
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Theses and Dissertations 

12-2019 

Global Acetylation Dynamics in the Heat Shock Response of Global Acetylation Dynamics in the Heat Shock Response of 

Saccharomyces cerevisiae Saccharomyces cerevisiae 

Rebecca E. Hardman 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Amino Acids, Peptides, and Proteins Commons, and the Molecular Biology Commons 

Citation Citation 
Hardman, R. E. (2019). Global Acetylation Dynamics in the Heat Shock Response of Saccharomyces 
cerevisiae. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3489 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=scholarworks.uark.edu%2Fetd%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholarworks.uark.edu%2Fetd%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3489?utm_source=scholarworks.uark.edu%2Fetd%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


 
 

Global Acetylation Dynamics in the Heat Shock Response of Saccharomyces cerevisiae 
 
 
 
 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy in Cell and Molecular Biology 
 
 
 
 

by 
 
 
 
 

Rebecca E. Hardman 
Drury University 

Bachelor of Arts in Biology, 2012 
 
 
 
 

December 2019 
University of Arkansas 

 
 
 
 

This dissertation is approved for recommendation to the Graduate Council. 
 
 
 
___________________________________ 
Jeffrey A. Lewis, Ph.D. 
Dissertation Director 
 
 
 
___________________________________             ___________________________________ 
Paul D. Adams, Ph.D.                                                Yuchun Du, Ph.D.                                                                        
Committee Member                                                   Committee Member   
 
 
 
___________________________________ 
Daniel J. Lessner, Ph.D. 
Committee Member 
  



 
 

Abstract 

 All organisms face a constant barrage of environmental stresses. Single-cell organisms 

such as Saccharomyces cerevisiae, or common Baker’s yeast, must rely solely on cellular 

responses in order to survive. This response must occur in a rapid and highly coordinated 

manner to quickly inhibit all unnecessary processes and shuttle all available resources to those 

necessary for survival. One method that cells utilize for rapid protein regulation is the use of 

post-translational modifications. Enzymes within the cell add or remove a variety of chemical 

modifications, thus altering the local chemical environment of a protein. This creates a 

conformational change in the protein that can increase, decrease, or completely change the 

activity of the protein, as well as target them for relocation or degradation. Examples of common 

post-translational modifications include phosphorylation, ubiquitination, and the focus of this 

dissertation, acetylation. 

 That protein acetylation occurs has been known for decades, but it is only recently that 

advances in technology such as high-resolution mass spectrometry and immunoprecipitation 

have led to the recognition of thousands of acetylated proteins across all domains of life. The 

roles and regulation of this modification, however, are still widely unknown. One approach to 

better understand possible roles for acetylation is to look at its dynamics in response to 

environmental stress. In this dissertation, I examine global changes in protein acetylation in the 

response of Saccharomyces cerevisiae to a mild heat shock and the potential mechanisms 

regulating these changes. 

 Following an introductory literature review, this dissertation will cover the results of a 

large time-scale profiling of acetylome dynamics in response to heat shock. Proteins identified in 

this experiment are enriched for many cellular processes, suggesting that acetylation may play 

a much wider regulatory role than previously believed. These proteins are also enriched for 

interactions with many lysine acetyltransferases and deacetylases, suggesting that the 

regulation of this modification is complex. The next chapter will then discuss possible 



 
 

mechanisms regulating this response. This includes the investigation into concentrations of 

metabolites known to affect acetylation and deacetylation, lysine acetyltransferase and 

deacetylase complex remodeling, and localization changes for those complexes within the cell.    
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Chapter 1 Introduction 

At the cellular level, life exists in an almost continuous battle against the environment to 

maintain homeostasis. While gradual changes can be managed through appropriate gene 

expression responses geared at up-regulating stress defenses, rapid environmental changes 

necessitate a much more immediate response. For this purpose, cells maintain a “standing 

army” of stress defense proteins. Keeping certain proteins in a constitutively active state can be 

energetically wasteful, however, and may interfere with other cellular processes. Cells resolve 

this conflict by tightly regulating these proteins so that under stress these proteins can be rapidly 

activated to protect the cell. One mechanism for protein rapid activation is through the use of 

rapid and reversible chemical modifications collectively termed post-translational modifications 

(PTMs) (Rhee et al. 2005, Dai and Gu 2010, Wani et al. 2015, Hofer and Wenz 2014). Common 

PTMs include phosphorylation, methylation, ubiquitination, and the subject of this dissertation, 

reversible Nε-lysine acetylation.  

 

1.1 Cellular stress response 

 In the laboratory setting, we often try to maintain optimal culture conditions including 

nutrient availability, temperature, oxygenation, etc. For cells in their natural environment, 

however, expecting stable conditions is far from realistic. Cells are frequently battling a variety 

of stresses including temperature shifts, oxidation, osmotic stress, nutrient limitations, and 

competition with other organisms secreting toxins in an effort to gain a foothold. To combat 

these stresses, cells have evolved highly conserved stress defense proteins. These proteins 

focus on minimizing damage in key areas such as DNA damage and protein misfolding, halting 

cell growth to conserve energy, and streamlining metabolism to optimize energy production for 

stress defense proteins (Gasch et al. 2000b, Kültz 2005).   

Many studies have shown that a large number of key stress-defense protein classes are 

regulated by acetylation including transcription factors [reviewed in (Bannister and Miska 2000)], 
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heat-shock proteins, and superoxide dismutase. Acetylation also plays an important role in the 

assembly and function of stress granules, ribonucleoprotein assemblies that sequester mRNAs 

to inhibit their translation (Ohn and Anderson 2010) and in the activity of many metabolic 

proteins (Zhao et al. 2010, Choudhary et al. 2014), which are tightly regulated in response to 

stress. In yeast, a study by Henriksen et al. (2012) identified over 4000 acetyllysine sites 

showing strong enrichments for many processes that are involved in the environmental stress 

response (ESR), a set of ~900 genes that experience significant induction (iESR) or repression 

(rESR) in response to a wide variety of environmental stresses in S. cerevisiae (Table 1.1) 

(Gasch et al. 2000b). Here, we describe the current literature regarding the role of non-histone 

protein acetylation in the cellular stress response including, metabolism, transcriptional 

regulation, and more specifically in response to heat shock. For a more general review of 

acetylation, especially as it pertains to mammals, please see Narita et al. (2019). 

 

1.2 Enzymes involved in protein acetylation 

There are three classes of proteins involved in lysine acetylation: the “writers,” lysine 

acetyltransferases (KATs); the “erasers,” lysine deacetylases (KDACs); and the “readers,” which 

assist in substrate recruitment and complex formation, and often contain bromodomains which 

are responsible to recognizing acetylated lysines (Smith and Zhou 2016, Fujisawa and 

Filippakopoulos 2017). Protein acetylation occurs when a KAT transfers an acetyl group from 

acetyl-CoA to the ε-amino groups of a free lysine residue (Fig. 1.1). This neutralizes the strong 

positive charge of the amine, affecting the polar environment in that region of the protein. Lysine 

residues are often found in regions of proteins interacting with other proteins or substrates and 

removing that charge weakens these interactions. Currently, there are 12 proteins known to 

have lysine acetyltransferase activity in S. cerevisiae (Table 1.2) and 17 in humans (Yates et al. 

2017). Most fall into three main families: GNAT (Gcn5-related N-acetyltransferase), MYST 

(named after members MOZ, Ybf2/Sas3, Sas2, and Tip 60) and p300/CBP (named for its  
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Table 1.1 Functional enrichments for targets of acetylation 

a GO functional enrichments for acetylated proteins identified in Henriksen et al. 2012 using the 
Princeton GO-Term finder (Boyle et al. 2004b). 
 
b Assessment of whether the target genes in each functional category were enriched for the 

reduced (rESR) or induced (iESR) environmental stress response as defined in (Gasch et al. 
2000b). 

  

Enriched 
categories for 

acetylated 
proteinsa 

p-value Enriched for 
ESR?b 

Enriched 
categories for 

acetylated 
proteinsa 

p-value Enriched for 
ESR?b 

Translation 1 x 10-35 rESR 
Phosphorus 
metabolism 

9 x 10-12 rESR 

Amino acid 
metabolism 

1 x 10-31  Glycolysis 8 x 10-11  

Gene 
expression 

3 x 10-26 rESR Protein folding 5 x 10-6  

RNA 
metabolism 

3 x 10-24 rESR 
Protein 

acetylation 
6 x 10-6 rESR 

Ribosome 
biogenesis 

2 x 10-21 rESR 
Response to 

stress 
5 x 10-5 iESR 

Chromatin 
organization 

4 x 10-18  
Carbohydrate 
metabolism 

3 x 10-3 iESR 

Oxidation-
reduction 

9 x 10-18 iESR 
Response to 

heat 
7 x 10-3 iESR 



4 
 

Figure 1.1 Schematic of regulation by reversible lysine acetylation. Lysine acetylation is a 
highly conserved post-translational modification, where acetyltransferases (KATs) transfer the 
acetyl group from acetyl-CoA. Class I, II, and IV zinc-dependent lysine deacetylases (KDACs) 
remove the acetyl group via hydrolysis. Class III deacetylases (i.e. sirtuins), use NAD+ as a 
substrate, producing nicotinamide and 2-O′-acetyl-ADP-ribose, a novel metabolite only known to 
be produced by sirtuins. 
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Table 1.2 Yeast KATs 

Enzymatic 
subunit 

Complexes Family 
Genetic 

Interactions 
Physical 

Interactions 

Eco1p   128 28 

Elp3p Elongator GNAT 514 25 

Esa1p 
NuA4, piccolo 

NuA4, 
MYST 768 205 

Gcn5p 
SAGA, SLIK, 

ADA 
GNAT 422 283 

Hat1p Hat1p-Hat2p GNAT 131 44 

Hpa2p  GNAT 94 11 

Hpa3p  GNAT 39 9 

Rtt109p Rtt109-Vps75  559 18 

Sas2p SAS MYST 128 28 

Sas3p NuA3 MYST 174 21 

Spt10p  GNAT 116 306 

Taf1p TFIID  859 112 

 
Table 1.3 Yeast KDACs 

Enzymatic 
subunit 

Complexes Class 
Genetic 

Interactions 
Physical 

Interactions 

Hda1p Hda1-2-3 II 708 26 

Hos1p  I 87 9 

Hos2p Set3 and Rpd3(L) I 376 18 

Hos3p  II 69 23 

Hst1p Sum1p/Rfm1p/Hst1p III 136 20 

Hst2p  III 45 7 

Hst3p  III 286 13 

Hst4p  III 94 6 

Rpd3p 
Rpd3(L), Rpd3(S), 

SNT2C 
I 966 81 

Set3p Set3C III 394 25 

Sir2p SIR2-3-4, RENT III 316 75 

 
  



6 
 

members)(Bazan 2008, Wang et al. 2008, Tang et al. 2008, Hansen et al. 2019) and are 

components of many different complexes to aid in substrate specificity. There are also many 

proteins that have putative KAT activity (The UniProt Consortium 2017). 

The acetyl group can then be removed by KDACs (Fig. 1.1), of which there are four 

classes. Classes I, II, and IV are considered the “classical” KDACs, in that they require a Zn2+ 

cofactor, and are inhibited by butyrate and trichostatin A (Boffa et al. 1978, Sealy and Chalkley 

1978, Candido, Reeves and Davie 1978, Sekhavat, Sun and Davie 2007). Class III, most 

commonly known as the “sirtuins,” require NAD+ as a cofactor, and are inhibited by 

nicotinamide [Reviewed in (Menzies et al. 2016)]. An example of this class, Sir2p in yeast has 

been heavily studied as it has been linked to life-span extension (Kaeberlein, McVey and 

Guarente 1999, Lin, Defossez and Guarente 2000, Lin et al. 2004). There are currently 11 

known KDACs in yeast (Table 1.3) and 18 in humans (Yates et al. 2017). Class I KDACs have 

strong deacetylase activity and primarily localize to the nucleus. Class II KDACs, on the other 

hand, have weak deacetylase activity and are able to move between the nucleus and cytoplasm 

(Haberland, Montgomery and Olson 2009, Dokmanovic, Clarke and Marks 2007). Little is known 

of the enzymatic activity and functions of the one member of the Class IV KDACs, HDAC11, 

found only in mammals. The cellular localization, enzymatic activity, and substrate specificity 

vary dramatically among the Class III KDACs. 

Sirtuins have been heavily studied for the critical roles they play in metabolism via 

mitochondrial protein acetylation (Carrico et al. 2018). In S. cerevisiae, mitochondrial Acetyl-

CoA levels are ~20-30 fold higher than cytosolic and nuclear levels (Weinert et al. 2014). Due to 

these high levels of acetyl-CoA paired with the relatively high pH of the mitochondrial matrix, 

non-enzymatic lysine acetylation is widespread (Weinert et al. 2015). This phenomenon is also 

seen in mammals, where the majority of acetylated residues are deacetylated by SIRT3 

(Weinert et al. 2015, Lombard et al. 2007, Rardin et al. 2013, Baeza, Smallegan and Denu 
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2016). Whether the removal of these acetylation events is regulatory or simply correcting 

environmental artifacts is still under investigation. 

 

1.3 History of acetylation 

Although the discoveries of protein phosphorylation in the 1950s (Burnett and Kennedy 

1954, Fischer and Krebs 1955, Fischer et al. 1959) and lysine acetylation in 1963 (Phillips 1963, 

Allfrey, Faulkner and Mirsky 1964) occurred within a decade of each other, further investigation 

into phosphorylation was aggressively pursued while the scope of acetylation as a global 

regulatory phenomenon was not appreciated until recently. This is largely due to the fact that 

acetylation was first thought to solely regulate histone protein function, and the technology at 

the time was not sensitive enough to detect such a small modification. In the thirty years 

following its discovery, only three non-histone proteins were found to be acetylated: alpha-

tubulin, the tumor suppressor p53, and HIV-1 Tat protein (L'Hernault and Rosenbaum 1985, Gu 

and Roeder 1997, Ott et al. 1999). The surprising discovery in the early 2000s that acetylation 

regulates the activity of the central metabolic enzyme acetyl-CoA synthetase in bacteria and 

mammals (Starai et al. 2002, Starai et al. 2003) suggested that acetylation may have a much 

broader regulatory scope. Global proteomic studies subsequently revealed a large number of 

acetylated proteins across all domains of life (Henriksen et al. 2012, Weinert et al. 2011, Kim et 

al. 2006, Liu et al. 2017).  

As of 2019, there are over forty-two thousand acetyllysine sites annotated in the Uniprot 

database (The UniProt Consortium 2017), and the majority of which occur on non-nuclear 

proteins representing most cellular processes. Many of these sites are also conserved from 

bacteria to humans (Nakayasu et al. 2017, Hwang et al. 2016, Hansen et al. 2019), suggesting 

conserved function. In humans, aberrant acetylation has been linked to diverse aspects of 

human health ranging from cancer to aging, and in the pathogenesis of viruses and bacteria 

[recently reviewed in (Auburger, Gispert and Jendrach 2014, Hadden and Advani 2018, Li et al. 
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2018, Parodi-Rullán, Chapa-Dubocq and Javadov 2018, Zhou et al. 2017, Zheng et al. 2017, 

Conrad and Ott 2016, Lin et al. 2018, Poulose and Raju 2015, Drazic et al. 2016, Ren et al. 

2017)]. However, despite the importance of properly regulated acetylation for organismal 

fitness, the function of acetylation for these proteins and processes is widely unknown. The 

most well-conserved acetylation sites are enriched for proteins involved in metabolism, 

transcription, translation, and the focus of this dissertation, cellular stress responses.  

 

1.4 Metabolism 

One process that is strongly enriched for protein acetylation is metabolism. Recent 

studies have found that many highly conserved metabolic enzymes are acetylated (Henriksen et 

al. 2012, Weinert et al. 2011, Choudhary et al. 2009, Zhao et al. 2010, Guarente 2011), 

including the majority of intermediate metabolic enzymes. The pathways in which this has been 

well characterized include gluconeogenesis, glycolysis, glycogen metabolism, fatty acid 

metabolism, and the urea cycle and nitrogen metabolism (Guan and Xiong 2011). Not only are 

many metabolic enzymes regulated by lysine acetylation, but the enzymes involved in the 

process of reversible lysine acetylation are regulated by metabolites.  

