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Abstract

In recent decades, the number of antibiotic-resistant bacterial infections has grown to become

a serious global threat. This rise can be attributed to the widespread misuse of antibiotics and

the lack of newly developed drugs to fight resistant organisms. Novel bactericidal substances

have, therefore, garnered significant research interest. Silver, due to its powerful antimicro-

bial effects, is one such substance. Silver is typically most effective in cationic form; however,

advancements in nanotechnology have paved the way for the controlled fabrication of nano-

silver. Silver nanoparticles have been shown to have increased antibacterial potency for a

variety of reasons, including the release of silver ions into aqueous media. Nonetheless, the

entire antimicrobial mechanism of silver nanoparticles has not been completely elucidated.

One such unexplored interaction is with bacterial motility. Motility allows bacterial cells

to navigate their environment and steer themselves in favorable directions. Furthermore,

motility has been shown to play an important role in virulence and biofilm-formation.

In this research, I investigated the interactions between silver ions and motility of Es-

cherichia coli. By performing and collecting data from a series of phase-contrast microscopy

experiments, I was able to show, through quantitative modeling and results, that silver ions

cause a decrease in swimming velocity, an increase in tumbling frequency, and an increase

in tumbling dwell time, all while not killing the cell. The experiments I performed included

free-swimming experiments, in which bacteria swam in the 2-D focal plane, and tethering

assay experiments, where a cell was trapped to a glass coverslip by a single flagellum. By

modeling the rotational velocity of the tethered cells using hidden Markov models, I was

able to show that silver ions cause a significant change to the tumble-to-run probabilities of

treated cells. These results are of great importance for furthering the understanding of silver

as a bactericide.
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1 Introduction

1.1 The Antibiotic Resistance Crisis

Since the discovery of penicillin, antibiotics have saved countless lives from infectious dis-

eases [1–3]. With their introduction into medicine, antibiotics have helped to reduce child-

hood mortality, increase life expectancy, and improve the outcomes of clinical surgery [1–3].

However, the universal efficacy of these ”miracle-drugs” has dwindled in recent decades as

increasing numbers of infectious species have developed resistance to one or more antibiotics

to which they were previously susceptible [1,2]. Emerging antibiotic-resistance is due largely

to overuse and misuse in the clinical and agricultural settings [2,3]. As a result, the number

of infections in the United States due to antibiotic-resistant pathogens is around two million

per year and increasing [1,2]. Despite this, the number of new antibiotics introduced and in

development has decreased over the past few decades [1–3]. Most pharmaceutical companies

do not invest resources in antibiotic research due to the drugs’ low costs, opaque regulatory

barriers, and the short treatment duration [3]. Furthermore, any newly developed drugs

are used as a last resort for fear of increasing the likelihood of resistance [3]. The resulting

lack of investment has been met with an estimated $20 billion cost on the American health

care system and an estimated $35 billion in lost productivity and wages annually [3]. In

combatting this global threat, renewed research efforts into new antibiotic agents and their

mechanisms, along with implementation of best-practices, are of dire importance [2–4].

1.1.1 History

In 1928, Alexander Fleming found that penicillin, a substance produced by a fungus from the

Penicillium genus, possessed strong bactericidal and inhibitory properties against staphylo-

coccus bacteria [1, 5]. His discovery, and the later production of penicillin for clinical use

in the 1940s, ushered in a new era of medicine in which antibiotic substances produced by

organisms could be used to fight infectious diseases in humans [1]. The following decades
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saw the introduction of a swath of natural antibiotics such as streptomycin, tetracycline,

and vancomycin as well as classes of synthetic drugs like the sulfonamides [1]. The mortality

rate due to pneumonia, influenza, and tuberculosis fell abruptly between the 1940s and 50s

thanks in part to effective antibiotics [6]. Penicillin, in particular, proved to be instrumental

in curing life-threatening diseases during World War 2 [1].

However, only a few years after their introduction into medicine in the 1930s, sulfonamides

began losing efficacy due to resistance [4]. For penicillin, enzymes enabling resistance were

found in bacteria before the drug was introduced as a therapeutic [4,7]. Even more alarming

was the discovery of resistance-genes in 30,000-year-old bacterial DNA [8]. These genes

could code for resistance to a diverse set of antibiotics including β-lactams, tetracyclines,

and glycopeptides like vancomycin, a drug previously thought to be too difficult to attain

resistance to in a clinical setting due to its multi-faceted antibacterial mechanism [3, 8].

These discoveries demonstrate that antibiotic-resistance is an ancient enemy that, through

the overuse and misuse of antibiotics, has been given new life.

1.1.2 Killing-Mechanisms of Antibiotics

Antibiotics of different classes can affect susceptible organisms in a variety of ways. Amino-

glycosides, tetracyclines, macrolides, and phenicols inhibit translation in some bacteria [4].

Streptomycin, a member of the aminoglycosides, binds to the 30S ribosomal subunit and

disrupts protein synthesis [9]. Other classes, such as the β-lactams and glycopeptides, target

peptidoglycan biosynthesis by binding with enzymes in the cytoplasmic membrane known

as penicillin-binding proteins (PBPs) [10]. This mechanism inhibits cell division and growth

eventually leading to cell death [10]. Still others like ciprofloxacin, a fluoroquinolone, target

replication via inhibiting bacterial DNA from unwinding and duplicating [11].

2



1.1.3 Mechanisms of Resistance

The killing-mechanisms of a particular antibiotic will not necessarily be effective against

all bacteria. Vancomycin, for instance, cannot cross the outer membrane of Gram-negative

bacteria [2]. Gram-negative bacteria, therefore, possess intrinsic resistance to vancomycin.

There are some cases in which intrinsic resistance can be overcome. For example, multiple

antibiotics can be used in concert; one antibacterial agent can inhibit an intrinsic resistance

mechanism while another enacts its default mechanism against its target [2]. Acquired or

developed resistance, on the other hand, refers to a mechanism or set of mechanisms of an

organism that deactivate an antibiotic to which the organism is not intrinsically resistant.

Some of these mechanisms include modifying the antibiotic target causing decreased affinity,

reducing the intracellular concentration of the antibiotic via efflux or resisting penetration,

or employing enzymes to hydrolyze or otherwise modify the antibiotics [2].

β-lactamases, the enzymes responsible for conferring resistance to penicillin and other

β-lactams, are widespread on a global scale [4]. Organisms producing these enzymes can be

found in human and animal intestinal tracts, in clinical settings, and in the environment [12].

The genes that code for these enzymes are ancient and quickly mutate, thus creating a

diverse set of resistance pathways [4]. The macrolide antibiotics, introduced to fight multi-

drug resistant Staphylococcus aureus (MRSA), disrupt translation by binding to sites in the

peptide exit tunnel of the 50S ribosome subunit [4]. Resistance, then, has been seen to

be manifested by a change to the RNA or protein components of this tunnel, decreasing

binding affinity [4]. Fluoroquinolones, effective against various Gram-negative bacteria, can

be rendered useless by mutations in the targeted gyrase gene accompanied with increased

efflux of the drug [4]. In addition to intrinsic resistance as a result of morphology, intrinsic

resistance can refer to the existence of genes that could result in a resistant phenotype.

Over-expression of these otherwise silent genes can lead to resistance, as is the case for

sulfonamides and trimethoprim [4].

Antibiotic-producing bacteria and fungi can be sources of resistance genes (r genes) for
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pathogens [4]. These genes can be mobilized on plasmids and exchanged among peers via

horizontal gene transfer (HGT) or passed from parent to offspring via vertical gene transfer.

HGT can be enacted via conjugation in which plasmids are transferred between cells across

connecting pili. This has been found to occur frequently in human and animal guts, leading

to the prevalence of diverse r genes therein [4]. Transformation refers to the process by which

cells release DNA in the form of plasmids to be up-taken later by competent cells. Once

captured, these plasmids can exist separate from or integrated into the genome of the host.

Acinetobacter spp. are naturally competent and thus HGT in this way is common [4].

1.1.4 Efforts to Overcome Antibiotic Resistance

The selection pressure of modern antibiotics is much greater than at any time during the pre-

antibiotic era [4]. Human production of antibiotics is the largest source of antibiotics in the

environment [4] and the prevalence of these drugs has had dire consequences. Antibiotics see

extensive use across disparate fields like agriculture as growth promoters and for pest control,

or therapeutically in humans, or in research and industry [4]. Pollution from manufacturing,

wastewater, and runoff from animal husbandry sites have not only lead to alterations of the

gut microbiome of local animals and humans, but have also created breeding pools for r

genes and resistant organisms [4, 13].

To curb this crisis, many countries have enacted preventative policies. In the 1990s, to

address rising rates of infection in patients, Iceland, Finland, France, Greece, and the United

States each enacted restrictive policies that limited the use of antibiotics against resistant

organisms [14]. Each time, rates of infections, mortality, and lengths of stay were seen to

decline as the selection pressure for those resistant organisms decreased. More recently,

government bodies have placed policies into effect that limit the use of antibiotics in the

agricultural industry. In 2012, the FDA outlined policies concerning the judicious use of

antibiotics in livestock production. Among these provisions was a call to eliminate the

inclusion of sub-therapeutic concentrations of antibiotics in feed and water, and, as of 2014,
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all producing companies have heeded the FDA’s guidelines [15]. In the 1970s, after the

findings that antibiotic resistance among humans was related to antibiotic use in livestock

from the Swann Report, penicillin and tetracycline were banned as growth promoters in

the United Kingdom [15]. In the 1980s and 1990s, other European nations began banning

individual antibiotics as growth promoters if not banning all antibiotics for non-therapeutic

use altogether. In 2006, an EU-wide ban was placed on all antibiotics as growth promoters

[15]. The use of antibiotics for curative purposes, however, persists albeit with greater

regulation [15]. Despite the implementation of best-practices and governmental oversight,

the problem of antibiotic-resistant infections continues to grow.

