility curves are completely reliant on the accuracy of such data. In some regions this infor-

mation is well constrained and analytical approaches can be an effective approach for estimat-

ing structural damages. However, these methods do not generalize particularly well to areas like

Nepal with poor seismic instrumentation for capturing ground motions and a lack of detailed

earthquake-engineering studies. Section 1.2 showed the large discrepancies between current

models and observed damaged states for the Gorkha Earthquake, with average prediction errors

over 40% (Figure 4.1). Using observed cluster-level damage states as a starting point circumvents

this issue by making fewer assumptions on the a-priori relationship between ground motions and

specific housing types. Rather, a more general statistical relationship is derived from observed

damage levels across different local geographies with a spatial random field term capturing spa-

tially correlated errors. In essence, the spatial interpolation model trades off an unknown assump-

tion on fragilities for a known assumption on the distribution of different structural types across

landscape characteristics. This particular approach works well in places like Nepal with strong

socio-environmental variation among housing types.
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Several limitations exist in the proposed spatial interpolation model that are worth men-

tioning. As described in section 1.3.2, the covariates used in the model are based on domain

knowledge about the spatial variability of housing types in Nepal. In this application, Nepal ben-

efits from a strong urban-rural divide that translates into roughly homogeneous housing types.

Although other studies (e.g. Chaulagain et al., 2016, Robinson et al., 2018) use anywhere from

4-7 housing categories, the differences in associated fragilities between many of the included ty-

pologies is quite small. Hence, focusing on distinguishing between reinforced concrete, wood,

and various stone/mud structures captures most of the fragility variability in Nepal at a one kilo-

meter pixel resolution. Similar assumptions may not be reasonable in regions with more hetero-

geneous housing types, less spatial consistency among housing types, or weaker correlations be-

tween housing types and physiographic variables. The covariates used in this study are likely to

be applicable in other seismically active mountainous countries, but the relationships should be

thoroughly evaluated before generalizing this particular model to another context.

This modeling framework also utilized a comprehensive set of damage assessment data

collected after a major earthquake to validate results. Other countries may not have compara-

ble datasets for performing similar simulation studies. This data is not strictly necessary to adapt

and use the proposed model for future events, but appropriate caution should be placed on results

from areas where the model has not been validated. In a similar vein, the results from this study

assume that survey clusters are randomly spread throughout the affected area. The decision to use

randomly sampled locations was based off the assumption that systematically designing a sur-

vey sampling scheme is beyond the scope of the first few weeks of disaster response activities. In

reality, there is a strong chance that rapid damage assessments might be preferentially sampled

in areas with easy access, places where qualified engineers are already present, or locations with
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prior knowledge of severe impacts. Model performance in any of these scenarios may be worse

than presented here. Adapting the model to handle preferential sampling is a clear next step for

this research.

Despite these limitations, this study lays the foundation for several promising directions

of future research. Most notably, this study focused on a binomial response of a single damage

state. A more complex version of the model could incorporate joint likelihoods on several ordinal

damage states to provide more comprehensive impact estimates. This improvement would require

more detailed rapid damage assessments, but is likely to be useful even along a ‘no damage—

partial damage—complete damage’ spectrum. The existing model could also be extended to

fatality modeling. Fatalities are generally derived as the percentage of population in collapsed

buildings which is simply further subset of complete damage states (Kircher et al., 2006, Robin-

son et al., 2018). A procedure for selecting fatality rates at the grid level would need to be de-

veloped, but otherwise the approach remains the same. Finally, model extensions that directly

incorporate data on housing types from censuses or other sources could be considered. Includ-

ing percentages of different housing types as an areal covariate similar to Utazi et al. (2018a) is a

potential first step in this direction.
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4.9 Appendix

4.9.1 Damage Assessment Data

The damage assessment data used in this study comes from Nepal’s Household Registra-

tion for Housing Reconstruction Program. In an effort spearheaded by Kathmandu Living Labs

and Nepal’s National Planning Commission, door to door structural damage assessments were

collected at every residential household across the eleven most affected rural districts. The ob-

served percentage of structures assessed at damage grade five are shown below in Figure 4.6. An

open access version of this dataset (and the survey questions) is available at: https://eq2015.npc.gov.np/