 

1.4.1 Acetyl CoA 

All KATs use acetyl-CoA as the acetyl donor during protein acetylation reactions and 

most have a high affinity for both acetyl-CoA and CoA (Albaugh, Arnold and Denu 2011a). This 

causes CoA to act as a competitive inhibitor, which is reversed when acetyl-CoA levels are high 

during nutrient-rich conditions (Galdieri et al. 2014) and means that the acetyl CoA/CoA ratio 

could have significant regulatory consequences (Albaugh, Kolonko and Denu 2010, Albaugh et 

al. 2011b, Berndsen et al. 2007, Tanner et al. 2000). The exception to this is Rtt109, which has 

a relatively low binding affinity for CoA and is likely constitutively active (Albaugh et al. 2010). 

Because acetyl-CoA is a key central metabolite, this directly links protein acetylation to the 



9 
 

metabolic state of the cell. When cells are in media containing glucose under aerobic conditions, 

they process the glucose mainly via glycolysis, producing pyruvate. Pyruvate can then either 

enter the mitochondria where it is converted to acetyl-CoA by the pyruvate dehydrogenase 

complex (PDC) (Weinert et al. 2014, Gombert et al. 2001, Heyland, Fu and Blank 2009) or more 

likely be further processed to acetate which is then converted to acetyl-CoA by the acetyl-CoA 

synthetases Acs1p in the mitochondria or by Acs1p and Acs2p in the cytosol and nucleus (De 

Virgilio et al. 1992, Kumar et al. 2002, Huh et al. 2003, Takahashi et al. 2006). The Acs proteins 

are then regulated through feedback inhibition by acetyl-CoA. (Schwer et al. 2006, Hallows, Lee 

and Denu 2006, Newman, He and Verdin 2012, Starai et al. 2004) 

In the mitochondria, acetyl-CoA can also be produced via fatty acid β-oxidation, ketone 

body metabolism, or amino acid metabolism. In the cytosol and nucleus, citrate from the 

mitochondria can be broken down by ATP-citrate lyase to yield acetyl-CoA and oxaloacetate. 

While Acetyl CoA can freely move in and out of the nucleus through the nuclear pore complexes 

(Talcott and Moore 1999, Wente and Rout 2010), it cannot leave the mitochondria (Takahashi et 

al. 2006). This keeps the nuclear, cytosolic, and mitochondrial pools of acetyl-CoA separate. 

During stress, pools of acetyl-CoA can also be regulated by the translocation of Acs2 into the 

nucleus where it helps retain acetate lost by histone deacetylation (Bulusu et al. 2017, Li et al. 

2017).  

 

1.4.2 NAD+/NADH 

Like KATs, KDACs are also heavily regulated by metabolites. Controlling the levels and 

localization of NAD+ in the cell can have dramatic effects on the activity of sirtuins, which rely 

on NAD+ as a cofactor. This has been well studied in energy-deficient cells, which experience 

an increase in NAD+ followed by an increase in sirtuin activity (Lin et al. 2000). NAD+ and 

NADH cannot diffuse through membranes, so the localization of precursors, such as 

nicotinamide, regulates NAD+/NADH dynamics, and thus sirtuin activity. Mitochondria produces 
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NAD+ separately from the cytoplasm and nucleus and retains this NAD+ pool. This allows the 

mitochondrial NAD+ to remain constant despite the levels in the cytoplasm. This is important for 

maintaining the activity of sirtuins to combat the high levels of non-enzymatic acetylation. 

Sirtuins are noncompetitively inhibited by nicotinamide, a product of their deacetylase activity 

(Avalos, Bever and Wolberger 2005). Whether NADH also acts as an inhibitor is debated 

(Madsen et al. 2016, Lin et al. 2004). 

 

1.4.3 Butyrate 

Another metabolite, butyrate, is important in the regulation of class I, II, and IV KDACS. 

Butyrate is a short-chain fatty acid generated by carbohydrate fermentation in bacteria that 

serves as a precursor for acetyl-CoA via β-oxidation (Vital et al. 2014). Due to the anti-

neoplastic nature of butyrate treatment, it is of major interest for the treatment of many types of 

cancers. While this is of little consequence to microbes unless they share an environment with 

bacteria producing this compound, butyrate is vital to healthy gastrointestinal health in humans 

and other mammals. Existing in mM levels in the colon, butyrate serves as a main source of 

energy for colonocytes, but in cancer cells, it is not metabolized due to the fact that cancer cells 

prioritize metabolism via glycolysis (Encarnação et al. 2015). It then accumulates in the nucleus 

and acts as a KDAC inhibitor, inhibiting their growth and proliferation.  

 

1.4.4 Metabolic changes in response to stress 

In response to stress, metabolism is retooled in different ways for the cell to survive. 

During the initial stress, processes involved in growth are inhibited to shuttle resources to 

survival mechanisms such as energy production. Yeast, for example, prefer glucose as their 

main source of energy, so genes involved in glucose import and metabolism are induced during 

the environmental stress response. Following an increase in glucose via import and activation 

and glycogen degradation, it is then shuttled to pathways involved in trehalose production, ATP 
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synthesis, and NADPH regeneration (Shenton and Grant 2003). In hyperosmotic stress, 

glycolysis is also shifted to increase glycerol production and retention (Petelenz-Kurdziel et al. 

2013).  

The nonreducing storage carbohydrate trehalose plays a vital role in stress response, 

and metabolism shifts to the production of trehalose in response to heat. One heat stress is 

detected, the cell begins shuttling glucose towards trehalose production where it serves as a 

protein stabilizer, preventing aggregation (Hottiger et al. 1994, Singer and Lindquist 1998a, 

Singer and Lindquist 1998b). Deletion of trehalose synthases decreases thermotolerance, 

whereas increasing levels by deactivating degradation enzymes extend thermotolerance. (De 

Virgilio et al. 1994). Trehalose also served as an antidehydration agent, minimizing the effects 

of desiccation (Crowe 2007). Finally, the full transcriptional response to heat would not be 

possible without trehalose, as it acts as a stabilizing agent for the key transcription factor Hsf1p 

(Bulman and Nelson 2005, Conlin and Nelson 2007). 

Heat stress heavily affects the membrane by causing “hyperfluidity,” and thus lipid 

metabolism adjusts to absorb and utilize damaged lipids and maintain membrane integrity by 

adjusting lipid composition (Panaretou and Piper 1992, Balogh et al. 2013). Following beta-

oxidation in the peroxisome, acetyl groups can then be transferred to the mitochondria for 

energy production via the TCA cycle (Hettema and Tabak 2000). Though genes involved in β -

oxidation are not induced by the ESR, genes involved in metabolite import and export to the 

peroxisome where β-oxidation occurs are (Gasch et al. 2000b). To mitigate increased 

membrane fluidity, cells utilize sterols such as cholesterol in mammals and ergosterol in fungi 

(Swan and Watson 1998, Cress et al. 1982) 

 

1.5 Lysine acetylation and the cellular response to heat shock 

One of the most common stresses that cells face is an increase in temperature, and the 

heat stress response is one of the most studied cellular responses and is highly conserved. The 
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response consists of many components including cell cycle arrest, the previously discussed 

metabolic shifts, global changes in transcription and translation, and cell wall and membrane 

effects. This culminates in the rapid upregulation of protein chaperones that mediate protein 

cytotoxicity, prevent cell death, and prepare the cell for future stresses. This response in yeast 

has been well-reviewed (Verghese et al. 2012b).  

 

1.5.1 Transcription  

The first to be discovered and iconic role of protein acetylation is in the regulation of 

transcription through DNA/histone interactions. Positively charged lysines on histones bind 

tightly to the negatively charged backbone of DNA, decreasing its ability to be transcribed. 

During gene activation, acetyltransferases acetylate these lysine residues, thus weakening their 

interaction with DNA and allowing transcription factors to bind and transcription to occur.  This is 

not, however, the only way that acetylation regulates transcription. 

 Lysine acetylation has been implicated in the regulation of a wide variety of transcription 

factors in a highly conserved manor including Hsf1 (Purwana et al. 2017), Ifh1 (Downey et al. 

2013), FOXO (Daitoku, Sakamaki and Fukamizu 2011), NF-kB (Chen and Greene 2003), p53 

(Gu and Roeder 1997) and the general transcription factors TFIIE-β and TFIIF (Imhof et al. 

1997). Since its discovery as the second non-histone proteins to be acetylated in 1997, tumor 

protein p53 has been of special interest, as it plays key roles in cell cycle regulation and 

apoptosis, and aberrant p53 function is involved in many types of cancers. The expression 

profile of the various p53 isoforms can even be used to predict cancer progression, response to 

therapy, and prognosis (Surget, Khoury and Bourdon 2014). Acetylation of p53 is vital for its 

function, as it leads to stabilization and activation and inhibits repression of p53-mediated 

transcription activation by blocking ubiquitination and methylation sites (Meek and Anderson 

2009, Li et al. 2002).  
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1.5.1.1 Hsf1 

In yeast, the transcriptional response to heat is mediated by the general stress 

transcription factors Msn2/4 and, to a greater extent, heat shock factor 1 (Hsf1). Hsf1 is a highly 

conserved transcription factor that plays a key role in stress defense as well as a central role in 

homeostasis (Gallo, Prentice and Kingston 1993, Jedlicka, Mortin and Wu 1997). Upon 

exposure to stress, Hsf1 quickly induces the expression of over 165 genes containing a five 

base pair heat shock element in their promoter (Sorger and Pelham 1987a), including 

chaperones and chaperonins such as Hsp90 and Hsp70 (Vihervaara et al. 2013, Hahn et al. 

2004). Hsf1 also activates polyubiquitin genes, the products of which can then target proteins 

for degradation.  

In yeast, Hsf1p is bound to DNA, even in the absence of stress, suggesting that it is 

mostly regulated posttranslationally. (Sorger, Lewis and Pelham 1987). Extensive 

phosphorylation has been observed when converting to the active form, and target gene 

expression correlates with the level of phosphorylation (Sorger and Pelham 1988). It is then 

dephosphorylated for transient expression (Liu and Thiele 1996). The sites that are 

phosphorylated are stress-specific (Liu and Thiele 1996), and other phosphosites contribute to 

decreasing Hsf1p activity, (Hashikawa and Sakurai 2004, Høj and Jakobsen 1994). 

Upon initiation of the heat stress response, Hsf1 is deacetylated, trimerizes, and 

localizes to target genes for activation. Upon acetylation around 30 minutes of heat shock, 

however, the trimer releases the DNA, attenuating the response (Westerheide et al. 2009b). 

Attenuation is also carried out through feedback inhibition in which Hsp70 and Hsp90 bind to 

Hsf1 (Voellmy and Boellmann 2007). In fact, the deletion of the Hsp70s SSA1 and SSA2 

activates Hsf1 even under non-stressed conditions (Matsumoto et al. 2005). 
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1.5.2 Translation 

One way in which acetylation regulates translation via transcription is through the 

transcription of ribosomal proteins (RP). A key step in the expression of RP transcription is the 

association of the transcription factor Ifh1 with RP promoters. Under stress, there is a rapid 

reduction in Ifh1 association at RP promoters, rapidly decreasing their transcription (Wade, Hall 

and Struhl 2004). The activity of Ifh1 is in turn regulated by acetylation by Gcn5 and 

deacetylation by Hst1 and Sir2. In response to stress, Ifh1 is rapidly deacetylated, limiting its 

ability to activate RP, which slowly rebounds over time (Downey et al. 2013).  

 Acetylation mediated control of translation is also found through acetylation of the 

eukaryotic translation initiation factor 5A (eIF5A). Following acetylation, elF5A accumulates in 

the nucleus, thus inhibiting its ability to initiate translation (Ishfaq et al. 2012). Acetylation has 

also been detected on elF1α, but whether or not this acetylation has any functional 

consequence is unknown (Kim et al. 2006). Several proteomic studies have shown strong 

enrichments for acetylation on ribosomal proteins themselves (Weinert et al. 2011, Henriksen et 

al. 2012, Liu et al. 2018), but possible roles it plays is also unknown.  

 

1.5.3 Cell wall and membrane effects  

 One of the biggest targets of heat stress is the cell membrane. Increases in temperature 

lead to increases in membrane fluidity which can affect the structure of membrane-bound 

proteins and result in changes in ion transport (Cyert 2003). Yeast cells maintain high internal 

turgor pressure, and any weakness in membrane and cell wall integrity can lead to lysis. 

Alterations in lipid composition also affect the temperature at which the heat shock response is 

initiated (Carratù et al. 1996). While the exact mechanism through which cells detect 

temperature changes is unknown, it is very likely that many of the key sensors are located in the 

membrane and are parts of the cell wall integrity pathway (Levin 2005). There is increasing 

evidence that specific classes of lipids play a role in heat sensing including sphingolipids, 
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ceramides (Dickson and Lester 2002) and phosphoinositides (Levin 2011) which rapidly 

accumulate in response to heat. One membrane sensing pathway that is known to be involved 

in the heat shock response is the protein kinase C-activated MAP kinase pathway, in which the 

cell detects cell wall weakness via membrane stretch and this as well as Ca2+ influx activates 

the GTPase Rho1p, triggering a kinase cascade leading to transcription activation (Levin 2005, 

Kamada et al. 1995). Cells with mutations in this pathway grow normally at lower temperatures 

but lyse at 37℃ (Torres et al. 1991), demonstrating the importance of this cascade in the heat 

shock response.      

 

1.5.4 Chaperones 

 In haploid budding yeast, there is estimated to be between 100-150 million proteins 

packed into a 40μm3 cell (Milo 2013). This does not allow a lot of room for the proper folding of 

nascent proteins while also identifying damaged proteins that need to be refolded or removed 

for degradation. The cell thus maintains a battery of chaperones, whose job it is to help with 

folding and remodeling proteins throughout the cell to maintain homeostasis (Ellis 1987). This 

highly conserved family of proteins has been heavily studied, and improper chaperone function 

has been linked to disease causation as well as possible therapeutic targets (Ebrahimi-Fakhari, 

Saidi and Wahlster 2013, Roodveldt, Outeiro and Braun 2017, Macario and Conway de Macario 

2000). Due to the physiological consequences of protein misfolding during heat stress, 

chaperones are one of the largest groups of genes that are transcriptionally activated in the heat 

shock response by Hsf1p, which is why many of them have the  as “HSPs” for “heat shock 

protein.” Many of these chaperones are targets of acetylation.   

 

1.5.4.1 Hsp90p 

The chaperone Hsp90p, represented by the yeast paralogs Hsp82p and Hsc82p, is a 

highly conserved, essential protein that plays a wide variety of roles in the cell. Transcriptionally 
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regulated by Hsf1p, levels of Hsp90p quickly rise within the cell in response to heat shock to 

assist with the refolding of proteins, especially those involved in signal transduction that are 

especially labile due to frequent conformation changes (Nathan, Vos and Lindquist 1997).  

Hsp90p regulation occurs across multiple fronts including an array of various complex partners 

(reviewed in (Mollapour and Neckers 2012), as well as post-translational modification including 

phosphorylation, acetylation, S-nitrosylation, oxidation, and ubiquitination. The effect of these 

modifications varies depending on the organism and the residue involved. The main effects of 

acetylation include altering interactions with other complex partners and modifying interaction 

with ATP and ATPase activity (Kovacs et al. 2005, Scroggins et al. 2007). For example, in 

humans when Hsp90 is acetylated it can no longer interact with p23, inhibiting its chaperone 

function. HDAC6 can remove this acetylation, restoring functionality (Kovacs et al. 2005). In 

yeast, deletion of the KDACs Hda1p and Rpd3p inhibits the ability of the Hsp90s to bind and 

activate calcineurin, which plays an important role in cellular stress responses (Robbins, Leach 

and Cowen 2012, Cyert 2003).    