The past twenty years have been hallmarked by failures of modern techniques to produce

any new classes of antibiotics [16]. Modern antibiotic discovery is focused on targeting essen-

tial genes that are not protected by known resistance mechanisms [16]. These methods have,

however, been impeded by their inability to produce broad-spectrum agents or agents active

against Gram-negative bacteria, due to their thicker peptidoglycan layer [16]. Furthermore,

single-target approaches can be more susceptible to emergent resistance [16].

Another roadblock in fighting antibiotic-resistance is the steady decline of industry in-

volvement in the research and development of new antibiotic substances [3, 17]. In order to

spark initiative and innovation within this field, the Infectious Disease Society of America

(IDSA) proposed a multi-faceted plan that included refactored regulations and bolstered

economic incentives [17]. Fortunately, as of 2018 there now over 58 distinct initiatives on

national, global, and EU levels whose goal is to promote antibiotic drug development [18].

These movements include The Joint Programming Initiative on Antimicrobial Resistance

(JPIAMR), the Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator

(CARB-X), the Global Antibiotic Research and Development Partnership (GARDP), the

Global Antimicrobial Resistance Innovation Fund (GAMRIF), the EU’s Innovative Medicines

Initiative and its subsidiary New Drugs for Bad Bugs (ND4BB) Program, and the US’s

Biomedical Advanced Research and Development Authority (BARDA) [18].
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1.2 Silver as an Antibacterial Substance

As the demand for a solution to antibiotic-resistant pathogens has grown, so too has the in-

terest in metal nanoparticles as antibacterial agents. Silver nanoparticles, in particular, have

attracted a large amount of research resources due to their reproducible and versatile pro-

duction methods, high specific surface area, and their intrinsic antimicrobial effect stemming

from the release of silver ions into aqueous solutions. Although research interest in silver is

only recently growing, silver has been known to possess bactericidal properties for millen-

nia [19–21]. Herodotus, an ancient Greek historian (c. 484 BCE), noted that the Persians

stored water in silver containers to prevent contamination [19,21]. Now, with the capabilities

of nanotechnology, silver nanoparticles can be fashioned into a variety of structures including

nanocubes, nanowires, and nanospheres [21]. Furthermore, silver nanoparticles have shown

efficacy against Gram-negative bacteria as they are able to bind and interfere with the cell

wall [19,21].

1.2.1 History

Empirically, silver has been known to possess antibacterial properties for over six thousand

years [20]. Civilizations reaching back in time as far as the ancient Egyptians, and as recently

as the North American pioneers have all used silver for water filtration [20, 21]. In times of

plague, the use of silver cutlery was seen to be associated with lower rates of infection [20].

For medical use, silver nitrate (AgNO3) has seen extensive application in preventing

infection in wounds since the 16th century [19]. While this practice still exists today, silver

is often replaced by or used in conjunction with antibiotics [19, 20]. In the 1800s, it was

discovered that silver’s primary mode of action is the release of silver ions [19]. In 1881,

Dr. Carl Siegmund Franz Credé introduced the use of a 1% silver nitrate solution against

opthalmia neonatorium, an ocular disease in newborn infants [19–21]. His method was

successful (reduced occurrence from 7.8% to 0.13% in 13 years) and became a globally

accepted form of treatment. His son, B.C. Credé, demonstrated that colloidal silver could
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be used to treat wound sepsis [19, 20]. Halsted, an early 20th century American surgeon,

employed silver-containing sutures to prevent infections in surgical incisions [20].

However, after the introduction of penicillin into the clinical setting in the 1940s, use

of silver for the treatment of bacterial infections decreased. Nonetheless, its use remained

and, in 1965, Moyer introduced the use of 0.5% silver nitrate for the treatment of burn

wounds [19]. Later, in 1968, silver sulfadazine cream was created by combining silver nitrate

with sulfonamide antibiotics [19]. This cream serves as a broad-spectrum antimicrobial for

the treatment of burns [19]. In addition to topical use, oral consumption of silver colloids

was clinical practice in the early 1900s [21]. In low doses, silver is seen to be largely harmless.

However, ingestion can cause argyria (harmless blue-gray discoloration of the skin) and other

complications [19–21]. More recently, nano-silver has been used as a coating for medical

devices such as catheters, needles, and bandages [21]. Beyond its use for medical applications,

silver has seen an uptick of use in consumer products such as textiles, cosmetics, and home

appliances [21,22].

1.2.2 Silver Ions and Nanostructures

Alexander, in his extensive review of the medical history of the use of silver, claims that

the discovery of the release of silver ions (Ag+) as the primary antibacterial mode of action

of silver was made by Vonnaegele in the 19th century [20]. Vonnaegele found that silver

displayed antimicrobial effects against at least 650 different organisms [20]. Ag+ can be

obtained by dissolving AgNO3 in aqueous solutions or by oxidation of metallic silver [21].

Silver nanoparticles (AgNPs) refer to clusters of silver atoms whose diameter in any

dimension is between 1 and 100 nanometers. AgNPs can be synthesized by “bottom-up”

methods which involve agents such as citrate, glucose, ethylene glycol, or sodium borohy-

dride reducing Ag+ to form AgNPs [21, 23]. Physical methods fall under the “top-down”

classification of synthesis methods [23]. Here, bulk material is ground down and subsequently

stabilized. Physical reduction methods include optical quantum reduction and microwave
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reduction of AgNO3 [22]. Chemical synthesis methods are typically high-yield but produce

hazardous by-products [23]. Conversely, physical methods produce fewer harmful chemicals

but also result in lower yields and consume high amounts of energy [23]. Biological synthesis,

on the other hand, has been found to be a “green” alternative to chemical or physical reduc-

tion methods due to the mild nature of the involved substrates and reaction [22]. Synthesis

in this way relies on microorganisms capable of reducing Ag+ to AgNPs [22]. Biological

synthesis is simple, rapid, and non-toxic all while being flexible enough to produce particles

of a desired size and morphology in a high-yield fashion [22,23].

1.2.3 Known Mechanisms

While the antimicrobial mechanism of silver has yet to be completely characterized, many

interactions between silver substances and bacterial cells have been reported in the literature.

Much of the antibacterial activity of cationic silver stems from its interactions with the

negatively charged bacterial cell wall [24]. E. coli and S. aureus treated with AgNO3 were

seen to undergo morphological changes during which the cytoplasmic membrane detached

from the cell wall [25, 26]. Additionally under these conditions, silver ions can be found to

bind to the negatively charged nucleic acids of the cell [27]. In response, DNA molecules

were found to condense in an effort to protect genetic information from damage [25, 26].

Silver ions were also found to bind with sulfhydryl groups causing deactivation of essential

respiratory enzymes [25,28]. Other negatively charged functional groups such as phosphates,

hydroxyls, imidazoles, and indoles were also targets [27]. Ultimately, these effects resulted

in mutations to the cell wall and membrane leading to cell lysis and death [24,27].

Silver nanoparticles exhibit similar interactions. However, due to their high surface area

to volume ratio, AgNPs possess greater antibacterial efficiency [19, 25]. Against Gram-

negative bacteria, AgNPs were seen to attach to and penetrate the cell membrane causing

intracellular release of silver ions [29,30]. AgNPs with a positive zeta potential were seen to

interact with the negatively charged bacterial exterior at a higher rate [27]. This, in addition

8



to the physical antimicrobial properties of silver nanoparticles, made them more effective

than cationic silver or their neutral and negatively charged counterparts [27]. Although the

literature contains mixed conclusions, it has also been shown that AgNPs may intercalate into

DNA thus interfering with transcription and translation [27]. Additionally, AgNPs release

reactive oxygen species (ROS) into the cell cytoplasm [27]. These form highly reactive free

radicals with high bactericidal activity [27]. Ribosomal damage is another marker of AgNP

interaction with bacteria [27].

The antibacterial properties of AgNPs are dependent on size, shape, and concentra-

tion [27]. This variability provides more options than were available with silver ions when

designing nanoparticles for therapeutic purposes. Against E. coli, triangular AgNPs were

efficient even at low concentrations. A typical concentration that was effective against a

wide class of pathogens, including the most hardy species, was around 75 µg/mL [27]. When

used along side antibiotics AgNPs showed great results. The minimum inhibitory concen-

tration (MIC) of the antibiotics used was decreased and the AgNPs assisted in rendering

the bacteria susceptible to antibiotic treatment [27]. When tested against vancomycin- and

trimethoprim-resistant bacteria, the synergistic effects of AgNPs with antibiotics increased

the susceptibility from 20 to 30% [27].

Biofilm-producing pathogens, of which E. coli is one, have been found to be one of the

leading causes of chronic infectious diseases such as cystic fibrosis, endocarditis, and peri-

odontal diseases [27]. Biofilms consist of a community of bacteria attached to a solid surface.