Figure 4.5: Ground truth observations for percentage of households with complete dam-
age states in each prediction grid cell.
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4.9.2 Mesh Construction

The SPDE approach requires constructing a triangulated mesh to model the spatial ran-

dom field. The triangle knots serve as integration points and the values of any point lying within

a triangle are interpolated from the knot estimates. Thus, a finer mesh produces more accurate

predictions but increases computational time. The maximum triangle edge length for this study

was set at .05 degrees or approximately 2% of the prediction grid region, similar to discretiza-

tions in previous work Utazi et al. (2018a).

Figure 4.6: Triangular mesh used in the estimation of the spatial random field.
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4.9.3 Model Parameter Estimates

Table 4.1: Median posterior parameter estimates across 50 simulations for each number
of survey clusters.

Parameter Mean Std. Dev 95% Interval
100 Clusters

Intercept -16.09 1.80 (-21.86, -11.013)
MMI 1.25 0.16 (1.00, 1.46)
log(Elevation) 0.40 0.13 (0.02, 1.69)
log(VIIRS NTL) -0.47 0.09 (-0.74, -0.23)
log(Distance to Roads) 0.09 0.05 (-0.02, 0.20)
Range 1.45 0.06 (1.18, 1.77)
Std. Dev 2.60 0.15 (2.13, 3.15)

500 Clusters
Intercept -12.74 0.57 (-13.89, -11.65)
MMI 1.37 0.04 (1.29, 1.44)
log(Elevation) -0.12 0.03 (-0.17, -0.08)
log(VIIRS NTL) -0.61 0.02 (-0.65, -0.56)
log(Distance to Roads) 0.26 0.01 (0.25, 0.29)
Range 1.27 0.04 (1.08, 1.50)
Std. Dev 1.20 0.08 (1.08, 1.37)

1000 Clusters
Intercept -14.11823 0.43 (-14.93, -13.30)
MMI 1.86 0.02 (1.81, 1.90)
log(Elevation) -0.15 0.02 (-0.18, -0.12)
log(VIIRS NTL) -0.44 0.01 (-0.46, -0.42)
log(Distance to Roads) 0.38 0.01 (0.37, 0.40)
Range 1.18 0.07 (1.17, 1.33)
Std. Dev 1.03 0.07 (0.93, 1.20)
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5: CONCLUSION

5.1 Review of Contributions

Using a case study of the 2015 Gorkha, Nepal Earthquake, this dissertation has high-

lighted three different ways in which post-disaster data can be used to inform models of earth-

quake vulnerabilities, reconstruction processes, and impact assessments. Each chapter used dif-

ferent sources of household-level data to address issues of scale and uncertainty in different por-

tions of the disaster cycle. Although each of the chapters relies on datasets currently unique to

Nepal, similar types of data are likely to be collected in future earthquakes. All model frame-

works are described sufficiently generally to be adaptable to other contexts. Thus, this disserta-

tion offers a tangible example of how post-earthquake datasets can and should be extended be-

yond monitoring and reporting efforts. Integrating new types of data into modeling frameworks,

especially household-level surveys, provides insights that are difficult to glean from summary

statistics alone. The primary insights and contributions of each chapter are summarized below.

5.1.1 Addressing scale issues in social vulnerability indices

Chapter two provided an empirical analysis of scale issue in social vulnerability indices,

specifically focusing on the problems associated with using aggregated measures of household

characteristics with inductive methods. This practice is pervasive among sub-national index stud-

ies due to the relative lack of micro-data sets upon which to derive actual household characteris-

tics. Without household level data, analyses often assume that aggregated versions of the same

characteristics are reasonable representation of the same theoretical components. For example,

household income is assumed important and and ‘median household income’ is used as an input
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variable. This analysis showed that the vulnerability ranks produced using these two variables

might be quite different, even if the components derived from PCA or other dimension reduction

procedures are qualitatively similar. The ‘average’ household derived from an a mean or median

may not correspond to a type of household that actually exists with any meaningful frequency.

Using inductive techniques to maximizing the variance between these averaged characteristics

creates components that are difficult to confidently interpret.