 

1.5.4.2 Hsp70p 

 In yeast, the Hsp70 family consists of 10 proteins (Table 1.4) and 4 Hsp70 nucleotide 

exchange factors. All of these play a role in the unfolded protein response, but only the paralogs 

Ssa3 and Ssa4 are specifically induced by the stress response. The four Ssa proteins are highly 

redundant, and constitutive expression of just one is all that is necessary for viability. While the 

deletion of either SSA1 or its paralog SSA2 has no known phenotypic consequence, the 

deletion of both leads to slow growth and sensitivity at 37℃, suggesting that even though 

SSA3/4 have high sequence similarity to SSA1/2, they are not completely redundant (Werner-

Washburne, Stone and Craig 1987). The Ssa proteins in yeast are acetylated, and a recent 

study found that deacetylation of Ssa1 residues K86, K185, K354, and K562 occurs rapidly in 
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response to heat shock. Mutation of these residues leads to substantial changes in chaperone 

and client  

Table 1.4 Yeast Hsp70 proteins 

Protein Location Function(s)a 

Ssa1 Cytosol Protein folding, nuclear transport, prion propagation 

Ssa2 Cytosol 
Protein folding, vacuolar import, involved in ubiquitin-

dependent degradation, prion propagation, tRNA import 

Ssa3 Cytosol 
Protein folding in response to stress, protein-membrane 

targeting and translocation 

Ssa4 Cytosol 
Protein folding, highly induced upon stress, protein-

membrane targeting, and translocation 

Ssb1 Cytosol Ribosome associated, folding of nascent proteins 

Ssb2 Cytosol Ribosome associated, folding of nascent proteins 

Ssc1 Mitochondria 
Inner mitochondrial membrane translocation and protein 

folding 

Ssc3 Mitochondria Protein translocation in mitochondrial nucleoids 

Ssq1 Mitochondria Assembly of iron-sulfur clusters 

Kar3 Endoplasmic reticulum 
Microtubule motor, required for nuclear fusion during 

mating 

a. from the Saccharomyces Genome Database (SGD(Cherry et al. 2012) 
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interactions without affecting chaperone functionality (Xu et al. 2019). In higher eukaryotes, the 

Ssa homolog Hsp70 is immediately acetylated on K77 in response to stress and binds to the co-

chaperone Hop to focus on refolding denatured proteins. Later on, Hsp70 is deacetylated and 

binds to the ubiquitin ligase protein CHIP to assist in protein degradation (Seo et al. 2016). 

Acetylated Hsp70 also prevents apoptosis by binding to apoptotic protease-activating factor 1 

(Apaf1) and apoptosis-inducing factor (AIF), modulators of apoptotic pathways, and this plays a 

role in oncogenesis (Park et al. 2017). 

 

1.5.4.3 Hsp104p 

 Hsp104 is unique in that its main role in the cell is as a protein disaggregase (Parsell et 

al. 1994). When proteins misfold they often clump together, making it impossible for other 

chaperones to refold them. Hsp104, however, is able to disentangle these proteins and feed 

them to the Hsp70/40 complex for proper refolding (Glover and Lindquist 1998). Under various 

stresses and in normal cellular functioning, oxidized proteins become carbonylated and form 

aggregates (Requena et al. 2001). During division, these clumps remain in the mother cell, likely 

contributing to senescence (Aguilaniu et al. 2003). This segregation requires Hsp104 and Sir2 

(Erjavec et al. 2007). Hsp104 also plays a vital role in prion propagation and thus has been a 

focus of study for prion disease (Romanova and Chernoff 2009, Chernoff et al. 1995). Hsp104 

has been found to be heavily acetylated, but the possible role(s) of this acetylation remains 

unknown (Henriksen et al. 2012).  

 

1.6 Dissertation outline 

 While our understanding of proteins acetylation and the many roles it plays in the cell 

has grown dramatically over the past few decades, we still know very little about how global 

acetylation is changing in response to environmental perturbation. Most studies that have 

looked at global acetylation, referred to as the acetylome, have only looked in static, often 
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unstressed, conditions, and while this provides insight into which proteins are acetylated, it 

provides no information as to possible ways in which acetylation is regulating protein function. 

Other studies have homed in on a protein of interest, but with the thousands of acetylation 

targets, determining whether acetylation influences these individually would take decades.  

 To take a more global approach to determine possible roles of acetylation in the cell, we 

performed a large time-scale analysis of the acetylome in response to heat shock in the model 

organism, Saccharomyces cerevisiae. Chapter 2 describes the results of this experiment, 

including analysis of cellular functions enriched for acetylation changes, the timing of these 

changes, and the possible KATs and KDACs regulating this response. Chapter 3 further 

investigates the possible mechanisms regulating these changes including metabolite levels, 

KAT and KDAC localization, and KAT and KDAC complex components. Supplementary chapter 

1 further discusses the mass spectrometry analysis that we developed to analyze the time scale 

proteomics data.   
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2.1 Abstract 

 Cells have evolved a wide variety of mechanisms to alter protein activity in response to 

environmental changes. One such mechanism is covalent post-translational protein 

modification. We have known that cells to modify proteins in this fashion for decades, but recent 

technological advancements have dramatically increased the number of known modifications as 

well as the widespread nature of these modifications throughout the proteome. While previously 

considered isolated to the nucleus, recent studies have shown that acetylation is much more 

prevalent than previously thought. While the number of known acetylation sites has significantly 

increased, the possible role(s) of these modifications remains largely unknown. To better 

understand possible functions of this modification in the cell, we examined all acetylated 

proteins in the cell, referred to here on as the acetylome, of the yeast Saccharomyces 

cerevisiae across a four-hour heat shock and identified over 1400 acetylated peptides 

representing almost 600 proteins. Of those, 387 residues representing 207 unique proteins 

show a significant change in acetylation compared to unstressed cells. These proteins are 

enriched for many cellular processes, suggesting that acetylation may play a much wider 

regulatory role than previously believed. 
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2.2 Introduction 

 While they may be called the “basic units of life,” the multitude of processes occurring 

within the cell are anything but basic. Throughout the course of evolution, cells have become 

finely tuned to meet the daily demands for everything from the simplest bacteria to complex 

multicellular organisms such as animals and plants. To do this, cells have evolved a variety of 

regulatory mechanisms to finely control the expression of thousands of genes and the activity of 

their products to optimize the response to the constant onslaught of environmental changes. 

Previous studies in yeast have identified a core set of genes that are either induced or 

repressed in response to a variety of environmental stresses termed the environmental stress 

response (Gasch et al. 2000b). Processes that are upregulated in response to stress include 

carbohydrate metabolism, redox reactions, protein folding, and fatty acid metabolism, and 

repressed processes center around translation including RNA metabolism and ribosome 

assembly. These changes, however, are not required to survive the initial stress, but rather 

serve as a preemptive measure against impending, more severe stresses (Giaever et al. 2002, 

Berry and Gasch 2008). This suggests that other, rapid-acting mechanisms must be responsible 

for the ability to survive the initial stress. 

One such mechanism is the use of post-translational modifications, or PTMs. These are 

covalent modifications on various amino acids that can dramatically change protein activity 

through altered stability, binding affinity, structural confirmation, and targeting for degradation. 

While the transcriptional response to a rapid environmental change can take in the order of 

minutes (Vihervaara et al. 2017, Gasch et al. 2000b), post-translational modifications can occur 

within seconds to re-tune protein function to better survive a wide variety of conditions such as 

starvation, temperature fluctuation, oxidation, and so on. Currently, there are hundreds of known 

PTMs, the most well studied of which being phosphorylation, glycosylation, methylation, 

ubiquitination, and the topic of this dissertation, acetylation (Khoury, Baliban and Floudas 2011).  
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Protein acetylation is a reversible modification in which an acetyl group is transferred to 

the ε-amine of a lysine side chain by lysine acetyltransferases, or KATs. This consequently 

negates the positive charge in that region of the protein, modifying how the protein is able to 

interact with its environment. This can be reversed, however, by a member of the lysine 

deacetylases, or KDACs. This is done in one of two ways: class I and II KDACs hydrolyze the 

acetyl group releasing acetate while class III KDACs, known as the sirtuins, use NAD+ to 

remove the acetyl group, producing nicotinamide and O’-acetyl-ADP-ribose (Menzies et al. 

2016). 

Though first discovered in the early 1960s (Allfrey et al. 1964, Phillips 1963), we have 

only recently begun to realize the true breadth of protein acetylation in the cell. With recent 

advancements in mass spectrometry and immunoaffinity enrichment, thousands of new 

acetylation targets have been discovered across all domains of life (Liu et al. 2017, Castaño-

Cerezo et al. 2014, Chen et al. 2018b, Weinert et al. 2011, Lundby et al. 2012, Henriksen et al. 

2012, Hartl et al. 2017). While it was previously believed that protein acetylation was 

predominantly confined to the nucleus and mitochondria, most newly identified targets are found 

throughout the cell, implicating a large variety of cellular processes including metabolism, 

translation, and the cellular stress response. The majority of these global studies, however, 

have been done in steady-state conditions, which gives little insight into whether or not the 

modification is regulatory, structural, or simply an artifact. 

    To better understand the possible role(s) acetylation is playing in the cell, we wanted 

to look at acetylation dynamics in cells responding to changing environmental conditions. Based 

on previous work by Henriksen et al (2012), we chose to look at acetyl dynamics in cells 

experiencing a mild heat shock at 37°C over four hours, as proteins involved in the response to 

heat were enriched for acetylation. Analysis of this data has revealed that the acetylome is 

highly dynamic in response to heat. Here we report over 300 lysine residues experiencing a 

significant change in acetylation during heat shock, representing over 200 proteins involved in a 
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variety of cellular processes. Surprisingly, the peak acetylation response was seen around 90 

minutes, which is much later than that seen with other PTMs (Kanshin et al. 2015a), suggesting 

that this response is not largely involved in initial survival, but could possibly be in preparation 

for worsening conditions, as seen with the transcriptional stress response(Berry and Gasch 

2008, Giaever et al. 2002). We were also able to identify possible lysine acetyltransferases 

(KATs) and lysine deacetylases (KDACs) by comparing proteins experiencing changes in 

acetylation to known interaction partners of enzymatic subunits from these complexes.  

 

2.3 Materials and Methods 

2.3.1 Strains 

All experiments in this chapter were carried out using the lab strain BY4741 (MATa 

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and were performed in YPD (1% yeast extract, 2% peptone, 

2% dextrose).  

 

2.3.2 Acquired thermotolerance assays. 

Cells were grown to saturation and then subcultured into a 50 mL YPD culture and 

grown for at least 8 generations to mid-log phase at 25°C, 270 rpm and 6, 5 mL aliquots were 

transferred to glass tubes. The protein synthesis inhibitor cycloheximide (Fisher, R663222) and 

KDAC inhibitors Trichostatin A (Fisher, 14-061) and nicotinamide (Fisher, AC12827) were 

added as indicated in table 2.1 and all samples were placed back at 25°C for 20 minutes to 

allow inhibitors to take effect. Samples were collected by centrifugation at 1500 x g for 3 min 

and suspended in either mock (25°C) or stress (37°C) media containing the same 

concentrations of inhibitors. Cells were incubated at their respective temperatures for 1 hour 

with 270 rpm shaking.  

Following the primary stress, the OD600 (Unico) of each sample was taken and cells were 

collected by centrifugation at 1500 x g for 3 minutes and suspended to a final OD600 of 0.6 in 
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YPD containing no additional inhibitors. 50 μl of each sample was transferred to one row of a 

96-well PCR plate which was subsequently sealed with a breathable membrane. Cells were 

then stressed in a gradient of 42°C to 48°C (Table 2.2) in a thermocycler (Bio-Rad DNA Engine) 

for 1 hour for the secondary stress. Cells were mixed, and samples from 42°C (100% viability) 

and 45°C were diluted 1:10 and then serially diluted 1:5 in fresh YPD. 100 μl of dilutions 

determined to provide the optimal final colony-forming unit (CFU) count were plated onto YPD 

and spread using sterile glass beads. All plates were incubated at 30°C until colonies were 

visible and CFU/mL was calculated to determine viability.  

Table 2.1 Inhibitors added for acquisition experiment 

   Sample   

Inhibitor YPD 25 YPD 37 CHX 25 CHX 37 CTN 25 CTN 37 

Cycloheximide -- -- 10μg/mL   10μg/mL   10μg/mL   10μg/mL   

Trichostatin A -- -- -- -- 10μM 10μM 

Nicotinamide -- -- -- -- 5mM 5mM 

 

Table 2.2 Secondary Stress Gradient 

Row 1 2 3 4 5 6 7 8 9 10 11 12 

Temperature 
(°C) 

42.0 42.2 42.5 43.0 43.7 44.6 45.6 46.5 47.1 47.6 47.9 48.0 

 

2.3.2 Western blot analysis of whole-cell lysate 

Cells were grown to saturation and then subcultured into 2, 250 mL YPD cultures grown 

for at least 8 generations to mid-log phase at 25°C, 270 rpm in an oscillating water bath and an 

unstressed sample was collected. 50 mL of the remaining sample was collected by 

centrifugation and suspended in prewarmed 37°C media and incubated an additional hour at 

37°C. Cells were spheroplasted in 500 μl of 1M sorbitol, 50 mM Tris pH 7.5 by vortexing with 

glass beads for 1 hour. Spheroplasts were transferred to lysis buffer (20mM Tris pH 7.5, 1 mM 

EDTA, 150 mM NaCl, 1% Triton X-100, 50 mM sodium butyrate, 100 μM Trichostatin A, 50 mM 

Nicotinamide, protease inhibitor cocktail (Sigma, P8849)) where they lysed due to osmotic 
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pressure change. Equal amounts of lysate from both unstressed and stressed cells were 

resolved by SDS-PAGE, followed by Western blot analysis using an anti-acetyl lysine-specific 

primary antibody (Cell Signaling Technology, 9681S) and fluorescently labeled secondary 

antibodies (Licor, 926-32212). Fluorescent detection was performed on a LiCor Odyssey 

imaging system. 

 

2.3.3 2-D electrophoretic analysis of acetyl-enriched peptides 

Following subculture into 500 mL YPD in a 2 L flask from saturation, cells were grown to 

mid-log phase at 25°C, 270 rpm and 250 mL of unstressed sample were collected. The 

remaining sample was resuspended in 250 mL prewarmed 37°C YPD and incubated an 

additional hour at 37°C. Cells were lysed by bead beating in 50 mM MOPS, 10 mM sodium 

phosphate, 50 mM NaCl, 50 mM sodium butyrate, 100 μM Trichostatin A, 50 mM nicotinamide, 

and protease inhibitor cocktail (Sigma, P8849). Acetylated proteins were immunoprecipitated 

using anti-acetyl lysine resin (ImmuneChem, ICP0388). Equal amounts of cell lysate from both 

samples were resolved via 2-DE, using a 3-10 pH range for isoelectric focusing and a gradient 

of 8-16% SDS-PAGE for the second dimension. Proteins were visualized via silver staining 

(Chevallet, Luche and Rabilloud 2006). 

 

2.3.4 Collection for global acetylation analysis 

2, 1 L YPD cultures were started from a 2 mL saturated YPD culture, grown to an 

OD600 between 0.7 and 0.8 with a minimum of 8 doublings at 25°C and 125 rpm shaking, and 

pooled. 500mL of culture was then aliquoted into 2, 4 L flasks to which 500mL 55°C YPD was 

added, immediately bringing the final temperature to 37°C. To a third 4L flask, 250 mL of culture 

was aliquoted and 250 mL 25°C YPD and 500 mL 55°C YPD was added to prevent the later 

time points from entering diauxic shift. All three flasks were placed at 37°C, 125 rpm for 5, 10, 

15, 30, 45, 60, 90, 120, and 240 minutes. 120 mL from the remaining culture was collected for 
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an unstressed sample via vacuum filtration and scraping into liquid nitrogen and stored at -80℃. 

Three time points were collected per heat-treated flask to ensure appropriate aeration was 

maintained. At each time point, 120 mL was collected via vacuum filtration and scraping into 

liquid nitrogen and stored at -80°C. 

 

2.3.5 Cell lysis and TMT10 labeling 

Sample processing was performed similarly to that found in Hebert et al. 2018. Samples 

were thawed at room temperature and collected by centrifugation at 4696xg for 2 minutes. The 

remaining media was removed, and cells were suspended in 1mL water, transferred to a 1.5mL 

microcentrifuge tube, and centrifuged at 10,000xg to remove water. Samples were suspended 

in 150μl 6M guanidine hydrochloride (GnHCl), 100 mM Tris pH 8 and lysed by boiling for 5 

minutes, followed by a 5-minute rest at room temperature, and a second boil for 5 minutes. 