This formation is housed within a polymeric solution of DNA, proteins, and polysaccharides

excreted by the formerly planktonic cells. These commonly develop in aqueous environ-

ments such as on water pipes, teeth, and medical devices [27]. Biofilms offer the enclosed

cells greater access to substances key for metabolism and survivability. Biofilms are more

capable of evading host defenses, engaging in horizontal gene transfer, and proliferating via

partial detachment of the biofilm. Antibiotics struggle to defend against biofilm formation

because the extracellular matrix limits their diffusion. AgNPs, however, have been shown
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to infiltrate this complex. Against Pseudomonas aeruginosa, AgNPs caused anywhere from

a 65 to 88% reduction in biofilm formation over 48 hours when used at micromolar concen-

trations [27]. The use of AgNPs in prostheses such as dental implants and bone cement has

been shown to cause a decrease in S. mutans biofilm formation.

1.2.4 Limitations

Developed resistance to silver is very rare owing to silver’s multi-faceted antibacterial mech-

anism [27]. Additionally, its low cytotoxicity makes silver a strong candidate for therapeutic

use either with or in place of traditional antibiotics. Although there has been some use of

silver in medical and consumer products, its adoption has not been resounding. Governing

bodies in the USA and Europe have expressed concerns over potential human risk factors

associated with the presence of silver in commercial products [21]. The reasons for this alarm

stem from unexplored cytotoxicity factors and potential adverse environmental effects [21].

Futhermore, it is crucial to understand how bacteria may develop resistance, if possible,

before expanding the use of silver and silver nanoparticles.

Oral consumption or exposure to silver nanoparticles can lead to massive release of silver

ions in the gastrointestinal tract [22]. This contact has been found to be associated with

hepatotoxicity (liver damage), apoptosis, and inflammation [22]. Silver’s main targets in the

human body are the spleen, liver, and kidneys [22]. Silver miners exposed to low doses of

silver dust or soluble silver at or below threshold limits were seen to be free from adverse

health effects [22]. They are, however, more likely to develop argyria.

Silver-resistant bacteria have been found in silver mines [31]. These bacteria can accu-

mulate up to 25% of their mass in the form of silver on their exterior [31]. In fact, these

same bacteria can be used for the biosynthesis of silver nanoparticles [31]. It remains un-

clear, however, how the use of silver and silver nanoparticles in consumer products selects

for resistance among pathogenic bacteria [21].

Despite these limitations, silver nanoparticles’ broad-spectrum bactericidal properties
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and cost-effective manufacturing [32] align well with the industry and governmental expec-

tations for antibiotics.

1.3 E. coli as a Model Organism

Escherichia coli is a Gram-negative, rod-shaped bacterium commonly found in the lower

intestinal tract of warm blooded animals such as humans and cattle [33]. As a commensal,

E. coli can provide the host with a swath of benefits including the production of vitamin

K2 [34] and prevention of infection from foreign pathogens [35]. However, some E. coli strains

are dreadful human pathogens that can lead to diseases resulting in severe inflammatory

responses and even death [33]. It is estimated pathogenic E. coli infections are responsible

for more than two million annual deaths worldwide [33]. This problem is only exacerbated

by the growing occurrence of antibiotic-resistant strains.

In addition to its importance as a pathogen, E. coli is also one of the most well-studied

bacterium with regards to motility [33]. Motility allows for the exploration of the cell’s envi-

ronment in order to acquire necessary substances and avoid deleterious ones. The chemotac-

tic system that controls the motility of E. coli has been thoroughly investigated in both the

molecular and cellular regimes [36]. Therefore, E. coli provides a well-studied model system

in order to investigate the effects of silver on motility.

1.3.1 As an Infectious Agent

Pathogenic E. coli cause persistent diarrhea which remains one of the highest causes of death

for children 5 years of age and younger [37]. Pathogenic strains can be subdivided into at

least these six classes based on their means of infection and symptoms [33,38]:

• Shiga toxin-producing E. coli (STEC): produce the Shiga toxin which causes severe

gastrointestinal illness. The Shiga toxin causes diarrhea and hemolytic uremic sydrome,

a life-threatening complication hallmarked by symptoms such as thrombocytopenia,

hemolytic anemia, and kidney failure [37,38].
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• enteropathogenic E. coli (EPEC): major cause of diarrhea in infants in developing

countries [37].

• enterotoxigenic E. coli (ETEC): leading cause of traveler’s diarrhea [39].

• enteroaggressive E. coli (EAEC): infections result in persistent, watery diarrhea and

can cause outbreaks in developing countries [40].

• diffusely adherent E. coli (DAEC): cause of urinary tract infections, pregnancy com-

plications, and diarrhea in children [41].

• enteroinvasive E. coli, including Shigella strains (EIEC): can cause dysentery [42].

In just the past three years, the CDC has reported five separate outbreaks of food-

borne illness caused by the Shiga toxin-producing E. coli strain O157:H7 [43]. In total,

these outbreaks led to 285 infections, 39 developments of HUS, and 6 deaths across the

US (Arkansas, California, Minnesota, and New York) and still other cases in Canada [43].

The sources of the pathogen included leafy greens, romaine lettuce, alfalfa sprouts, ground

beef, and soy nut butter products [43]. The elderly and young people are most likely to

develop infections and suffer more severe complications [44]. In the case of the soy nut

butter products, 81% of those infected persons were below the age of 18 [43].

Fortunately, these pathogens were not reported to have shown resistance to commonly

used antibiotics. However, E. coli infections in healthcare settings prove much more difficult

to treat. Carbapenem-resistant Enterobacteriaceae (CRE), of which approximately 1400 E.

coli strains are members, are considered an urgent threat by the CDC [45]. There is little

that can be done in the case of CREs by way of antibiotics as carbapenems are “the last line

of defense” for multidrug-resistant bacterial infections [45]. Each year CREs cause around

9000 infections and 600 deaths in the US [45]. The prevalence of these pathogens is far-

reaching; the CDC recorded at least one type of CRE in healthcare facilities in each of 44

states [45]. Pathogenic E. coli also present a serious threat, according to the CDC, in the

form of extended spectrum β-lactamase (ESBL) producing Enterobacteriaceae [45]. ESBLs

confer resistance to many common antibiotics such as penicillins and cephalosporins [45].
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These drug-resistant strains cause 26,000 infections per year, result in 1700 deaths, and

can cost infected individuals upwards of $40,000 in medical bills [45]. Presence of ESBL-

production ability increases mortality rates due to Enterobacteriaceae infection by 57% for

patients with bloodstream infections [45].

1.3.2 Motility and Chemotaxis

Peritrichous bacteria, like E. coli, navigate their environment by rotating multiple helical-

shaped flagella counter-clockwise (CCW) and clockwise (CW) [46–48]. When rotating CCW

the flagella bundle up to form a propeller, and when one or more flagella rotate CW the

bundle comes undone and the cell spins randomly in place [46–48]. These rotation modes

result in running (straight-swimming) and tumbling (reorientation) events, respectively [46–

48]. In the absence of chemoattractant gradients this behavior causes a bacterium to perform

a random walk [46]. In the presence of a chemical gradient the cell is able to traverse up

or down that gradient (depending on the gradient content) by also employing its adaptive

chemotactic signalling pathway [46].

The E. coli flagellum consists of three core parts: the basal body, the hook, and the

filament [46–48]. The basal body is comprised of multiple macromolecular rings:

• C ring: the cytoplasmic ring formed by proteins FliG, FliM, FliN

• MS ring: membrane/supramembrane ring of FliF

• P ring: peptidoglycan ring

• L ring: lipopolysaccharide ring

[46–48]. The MS-C ring complex, as shown in figure 1, forms the motor that provides the

necessary rotation for the run-tumble states [46–48]. The motor in E. coli is a H+ driven

stator-rotor motor in which approximately a dozen stators surround the inner rotor [46].

The stators are comprised of proteins MotA and MotB and attach to the peptidoglycan

(PG) layer [46–48]. Protons crossing the cytoplasmic membrane provide the energy for

motor rotation [46–48]. The motor then turns the flagellar hook, a joint made from FlgE
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protein [46–48]. This hook rotates the filament, a long, helical FliC polymer measuring

around 11 µm.

Figure 1: Structure of the flagellar motor and MS-C ring complex. Figure pulled from [47].

To reverse the direction of the motor, the phosphorylated chemotaxis protein CheY-P

binds with FliM and FliN on the basal body [46–48]. This causes a conformational change

in the FliG ring that results in CW rotation [47]. This interaction is mediated by the chemo-

tactic signalling network of proteins. Trans-membrane chemoreceptors sense extracellular

concentrations of attractants (such as serine and glucose) as well as repellents (such as fatty

acids and alcohols) [46]. These receptors form a ternary complex with the autokinase CheA

which is responsible for phosphorylating both CheY and CheB [46]. CheY and CheB, when

phosphorylated, increase tumble frequency and update the adaptive sensory complex, re-

spectively [46]. Under isotropic and homogeneous conditions, the phosphorylation rates of

CheA will play out in a baseline manner causing sporadic tumbling [46]. When traveling in a

favorable direction (such as up an attractant gradient), CheA auto-phosphorylation rates will
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decrease with the goal of lowering the chances of tumbling [46]. Also, CheB demethylation

of the adaptive feedback circuit will decrease, thus eventually returning the cell behavior

to its baseline, even if a new higher concentration space is found [46]. In unfavorable or

non-optimal directions, the previously experienced concentrations (as “remembered” by the

feedback circuit) will promote auto-phosphorylation of CheA, thus increasing the phospho-

rylation rates of CheY and CheB [46]. These interactions will lead to increased tumble

likelihood as well as demethylation of the glutamyl residues of the adaptive sensory com-

plex, respectively [46]. The result for a cell in a chemoattractant gradient will thus be a

biased random walk.