These results contribute to larger discussions over construct equivalence and scale sensi-

tivities in social vulnerability indices. The notion that vulnerabilities are produced by multi-scalar

processes is fundamental to several theoretical frameworks, but it remains unclear precisely how

these concepts should be captured with indicators. Several existing studies have recommended

using local qualitative case studies as a way to validate sub-national indices (Schmidtlein et al.,

2008, Fekete, 2009, Fekete et al., 2010). This methods used in this study offer a parallel quan-

titative approach based in post-disaster micro-data. This study lays the foundation for further

research related to measurement issues between aggregated and disaggregated scales—an im-

portant pursuit as micro-data sets become available with increased regularity.

5.1.2 Developing a modeling framework for household reconstruction behavior

Chapter three developed a new modeling approach for analyzing household level recon-

struction behavior. This approach used an item-response theory framework to estimate the prob-

ability of a household taking reconstructive action from routinely collected post-disaster survey

data—a novel contribution in the disaster risk reduction space. While it is common to track re-

construction progress through aid dispersal statistics or localized case studies, no existing re-

search has attempted to generalize trends at the scale of an entire earthquake event. In owner-
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driven reconstruction systems, this type of research is especially important for understanding the

factors that contribute to increased reconstruction probability.

The analysis in chapter three found several notable trends in an analysis of 5,913 household-

level surveys collected approximately one year after reconstruction activities started in Nepal.

Economic aid in the form of the first round of reconstruction funding or similar I/NGO funding

had a relatively small impact on the probability of a household starting the reconstruction process

(about 8% on average). Receipt of an engineering consultation was considerably more impactful

for increasing reconstruction probabilities. Household willingness to commit additional resources

(financial, material, or otherwise) also had a large effect on reconstruction probabilities. House-

holds with high levels of additional resource contribution also benefited relatively more from ex-

ternal aid, suggesting that equal aid distribution does not necessarily correspond with equal re-

construction outcomes. These specific findings contribute to discussions of equitable earthquake

recovery and highlight the need for further research that seeks to understand the barriers for re-

construction in resource-poor households. More broadly however, these types of insights also

communicate the potential for using sophisticated model frameworks to evaluate reconstruction

progress in much greater detail than is currently the norm.

5.1.3 Improving modeled damage estimates with geolocated cluster data

Chapter four examined an alternative damage modeling framework that relies on ge-

olocated rapid damage assessments rather than fragility curves to estimate damage levels. Al-

though rapid damage models are often accurate at coarse scales, they lack the ability to incor-

porate ground truthed information into estimation procedures. For the Gorkha Earthquake, this

meant leaving out information from over 60,0000 rapid damage assessments performed within
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several weeks of the event. The modeling framework in this chapter proposes a spatial interpola-

tion framework for estimating the percentage of completely damaged structures on a high resolu-

tion grid from this type of sparse survey cluster data. The model uses the INLA-SPDE approach,

a relatively new computational method designed for spatial modeling (Lindgren and Rue, 2015).

The results from this study show meaningful improvements over existing damage mod-

els, reducing prediction errors by over 25% while simultaneously increasing spatial resolution.

The proposed framework is able to capture the broad damage trends with approximately 5,500

rapid damage assessments—less than 10% of the assessments collected in a few weeks after

the Gorkha earthquake. With tens of thousands of damage assessments, model predictions are

able to capture fine-scale spatial heterogeneities in damage patterns. These findings represent

a promising new direction for rapid damage estimation by leveraging damage assessments that

are already being collected after major earthquakes. The proposed methods can be implemented

within the timeline for delivering a PDNA and offer damage estimates based in actual field obser-

vations. Translating these model results into more direct loss metrics and aid estimates remains

an area of future work, but this chapter lays the necessary groundwork for such developments.

This work also contributes to broader active research efforts focused on synthesizing the new

wave of rapidly available post-disaster impact data (Goodchild and Glennon, 2010, Xie et al.,

2016, Lallemant et al., 2017, Li et al., 2019).