Samples were precipitated with 90% MeOH. Pellet was resuspended in 1mL 8M urea in 100mM 

Tris pH 8.0, diluted to 2M urea with 100mM Tris pH 8.0 and protein concentration was quantified 

by Bradford Assay. All lysate was digested with a 1:50 ratio of trypsin overnight at 25℃ to 

prevent carbamylation due to the presence of urea with gentle mixing with 2.5mM TCEP and 

10mM chloroacetamide for reduction and alkylation. Digestion was quenched with 0.6% TFA to 

a pH less than 2 and peptides were desalted and lyophilized. A detailed protocol for peptide 

desalting can be found on the protocols.io repository under DOI 

dx.doi.org/10.17504/protocols.io.3hegj3e. Peptides were resuspended in 200mM TEAB to a 

final concentration of ~8μg, quantitated with Pierce Colorimetric Peptide Assay, and diluted to 

5μg/μl in 200mM TEAB. 100μl representing 500μg of each sample was mixed with one of ten 

TMT isobaric labels (ThermoFisher) reconstituted in 50μl acetonitrile. Samples were incubated 

at RT for 1 hour. Labeling was quenched with 8μl 5% hydroxylamine for 15 minutes and 

samples were combined, desalted, and lyophilized. A detailed protocol for cell lysis and TMT 

labeling can be found at dx.doi.org/10.17504/protocols.io.3g9gjz6. 
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2.3.6 High pH fractionation 

Peptides were dissolved in 110μl, 10mM ammonium bicarbonate, pH 10.0, 2μl was 

removed for unenriched analysis, and the remaining sample was fractionated using an Agilent 

300 Extend C18 column (770995-902) in a gradient of 0-100% acetonitrile in 10mM ammonium 

bicarbonate, pH 10.0 on a Shimadzu LC-20AP system. The first 10 min (flow-through) were 

collected as fraction 1 and the remaining fractions were collected for 2.5 minutes for a total of 10 

fractions, and then back to fraction 1 for an additional 2.5 minutes each. All fractions were 

frozen in liquid N2 and lyophilized. 

 

2.3.7 Acetyl-lysine Enrichment 

Each fraction was dissolved in 1.4mL IAP buffer (50mM MOPS pH 7.2, 10mM 

Na2HPO4, 50mM NaCl), transferred to a tube containing 40μl of washed PTMScan Acetyl-

Lysine Motif [Ac-K] IAP Beads (Cell Signaling Technology, 13362S), and incubated for 2hrs at 

4°C with rotation. After washing 3x with 1mL IAP buffer and 3x with ultrapure water at 4℃, 

peptides were eluted with 0.15% TFA (one elution with 55μl for 10 min at RT and one elution 

with 50μl for 10 min at RT) as per manufacturer protocol. Both eluents were combined in a 

1.5mL microcentrifuge tube and frozen at -80℃ until shipment for mass spectrometry.  

 

2.3.8 LC-MS/MS Data Analysis 

The following was performed at the proteomics core facility at the University of Arkansas 

for Medical Sciences. Whole peptides were fractionated on a 100 mm x 1.0 mm Acquity BEH 

C18 column (Waters) using an UltiMate 3000 UHPLC system (ThermoFisher Scientific) with a 

40-min gradient from 99:1 to 60:40 buffer A:B ratio under basic pH conditions (buffer A = 0.05% 

acetonitrile, 10 mM NH4OH; buffer B = 100% acetonitrile, 10 mM NH4OH). The individual 

fractions were then consolidated into 24 super-fractions using the checkerboard strategy 

described in Yang et al. 2012. 
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Super fractions were loaded on a 150 mm x 0.075 mm column packed with Waters C18 

CSH resin. Peptides were eluted using a 45-min gradient from 96:4 to 75:25 buffer A:B ratio into 

an Orbitrap Fusion Lumos mass spectrometer (Thermo Fischer Scientific). MS acquisition 

consisted of a full scan at 120,000 resolution, maximum injection time of 50 ms, and AGC target 

of 7.5 x 105. Selection filters consisted of monoisotopic peak determination, charge state 2-7, 

intensity threshold of 2.0 x 104, and mass range of 400-1200 m/z. Dynamic exclusion length was 

set to 15 seconds. Data-dependent cycle time was set for 2.5 seconds. Selected precursors 

were fragmented using CID 35% with an AGC target of 5.0 x 103 and a maximum injection time 

of 50 ms. MS2 scans were followed by synchronous precursor selection of the 10 most 

abundant fragment ions, which were fragmented with HCD 65% and scanned in the Orbitrap at 

50,000 resolution, AGC target of 5.0 x 104 and maximum injection time of 86 ms. 

Proteins were identified by database search using MaxQuant50 (Max Planck Institute) 

using the Uniprot S. cerevisiae database from October 2014,51 with a parent ion tolerance of 3 

ppm and a fragment ion tolerance of 0.5 Da. Carbamidomethylation of cysteine residues and 

TMT-labelling (+229.16) of peptide N-termini were used as fixed modifications. Acetylation of 

lysine residues and protein N-termini, oxidation of methionine, and TMT-labelling of peptide N-

termini were selected as variable modifications. Mascot searches were performed using the 

same parameters as above, but with peptide N-terminal fixed modification of TMT 10-plex, and 

variable modifications of TMT + diglycine (+343.2) and TMT 10-plex on lysine residues, and 

phosphorylation (+79.97) of serine and threonine. Mascot search results were imported into 

Scaffold software (v4)52 and filtered for protein and peptide false discovery rates of 1%. Data 

normalization and analyses were performed using R. Reporter ion intensities were log2 

transformed, mean-centered for each spectrum, then median-centered for each channel. 

Peptide and protein quantitative values were obtained by taking the average of the quantitative 

values for all spectra mapping to the peptide or protein. All raw mass spectrometry data and 

MaxQuant search results have been deposited to the ProteomeXchange Consortium via the 
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PRIDE53 partner repository with the dataset identifier PXD014552 and 10.6019/PXD014552. 

Figure 2.1 provides a graphical depiction of the TMT-10 workflow. 

 

2.3.9 Statistical analysis, clustering, and enrichment, and motif analysis 

Proteins and acetyl peptide marks with significant abundance differences in response to 

heat at each time point relative to the unstressed control were identified by performing an 

empirical Bayes moderated t-test using the BioConductor package Limma v 3.36.2 and 

Benjamini-Hochberg FDR correction (Ritchie et al. 2015). An FDR cutoff of 0.05 was used.  

Peptide clustering was performed with Cluster 3.0 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using hierarchical clustering and 

Euclidian distance as the metric with centroid linkage (Eisen et al. 1998). Timepoints were 

weighted using a cutoff value of 0.4 and an exponent value of 1. The heat map was generated 

using Java TreeView v. 1.1.6r4 (Saldanha and Department of Genetics 2019). Clusters were 

manually chosen with a minimum correlation of 0.9.  

Cellular process enrichments of gene ontology (GO) categories were performed using 

GO-TermFinder (Boyle et al. 2004b) with Bonferroni-corrected P-values < 0.01 taken as 

significant. KAT and KDAC enrichments were determined by performing Fisher’s exact test 

(https://systems.crump.ucla.edu/hypergeometric/) where the population size (N) is the number 

of genes in the yeast genome, 7166, the number of successes in the population (M) is the 

number of genes in the cluster, the sample size (s) is the total number of known KAT/KDAC 

interactions retrieved from the Saccharomyces Genome Database (SGD, Cherry et al. 2012), 

and the number of successes (k) is the number of genes found in both M and s.  

Motif analysis was performed using the motif-x algorithm with a p-value threshold of 0.05 

in the modification motifs (MoMo) tool found in the MEME suite (Cheng et al. 2019).  
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Figure 2.1 Schematic for TMT-10 acetyl proteomics.  
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2.4 Results and Discussion 

2.4.1 Acetylation is required for the full acquisition of thermotolerance. 

 To determine the extent to which protein acetylation plays any role in the yeast response 

to heat shock, we began by looking at the effect of lysine deacetylase (KDAC) inhibitors on the 

phenotype of thermotolerance acquisition. Thermotolerance acquisition is the phenomenon in 

which cells treated with mild heat stress are able to survive much higher subsequent 

temperatures (Fig. 2.2). So that the effects we were seeing were not solely due to disruption of 

protein synthesis via histone deacetylation inhibition, we included the protein synthesis inhibitor 

cycloheximide in both control and KDAC inhibited samples. If inhibition of protein synthesis does 

not decrease acquisition, this suggests that there are other mechanisms at play, such as post-

translational modification like acetylation.  

 In protein synthesis inhibited samples alone, we see only a very mild, non-statistically 

significant decrease in the cells’ ability to acquire thermotolerance (Fig. 2.3). With the addition of 

the lysine deacetylase inhibitors Trichostatin A and nicotinamide, however, we see a significant 

decrease in thermotolerance acquisition. This suggests that while protein acetylation is not 

essential for thermotolerance, seen in the fact that the cells still showed some acquisition, it 

does play a role to some extent other than through transcriptional regulation. 

 

2.4.2 The acetylome exhibits clear remodeling in response to heat shock. 

 To determine if there were any visible changes in the yeast acetylome in response to 

heat stress, we performed western blot analysis on whole cell lysate from cells grown in 

unstressed conditions at 25°C and under a mild heat shock of 37°C for 60 minutes using an 

anti-acetyllysine primary antibody (Fig. 2.4).  While not the most sensitive, this clearly shows 

that there are species acetylated in one condition, but not the other.  
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Figure 2.2 Mild primary stress protects against severe secondary stress. Cells were 
exposed to either 25℃ or a mild primary stress of 37℃ for one hour. After normalizing to an 
OD600 of 0.6, each sample was transferred to one row of a 96-well PCR plate and subjected to 
a range of more severe secondary stresses from 42℃ to 48℃, diluted and plated on YPD, and 

incubated at 30℃ until colonies were visible. Cells exposed to a mild primary stress can survive 
much higher subsequent temperatures than without the primary stress. This phenomenon is 
called thermotolerance acquisition.   
 

Figure 2.3 Protein acetylation deregulation decreases thermotolerance acquisition. 
Cells were exposed to either 25℃ or a mild primary stress of 37℃ followed by a more severe 

stress of 45℃ with and without protein inhibition with cycloheximide (CHX) and the KDAC 
inhibitors trichostatin a (TSA) and nicotinamide (NA). Percent viability was calculated by the 
CFU count of cells stressed at 45℃ compared to cells exhibiting 100% viability at 42℃. While 
cells experience protein synthesis inhibition showed a non-significant decrease in 
thermotolerance acquisition, cells in which lysine deacetylation was inhibited showed a dramatic 
decrease. This suggests that properly regulated lysine deacetylation plays an important role in 
thermotolerance acquisition.  
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Figure 2.4 Western blot analysis shows differences in acetylation between stressed 
(37℃) and unstressed (25℃) cells. Equal amounts of lysate from both unstressed and 
stressed cells were resolved by SDS-PAGE, followed by Western blot analysis using an anti-
acetyl lysine-specific primary antibody and fluorescently labeled secondary antibodies. The 
acetylome clearly shows remodeling in response to heat stress. 
 

Figure 2.5 Two-dimensional gel electrophoresis (2-DE) of acetylated proteins identifies 
numerous changes in the acetylome during heat shock. 
 Acetylated proteins from stressed (37℃) and unstressed (25℃) cells were immunoprecipitated 
using anti-acetyl lysine resin and equal amounts of cell lysate from both samples were resolved 
via 2-DE. Samples were visualized via silver staining. Again, we see clear remodeling of the 
acetylome in response to heat stress. 
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To increase visibility and sensitivity, 2-dimensional gel electrophoresis was performed on 

samples collected as before, but this time acetylated lysines were enriched using an anti-

acetyllysine resin (ImmuneChem). Again, there are clear differences between the two samples 

suggesting that there are at least some proteins that are experiencing acetylation changes in 

response to heat stress (Fig. 2.5). This provided the necessary confidence to proceed with more 

in-depth experimentation. 

 

2.4.2 The acetylome is highly dynamic in response to heat stress. 

To further investigate previous experiments suggesting global changes in protein 

acetylation occur in response to heat shock, we performed a time-scale analysis of acetylated 

protein species over the course of a 4-hour heat shock. While this temperature is elevated 

enough to illicit the heat shock response, it is not severe enough to decrease viability, allowing 

us to monitor the acetylation dynamics occurring in this response. Samples were collected at 5, 

10, 15, 30, 45, 60, 90, 120, and 240 minutes following initiation of a 37℃ heat shock, digested, 

labeled using isobaric tandem mass tags (TMT) for multiplexing, enriched using an anti-

acetyllysine resin, and analyzed on an Orbitrap mass spectrometer. Enrichment paired with the 

extreme sensitivity of the Orbitrap allowed us to detect acetylation sites across hundreds of 

proteins throughout the time course (Fig. 2.1) (Storey et al. 2019).   

In triplicate, we identified 1473 acetylated peptides representing 596 proteins. Of those, 

387 residues representing 207 unique proteins showed a significant fold change (Benjamini-

Hochberg corrected p-value <0.05) in acetylation in at least one time point compared to the pre-

stress sample. Surprisingly, the majority and the largest fold change of this response occurred 

at the 90 min time point with 74% of changing residues showing a significant fold change at this 

time point (Fig. 2.6 and Fig 2.7). Post-translational modifications are often regarded as a means  
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Figure 2.6 The majority of significant acetylation events occur at 90 minutes of heat 
shock. The number of significant differentially acetylated peptides and differentially expressed 
proteins at each time point. 
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Figure 2.7 Average acetyl fold changes compared to corresponding protein fold changes. 
The average fold change at each time point of all acetyl peptides and proteins experiencing a 
significant change in at least three time points  (FDR < 0.05). The maximum average fold 
change in both increasing and decreasing acetyl marks is at 90 minutes, whereas protein level 
changes appear constant after 60 minutes. 
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of rapid protein regulation occurring before the cell has had enough time to perform the 

necessary translational response, which appears to be the case for other PTMs such as 

phosphorylation which levels off around 20 minutes in response to heat (Kanshin et al. 2015a). 

This does not appear to be the case for the majority of acetylation changes in the response to 

heat stress.  

Also of interest, over a third of proteins with significantly changing acetyl marks (34%) 

had more than one significantly changing residue (Fig. 2.8), the most affected of which is the 

translation elongation factor Tef1p with 10 significantly changing acetyl marks. Proteins with 

fewer than 4 changing marks were enriched for processes such as translation, metabolism, and 

gene expression. Proteins with greater than 4 changing marks, however, were enriched for 

protein folding and refolding, and the cellular response to heat (Table 2.3). This strengthens our 

suspicions that acetylation is a key regulatory mechanism during the response to heat. We also 

identified 36 non-histone proteins with both increasing and decreasing acetyl marks during the 

heat shock (Fig. 2.9). These proteins show process enrichments for a variety of cellular 

processes including protein folding (p = 4.21 x 10-7) and refolding (p = 1.33 x 10-9), small 

molecule biosynthesis (p = 8.26 x 10-6), carbohydrate metabolism (2.1 x 10-4), and translation (p 

= 1.89 x 10-13), 14 belonging to the ribosome. The fact that we see increasing and decreasing 

acetylation on the same protein suggests that this modification is being regulated and is not just 

occurring due to aberrant KAT and KDAC function or simply chemical acetylation, a common 

criticism of acetylation studies. 

 Another trend suggesting that this response is being regulated and not happening by 

chance is the fact that some proteins that show significant changes in protein acetylation are not 

experiencing changes in concentration. If no regulation were occurring, one would expect that 

proteins showing greater concentration increases would show greater acetylation changes and 

the opposite for proteins decreasing in concentration. As concentration increases, proteins are 

more likely to interact with acetyltransferases and deacetylations which could lead to spurious  
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Figure 2.8 Number of significantly changing acetyl peptides per protein.  