By allowing bacteria to optimize their motion, motility and chemotaxis play a crucial

role in cell survivability and proliferation. Beyond this, flagella and motility also promote

pathogenic virulence [49]. For E. coli, motility provides support in the initial phases of

infection by offering the flagella as an adhesive with which to bind to surfaces and begin

colonization [49]. Non-motile species, while still virulent, have a reduced infectious ability

[49].

1.3.3 Mechanics of the E. coli Flagellar Motor

The E. coli flagellar motor is driven by proton flux across the cell membrane, not ATP

hydrolysis as shown in the literature [48,50]. The concentration difference of ions across the

cytoplasmic membrane causes a voltage to arise [48, 50]. As ions travel down this electro-

chemical gradient they pass through the MotA/B stator proteins causing them to step along

the rotor leading to rotation by generating torque [50].

The motor, attached to a left-handed helical flagellar filament by the hook, leads to

propulsion as it rotates. E. coli cells possess multiple of these flagella that, when all rotating

CCW, will bundle together to form a propeller [51]. Occasionally, as dictated by the internal

chemotactic system, the flagella will reverse direction [48,50,51]. When even a single flagella

reverses direction, the bundle will become undone and the cell will enter a tumbling state [48,
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51]. In this tumbling state the normally left-handed helical filaments will reverse handedness

[48, 50, 51]. This causes the cell to reorient itself randomly in-place. After a short duration,

the default CCW rotation behavior will return, the bundle will re-form, and the cell will begin

swimming again [48, 51]. This two-state switching behavior combined with the chemotactic

signal transduction gives a cell the ability to swim in an optimal fashion in its environment.
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2 Methods and Materials

2.1 E. coli Strain and Cell Growth

A K12 E. coli strain with a chromosomal hns gene knockout was used in this research. This

strain was transformed with a plasmid coding for H-NS fused with the mEos3.2 fluorescent

protein as well as resistance to antibiotics kanamycin and chloramphenicol. The strain is

referred to as K12∆hns/pHNS-mEos3.2c1. This strain has been used in other studies from

Dr. Yong Wang’s lab investigating the antibacterial activities of Ag+ and AgNPs.

For each experiment, a single K12∆hns/pHNS-mEos3.2c1 colony from an agar culture

plate was inoculated in 5mL Luria Broth (LB) supplemented with the appropriate concen-

trations of kanamycin and chloramphenicol to select for the strain (50 µg/mL and 34 µg/mL,

respectively). The culture tube was placed in a shaking incubator (37◦ C, 250 RPM) and

grown overnight. The next day, the OD600 (optical density at 600nm) was measured (Implen

NanoPhotometer). The liquid culture was then diluted 5000:1 in 5mL of fresh LB with an-

tibiotics. This new culture tube was then regrown at 32◦ C and 250 RPM. When the culture

had regrown to mid-exponential phase (OD600 ≈ 0.3), the first set of images was taken.

2.2 Phase-Contrast Microscopy

Bacteria were imaged at room temperature using an Olympus IX-73 inverted microscope

with a 100X, NA=1.25 phase-contrast, oil-immersion objective. Movies were acquired with

an EMCCD camera (Andor Technology) and the specifications were controlled using Micro-

Manager.

Unlike other means of microscopy, like brightfield, which solely use changes in transmitted

light intensity to create an image, phase-contrast microscopy takes advantage of the fact that

light passing through a transparent object, such as an E. coli cell, will undergo a phase shift as

well as an intensity change [52]. This phase shift, although slight, can be used to distinguish

a sample from its background (so long as there is a change in index of refraction) [52].
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Brightfield microscopy typically fails to produce high contrast images for transparent, thin

samples because the change in intensity alone is small [52].

Eye Piece

Phase Plate

Sample

Diffracted
Light

Undiffracted
Light

Condenser

Illumination

}Objective

  

Figure 2: Cross-section of a phase-contrast microscope schematic [52, 53]. Light diffracted
by the cells (red) passes through the phase plate un-delayed. The light which passes through
the sample un-diffracted (yellow) is phase-delayed by π/2. The two beams recombine at the
eye piece to form an image.

Phase-contrast microscopy attains higher contrast by phase-delaying the un-diffracted

light passing around the sample, and recombining that light with the sample-diffracted light.

As depicted in figure 2, light is passed through an annular diaphragm and focused on the

sample using a condenser. Light diffracted by E. coli cells passes on to the objective along

with the un-diffracted light where both are collected onto the back focal plane of the objec-

tive. The back focal plane is equipped with an annular phase plate where the un-diffracted

light passes through a region with a smaller optical path length (OPL) than the the region for

the diffracted light. This causes the phase of the un-diffracted light to be delayed (typically
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by either π/2 or 3π/2 radians), thus amplifying the phase change caused by the transparent

sample [52]. Without this delay the contrast between diffracted and un-diffracted light would

be too poor.

To calculate the image intensity we first look to the amplitude transmission of the trans-

parent sample, t, given by

t(x, y) = ei(φ(x,y)−φ̄) (1)

where φ̄ is the average phase of the un-diffracted light and φ(x, y) is the phase of the diffracted

light at a point (x, y) on the sample [52]. The phase shift, (φ(x, y) − φ̄) will be very small

so the approximation

t(x, y) = ei(φ(x,y)−φ̄) ≈ 1 + i(φ(x, y)− φ̄) (2)

can be made [52]. In this Taylor series expansion, the real term represents the un-diffracted

light and the imaginary term represents the light diffracted due to the E. coli cell [52]. The

image produced by this effect, without the phase plate, will then be

I(x, y) = |t(x, y)|2 =
∣∣1 + i(φ(x, y)− φ̄)

∣∣2 = 1 (3)

[52]. This illustrates the difficulty that brightfield microscopy techniques face when trying to

image thin, transparent samples; the image will have almost no contrast. With the addition

of a phase plate, however, the phase change becomes more apparent. If the phase plate

delays the phase of the un-diffracted light (the unity term in equation 2) by π/2 radians

then t becomes

t(x, y) = e−i
π
2 + i(φ(x, y)− φ̄) = i(φ(x, y)− φ̄− 1) (4)

[52]. Thus, the image intensity becomes

I(x, y) =
∣∣i(φ(x, y)− φ̄− 1)

∣∣2 ≈ (1 + 2φ̄)− 2φ(x, y) (5)
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[52]. Therefore, the image intensity at each point (x, y) will be linearly proportional to the

phase change at that point [52]. Light passing through an E. coli cell will have a markedly

lower brightness than the unimpeded light surrounding the cell. This results in the cells

appearing black against a white background. This is positive phase-contrast imaging and

will be used in this work [52]. In a similar regime, the phase delay can be set to 3π/2 rather

than π/2. This causes the cells to appear white on a black background [52]. This is negative

phase-contrast imaging [52].

2.3 Preparation of Silver Nitrate Solution

Silver solution stock was made by dissolving 99.9%+ pure AgNO3 in sterile, deionized water

to a final concentration of 10mM. The concentrations used in this set of experiments were

30 and 40 µM Ag+. These were selected so as to not completely inhibit the growth of E.

coli. Previous research found that around 60 µM Ag+ caused total inhibition of bacterial

growth [54]. Therefore, I chose to use two concentrations close to the same concentrations

used in [54] that were found to not completely stop cell growth.

Figure 3: Cartoon of culture dish setup for free-swimming experiments.
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2.4 Free-Swimming Experiments

In this set of experiments, E. coli cells were allowed to swim freely in the presence of silver

ions in a 35 mm culture dish with a glass coverslip bottom, as depicted in figure 3. Before

imaging, culture dishes were serially washed with soap & water, sodium hydroxide, and 190

proof ethanol for 30 minutes each step. Dishes were rinsed thoroughly with deionized water

between steps. Culture dishes were then air-dried and 200 µL of 1% BSA (bovine serum

albumin, Biotechnology) was added to the culture dish and let incubate for five minutes.

Afterwards, excess BSA was removed and washed off using 1X PBS.

Once the liquid bacterial culture reached mid-log phase, 2mL was taken from one of the

samples and added to the dish. The sample was allowed to adjust to the environment and

room temperature for fifteen minutes. The remaining samples were inoculated with either

30 or 40 µM Ag+ (or 0 µM Ag+ for negative control experiments) and placed back in the

shaking incubator. Again 1, 2, 4, and 8 hours post initial imaging time, a sample was imaged

on the culture dish. If, however, the OD600 was too high for adequate imaging (typically no

more than 0.6), then the sample was diluted to OD600=0.3 in LB with antibiotics and the

appropriate amount of Ag+ for that experiment. Each time, the total volume in the dish

was 2mL.

2.4.1 Acquisition Protocol

Movies of the 512x512 region of interest were acquired at 18.4 frames per second (fps) and

saved to TIFF files. Pixel size was calculated to be 160nm, thus ROI size was approximately

82x82 µm. For each imaging time (0, 1, 2, 4, 8 hours from silver inoculation), five movies of

5000 frames were taken. Each movie captured a different region of the coverslip. Experiments

were repeated once on a separate day for each nonzero concentration of Ag+. Data from the

repeats were aggregated together appropriately.
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A) B) C) D) E)

Figure 4: Image processing steps performed in ImageJ for swimming experiments. A) Raw
image data. B) Image with reset minimum and maximum intensities. C) Inverted image.
D) Image with subtracted background (rolling ball radius=10px). E) Final smoothed image.