5.2 Limitations and Opportunities

This dissertation uses the 2015 Gorkha earthquake as a case study for how various post-

disaster datasets could improve different aspects of disaster modeling. However, relying exclu-

sively on datasets from one event and collected for other purposes brings certain limitations to
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each chapter. Some of the most important points are summarized below:

• Chapter two relied on eleven variables extracted from the socio-demographic data collected

in the household reconstruction surveys. This is fewer variables than would normally be

used in similar indices based on census data. Although most of the same dimensions are

represented, the paper is largely positioned as a methodological critique rather than an ac-

tual social vulnerability index due to the limited variable set. Fortunately, including addi-

tional variables in future work (if available) would not require any adjustments. Synthesiz-

ing micro-data sets with census data across common variables is also likely to be a useful

topic of future research.

• Chapter three used three months of survey data collected approximately one year after re-

construction activities started in May of 2016. As a result, the model evaluated a single

snapshot of reconstruction progress amongst a three to five year reconstruction timeline.

Collection of CFP surveys continued further into the reconstruction process, but changes

in survey questions and Nepal’s administrative restructuring prevented the incorporation of

more recent surveys into the analysis. This could be improved in future events by maintain-

ing a standard set of questions for reconstruction surveys collected across several years.

Reconstruction continues to be one of the most under-researched components of earth-

quake DRR due to a lack of consistent longitudinal datasets. Facilitating more partnerships

and data sharing between academic researchers and stakeholders on the ground is a clear

step towards improving general understanding of reconstruction processes.

• Chapter four only considered completely damaged buildings in its damage estimates rather

than more traditional ordinal damage states. This decision was made on the basis that fully
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damaged and collapsed buildings are straightforward to rapidly identify and in need of the

most immediate assistance. A more complex statistical model involving joint likelihoods

for multiple damage states is likely feasible, but would requires significant further develop-

ment, testing, and validation. Determining how to best link geospatial covariates to ordinal

damages states is a particularly challenging area of future research. Working out methods

for integrating housing census data into predictions is another direction worth pursuing.

• Chapters three and four used specific domain knowledge about the study region during the

model development processes. For chapter three, this included research on the factors af-

fecting reconstruction rates in rural environments and specific details of Nepal’s recon-

struction framework. For chapter four, this involved selecting gridded covariates that cor-

related strongly with different housing types. As a result, neither of these models can be

carbon copied into an alternate context without modification. The model frameworks are

described in sufficient detail in both studies to be adapted to different settings, but model

performance may vary. Applying these models to other events is an important future step

for validating the generalizability of the proposed frameworks.

• This dissertation relied on survey data that was collected for reporting and monitoring pur-

poses. Reformatting these datasets for modeling applications required a significant amount

of work. For example, the CFP surveys used in Chapter three required a combination of

fuzzy-matching and manual joins on village development committee names translated from

Nepali before they could be linked to other datasets. Improving the machine readability of

datasets would increase the uptake of new datasets and reduce the potential for errors in the

data preparation phase of statistical analyses. Standardizing administrative coding schemes
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and reporting of survey non-response alone would go a long ways in improving the usabil-

ity of various datasets. Providing open access to datasets is important, but reducing the cor-

responding barriers to entry is equally important.

5.3 Towards an improved earthquake disaster modeling ecosystem

The ecosystem for post-event data collection and distribution has drastically improved in

recent earthquakes and is primed to continue expanding. Access to crowd-sourcing platforms and

and remotely sensed imagery has never been better and open-data sharing is steadily becoming a

standard practice among NGOs and government agencies. This dissertation focused on provid-

ing diverse examples of how earthquake disaster models can be improved with novel varieties of

post-disaster data rather than narrowing in on any one specific area. It is hoped that these studies

motivate future research in similar directions, whether further developing these contributions or

innovating new approaches altogether. Taking full advantage of the disaster data explosion will

require new techniques, collaborations, and a desire to dive into the trenches of messy datasets.

For those willing however, the current surge of new data streams offers an unparalleled oppor-

tunity to understand the dynamisms of disaster processes at high resolution and across multiple

scales. These insights are critical for mitigating hazards, managing risks, and reducing vulnera-

bilities for those living amongst the world’s most active fault zones.
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