Table 2.3 Cellular process enrichments by number of changing acetyl peptides  

1 acetyl mark p-value  4+ acetyl marks p-value 

cytoplasmic translation 1.05E-

25 

 'de novo' protein folding 2.15E-

14 
metabolic process 9.83E-

16 

 protein refolding 2.37E-

13 
nitrogen metabolic process 1.08E-

15 

 protein folding 2.12E-

11 
biosynthetic process 4.82E-

15 

 ADP metabolic process 1.99E-

08 
ribosome biogenesis 8.04E-

14 

 cellular response to heat 2.93E-

08 
gene expression 5.13E-

12 

 glycolytic process 3.13E-

07 
protein metabolic process 6.84E-

08 

 ATP biosynthetic process 6.95E-

06 
rRNA processing 1.21E-

06 

 oxidoreduction coenzyme 

metabolism 

metabolismmetaboliprocess 

1.36E-

05 
ribosome assembly 1.63E-

05 

 gluconeogenesis 2.39E-

05 
RNA processing 9.8E-04  cytoplasmic translation 7.05E-

05 
     

2-3 acetyl marks p-value    

cytoplasmic translation 2.39E-

14 

   

biosynthetic process 4.23E-

08 

   

peptide metabolic process 2.47E-

07 

   

nitrogen metabolic process 5.45E-

07 

   

metabolic process 1.69E-

05 

   

gene expression 4.44E-

03 

   

cellular protein metabolic 

process 

5.18E-

03 

   

nicotinamide metabolic 

process 

6.42E-

03 
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Figure 2.9 36 proteins experience both increasing and decreasing acetyl residues. Each 
line represents the fold change of one residue over the 240-minute time course. 
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acetylation and deacetylation events. While there is a strong enrichment for proteins 

experiencing significant abundance changes to also be experiencing significant acetylation 

changes (hypergeometric p-value = 2.52 x 10-6), we identified 64 non-histone proteins that show 

significant changes in acetylation in at least one time point while showing no significant changes 

in protein abundance throughout the heat shock, including 12 of the 36 proteins that show 

concurrent increases and decreases on different residues. These proteins were highly enriched 

for those involved in translation (p = 1.17 x 10-19), peptide biosynthesis (p = 6.83 x 10-10), gene 

expression (p = 7.47 x 10-10), and nitrogen compound metabolic processes (p = 1.41 x 10-9). 

 

2.4.3 Process and component enrichments  

Following clustering of the dynamics of the 387 significantly changing residues, we 

identified 8 clusters for analysis for GO process enrichments (Princeton GO Term Finder) to 

determine if there are processes potentially being regulated by these acetylation changes. 

Among the peptides showing increasing acetylation during heat shock, we found strong 

enrichment (p < 0.001) for protein folding and refolding, response to heat, nucleotide metabolic 

processes, small molecule metabolism, carbohydrate metabolism. For peptides showing a 

significant decrease in acetylation, strong enrichments were found for translation, nitrogen 

metabolism, gene expression, ribosome biogenesis and assembly and peptide metabolism (Fig. 

2.10). The processes enriched for increasing and decreasing acetylation highly overlap with 

processes known to be induced and repressed in response to stress respectively (Gasch 2003), 

suggesting that acetylation generally acts to activate the cellular stress response. All clusters 

show enrichments for localization in the ribosome and cytosol in general, strongly debunking the 

long-held belief that significant acetylation events predominantly occur in the nucleus (Table 

2.A.1).  
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Figure 2.10 Clusters and enrichments for time course acetyl proteomics. Acetyl peptides 
significantly changing in at least one time point were clustered using Cluster 3.0 and visualized 
with TreeView. Eight clusters were manually chosen with a correlation of at least 0.9 and 
functional enrichments were analyzed using the Princeton GO term finder. KAT and KDAC 
enrichments were performed by pulling known physical interactions for each enzymatic subunit 
from the Saccharomyces Genome Database (SGD) and comparing those interactions to 
proteins experiencing changes in acetylation using a hypergeometric distribution test.   
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2.4.4 Enrichments for known KAT and KDAC interactions 

For these same clusters, we also wanted to determine if there were any enrichments for 

known physical interactions with KAT and KDAC enzymatic subunits to suggest which enzymes 

are regulating these changes. All the clusters showing increasing acetylation showed  

enrichments for interactions with Gcn5, with Esa1 and Hat1 enriched to a lesser degree in one 

of the three clusters. The decreasing acetylation clusters, however, showed significant 

enrichments for a wide variety of KDACs including, Sir2, Rpd3, Hda1, Hst2, Hst3, and Hos3 

(Fig. 2.10 and Tables 2.4 and 2.5). We also looked at enrichments for the KATs and KDACs 

that could possibly be reversing these changes in other conditions and found that the 

decreasing acetyl marks were highly enriched for physical interactions with the KAT Spt10 (p = 

1.18 x 10-6).  When analyzed for possible modification motifs using the MeMe suite tool MoMo, 

but none were found that passed the significance threshold (Figures 2.A.1 and 2.A.2).  

We also looked at changing concentration levels of KATs and KDACs to determine if any 

are induced or repressed in response to heat, and while we were only able to identify 3 KATs 

(Elp3, Hat1, and Hpa3) and 5 KDACs (Hos3, Hst1, Rpd3, Hda1, and Sir2) in triplicate, we 

identified two KATs and one KDAC experiencing a significant concentration change during the 

time course (Fig. 2.11). Notably, these concentration changes are occurring later in the 

response, similar to when we see the majority of acetylation changes. While Sir2 and Hat1 were 

enriched in the previous data set, Hpa3 was not. It is very possible that this KAT plays a larger 

role in the stress response than it does under the non-stressed conditions from which the 

majority of the physical interaction data used in the enrichment calculation was obtained.  

 

2.5 Conclusion 

 In this chapter, we show that the acetylome is highly dynamic in response to heat stress, 

involving proteins that serve a variety of functions in the cell and in the response to heat stress. 

The many clusters of varied dynamics and variety of KATs and KDACs implicated in the data 



55 
 

Table 2.4 Hypergeometric p-values for KATs and increasing acetylation clusters

 

 

 
 
 
 
 
 
 
 

 

 

 

Table 2.5 Hypergeometric p-values for KDACs and decreasing acetylation clusters  

   Cluster   

KDAC 4 5 6 7 8 

Hda1p 0.10023 
 

0.00380 
 

0.01016 
 

0.00728 
 

0.15357 
 Hos1p -- -- -- -- -- 

Hos2p -- -- 0.09620 
0.007022 

 

-- -- 

Hos3p -- 0.07437 
 

0.00702 
 

-- -- 

Hst1p -- -- -- -- -- 

Hst2p 0.02513 
0.046192 

 

-- 0.00057 
0.002059 

 

0.03086 
 

0.03939 
 Hst3p 0.04619 

-- 
-- 0.00206 

 
0.05657 

 
0.07194 

 Hst4p -- -- -- -- -- 

Rpd3p 0.27518 0.24771 
 

0.01107 
 

0.05831 
 

0.00152 
 Set3p -- -- 0.12466 

0.007143 
 

-- -- 

Sir2p  0.00241 
 

0.02373 
 

0.00714 
 

0.00032 
 

0.35117 
   

  

  Cluster  

KAT 1 2 3 

Eco1p -- -- -- 

Elp3p -- -- 0.17547 

Esa1p 0.12959 0.23259 0.00459 

Gcn5p 0.00015 2.40162E-05 1.61560E-10 

Hat1p 0.12689 0.17923 0.00033 

Hpa2p -- -- 0.06702 

Hpa3p -- -- 0.58089 

Rtt109p 0.05390 -- 0.12964 

Sas2p -- 0.11799 0.19437 

Sas3p -- -- -- 

Spt10p 0.24136 -- 0.21214 

Taf1p 0.29324 -- 0.08131 
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Figure 2.11 Significantly changing KAT and KDAC concentrations   The KATs Hpa3 and 
Hat1 and KDAC Sir2 show significant changes in concentration late in the response to heat 
shock. 
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suggest that this response is being regulated in a complex manner. Further evidence of the 

degree to which this is regulated is the fact that we see increasing and decreasing acetylation 

within the same protein and in proteins that are not experiencing changing concentration levels 

that would affect their interaction with KATs and KDACs. It is possible, however, that changing 

KAT and KDAC concentrations are a method of regulating these dynamics.  

 This data suggests that a much larger set of proteins is being regulated by protein 

acetylation than previously believed. Only a small number of these proteins were known to be 

acetylated previous to this study, and of those even fewer were known to experience changing 

acetylation on those residues. These changing acetylations could have significant effects on 

these proteins including subcellular localization, substrate and protein interactions, and 

enzymatic activity. Not only does this data suggest a possible new mechanism of regulation for 

hundreds of proteins, but it also highlights the necessity of performing global studies in cells 

responding to changing environments to identify levels of protein regulation that are not 

apparent in standard laboratory conditions.  
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2.8 Appendix 

Table 2.A.1 Enrichments for cellular localization/component 

Cluster 1   

GO ID TERM CORRECTED_PVALUE 

GO:0005829 cytosol 1.04E-06 

GO:0032991 protein-containing complex 1.03E-05 

GO:1990904 ribonucleoprotein complex 0.002237364 

GO:0000015 phosphopyruvate hydratase complex 0.00572667 

GO:0005844 polysome  0.007526836 

GO:0022626 cytosolic ribosome 0.009345474 

   
Cluster 2   

GO:0005829 cytosol 3.01E-07 

GO:0042645 mitochondrial nucleoid 0.000339 

GO:0022626 cytosolic ribosome 0.00082 

GO:0044444 cytoplasmic part 0.002659 

GO:0043228 non-membrane-bounded organelle 0.006317 

GO:1990904 ribonucleoprotein complex 0.006476 

   
Cluster 3   

GO:0005829 cytosol 2.23E-14 

GO:0022626 cytosolic ribosome 3.08E-08 

GO:1990904 ribonucleoprotein complex 1.10E-06 

GO:0005886 plasma membrane 2.41E-05 

   
Cluster 4   

GO:1990904 ribonucleoprotein complex 2.89E-05 

GO:0043228 non-membrane-bounded organelle 4.88E-05 

GO:0005840 ribosome 0.000208 

GO:0032991 protein-containing complex 0.000837 

GO:0044445 cytosolic part 0.000945 

   
Cluster 5   

GO:0022626 cytosolic ribosome 2.08E-09 

GO:0044445 cytosolic part 2.58E-09 

GO:1990904 ribonucleoprotein complex 3.28E-07 

GO:0022625 cytosolic large ribosomal subunit 6.80E-07 

GO:0015934 large ribosomal subunit 1.13E-05 

   
Cluster 6   

GO:0044445 cytosolic part 3.88E-11 

GO:0022626 cytosolic ribosome 1.47E-10 

GO:0044391 ribosomal subunit 1.65E-08 

GO:1990904 ribonucleoprotein complex 1.03E-07 

GO:0022625 cytosolic large ribosomal subunit 2.43E-06 

GO:0043228 non-membrane-bounded organelle 4.07E-05 
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Table 2.A.1 (Cont.) 
Cluster 7   

GO ID TERM CORRECTED_PVALUE 

GO:0005840 ribosome 1.50E-14 

GO:1990904 ribonucleoprotein complex 4.45E-13 

GO:0044445 cytosolic part 3.54E-11 

GO:0044391 ribosomal subunit 4.94E-11 

GO:0043228 non-membrane-bounded organelle 3.74E-09 

GO:0022627 cytosolic small ribosomal subunit 2.38E-08 

GO:0032991 protein-containing complex 5.02E-06 

GO:0030684 preribosome 3.03E-05 

   
Cluster 8   

GO:0044445 cytosolic part 1.58E-14 

GO:0022626 cytosolic ribosome 2.91E-14 

GO:0044391 ribosomal subunit 1.08E-11 

GO:1990904 ribonucleoprotein complex 7.16E-11 

GO:0043228 non-membrane-bounded organelle 4.68E-10 

GO:0043232 intracellular non-membrane-bounded organelle 4.68E-10 

GO:0032991 protein-containing complex 8.49E-08 

GO:0022627 cytosolic small ribosomal subunit 2.31E-07 

GO:0030684 preribosome 1.56E-06 

GO:0022625 cytosolic large ribosomal subunit 4.35E-06 

GO:0015935 small ribosomal subunit 6.94E-06 

GO:0032040 small-subunit processome 0.000968 

GO:0005844 polysome 0.002127 
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Figure 2.A.1 Modification motifs for increasing clusters. Possible modification motifs for 
each cluster were analyzed using the MoMo tool in the MeMe suite.  
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Figure 2.A.2 Modification motifs for decreasing clusters. Possible modification motifs for 
each cluster were analyzed using the MoMo tool in the MeMe suite. 
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3.1 Abstract 

 Though there are over a thousand acetylated proteins in the yeast proteome, the 

mechanisms by which these acetylation events are regulated remain unknown. Following a 

global time-course analysis of the entire set of acetylated proteins in response to heat shock, we 

identified multiple groups of peptides experiencing similar acetylation dynamics. To determine 

possible mechanisms regulating these groups, we began by looking at the concentrations of 

metabolites that play central roles in these reactions as substrates or inhibitors. We then used a 

statistical analysis to compare proteins identified in these clusters to known physical interactions 

with acetyltransferases and deacetylases, we identified 11 candidate enzymes that may be 

regulating acetylation changes during heat shock for further study. Finally, we purified these 

enzymes to identify possible binding partner remodeling and analyzed whether these enzymes 

were relocalizing, thus changing substrate pools.  
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3.2 Introduction 

 One of the mechanisms the cell has evolved to modulate protein activity is the use of 

covalent modifications broadly termed post-translational modifications (PTMs). While hundreds 

of PTMs have been identified, some of the most widespread and highly studied include 

phosphorylation, methylation, ubiquitination, and acetylation. Though long overlooked, recent 

advances in technology have led to the identification of thousands of acetylated proteins across 

a variety of processes spanning all domains of life, making it one of the most ubiquitous and 

conserved PTMs in the cell (Kouzarides 2000). Two classes of proteins are responsible for 

modulating this response: the KATs and KDACs. 

 Lysine acetylation occurs when an acetyl group is transferred from acetyl-CoA to the ε-

amino group in the lysine side chain. This effectively neutralizes the positive charge of the 

residue (Fig. 3.1). This alteration in the chemical environment of the protein can have dramatic 

consequences on protein function due to conformational changes and altered ability to interact 

with other proteins and/or substrates. Due to the requirement of acetyl-CoA as the acetyl donor, 

concentrations of this metabolite can affect KAT activity (Albaugh et al. 2010, Albaugh et al. 

2011a, Berndsen et al. 2007, Tanner et al. 2000). When acetyl-CoA concentrations are low, 

CoA can bind to most KATs and act as a competitive inhibitor. When levels of acetyl-CoA 

increase, it displaces the CoA allowing the KAT to resume normal activity (Galdieri et al. 2014).  

In the yeast Saccharomyces cerevisiae, there are 12 known proteins with confirmed KAT 

activity (Table 3.1) as well as many putative KATs that remain uncharacterized.  

 Following acetylation by a KAT, or in some cases through non-enzymatic acetylation, the 

acetylation moiety can be removed by a member of the KDAC family, of which there are 11 in S. 

cerevisiae (Table 3.2). In yeast, these are divided into three classes. The class I and class II 

KDACs are considered the “classical” KDACs, and using a zinc cofactor they use hydrolysis to 

remove the acetyl group as acetate and are inhibited by butyrate and trichostatin A (Fig. 3.1) 

(Boffa et al. 1978, Sekhavat et al. 2007). The class III KDACs are known as the “sirtuins,”  
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Figure 3.1 Schematic of regulation by reversible lysine acetylation. Lysine acetylation is a 
highly conserved post-translational modification, where acetyltransferases (KATs) transfer the 
acetyl group from acetyl-CoA. Class I, II, and IV zinc-dependent lysine deacetylases (KDACs) 
remove the acetyl group via hydrolysis. Class III deacetylases (i.e. sirtuins), use NAD+ as a 
substrate, producing nicotinamide and 2-O′-acetyl-ADP-ribose, a novel metabolite only known to 
be produced by sirtuins. 
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named after the inaugural member, Sir2. These enzymes consume NAD+ and remove the 

acetyl group producing nicotinamide and O’-acetyl-ADP-ribose (Fig 3.1). Sirtuins are then 

inhibited by nicotinamide through feedback inhibition (Menzies et al. 2016).  