2.4.2 Image Processing Steps for Swimming Experiments

Movies were processed in ImageJ (NIH) by first converting to 8-bit, inverting the intensity,

resetting the minimum and maximum intensity values, smoothing, and finally subtracting

the background using the rolling ball method with a radius of ten pixels. The cleaning steps

performed are illustrated in figure 4. After cleaning, movies were ran through a series of

MATLAB scripts developed by my advisor, Dr. Yong Wang. These scripts first detected

the bacteria in frame, then culled erroneous detections based on morphology (area, length,

width, others), and finally strung detections together into tracks.

A) B) C) D)

Figure 5: Examples of rejected and accepted tracks. A) Cell is completely immobile and
for that reason it is rejected. B) A substantial portion of the cell is outside the ROI and
thus the track produced does not accurately capture all of the cell’s motion. C) This cell is
not swimming but rather appears to be diffusing; this track is accepted. D) cell swims in
roughly a straight path, so it is accepted.
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2.4.3 Track Selection

The resulting tracks after processing were manually selected for usability. Tracks were re-

moved from further analysis if the cell was completely stationary, if the cell was part of a

larger cluster, or if the track was not representative of the actual motion. A few exemplary

tracks and their corresponding labels as color are shown in figure 5.

The remaining, selected tracks were kept for further analysis. Each imaging time has

with it around 300 - 500 selected tracks of varying length.

2.4.4 Motility as Quantified by Swimming Velocity

In a homogeneous and isotropic environment, E. coli swim in a run and tumble in which

long swimming periods are interrupted by relatively short reorientation periods [55]. Closer

to surfaces, however, bacteria will move in right-handed circular patterns and display longer

run times [56]. In either regime, E. coli bacteria can swim at speeds up to 30 µm/s, up to

15 times their cell length [55]. Using the selected track data, I found the swimming velocity

of each cell at frame t by simply using equation 6 where fps is the frames per second of the

imaging session.

vt =
∆r

∆t
=
√

(xt − xt−1)2 + (yt − yt−1)2 × fps (6)

2.4.5 Chord-Arc Ratio as a Measure of Tortuosity

As E. coli bacteria swim in their containing media they alternate between running and

tumbling steps. During tumbling times, the flagellar bundle comes undone and the cell

randomly reorients its swimming direction. Tortuosity, in general, is a property of a path

between two points being curved. Tortuosity has been used as a feature of interest in a

variety of scientific domains including medicine, ecology, and geology [57–59]. While each

of these disciplines vary in their exact definition of tortuosity or means of calculating it,

tortuosity can broadly be calculated as the ratio between displacement and total distance

traveled. For this research, a modified version of the arc-chord ratio (ACR) used by Pottash
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et al. is employed [60]. We will define the chord-arc ratio (CAR) as

CAR =
maxi,j |~ri − ~rj|∑N−1
k=1 |~rk+1 − ~rk|

(7)

where ~r is the position vector and N is the number of frames of the trajectory. This value

will range from 0 to 1 corresponding to exclusive tumbling and straight line trajectories,

respectively. The population distribution of the CAR values within a sample provides a

metric with which to compare swimming tortuosity over time as well as between experiments

with different concentrations of silver ions.

Figure 6: An example path traveled by a swimming E. coli cell. The chord-arc ratio is
defined as the total path length (red segments) divided by the longest distance between any
two points on the path (blue line).

2.4.6 Swimming Behavior Modeled with Anomalous Diffusion Relation

Although diffusion analysis is typically reserved for investigating the motion of individual

molecules, in this research I have used it as a value to determine the viability of a cell after

treatment with silver ions. The Einstein relation, used to model a random walk such as that

seen with Brownian motion, is

〈(∆r)2〉 = 2dDτ (8)
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where d is the number of dimensions of freedom, D is the diffusion coefficient, and τ is the

lag-time. For this research, I used d = 2 since the bacterial tracks exist in just the plane of

the ROI.

Swimming bacteria will not, however, follow a random walk when close to a surface such

as a coverslip [56]. Therefore, I will use the anomalous diffusion equation which generalizes

equation 8 to include superdiffusion and subdiffusion modes of movement.

〈(∆r)2〉 = 4Dτα (9)

or

log〈(∆r)2〉 = α log τ + log 4D (10)

As seen in equation 9, the relationship between mean square displacement (MSD) and τ is

a power law rather than linear. When α > 1 motion is superdiffusive (also called ballistic),

and when α < 1 motion is subdiffusive. Cells able to propel themselves will likely be

superdiffusive.

In analyzing the bacterial tracks, I used the numpy and scipy packages from Python to

fit MSD vs τ data to equations 9 and 10 and extract D and α values for different imaging

times and concentrations of AgNO3 [61].

2.5 Tethering Assay Experiments

In this set of experiments, cells were tethered to the glass coverslip of the culture dish using

a FliC antibody, as depicted in figure 7. Using this assay, rotation of the flagella which

would otherwise have caused propulsion instead caused rotation of the cell body parallel to

the coverslip. Clean culture dishes were prepared with a serial treatment of biotinylated-

BSA (200 µL, 1 mg/mL), neutravidin (200 µL, 0.5 mg/mL), and FliC antibody (400 µL,

0.25 µg/mL) with 1X PBS washing steps in-between. Similar to the swimming experiments,

2mL of E. coli sample was added to the prepared dish once OD600≈0.3. However, in order
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Figure 7: Cartoon of culture dish setup for tethering assay experiments.

to isolate just those cells stuck to the coverslip, cells that remained unstuck were removed

via washing away the excess LB media and replacing it with fresh LB and antibiotics.

2.5.1 Acquisition Protocol

To maximize temporal resolution, the ROI was cropped to 64x64 pixels (10.24 µm x10.24

µm) around an individual tethered cell. Exposure time was 5ms. Frame-rate for each move

was 71 fps. After acquiring 10,000 frames of silver-free tethered behavior, Ag+ was added

directly to the culture dish such that the final concentration was 40 µM. Images of the same

cell were then recorded for 100,000 more frames as Ag+ dispersed throughout the media. In

total, data from 17 cells were captured in this way from experiments on different days. In

addition, data from 10 cells not treated with silver were acquired.

2.5.2 Image Processing Steps for Tethering Assay Experiments

Cells were detected and characterized using the regionprops function from the Python scikit-

image package. In order to analyze only one cell per frame, regions (sections of 1’s in the
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A) B) C) D) E)

Figure 8: Image processing steps performed in ImageJ and Python for tethering experiments.
A) Raw image data. B) Inverted image. C) Gaussian blurred image (radius=2 in ImageJ). D)
Thresheld image using the intermodes method available with ImageJ. E) Binary mask with
line indicating the primary axis angle calculated by the regionprops function from Python’s
scikit-image library (from the ‘measure’ module).

binary mask) were thresheld based on area, and further any frames with more than one

region were removed from analysis. Primary axis angle of the cells was found and used to

calculate the rotational velocity. This angle was found using the regionprops function from

scikit-image [62]. The change in this angle, defined as ω, was calculated by finding the

difference across a single frame, multiplying by the frame-rate, and correcting for any jumps

caused by a switch from ∼ π to ∼ −π or vise versa.

2.5.3 Modeling Rotation Behavior as a Hidden Markov Process

A random variable in time Xt is said to follow to follow a Markov process (possess the Markov

property) if the value of X at time step t is solely dependent on the value of that variable at

the previous time step (Xt−1) [63]. This demands that, for every sequence u0, u1, . . . , ut−1, ut

and t ≥ 1

Pr{Xt = ut|X0 = u0, X1 = u1, . . . , Xt−1 = ut−1, Xt = ut} = Pr{Xt = ut|Xt−1 = ut−1}. (11)

This Markov process (also called a Markov chain) can be encapsulated in a stochastic tran-

sition matrix A in which the transition probability from state i to state j is given by Aij.

These transitions are taken to occur between discrete time points. Additionally, a Markov
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process has a stationary distribution π associated with it that will also determine the prob-

ability of a sequence starting in a particular state. π must be a vector whose components

are non-negative and sum to 1. For time-homogeneous Markov chains, such as those used

in this research π must be invariant under transformation with A (i.e. πA = π).

As an example, let’s suppose we have determined that the weather on a given day in

Fayetteville follows a Markov process with possible states sunny (S) and rainy (R) and

transition matrix

A =

S R S 0.7 0.3

R 0.4 0.6

(This model is adapted from [64]). As can be seen, the transition probability from a sunny

S

  

R

0.4

0.3

0.60.7

Figure 9: Graphical representation of weather transition matrix.

day to another sunny day is 0.7 and the probability from a sunny day to a rainy day is 0.3.

The stochastic matrix can also be represented with a graph, as depicted in figure 9. The

stationary distribution in this case will be given by

πA = π

[
p 1− p

]0.7 0.3

0.4 0.6

 =

[
p 1− p

]
[
0.3p+ 0.4 −0.3p+ 0.6

]
=

[
p 1− p

]
p =

4

7

⇒ π =

[
4
7

3
7

]
.
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The transition matrix can be used to calculate the likelihood of a given sequence of states

being created by that Markov model. Suppose we were given a sequence

H = S → R→ R→ S → R→ S

the likelihood of our model producing this state is the product of the probability of beginning

in the initial state and the probabilities of making the transitions contained in the sequence.

So,

L(H = S → R→ R→ S → S → S) = πS × ASR × ARR × ARS × ASR × ARS

=
4

7
× 0.3× 0.6× 0.4× 0.6× 0.4

= 0.00987 .

Succinctly, for a sequence H consisting of k time points with states ut ∈M, the likelihood is

L(H|A) = πu1 ×
k∏
t=2

Pr{Ht = ut|Ht−1 = ut−1} = πu1 ×
k∏
t=2

Aut−1ut (12)

[63]. Or, for convenience, we may calculate the negative log likelihood ` when working with

long sequences (and thus low likelihoods).

` = − ln(L) (13)

[63]. The likelihood equation can be used to estimate the fitness of our transition matrix

A when fitting a model, or to compare the chances of a model producing one sequence over

another.

Many biological systems can be modeled as Markov processes including the proliferation

of epithelial cells [65], and macromolecular sequence prediction in bioinformatics [66]. Many

times in real applications, however, the states of the Markov process are not directly ob-
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servable. Rather, the observed state Yt is the emission of a random function on the now

“hidden” state Xt. This scenario is described by a Hidden Markov model (HMM). For this

mathematical model, in addition to the transition matrix A and the stationary distribution

vector π there exists a stochastic emission matrix B that describes the output, Yt, of the

HMM based on the hidden state, Xt. The elements of B are defined as

Buv = Pr{Yt = v|Xt = u}, ∀u ∈M, v ∈ N (14)

where M and N are the sets of possible hidden and output states, respectively [63].

In our Markov-ian weather example, if we are not able to directly view the state of the

weather (maybe our problem involves determining the weather on days in the past), then N

would represent the set of observable indicators for the hidden state (e.g. correlated features

like temperature recordings). If we take N to contain states corresponding to warm days

(W ), temperate days (T ), and cold days (C) then the emission matrix, B, is

B =

Pr{Yt = W |Xt = S} Pr{Yt = T |Xt = S} Pr{Yt = C|Xt = S}

Pr{Yt = W |Xt = R} Pr{Yt = T |Xt = R} Pr{Yt = C|Xt = R}


where the sum of each row should be 1. This example employs an HMM with multinomial

(discrete) emissions. Emissions with continuous (e.g. Gaussian) distributions are entirely

possible, and will be used in this research.

Now, rather than observing a sequence of states, we will work with a sequence of emis-

sions, E, and attempt to discern the most likely sequence of hidden states, H. The Viterbi

algorithm is a common tool for achieving this. To understand the utility of the Viterbi

algorithm let’s first implement a naive approach to find H given E.

Let E = v1 → · · · → vn−1 → vn represent a sequence of k observed emissions. In order to

find the most likely sequence, H, of hidden states, u, we may try to find the probability of

each sequence of hidden states of length k emitting the sequence given by E. This involves
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finding the maximum value among

Pr{H = u1 → u1 →· · · → u1 → u1|E}

= (πu1 ×Bu1,v1)× (Au1,u1 ×Bu1,v2)× · · · × (Au1,u1 ×Bu1,vn)

Pr{H = u1 → u1 →· · · → u1 → u2|E}

= (πu1 ×Bu1,v1)× (Au1,u1 ×Bu1,v2)× · · · × (Au1,u2 ×Bu2,vn)

. . .

Pr{H = un → un →· · · → un → un|E}

= (πun ×Bun,vn)× (Aun,un ×Bun,vn)× · · · × (Aun,un ×Bun,vn)

Computationally, this is very expensive as it requires finding the probability for each of the

mk possible sequences, where m is the cardinality of M. The Viterbi algorithm makes use of

the fact that, when constructing the hidden sequence H, choosing the most probable subse-

quent state at any intermediate time point will lead to the most probable sequence. The task

of finding H becomes one solved quickly with dynamic programming. An implementation in

Python 3 is shown on the next page.

v1 v2 v3 v4 v5 v6

u1

u2

u3

Figure 10: A simple illustration of the path that would be found using the Viterbi algorithm.
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def argmax(seq):

index , maximum = 0, seq[0]

for i, value in enumerate(seq[1:]):

if value > maximum:

index , maximum = i + 1, value

return index

def viterbi(TRANSMAT , EMAT , H_STATES ,

OB_STATES , OB_SEQUENCE , STAT_DIST):

"""

TRANSMAT : (m x m) trans. matrix | EMAT: (m x n) emission matrix

H_STATES : m hidden states | OB_STATES: n observable states

OB_SEQUENCE : array of observations | STAT_DIST: stationary dist.

"""

h_sequence = list()

for i, ob_state in enumerate(OB_SEQUENCE):

if i == 0: # Find the first hidden state

ob_index = OB_STATES.index(ob_state)

h_index = argmax([

STAT_DIST[j] * EMAT[j][ob_index]

for j in range(len(H_STATES))

])

h_sequence.append(H_STATES[h_index])

else: # Find the next hidden state

ob_index = OB_STATES.index(ob_state)

prev_h_index = H_STATES.index(h_sequence[-1])

h_index = argmax([

TRANSMAT[prev_h_index][j] * EMAT[j][ob_index]

for j in range(len(H_STATES))

])

h_sequence.append(H_STATES[h_index])

return h_sequence
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Visually, the Viterbi algorithm can be understood as a path-finding algorithm where we

progress from a state to the next by maximizing the probability. A simple diagram with

m = 3 and k = 6 is shown in figure 10.

Returning to our example model, if the emission matrix is

B =

W T C S 0.5 0.4 0.1

R 0.1 0.2 0.7

then our graph has a hidden layer that we cannot directly observe, as indicated by the

S

  

R

0.4

0.3

0.60.7

W CT

  0.1 0.2 0.70.10.40.5

Figure 11: The full hidden Markov model including emission probabilities. The hidden states
are not directly visible rather only the emissions are observable (lower nodes).

dashed line in figure 11.

If we observe a state sequence given by

E = C → C → T → W → T → C → W → C → T → C → C

then we can use the Viterbi algorithm and find

H = R→ R→ S → S → S → R→ S → R→ S → R→ R

In this research, I fit the switching behavior between running and tumbling modes of
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the E. coli flagellum to a two-component hidden Markov model with Gaussian emission

distributions. The observable, in this case, was the rotational velocity ω of the cell when

tethered to a glass coverslip. The HMM contains the mean ω and standard deviation for

the emissions of each hidden state. To implement the modeling, I used the open source

hmmlearn library available in Python [67]. This library handles fitting the model, calculating

the stationary distributions, means, standard deviations, as well as the Viterbi algorithm for

predicting the hidden states of a given sequence of ω.
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3 Results and Discussion

3.1 Free-Swimming Experiments

3.1.1 Optical Densities Confirm Silver Ions Suppress Growth of E. coli

The optical density at 600 nanometers (OD600) is commonly used to measure density of

bacterial cultures. Uninterrupted, the OD600 of a bacterial culture will follow a logistic

growth curve consisting of the lag phase, exponential growth phase, and steady state phase

as the culture reaches its carrying capacity. Figure 12 shows the culmination of the OD600

values measured during each of the different swimming experiments. The data shown in

figure 12, listed in table 1, is the average OD600 with the standard error at each time point

segregated by the Ag+ concentration used. Silver ions were added at the 0 hour point (once

OD600 ≈ 0.3).

OD600

0 µM Ag+ 30 µM Ag+ 40 µM Ag+

Time (Hours) Mean SEM Mean SEM Mean SEM
-1 0.141 0.006 0.122 0.003 0.152 0.010
0 0.360 0.014 0.295 0.007 0.400 0.015
1 0.664 0.010 0.324 0.008 0.418 0.021
2 0.984 0.039 0.332 0.010 0.417 0.023
4 1.400 0.062 0.319 0.019 0.437 0.030
8 1.731 0.022 0.289 0.046 0.451 0.048

Table 1: OD600 data from swimming experiments at different concentrations of Ag+. Mean
and standard error of the mean are shown here for 0, 30, and 40 µM Ag+.

The 0 µM Ag+ (control) curve follows the expected sigmoid shape. The silver-treated

samples experience lag time extension and no longer grow exponentially. These results

match those found by research done in Dr. Wang’s lab [54]. We see that after 8 hours there

is an 83% decrease in mean OD600 for 30 µM Ag+ and a 73% decrease for 40 µM Ag+.

Additionally, while the control culture underwent an almost 5-fold increase in mean OD600

the silver-treated samples decreased by 2% and increased by 12% for 30 and 40 µM Ag+,

respectively.
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Figure 12: Optical density at 600nm plotted versus imaging time, averaged for each experi-
ment. Error bars display the standard error of the mean. Silver was added after the 0 hour
images had been taken. OD600 was approximately 0.3 at the start of imaging for each exper-
iment. The 0 µM Ag+ samples showed the expected logistic growth behavior. Silver-treated
samples ceased their exponential growth.

3.1.2 Silver Ions Cause a Temporary Decrease in Swimming Velocity and Increase in Path

Tortuosity

Using phase-contrast microscopy and computer vision techniques I was able to track indi-

vidual E. coli cells as they swam in LB media. These tracks, as shown in figure 13 extended

about 20 microns over the course of approximately six tenths of a second when not treated

with silver. This quick speed is, however, not retained by most cells after silver ions have

been introduced into the media. As shown in the middle and bottom rows of figure 13, the

majority of the tracks appeared much shorter just after silver ions were added. Rather than

swimming in straight yet slightly curved paths, their behavior was a mix of this original type

of motion as well as what appears to be simple diffusion. I will show in the next section that

the cells were, however, mostly superdiffusive.