 For the majority of KATs and KDACs, peak enzymatic activity requires the assistance of 

many protein subunits, which can form multiple different complexes (Tables 3.1 and 3.2). For 

example, the KAT Gcn5 has very weak acetylation capabilities alone and is unable to acetylate 

nucleosomes, a key step in gene expression. When bound to Ada2 and Ada3, however, this 

functionality is restored (Balasubramanian et al. 2002, Sun et al. 2018). The subunits found 

within these complexes serve various roles including substrate recognition and catalytic stability, 

and it is likely that this evolved to finely tune substrate recognition to prevent promiscuous 

acetylation events. Another method of enzyme regulation is sequestration and relocalization 

within the cell. The majority of the known functions of KATs and KDACs are involved in 

chromatin remodeling for gene expression, occurring in the nucleus, and yet we see thousands 

of non-nuclear proteins in global acetylation screens. It is thus likely that many of the enzymes 

are moving in and out of the nucleus to act upon a variety of substrates, though the 

mechanism(s) behind this is unknown. 

In Chapter 2 I showed that over 200 proteins that experienced changes in acetylation in 

response to a four-hour heat shock at 37°C. These proteins represented a variety of different 

processes, many of which are known to be highly involved in the cellular response to stress. We 

identified 8 different dynamic clusters, 3 showing a general increase in acetylation and 5 

showing a general decrease, and statistically identified enrichments for acetyltransferases and 

deacetylases interacting with these groups. This chapter will discuss further experiments 

performed to determine some of the possible mechanisms regulating these dynamics including 

lysine acetyltransferase (KAT) and deacetylase (KDAC) localization changes, KAT and KDAC 

complex remodeling, and metabolite dynamics in response to heat stress. 

  



70 
 

Table 3.1 Yeast KATs 

Enzymatic 
subunit 

Complexes Family 
Genetic 

Interactionsa 

Physical 
Interactionsa 

Eco1   128 28 

Elp3 Elongator GNAT 514 25 

Esa1 
NuA4, piccolo 

NuA4 
MYST 768 205 

Gcn5 
SAGA, SLIK, 

ADA 
GNAT 422 283 

Hat1 Hat1p-Hat2p GNAT 131 44 

Hpa2  GNAT 94 11 

Hpa3  GNAT 39 9 

Rtt109 Rtt109-Vps75  559 18 

Sas2 SAS MYST 128 28 

Sas3 NuA3 MYST 174 21 

Spt10  GNAT 116 306 

Taf1 TFIID  859 112 

a. Genetic and physical interactions were obtained from the Saccharomyces Genome 
Database (SGD, Cherry et al. 2012). 

 
 
Table 3.2 Yeast KDACs 

Enzymatic 
subunit 

Complexes Class 
Genetic 

Interactionsa 

Physical 
Interactionsa 

Hda1 Hda1-2-3 II 708 26 

Hos1  I 87 9 

Hos2 Set3 and Rpd3(L) I 376 18 

Hos3  II 69 23 

Hst1 Sum1p/Rfm1p/Hst1p III 136 20 

Hst2  III 45 7 

Hst3  III 286 13 

Hst4  III 94 6 

Rpd3 
Rpd3(L), Rpd3(S), 

SNT2C 
I 966 81 

Set3 Set3C III 394 25 

Sir2 SIR2-3-4, RENT III 316 75 

a. Genetic and physical interactions were obtained from the Saccharomyces Genome 
Database (SGD, Cherry et al. 2012). 
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3.3 Materials and Methods 

3.3.1 Strains 

Metabolite experiments were carried out using the lab strain BY4741 (MATa his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0) and were performed in YPD (1% yeast extract, 2% peptone, 2% 

dextrose). TAP immunoprecipitations were performed using strains from the TAP Tagged ORF 

Collection by GE Dharmacon (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ORF::TAP-HIS3) and 

performed in YPD. Fluorescence microscopy experiments were performed using strains from 

the Yeast GFP Clone Collection by Invitrogen (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ORF::GFP-hisMX6) and were performed in SC (6.7 g/L Yeast nitrogen base with ammonium 

sulfate, 2% dextrose, complete amino acid mix). All TAP and GFP-tagged strains were verified 

by PCR. 

 

3.3.2 Metabolite extraction 

Cells were grown for at least 8 doublings in 500 mL YPD in a 2-L flask at 200 rpm, 25°C 

from a saturated culture to a final OD600 (Unico) between 0.4 and 0.6. Seventy-five milliliters of 

culture were aliquoted into 5, 500 mL flasks, to which 75 mL of prewarmed 55°C YPD was 

added. Flasks were placed in a 37°C, 200 rpm incubator for stress. 1 x 108 cells from the 

remaining unstressed culture were collected via vacuum filtration using a 47 mM filtration 

apparatus (VWR KT953755-0000) and 47 mm, 0.45 μM nylon membrane (Millipore 

HNWP04700) and scraping into liquid nitrogen. The stressed samples were collected at 5, 15, 

30, 60, and 120 minutes. Approximately 30 seconds before time, OD600 was measured to 

determine the volume needed to collect 1 x 108 cells. 

Extraction was performed based on the protocol used in Crutchfield et al. 2010. One mL 

-20°C extraction solvent (40% acetonitrile, 40% methanol, and 20% water) was pipetted into a 

60-mM glass petri dish. Immediately following filtration, the filter was placed cell-side down into 
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the solvent, metabolites were extracted at -20°C for 15 minutes, and the filter was washed 10 

times with the pooled solvent at the bottom of the petri dish. As much solvent and debris were 

collected into a 1.5-mL Eppendorf tube, and the samples were centrifuged at max speed, 

(21,130 × g) for 5 minutes at 4°C to pellet cell debris. The supernatant was transferred to a 

separate 1.5-mL Eppendorf tube and stored at -80°C. 

 

3.3.3 Mass spectrometry for acetyl-CoA, CoA, and nicotinamide 

Quantitation of nicotinamide (NAM) coenzyme A (CoA), and acetyl-coenzyme A (AcCoA) 

was performed by LC/MS/MS using an MRM approach. HPLC separation used an Agilent 1100 

Binary Pump including column compartment, automated liquid sampler and autosampler 

thermostat with a Waters Atlantis T3 column, 2.1 mM x 150 mM containing 3µm particles. A 

binary gradient using 25 mM ammonium formate, pH 7.5 in water (solvent A) and neat 

acetonitrile (solvent B), was developed over 30 minutes at a flow rate of 200µL/min. The 

gradient was as follows: initial composition of 0%B held for 3 minutes, then increased to 70%B 

over 17 minutes, held at 70%B for 3 minutes, then returning to 0% B over 1 minute and holding 

at 0% B for 6 minutes, with a post-gradient re-equilibration for 12 minutes. The column was 

maintained at 25°C throughout. MS/MS detection was performed on a Thermo TSQ Quantum 

Discovery Max triple quadrupole instrument with positive ion electrospray ionization. The ESI 

source was a HESI-II probe with a vaporizer temperature of 300°C and ionization voltage of 

4200V. The sheath gas was set to 35 (arbitrary units), ion sweep gas of 5 and auxiliary gas of 

10. The inlet capillary was held at 300°C with a capillary offset of 35V. MS/MS precursor and 

product ions are shown in table 3.1.  
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Table 3.3 MS/MS precursor and product ions in duplicate 

 Q1 m/z Q3 m/z Collision energy (CE) 

NAM 
123.0 78.1 22 

123.0 53.1 33 

CoA 
768.1 261.1 30 

768.1 428.0 27 

AcCoA 
810.1 303.1 32 

810.1 428.0 27 

 

Sample preparation 

Neat standards acetyl-CoA (cat # A2056-5mg), CoA (cat # C3144-10mg, and 

nicotinamide (cat # 72340-100g) were obtained from Sigma. A 5-standard mix was made in 

water at 100uM for each compound and serial dilutions to 10 μM and 1uM were made in water. 

For calibration curves, one sample was used to provide a matrix and 20 μL of sample was 

mixed with 60 μL of water (0 μM spike), 40 μL 1 μM standard and 20 μL water (2 μM spike), or 

40 μL 10 μM standard and 20 μL water (20 μM spike). For sample analysis, 20 µL of sample 

was diluted with 60 μL water. Samples with water or samples with standard spikes and water 

were vortexed and spun down prior to being loaded into autosampler vials for injection. 

Injections were 5 µL. Water blanks were analyzed between each sample to reduce carryover. 

Data analysis was performed using Quantitative Analysis software (Thermo Fisher) to 

integrate peak areas for each analyte. Peak areas consisted of the summed signal for all MRM 

transitions for each analyte. Calibration curves were created from the spiked matrix samples in 

Excel to obtain the slope of the best-fit line. This was then used to calculate analyte 

concentrations from the remaining samples.   

 



74 
 

3.3.4 NAD:NADH assay 

Cells were grown for at least 8 doublings in 700 mL YPD in a 2-L flask at 200 rpm, 25°C 

from a saturated culture to a final OD600 between 0.5-0.7. 100 mL was aliquoted into 5, 500 mL 

flasks, to which 100 mL of prewarmed 55°C YPD was added. Flasks were placed in a 37°C, 200 

rpm incubator for stress. Remaining unstressed cells were collected via vacuum filtration using 

a 90 mM filtration apparatus (VWR KT953755-0090) and 90 mm, 0.45 μM nylon membrane 

(VWR 76018-846) and scraping into liquid nitrogen. The remaining samples were collected at 5, 

15, 30, 60, and 120 minutes. Cells were thawed on ice, suspend cells in lysis buffer (50% PBS 

and 50% 0.2 N NaOH, 3x protease inhibitor cocktail (VWR A32963)) and pipetted into liquid 

nitrogen to freeze. Cells were then ground into a fine powder with a mortar and pestle, adding 

liquid nitrogen to keep frozen. The powder was collected in a 50-mL conical tube, thawed on 

ice, and 1 mL was transferred to a 1.5-mL microcentrifuge tube. Following centrifugation at max 

speed (21,130 x g) for 5 minutes at 4°C to pellet debris, protein concentration was determined 

via Bradford assay, and samples were diluted to 10 μg/mL in 200 μl lysis buffer. 

One hundred µL of each was transferred to a 1.5-mL tube for and 50 μL of 0.4 N HCl 

was added for acid treatment. The remaining 100 μL is the base treated sample. All samples 

were incubated for 15 minutes at 60°C. NAD+ is selectively destroyed by heating in a basic 

solution, while NADH is not stable in an acidic solution. Thus, luminescence from acid-treated 

samples is proportional to the amount of NAD+, and luminescence from the base-treated 

samples is proportional to the amount of NADH. Samples were equilibrated for 10 minutes at 

room temperature and 50 µL of 0.5 M Tris base was added to each tube of acid-treated cells to 

neutralize the acid. One-hundred µl of HCl/Tris solution was added to each tube containing 

base-treated samples, bring both samples to 200 μL in identical solutions. Fifty µL of each 

sample was transferred to one well in a white-walled 96-well plate containing 50 μL of 

NAD/NADH-Glo™ Detection Reagent prepared according to manufacturer protocol (Promega 

PAG9071). This was incubated for 30 minutes at room temperature in a microplate incubator 
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shaking at 600 rpm. Luminescence was recorded using a Synergy H1 microplate reader 

(Biotek).  

 

3.3.5 TAP purification 

Cells were grown for at least 8 doublings in 850 mL YPD in a 4-L flask at 125 rpm, 25°C 

from a saturated culture to a final OD600 between 0.4 and 0.6. One-hundred and fifty milliliters of 

culture were aliquoted into 4, 1-L flasks, to which 150 mL of prewarmed 55°C YPD was added. 

Flasks were placed in a 37°C, 125 rpm incubator for stress. Remaining 250 mL unstressed cells 

were collected via vacuum filtration using a 90 mM filtration apparatus (VWR KT953755-0090) 

and 90 mM, 0.45 μM nylon membrane (VWR 76018-846) and scraping into liquid nitrogen. The 

remaining samples were collected at 15, 45, 90, and 120 minutes. 

TAP purification was based on the protocol from Mitchell et al. 2008. Cells were thawed 

on ice in 500 μL lysis buffer (20 mM HEPES, pH 7.4, 0.1% Tween 20, 2 mM MgCl 2 , 300 mM 

NaCl, protease inhibitor cocktail (VWR A32963), transferred to a 2-mL screw-top tube, and 

centrifuged at 4,500 rcf for 1 minute to remove supernatant containing residual media. Cells 

were then suspended in 300 μL lysis buffer, 500 μL acid-washed glass beads and lysed by 

vortexing for 6 cycles of 1 minute vortexing, 2 minutes on ice. The lysate was removed and 

transferred to a 1.5-mL microcentrifuge tube, and the beads were washed with 300 μL of fresh 

buffer. The lysate was cleared by centrifugation at 14,000 rpm for 20 minutes at 4°C, and 

protein was quantified via Bradford assay. 

Ten milligrams of sample in 1 mL lysis buffer were incubated with 25 μL of magnetic 

Dynabeads (Fisher, 14301) crossed-linked to rabbit immunoglobulin G (IgG) (Sigma, I5006), for 

2 hours with end-over-end incubation at 4°C. After 5 washes with 1 mL cold lysis buffer, 

Dynabeads were suspended in 25 μL loading buffer (50 mM Tris, pH 6.8, 2% sodium dodecyl 

sulfate [SDS], 0.1% bromophenol blue, 10% glycerol) and proteins were eluted at 65°C for 10 

min. Loading buffer was transferred to a new 1.7-mL microcentrifuge tube and 2-β-
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mercaptoethanol was added to a final concentration of 200 mM. This was then boiled for 5 

minutes, and 20 μL was resolved on a 4 to 12% polyacrylamide gradient gel (Biorad, 4561093). 

Proteins were fixed in 50% methanol, 40% ddH2O, 10% acetic acid and visualized by blue-

silver staining (0.12% Coomassie Blue G-250, 10% ammonium sulfate, 10% phosphoric acid, 

20% methanol), described in Candiano et al. 2004. 

 

3.3.6 Fluorescence microscopy 

Cells were grown for at least 8 doublings in 25 mL SC in a 125-mL flask at 270 rpm, 

25°C from a saturated culture to an OD600 of 0.3. Ten µL of culture were transferred to a 5 mm x 

5 mm agarose pad (3% agarose in SC). The agarose pad with yeast was flipped and attached 

to a clean coverslip (cleaned with sonication in 1 M NaOH, 100% ethanol, and ultrapure water 

sequentially). A chamber was then constructed by adhering the coverslip to a 35 mm Petri dish 

(Cell E&G, GBD00002-200) using epoxy. The sample was equilibrated at 25°C in a plate 

incubator for 10 mins. Heat shock was initiated by placing the sample in a plate incubator at 

37°C for 5 mins before being transferred to the microscope. The cells were maintained at 37°C 

using an onstage incubator and imaged at 5, 15, 30, 45, 60, 90, and 120 minutes post heat-

shock. 

The fluorescence microscope was home built on an Olympus IX-73 inverted microscope 

with an Olympus TIRF 100× N.A. = 1.49 oil immersion objective. The microscope and data 

acquisition were controlled by Micro-Manager. A 488 nm laser from a multilaser system 

(iChrome MLE, TOPTICA Photonics, New York) was used to excite GFP proteins in yeast. 

Emissions from the fluorescent proteins were collected by the objective and imaged on an 

EMCCD camera (Andor, Massachusetts) with an exposure time of 30 ms. The effective pixel 

size of the acquired images was 160 nm. 
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3.4 Results and Discussion 

3.4.1 Metabolite changes occur early in the response to heat stress 

 Due to the critical role metabolites play in protein acetylation enzymatic processes, we 

began by looking at the levels of acetyl-CoA, the acetyl donor in KAT acetylation reactions, 

CoA, a byproduct of acetylation that can inhibit KAT activity, nicotinamide, a byproduct of sirtuin 

deacetylation that can act as a feedback inhibitor, and the NAD:NADH ratio, as NAD+ is 

consumed by sirtuins. For the first three, cells were harvested at 5, 15, 30, 60, and 120 minutes 

of heat shock and metabolite levels were analyzed via mass spectrometry in biological triplicate. 