Additionally, although the growth of the bacterial culture did not appear to make any sort

of recovery, the swimming behavior of many cells reverted to that of the control. Nonetheless,

many silver-treated cells in the ROI at later times were not swimming with much directed

motion. To further visualize the inability of silver-treated E. coli to propel themselves as
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Figure 13: A subsample of the thousands of selected tracks are drawn from each hour and
concentration. The number of frames for each track is held constant so as to prevent bias
based on length. Upon silver entering the bacterial media (hour 1) the cells’ trajectories be-
come much shorter. As time since addition of AgNO3 increases some tracks look reminiscent
of their control counterparts.

efficiently, I repositioned each of the trajectories to begin at the same origin to create a

“firework” plot (also called a rose plot by [60]). From this plot, as shown in figure 14, the

different displacement capabilities based on concentration and time since treatment are more

readily apparent. I found the displacement of the 50th and 75th percentile cell and over-layed

those values as solid and dashed circles, respectively.

For the control swimming experiment the swimming capability stayed relatively constant,

as seen with the percentile circles. However, at hour 8, both the 50th and 75th percentile

radii decreased. This sudden decrease in swimming ability was likely due to the high OD600

at that time (∼1.7). At this high of density, the culture became much more crowded. In this

situation nutrients such as carbon, nitrogen, phosphate, sulfur, and necessary ions become

more scarce [68]. As a reaction to this starvation, E. coli and other bacteria may relinquish

some cellular functions, including motility and flagella synthesis, in order to cope [68]. More

investigation would be needed to ascertain whether the observed change in swimming ability
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Figure 14: Here, trajectories from figure 13 are reoriented to begin at the origin. The solid
and dashed circles represent the 50th and 75th percentiles of cells’ total “radial” displacement.
From the changing radii of the percentiles as time increase it is clear, at least visually, that
silver affects the swimming behavior of bacteria in such a way that they are not able to
travel as far of distances given the same amount of time.

here was directly due to a lack of the necessary cellular components.

From these trajectories, the swimming velocities was easily obtained. The distributions

of velocities at each time point are plotted in figure 15. I constructed these distributions

by creating individual velocity histograms with 25 bins between 0 and 35 µm/s. These

histograms were then averaged over for each hour and concentration, appropriately. The

error bars in the figure show standard error of the mean for each bin. Finally, for easy

comparison, the maximum of each curve was reset to unity. The first 5 figures show the

distributions for each concentration at each of the 5 imaging times. The lower right sub-

figure displays the mean and standard error obtained from all of the data aggregated.

One hour after silver was added to the media, both the 30 and 40 µM Ag+ distributions

showed a strong decrease in the value of the bin corresponding to the mode. The mean value

decreased below 5 µm/s after 1 hour and steadily increased back to almost 10 µm/s after 8

hours. The control data showed an increasing mean velocity until the 8 hour mark when the
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Figure 15: Velocity histograms for each movie were made and then averaged over according
to Ag+ concentration and time to create the above histograms. Data is split into 25 equally
sized bins. The error bars represent the standard error of the mean for each bin. The
mean velocity over time (lower right) supports the qualitative result from the firework plot
(figure 14); the mean velocity immediately decreases after silver is added. This velocity
slowly increases over time. The value of the control mean velocity is not constant in time,
interestingly. The velocity increases slightly to a maximum around 20 µm/s at 4 hours
post-addition of Ag+ until falling at hour 8.
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velocity dropped down to almost meet the mean velocity value for the silver-treated cells.

The observed change in velocity could be directly caused by one of many phenomena.

It is possible that the silver ion concentration was high enough in the solution to kill the

bacteria; this would clearly decrease the swimming velocity. It is also possible that silver

ions were directly interacting with the flagella or flagellar motor. Any slight modifications

could have potentially caused drastic changes in the swimming abilities and behaviors of E.

coli cells. In the following sections I address these possible modes of interaction. Yet another

interaction could have stemmed from one of the antibacterial properties of silver, namely the

production of reactive oxygen species. Reactive oxidative stress is one of the factors that

can lead to a cell’s deemphasis on the production of proteins required for motility [68].

One notable characteristic of the velocity data to address is the bimodality of the control

distribution which was starkly different from that of the silver-treated data, specifically at

hour 0. This, along with the larger error could most likely best be explained by the fact that

only one control experiment was performed. Two experiments were performed for both 30

and 40 µM Ag+. The greater number of samples would decrease the standard error of the

mean. Another possible explanation could be the existence of multiple phenotypes in the

culture that display different running speeds. Nonetheless, the phenotype responsible for the

peak seen in the silver-treatment experiments was present in the control as well.

Beyond changes to the magnitude of the swimming velocity, the presence of Ag+ was

also seen to affect the shape of the cells’ paths. The chord-arc ratio (CAR), as described

in the methods, is a value used to compare path shapes between swimming cells. In figure

16 I plotted the CAR cumulative density functions (CDF) for each concentration and hour.

The data in this plot is derived from aggregates of CAR CDFs made for each individual

movie. The 50 points correspond to mean frequencies of the 50 bins used to make each of

the histograms. The error bars indicate standard error. The lower right figure displays the

area under each of the CAR curves for each time point and concentration. This area under

the curve (AUC) can range from 0 to 1. Propagation of error was used to construct the bars.
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Figure 16: The cumulative density function (CDF) of the chord-arc ratios was found for each
track in every movie. These CDFs were then averaged over appropriately. The standard
error of the mean accompanies the mean for each of the 50 bins. Using the area under the
curve (AUC) of the CAR CDF I directly compared the distributions (lower right). The
CAR-AUC of the silver-treated cells increased indicating an on the whole longer path length
relative to the control value. This CAR-AUC value decreased over time and eventually came
close to merging with the control value.
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The control data, shown in blue circles, saw very little change over the course of 8 hours.

The AUC value stayed mostly constant for 4 hours until increasing to almost 0.1 at hour

8. The silver-treated cells, on the other hand, jumped up in AUC value more than 4-fold

after coming into contact with silver. A high AUC value corresponds with a larger number

of cells with lower CAR. The low CAR is associated with tortuous trajectories. This data

implies that silver caused cell paths to become more curved as opposed to directed, and the

number of curved paths decreased over time.

High trajectory tortuosity can be caused by a hugh number of reorientation events. In the

context of bacterial swimmers and diffusion, reorientation events can be found during periods

of tumbling or during Brownian motion. In the case of bacterial tumbling, the chord arc

ratio will decrease due to the cell staying in one place and if the new swimming direction is

different from the swimming direction prior to tumbling. For Brownian motion, the direction

of motion will pull from a random distribution. For the results presented here it is likely that

the bacteria were not switching from superdiffusion to subdiffusion, but rather are tumbling

more frequently. These conclusions are supported by the results from anomalous diffusion

analyses performed and the hidden Markov modeling done on tethered bacteria.

The results of the CAR analysis are independent of the velocity. To show this, take for

example two trajectories of the same path but one is completed in 10 seconds and the other

in 20. Both of these example trajectories will show the same CAR since there is no time

dependence.

The increased tumble frequencies, as expressed by the lowered CARs, illustrate that silver

ions may affect the behavior of the bacterial flagella in multiple ways. As discussed before,

the dip in velocity indicates that the cells are not able to output as much power to the

flagellar motor. Now, additionally, silver ions may also be disrupting the switching behavior

between running and tumbling modes. This interference will cause the cell to potentially

be unable to optimize its swimming direction; despite the chemotactic signalling pathway

attempting to respond to the local environment, the flagella is not able to carry out those
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requests because of silver ions. Further investigation into the interaction between silver ions

and the flagellar motor could further elucidate the reasons for the observed behavior.

3.1.3 Diffusion Analysis Rules Out Cell Death as Cause for Observed Changes

100

200

300

M
SD

Hour 0
0 M Ag +

30 M Ag +

40 M Ag +

Hour 1 Hour 2

0.2 0.4 0.6
 (s)

100

200

300

M
SD

Hour 4

0.2 0.4 0.6
 (s)

Hour 8

0 1 2 4 8
Time (Hours)

0.0

0.5

1.0

1.5

2.0

0 1 2 4 8

1.85

1.90

1.95

Figure 17: Mean square displacement (MSD) plotted versus lag time (τ). MSD from each
trajectory was taken over maximum lag time of 12 frames ( 0.7 seconds) and averaged over
(displayed as the data points). The error bars represent the standard deviation for each lag
time. Data points were fit with equation 8 to obtain D and α. The α value of the fitted
curve is plotted over time for each concentration of Ag+ (lower right). Although there is a
slight decrease at 1 hour post-Ag+, α remains greater than 1 (superdiffusive) for each set.

A glaring concern to address is the possibility of silver killing the bacteria at these

concentrations. These dead cells would be seen to have a slower swimming velocity and

a higher tumbling rate due to effects of Brownian motion. Killed cells will simply diffuse

rather than superdiffuse. To find the cells’ diffusion class I found the MSD vs lag-time for

each track and fit the ensemble-averaged data to equation 9. The results from that fitting

are shown in figure 17. Here, I have shown that the first 12 points of the combined data

fit the mathematical model very tightly. From this fit I found the diffusivity constant α for

each set of data and plotted those values versus time. Clearly, none of the data sets show

a decrease below α = 1, which would imply pure diffusion. The value of α does decrease,
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though, indicating that silver ions may have caused some of the cells to be killed, but most

retain the same diffusivity class (i.e. superdiffusion).
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Figure 18: Log-log scaled plot of data from figure 17.