Cellular levels of the acetyl donor acetyl-CoA showed an initial decrease averaging around 40% 

by the 60-minute mark before beginning to rebound (Fig. 3.2a). It is important to note that in 

live-cell conditions acetyl-CoA levels are compartmentalized between the mitochondria and 

cytoplasm, and thus this trend may be different in those compartments separately, whereas this 

assay can only analyze the combined pool. Consequential to the decrease in acetyl-CoA, there 

is an inverse trend in CoA levels, though the maximum of a roughly 150% increase occurs 

earlier that acetyl-CoA at 30 minutes before rapidly returning to unstressed levels by 60 minutes 

(Fig. 3.2b). Both of these changes, however, are occurring much earlier than the maximal 

changes in protein acetylation at 90 minutes, suggesting that the levels of these metabolites are 

not playing a large regulatory role in this response, and it is likely that these metabolite level 

changes are due to metabolic shifts focusing on energy production. 

 Next, we looked at nicotinamide, a product of the sirtuin deacetylation reaction that acts 

as a feedback inhibitor. We see a slight increase in nicotinamide levels within the first 5 minutes 

of heat shock, coinciding with possible histone deacetylation events beginning the 

transcriptional response, followed by an overall decrease in nicotinamide levels to 30% below 

unstressed levels at 30 minutes (Fig. 3.2c). Again, this response is occurring much earlier than 

global protein acetylation changes, suggesting it also is not playing a significant regulatory role. 
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Figure 3.2 Concentrations of acetyl-CoA, CoA, and nicotinamide in response to heat 
shock.  Concentrations of A) acetyl-CoA, B) CoA, and C) nicotinamide were determined across 
120 minutes of heat shock using LC-MS/MS.  
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Finally, we looked at the ratio of NAD+ to NADH. NAD+ is consumed by sirtuins, and 

thus levels of NAD+ directly impact sirtuin activity. While we were able to obtain a somewhat 

consistent trend for the NAD+ to NADH ratio (Fig. 3.3a), each replicate showed wildly variable 

dynamics for NAD+ levels (Fig. 3.3b). Though the ratio is vital for understanding redox 

capabilities in the cell, sirtuins do not oxidize NAD+, but rather consume it to produce O-acetyl-

ADP-ribose and nicotinamide (Figure 3.1), and thus the concentration of NAD+ is more 

informative. It is also very difficult to measure NAD+ and NADH in a biologically significant 

manner, as levels of these metabolites are highly compartmentalized and also exist in protein-

bound forms that would not otherwise be available. While our ratios are similar to other whole-

cell ratios, this measurement is significantly different from other forms of measurement that 

determine free cytosolic NAD:NADH using thermodynamic analysis of glycolytic metabolites 

(Canelas, van Gulik and Heijnen 2008).     

 

3.4.2 KAT and KDAC complexes show little component changes  

 All of the KATs and KDACs perform their functions in complexes with other proteins that 

modulate the enzymatic efficiency and substrate specificity of the enzymatic subunit. To 

determine if there were any obvious changes in binding partners in response to heat stress, we 

performed TAP purification of each of the KAT and KDAC catalytic subunits that showed a 

significant enrichment for physical interactions with proteins we previously identified to be 

changing in acetylation in response to heat stress (Tables 3.4 And 3.5) across a heat shock 

time course at 37°C and analyzed for protein species that appear to change in abundance. Of 

the 11 enzymes, three KATs showed visual interaction changes during the time course: Esa1 

(Fig. 3.4 and Table 3.6), Hpa3 (Fig. 3.5), and Taf1 (Fig. 3.6 And Table 3.7). Remaining 

immunoprecipitations can be found in figure 3.A.1.  
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Figure 3.3 NAD:NADH ratio and NAD+ fold change in response to heat shock.  A) The 
NAD:NADH ratio was monitored across a 120-minute heat shock using a NAD/NADH-Glo™ 
luminescence assay in which NAD+ was selectively destroyed by heating in a basic solution, 
while NADH was selectively destroyed in an acidic solution. Thus, luminescence from acid-
treated samples is proportional to the amount of NAD+, and luminescence from the base-
treated samples is proportional to the amount of NADH. B) Fold change in NAD+ levels 
calculated from the base treated sample described in A). 
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Table 3.4 Hypergeometric p-values for KATs and increasing acetylation clusters

 

 

 
 
 
 
 
 
 
 

 

 

 

Table 3.5 Hypergeometric p-values for KDACs and decreasing acetylation clusters  

   Cluster   

KDAC 4 5 6 7 8 

Hda1 0.10023 
 

0.00380 
 

0.01016 
 

0.00728 
 

0.15357 
 Hos1 -- -- -- -- -- 

Hos2 -- -- 0.09620 
0.007022 

 

-- -- 

Hos3 -- 0.07437 
 

0.00702 
 

-- -- 

Hst1 -- -- -- -- -- 

Hst2 0.02513 
0.046192 

 

-- 0.00057 
0.002059 

 

0.03086 
 

0.03939 
 Hst3 0.04619 

-- 
-- 0.00206 

 
0.05657 

 
0.07194 

 Hst4 -- -- -- -- -- 

Rpd3 0.27518 0.24771 
 

0.01107 
 

0.05831 
 

0.00152 
 Set3 -- -- 0.12466 

0.007143 
 

-- -- 

Sir2 0.00241 
 

0.02373 
 

0.00714 
 

0.00032 
 

0.35117 
  

  

  Cluster  

KAT 1 2 3 

Eco1 -- -- -- 

Elp3 -- -- 0.17547 

Esa1 0.12959 0.23259 0.00459 

Gcn5 0.00015 2.40162E-05 1.61560E-10 

Hat1 0.12689 0.17923 0.00033 

Hpa2 -- -- 0.06702 

Hpa3 -- -- 0.58089 

Rtt109 0.05390 -- 0.12964 

Sas2 -- 0.11799 0.19437 

Sas3 -- -- -- 

Spt10 0.24136 -- 0.21214 

Taf1 0.29324  0.08131 
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Figure 3.4 Co-Immunoprecipitation of Esa1-TAP.  Co-immunoprecipitation of Esa1 and 
interacting proteins using a TAP-tagged Esa1 and visualized with blue-silver staining. Two 
bands appeared to change in abundance and were identified as the ribosomal protein Rpl12A 
and vesicle membrane receptor protein Snc2. 

 
Table 3.6 Fold change in Rpl12A and Snc2 interacting with Esa1 compared to control 

Time (min) 
Rpl12A  

Fold Change 
Snc2  

Fold Change 

5 0.90 0.94 

15 2.51 2.12 

30 1.74 1.23 

60 1.81 2.09 

120 2.72 2.98 
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Figure 3.5 Co-Immunoprecipitation of Hpa3-TAP. Co-immunoprecipitation of Hpa3 and 
interacting proteins using a TAP-tagged Hpa3 and visualized with blue-silver staining. One band 
appeared to change in abundance, but we were unable to reproduce the result sufficiently for 
identification. 
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Figure 3.6 Co-Immunoprecipitation of Taf1-TAP. Co-immunoprecipitation of Taf1 and 
interacting proteins using a TAP-tagged Taf1 and visualized with blue-silver staining. One band 
changing in abundance was identified as the glyceraldehyde-3-phosphate dehydrogenase 
isoform Tdh3,  
 
 
Table 3.7 Fold change of Tdh3 interacting with Taf1 compared to control 

Time (min) Fold change 

15 4.32 

45 2.08 

90 1.23 

120 0.17 
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Due to the high sensitivity of mass spectrometer, all bands came back with over 250 

identified proteins, but based on highest total spectral counts, the two bands identified in the 

Esa1 samples are most likely the ribosomal protein Rpl12A, a constituent of the 60s ribosomal 

subunit, and the vesicle membrane receptor protein Snc2. While we were not able to identify 

Snc2 in our previous study, we did identify Rpl12A as an acetylated protein, though the levels of 

acetylation did not appear to be significantly changing in response to heat stress. It is likely that 

these interactions are simply substrate interactions, and not affecting the activity of Esa1. The 

Hpa3 co-immunoprecipitated band was not visible when the purification was repeated for 

identification. This could mean that the first purification was spurious, but in both attempts, the 

levels of Hpa3 were very low, which may explain why the changing band was not visible the 

second time.  

The changing species purified with Taf1 is the glyceraldehyde-3-phosphate 

dehydrogenase Tdh3. Tdh3 was found to be highly acetylated in our time course data as well as 

in other studies (Henriksen et al. 2012). Interestingly, Tdh3 serves a variety of moonlighting 

functions. It plays a vital role as a labile heme chaperone (Sweeny et al. 2018) and Tdh3 

peptides have been found to accumulate on the surface of cells and serve as an antimicrobial 

agent upon cell to cell contact (Branco et al. 2017). Most relevant to this study, Tdh3 is critical 

for the proper assembly of the major KAT SAGA. While it is not found in the final SAGA 

complex, it is instead found in other small complexes with Gcn5, the SAGA enzymatic subunit. 

Further studies concluded that Tdh3 contributed to Gcn5 incorporation into SAGA by protecting 

newly produced Spt20 from cleavage allowing Spt20 to co-translationally associate with Ada2, a 

necessary step in SAGA formation (Kassem, Villanyi and Collart 2017). Ada2 is critical for Gcn5 

incorporation into SAGA and activates Gcn5’s acetyltransferase activity (Sun et al. 2018). While 

we do not know whether the association of Tdh3 with Taf1 is a part of its moonlighting functions 

or as a substrate, it is likely that this is not a coincidence, especially considering the >4-fold 

increase in association following heat shock, and further study is needed.   
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3.4.3 Hda1 translocates from the nucleus to the cytoplasm 

 In our final experiment to identify mechanisms regulating acetyl dynamics, we wanted to 

see if any of the significantly enriched KAT and KDAC enzymatic subunits showed localization 

changes in response to heat. Most of these enzymes are known to be in the nucleus where they 

are involved in transcription control, but the majority of proteins that we found to be experiencing 

changes in acetylation are in the cytoplasm. To test if any of these proteins are translocating 

into the cytoplasm, we monitored the GFP-tagged proteins in live cells across 2 hours of 

incubation at 37°C, imaging at 5, 15, 30, 45, 60, 90, and 120 minutes (Table 3.8, Fig 3.7 and 

Supplemental Fig. 3.A.2). With this approach, we identified the KDAC Hda1 as a possible 

candidate for translocation. This response also appears to occur late in the response, after 60 

minutes (Figs. 3.7 and 3.8), similar to when we see the majority of deacetylation events. Hda1 

has been shown to be involved in the regulatory deacetylation of the cytoplasmic Hsp90, a key 

player in the heat stress response (Robbins et al. 2012). This suggests that Hda1 may be a 

contributor to non-nuclear protein deacetylation in response to heat shock. 

 

3.5 Conclusion 

 While we were not able to definitively identify a major regulatory mechanism for the 

acetylation dynamics identified in the yeast response to heat shock, it is apparent that regulation 

likely occurs on multiple levels to finely tune this response. While the majority of metabolite 

levels relevant to acetylation appear to show their largest fluctuations earlier in the response 

than the bulk of the acetylation changes, it is possible that localized metabolite concentrations 

have differing effects on proteins in that region of the cell, such as in the nucleus or the 

mitochondria. With few exceptions, we were not able to detect large KAT or KDAC localization 

changes or complex remodeling, but it is very likely that this is occurring at levels below our 

level of detection, and that even at these lower levels these changes could have significant  
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Table 3.8 Known KAT and KDAC localization 
 

KAT/KDAC Molecules/cella Localizationa 

Esa1 1170 nucleus 

Gcn5 1180 nucleus 

Hat1 not visualized n/a 

Hda1 3050 nucleus 

Hst2 5260 cytoplasm 

Hst3 319 nucleus 

Rpd3 3850 nucleus and cytoplasm 

Rtt109 1140 nucleus 

Sir2 3350 nucleus 

Taf1 1500 nucleus 

a. Obtained from the yeast GFP-fusion localization database (Huh et al. 2003) 
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 Figure 3.7 Hda1 relocalizes to the cytoplasm after 45 minutes of heat shock at 37°C. 
Strains carrying a GFP-tagged Hda1 were visualized at 37°C for 2 hours to determine possible 
changes in Hda1 localization. Hda1 appears to move out of the nucleus and into the cytosol 
after an hour, exposing it to a different substrate pool. Scale bar = 10 µm 
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 Figure 3.8 Hda1 resides in the nucleus in unstressed conditions at 25°C.  

effects. Further, more specific methods of analysis will be needed to better understand the 

multiple levels of regulation that are likely occurring in this response.   
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3.8 Appendix 

 

Figure 3.A.1 Tap co-immunoprecipitations of KAT and KDAC enzymes and interacting 
proteins.Identified KAT and KDAC enzymes and interacting proteins were co-
immunoprecipitated and visualized with blue-silver staining. No interaction changes were 
visualized. 
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Figure 3.A.1 (cont.) 
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Figure 3.A.2 Localization of KATs and KDACs during heat shock.   Localization of enriched 
KATs and KDACs was monitored using a GFP-tagged across a 120-minute heat shock. 
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Figure 3.A.2 (cont.) 
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Figure 3.A.2 (cont.) 
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Figure 3.A.2 (cont.) 
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Figure 3.A.2 (cont.) 
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Chapter 4 Conclusions and Future Directions 

4.1 Conclusions 

4.1.1 The yeast acetylome is highly dynamic in response to heat stress 

 Recent studies have identified thousands of acetyl sites across all domains of life, but 

few of these studies looked at global acetylation changes in response to changing 

environmental conditions. To identify acetyl marks that are potentially serving a regulatory role, 

we analyzed global acetylation dynamics in the heat shock response of Saccharomyces 

cerevisiae at 37°C over four hours. In total, we identified 1473 acetylated peptides representing 

596 proteins. Of those, 387 residues representing 207 unique proteins showed a significant fold 

change (Benjamini-Hochberg corrected p-value <0.05) in acetylation in at least one time point 

compared to t0. The majority of these significantly changing marks (74%) occurred at 90 

minutes of heat shock, the same time at which the majority of significant protein level changes 

are occurring. This was surprising to us, as we had hypothesized that acetylation changes 

would occur earlier in the response as a rapid mechanism for protein regulation before 

transcriptional and translational changes could take effect. 

 Analyzing the dynamics of these changes we clustered the data and identified peptides 

with distinct dynamics. Proteins with lysines showing increased acetylation during heat shock 

were strongly enriched protein folding and refolding, carbohydrate and small molecule 

metabolism, and the response to heat. Proteins with decreasing lysine acetylation were 

functionally enriched for translation, ribosome biogenesis, and nitrogen and peptide metabolism. 

In the increasing peptides we also noticed a generally weaker but still significant enrichment for 

translation and the same was true for decreasing peptides with protein (re)folding, and intrigued 

as to why these processes were enriched in both increasing and decreasing clusters we looked 

for proteins that experienced both significant increasing and decreasing acetylation on different 

lysines. We identified 36 non-histone proteins that fall into this category, and almost half were 

involved in translation including 14 ribosome constituents.  The fact that we see increasing and 
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decreasing acetylation on the same protein suggests that this process may be dynamically 

regulated. 64 proteins also experienced significant acetyl changes without showing significant 

changes in protein level, furthering the evidence for regulation and not just increased or 

decreased likelihood of random interactions with acetyltransferases or deacetylases.  

 

4.1.2 Multiple KATs and KDACs are enriched for physical interactions with proteins 

experiencing significant acetylation changes 

 The two classes responsible for protein acetylation changes are lysine 

acetyltransferases (KATs) and lysine deacetylases (KDACs). To determine which of the 12 

KATs and 11 KDACs in yeast are most likely to be involved in the dynamics we identified, we 

examined whether they were significantly enriched for physical interactions for each of these 

enzymes. Among proteins with increasing acetylation, there was strong enrichment for Gcn5 in 

all clusters, as well as enrichment for Esa1 and Hat1 in one of the three. We also identified the 

KATs Taf1 and Hpa3 as enriched across all increasing acetylated proteins. In the decreasing 

clusters, we found a wide variety of enrichments totaling six different KDACs, Rpd3, Hda1, Sir2, 

Hst2, Hst3, and Hos3. 