Figure 18 shows the same MSD data versus τ plotted in log-log scale. In this scale the

data is linear with α as the slope and the y-intercept is related to the diffusion coefficient

D by equation 10. From this figure, it is clear to see that the diffusion coefficient decreased

after the introduction of silver and finally merged with the control values at hour 8. This

result for D is redundant with the result from swimming velocity.

3.2 Tethering Assay Experiments

3.2.1 Silver Changes Shape of Rotational Velocity Distribution

The rotational velocity of a tethered cell can be used to probe the cell’s response to external

substances. E. coli cells were tethered to the glass coverslip bottom of a culture dish. I

calculated the rotational velocity over time of each cell both before and after adding silver

ions. Figure 19 shows that data from two model cells, one treated with silver and one treated

with the same volume of pure media. The pre-silver distributions show a clear bimodality.

These two states, one at a large positive ω value and the other centered around 0, can be
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seen to represent the running and tumbling states of free-swimming cells. After treatment

with silver, the distribution shifted from having two modes to displaying only one. This

preliminary result agrees with the results of the free-swimming experiments.
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Figure 19: Histograms of the rotational velocities of two exemplary cells are shown here.
The control cell (left) shows no significant changes in the distribution of ω between the
pre- and post-Ag+ data. The silver-treated cell (right) displays a change from a bimodal
distribution of ω to a unimodal one. This visualization appears to suggest that the tumbling
mode dominates after the addition of silver.

The disappearance of the faster rotation mode is well explained by the same possible

sources mentioned in previous discussion. This data, however, provides increased robustness

as the same cell is imaged both before and after the addition of silver. This fact proves that

the change in behavior is indeed caused by silver and not just an artifact of data aggregation.

The time dependency of silver ions’ effect on silver was also examined. In figure 20, I

have plotted the ω versus time values for the same two exemplary cells used in figure 19.

The top row shows the control cell, and the bottom row shows the silver ion-treated cell.

The colored data is the rolling mean of ω with a windows size of 12 points, and the gray
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Figure 20: Using the same cells from figure 19, I also plotted the rotational velocity of each
cell versus time. The gray lines show the raw data, and the colored lines show the rolling
mean (window size of 12 frames). The first column of figures (left) shows the pre-Ag+ data,
and the latter two columns display the ω data after silver was added. The top row belongs
to the control cell, and bottom to the silver-treated cell. About five minutes after silver was
added to the culture dish the cell appears to rotate solely in the slower mode, which we
assume to be the tumbling state.
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background is the raw data. As evident by the middle column, after silver was added to

the dish the previous bimodal switching steadily changed to a switching between a tumbling

mode and a slower running mode. Eventually, as shown in the right column, ∼6 minutes

after the addition of silver ions the ω value remained almost solely around 0 rad/s.

The length of time recorded in this experiment was far less than that of the free-swimming

experiment; rather than hours, data collection for the tethering assays extended to about 25

minutes after inoculation. The results here show that silver changed two key components

of the rotational behavior of E. coli : the rotational velocity and the distribution of the two

modes. The former conclusion is consistent with the results of the free-swimming experiments

during which the velocity was seen to decrease immediately after treatment with silver.

The latter point corroborates with the result from the CAR analysis of the free-swimming

experiment; the tumbling frequency is seen to increase and running frequency decrease.

3.2.2 Silver Ions Cause Significant Changes to Parameters in Hidden Markov Model of

Rotational Velocity

To further investigate the time-dependent behavior of the rotational velocity switching, I

modeled the two-state system (consisting of running and tumbling) as a hidden Markov

process with rotational velocity as the Gaussian emissions. By fitting the model to the pre-

silver data points I was able to use that model to make predictions as to the states of the

post-silver data points. The prediction results are shown in figure 21. This is the same data

used for figure 20.

As seen here, when comparing the control and silver-treated samples, both appeared

very similar before the point when silver was added (green vertical lines). The running and

tumbling states are shown in yellow and purple, respectively. The points labeled running

clearly correspond to the high positive ω peak seen in figure 19, and the tumbling to the

zero-centered mode. Gaps in the data correspond to frames that were removed due to the

presence of one or more other cells within ROI.
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Figure 21: Here, I used the hidden Markov models created by fitting against the pre-Ag+

data from both concentrations to predict the states of the corresponding post-Ag+ data.
The predicted labels ‘Running’ and ‘Tumbling’ are color-coded with yellow and purple,
respectively. Before adding Ag+, the distribution of states seemed to be very similar between
both samples. However, a few minutes after being treated with silver the second sample
became dominated by the tumbling state. Gaps in data are products of frames removed
because of interference (e.g. by other cells entering the imaging ROI).
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The transition matrix and stationary distribution of the HMM were clearly not the same

for the silver-treated cell. Here, the presence of silver ions was seen to decrease the station-

ary distribution of the running state (πRun) and increase the tumble-to-tumble probability

(ATumble→Tumble). This data also revealed a new result in the observation that the length

of tumbling times is also increased. The previous analysis of the CARs only revealed the

prevalence of increased running frequency. Here, it is also clear that tumbling times were

extended (see t=250 to 300 s in silver-treated cell).

This result is shown more robustly by visualizing the percentage changes in HMM pa-

rameters between the pre- and post-silver prediction arrays. Here, 17 silver-treated and 10

untreated tethered cells were analyzed. Using HMM models trained on the pre-silver data

for each cell, the hidden states of the post-treatment data were found using the predictive

power of the pre-silver model. From these predictions, the stationary distribution and tran-

sition matrix after silver were found by calculating each of the probabilities over a 10,000

frame window (∼140s, 5000 frame stride). Using these derived parameters in each of the 20

windows, I then found the percentage changes of these parameters relative to the pre-silver

HMM parameters. Error bars are standard error.

The three parameters displayed here are the transition probability from tumble to run

(ATumble→Run, left), the transition probability from run to run (ARun→Run, middle), and the

stationary distribution of run to run (πRun). ATumble→Run decreased for both control and

silver-treated experiments, but silver-treated values decreased much more drastically. This

change supports the conclusion that the length of tumbling periods becomes longer after the

addition of silver; cells are less likely to switch out of the tumbling mode and thus those

modes will be longer. ARun→Run initially does not show much change. Eventually, about 9

minutes after treatment time, the run-to-run probability of silver-treated cells begins to skew

negative. Note that the standard error also increases around this same time implying that

there is greater heterogeneity in this value. Additionally, some cells became untethered after

a few minutes so the number of samples decreases (this could also have affected the standard
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Figure 22: Percentage changes in HMM parameters after treatment with silver. Data points
were obtained by predicting on the post-silver data, extracting the parameters (such as the
transition matrix A and stationary distribution π) from a windowed subsample of predictions
(window size of 10k frames, stride of 5k frames), finding the percentage change of those
parameters with respect to the pre-Ag+ parameters for each sample, and finally calculating
relevant statistics (mean and standard error are shown here) on the appropriately ensembled
data. As shown here, the percentage drop of the transition probability from the tumbling
state to running state (left) was far greater for silver-treated samples than for the control
samples. This drop was even more pronounced as time went on. The transition probability
from run to run (middle) did not see as large a divergence between the controls and positive
samples. Finally, the stationary probability of the running state decreased dramatically
when compared to the change seen in the control (right).
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error). The finding that ARun→Run does not change much with time is intriguing. This result

implies that cells are not able to break out of the tumbling mode once switched into it but

can stay in the running mode relatively unincumbered. Finally, the stationary distribution

of the running mode was seen to decrease very quickly for the silver-treated samples yet

only slightly decrease for the control experiments. This result follows from previous points

made; cells unable to escape the tumbling mode of rotation will not get the opportunity to

run. This result also agrees with the free-swimming results that showed a higher frequency

of tumbling when compared to the controls
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4 Conclusion

Although silver has been known to possess antimicrobial properties for thousands of years, its

multi-faceted effect on bacteria is only recently gaining a more full explanation. Furthermore,

as silver nanoparticles become more common place in medical and consumer devices, the

interactions between silver ions and bacteria must be more completely understood. The

work done in this research represents a newly investigated means of disruption of E. coli

cells. Here, silver ions were shown to possess potent anti-motility effects. Cells under duress

of silver ions were seen to decrease swimming velocity and increase tumble frequency and

tumble duration. These results stemmed directly from analysis of swimming and tethered

bacteria in the presence of varying concentrations of silver ions. It was shown that the

concentrations used in this experiment did not display many differences in the severity of

their effects. Elapsed time from treatment time proved to be integral to the effects on E.

coli swimming velocity, track tortuosity, and fitted HMM parameters; cells are most affected

soon (30 to 60 minutes) after the addition of silver ions to culture media. The quantitative

results obtained here are greatly important for using silver substances as antimicrobials.

Motility and the swimming velocity are vital tools for bacterial cells. The results seen

here suggest that silver ions have a detrimental effect on the motility of E. coli cells. These

findings have direct consequences on the virulent power of motile E. coli ; cells in the presence

of silver ions will have a lesser ability to scavenge for nutrients, a worse chance of fleeing from

toxins or antibiotics, and a weakened arsenal with which to create biofilms. Biofilms, one of

the more difficult forms of infections to treat, are partially dependent on motility to form.

Therefore, understanding how silver can be used to prevent this mode of virulence should be

of great interest for future research and manufacturing applications. Furthermore as silver

nanoparticles, whose primary antibacterial mechanism is the release of silver ions, are used

at an increasing rate for surface disinfection the results obtained here represent important

discoveries in furthering the understanding of silver ions and nanoparticles as antibacterials.
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