 To further evaluate possible regulatory mechanisms for these enzymes, we looked for 

possible changes in binding partners through TAP co-immunoprecipitation and localization 

changes using GFP. We identified changing binding partners with three KATS: Esa1, Hpa3, and 

Taf1. Mass spectrometry identified the changing proteins binding Esa1 to be the ribosomal 

protein Rpl12A and the vesicle membrane receptor protein Snc2. The dramatically changing 

protein interacting with Taf1 is the glyceraldehyde 3-phosphate isomer Tdh3. While the effect of 

this binding is unknown, Tdh3 is known to perform many moonlighting functions in the cell, and 

further investigation is warranted. We were unable to identify the protein associating with Hpa3 

due to low abundance. Looking at localization changes, the only enzyme that appeared to be 
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relocalizing in response to stress was the KDAC Hda1, which translocated from the nucleus to 

the cytoplasm after 60 minutes at 37°C.  

 

4.1.3 Acetylation dynamics are not likely due to metabolite concentration changes 

     To determine possible mechanisms by which these acetylation dynamics are being 

regulated we began by measuring metabolite level fluctuation in response to heat stress. In all 

known enzymatic acetylation reactions, the acetyl donor is acetyl-CoA and CoA is released. It 

then stands to reason that acetyl-CoA levels could regulate these dynamics. Our data, however, 

indicates that the maximum decrease of acetyl-CoA and the corresponding increase of CoA 

fluctuations occur much earlier, 60 minutes and 30 minutes respectively, than the majority of 

acetyl changes at 90 minutes, suggesting that these levels are not having much of a regulatory 

effect. Looking at metabolites regulating deacetylation, we focused on NAD+, which is 

consumed by sirtuins, and nicotinamide, a product of sirtuin deacetylation that acts as a 

feedback inhibitor. Similar to the previous metabolites, however, changes in these metabolites 

are occurring much earlier than deacetylation changes. Nicotinamide displays a slight increase 

within the first 5 minutes followed by a maximum decrease at 30 minutes. Monitoring NAD+ as a 

ratio between its oxidized and reduced form as NADH also shows a brief increase at 5 minutes, 

followed by a steady decrease through the remaining two hours that we monitored. NAD+ levels 

alone did not show a reproducible trend.  

 

4.2 Future Directions 

4.2.1 Effect of acetylation changes on protein activity and function 

 Now that we have identified a number of proteins that are experiencing acetylation 

changes in response to heat stress, the next big question is what consequence these changes 

have on protein activity and function. The addition of the acetyl group on a lysine residue 

negates the positive charge, and this can have dramatic effects on how that region of the 
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protein interacts with its environment. A well-known example of this is in the regulation of 

transcription via histone acetylation. Positively charged histone residues interact strongly with 

the negatively charged phosphate backbone of DNA, making it inaccessible for transcription. 

Following acetylation, however, this interaction is weakened, allowing transcription factor 

binding and transcription initiation. Two possible techniques to determine the effect of 

acetylation on protein function are mimetics and non-canonical amino acid incorporation.  

 In the first method, lysine residues that are identified as significantly changing in 

acetylation can be genetically mutated to arginine, chemically mimicking an unacetylated lysine, 

or glutamine, mimicking an acetylated lysine (Dormeyer, Ott and Schnölzer 2005, Kim et al. 

2006). Mutation to alanine is also performed to determine the effect of a neutrally charged 

mutation in that region of the protein as a control. These strains can then be subjected to 

phenotypic analysis in which wild-type and deletion strains show differing phenotypes. If the 

mimetic behaves similarly to the wild type strain, then the protein most likely has wild-type 

activity, and if the mimetic strain is more phenotypically similar to the deletion strain, then it does 

not. In the case that the alanine, arginine, and glutamine mutations all behave similarly to the 

deletion strain, then it is likely that mutation of that residue is not tolerated, a major caveat of 

this technique.  

 For proteins in which an activity assay is feasible, a second alternative to test the effect 

of acetylation on specific residues is by incorporating acetyllysine into the protein as it is being 

translated in E. coli, followed by purification [Reviewed in Chen et al. 2018]. This involves 

mutating the codon for the target lysine to an amber stop codon (UAG) and expressing an 

engineered archaeal Pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl to create acetyllysine 

tRNA molecules with the UAG anticodon (Neumann, Peak-Chew and Chin 2008, Venkat et al. 

2017). This approach, however, cannot be done in vivo, where other factors are likely regulating 

protein function.  
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 Based on the known activity of the proteins we identified during the stress response, I 

suspect that the majority of the acetylation marks identified in this study serve as activating 

marks. The proteins that experienced the strongest increase acetylation are well known to be 

involved in the response to heat stress including protein chaperones and genes involved in 

glucose and ergosterol metabolism. The proteins experiencing the strongest decreases in 

acetylation, however, are those known to be repressed in the response to heat shock such as 

ribosomal proteins. It would then make sense that the increasing acetylation marks are 

activating stress defense proteins while removing acetylation marks are repressing the 

unfavorable activity of others.  

 

4.2.2 Determine KATs and KDACs involved in the acetyl dynamics of the heat shock 

response 

 While this study identified hundreds of changing acetylation marks, we were only able to 

speculate on which KATs and KDACs were responsible for these changes based on known 

physical interactions. These known interactions, however, were identified by other groups and in 

most cases in different conditions. Using the same TMT time-course method in KAT and KDAC 

deletion strains would provide a more accurate depiction of the KATs and KDACs regulating 

these dynamics. For example, we would compare peptides that are deacetylated in the wild-

type background to those that are not in a KDAC deletion background. Peptides that are no 

longer deacetylated in the latter can assume to be targets of that KDAC. One major caveat of 

this approach is redundancy among these enzymes. It is very likely that these enzymes share 

substrates, and multiple deletions may be required. This approach would also not be suitable for 

identifying Esa1 targets, as this protein is essential (Smith et al. 1998).  
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4.2.3 Conservation of changing acetyllysine residues 

 A previous study by Henriksen et al. (2012) showed that acetylated lysines in yeast were 

highly conserved among higher eukaryotes including drosophila and humans. This suggests 

that these residues are important for protein function, causing them to be maintained throughout 

evolutionary history. We can use this approach to make similar conclusions about lysine 

residues that are changing in acetylation. This will also suggest which residues are more likely 

to have significant regulatory roles for further biochemical and genetic analysis. 

 

4.3 Future of acetylproteomics 

 As it is now well established that protein acetylation is a widespread and conserved 

modification, further work is needed to understand how this process is regulated. The enzymes 

involved in this process are well known and studied for their roles in transcription regulation, but 

substrate recognition outside of histones is still in its infancy. By identifying larger substrate 

pools for these enzymes, we will be able to generate more specific binding motifs, allowing for 

better prediction of acetylation sites especially among proteins showing lower acetylation 

stoichiometry. This will require technological advances as well, as the current methods using 

antibodies for enrichment show distinct biases for specific recognition sequences and more 

highly abundant proteins/proteins which are highly acetylated.  

It has also become more important to look more closely at multiple modifications, as 

there appears to be significant cross-talk (Beltrao et al. 2013, Soufi et al. 2012). For example, 

phosphorylation of a protein may be necessary for the subsequent acetylation of a nearby lysine 

residue. Modification competition may also play a significant role in protein regulation. Of the 

hundreds of known PTMs, the majority occur on a small number of residues, namely those with 

charges side chains such as serine, tyrosine, threonine, arginine, and lysine. Three of the most 

abundant PTMs, acetylation, methylation, and ubiquitination, all occur on lysine residues. Once 

a residue is modified with one chemical group, this sufficiently blocks the addition of another. An 



105 
 

example of this is acetylation of p53, which leads to stabilization and activation, inhibiting 

repression of p53-mediated transcription activation, by blocking ubiquitination and methylation 

(Meek and Anderson 2009, Li et al. 2002) 

 Another aspect of regulation that is still unknown for acetylation is whether there are 

signaling cascades such as those seen with phosphorylation. Many proteins involved in protein 

acetylation are acetylated themselves either by KATs or through autoacetylation. It is possible 

that changing acetylation sites affect substrate specificity, leading to changing acetyl dynamics 

in the cell. To test this hypothesis, future work needs to be conducted looking at protein 

acetylation in changing conditions. Thus far, the majority of acetylation studies have looked in 

static conditions, or researchers are only looking at a very small number of proteins of interest. 

Global, non-biased studies monitoring acetylation dynamics during various cellular responses 

will provide deeper insight into which acetyl marks are more likely to be serving a regulatory 

function, and highlight which pathways are being most affected.   

 The above discussion also highlights the importance of model organism research in the 

field. Following the discovery that KDAC inhibitors were potential candidates for cancer 

treatment, a large portion of acetylation studies focused on acetylation in disease states 

(Hassell 2019, Auburger et al. 2014, Narita et al. 2018). However, we still do not have a deep 

understanding of the basic biology of protein acetylation, which can be better addressed in 

simpler eukaryotic organisms for which there are a plethora of biochemical and genetic tools 

such as yeast and Drosophila.   
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Abstract 

Cells respond to environmental perturbations and insults through modulating protein 

abundance and function. However, the majority of studies have focused on changes in RNA 

abundance because quantitative transcriptomics has historically been more facile than 

quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep 

proteome coverage, allowing direct, global quantification of not only protein abundance, but also 

post-translational modifications (PTMs) that regulate protein activity. We implemented and 

validated using the well-characterized heat shock response of budding yeast, a tandem mass 

tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the 

proteome during the yeast heat shock response over nine time points. We report that basic pH, 

ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields 

super fractions of minimal redundancy, a crucial requirement for deep coverage and 

quantification by subsequent LC-MS3. We quantified 2,275 proteins across 3 biological 

replicates and found that differential expression peaked near 90 minutes following heat shock 

(with 868 differentially expressed proteins at 5% FDR). The sensitivity of the approach also 

allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation 

PTMs over time. Remarkably, relative quantification of post-translationally modified peptides 

revealed striking evidence of regulation of the heat shock response by protein PTMs. These 

data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of 

samples, which can reveal important regulation of protein abundance and regulatory PTMs 

under various experimental conditions. 
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Introduction 

 Cells employ a diverse array of regulatory strategies to maintain homeostasis in the face 

of environmental challenges. These regulatory strategies exist on a number of physiological 

timescales. For instance, rapid responses (i.e. seconds to minutes) necessitate changing the 

activity of proteins that are already present in the cell and can include changing concentrations 

of regulatory metabolites (e.g. allosteric inducers or inhibitors) or covalent post-translational 

protein modifications (PTMs). Over longer time scales (i.e. minutes to hours), cells can respond 

to stressful environments by remodeling gene expression. For example, the model eukaryote 

Saccharomyces cerevisiae responds to stress by globally remodeling gene expression to shift 

translational capacity towards the production of stress defense proteins that increase cellular 

fitness in the face of stress (Gasch et al. 2000a, Causton et al. 2001, Lee et al. 2011). 

 While changes in protein abundance and activities are the ultimate mediators of 

biological responses, the majority of studies have historically focused on transcriptional 

changes. This was largely due to technical challenges related to accurately quantifying protein 

abundance (Zhou et al. 2013). Independent of sequence, nucleic acids are chemically 

homogeneous enough to allow for the common hybridization chemistry used for microarrays 

(Shalon, Smith and Brown 1996), and subsequently for high-throughput sequencing (Bentley et 

al. 2008). In contrast, proteins are much more heterogeneous and diverse in their chemistries, 

limiting our ability to design “one-size fits all” approaches to proteomics. Furthermore, it was 

generally assumed that while imperfect, mRNA levels were an adequate proxy for protein level 

estimates. However, early studies comparing the transcriptome and proteome in multiple 

organisms showed extremely poor correlations between mRNA and protein levels (Gygi et al. 

1999, Griffin et al. 2002, Nie, Wu and Zhang 2006, Washburn et al. 2003), creating a real doubt 

about whether mRNA levels were really a good proxy for protein levels. Some of this 

discrepancy may be due to experimental noise (Csardi et al. 2015), highlighting both the 

challenge and importance of being able to accurately quantitate peptide abundance. However, 
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while the correlation between mRNA and protein levels is not as poor as initially thought 

(Schwanhausser et al. 2011, Csardi et al. 2015), substantial regulation of protein levels still 

occurs post-transcriptionally. For example, detailed comparisons between mRNA and protein 

levels during the yeast response to hyperosmotic shock revealed that ~80% of the variation in 

induced proteins can be explained by changes in mRNA abundance, with the remaining 

variation possibly explained by translational or post-translational regulation (Lee et al. 2011). 

Similarly, ribosomal profiling experiments have identified widespread changes in mRNA 

translational efficiency under a number of conditions ranging from meiosis to stress (Brar et al. 

2012, Halbeisen and Gerber 2009, Lackner et al. 2012). Finally, it is well established that 

protein stability and degradation play an important role in regulated protein turnover during 

environmental shifts (Medicherla and Goldberg 2008, Martin-Perez and Villen 2017). Indeed, 

because proteins have longer half-lives than RNAs (Belle et al. 2006), lack of translation alone 

is generally insufficient to reduce protein levels. Thus, regulated proteolysis is a key mechanism 

for ridding the cell of irrevocably damaged proteins and proteins that are maladaptive to a new 

environment (Ho, Baryshnikova and Brown 2018a, Rutkowski et al. 2006).  

 In addition to protein abundance changes, PTMs are well known to regulate protein 

activity and/or stability during environmental shifts. For example, stress-activated protein 

kinases coordinate phospho-signal transduction cascades that are largely conserved from yeast 

through humans (Brewster et al. 1993, Proft et al. 2001, Han et al. 1998, Rouse et al. 1994). 

Acetylation and methylation of histones and transcription factors also facilitate transcriptional 

reprogramming during stress (Shivaswamy and Iyer 2008, Wang et al. 2007, Xie et al. 2012, 

Westerheide et al. 2009a, Magraner-Pardo et al. 2014). During stress, damaged proteins are 

frequently targeted for proteasomal degradation via ubiquitination (Medicherla and Goldberg 

2008, Wang et al. 2010). Additionally, global changes in SUMOylation play an important role in 

heat stress adaptation (Miller et al. 2013, Golebiowski et al. 2009), providing further support for 

the notion that global PTM remodeling is a broad regulatory strategy during stress adaptation. 
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Thus, an integrated view of stress physiology requires the ability to sensitively and accurately 

measure relative protein abundance and PTMs. 

Here, we describe a workflow for using a tandem mass tagging (TMT) strategy to 

measure global proteomic changes during environmental shifts. The key advantage is that this 

approach supports simultaneous analyses of multiple samples in the same MS run. As a proof-

of-concept, we measured protein abundance changes in yeast before and after heat shock. The 

response to elevated temperature is arguably the best-studied environmental response across 

diverse organisms, with many important evolutionary features conserved from bacteria to 

humans (Lindquist and Craig 1988, Verghese et al. 2012a). Heat stress affects a number of 

cellular targets including increasing membrane fluidity (Swan and Watson 1997) (which leads to 

disruption of nutrient uptake (Mishra and Prasad 1987), pH balance (Coote, Cole and Jones 

1991, Panaretou and Piper 1992), and ROS production due to “leaking” of electrons from the 

mitochondrial electron transport chain (Davidson and Schiestl 2001)), and protein unfolding 

(leading to induction of heat shock protein (HSP) chaperones and other protectants such as 

trehalose (Glover and Lindquist 1998, Jakob et al. 1993, Singer and Lindquist 1998a)).  

While many studies have characterized the global transcriptional response to heat shock 

in yeast (Causton et al. 2001, Gasch et al. 2000a, Eng et al. 2010, Wohlbach et al. 2014, Yoon 

and Brem 2010, Yassour et al. 2010), relatively few studies have examined proteomic changes 

(Nagaraj et al. 2012, Jarnuczak et al. 2018). Moreover, these previous studies used either 

stable isotope labeling of amino acids in cell culture (SILAC) or label-free proteomics, which 

may have disadvantages compared to the multiplexing capacity of TMT. We used a MultiNotch 

triple-stage mass spectrometry (MS3) workflow to quantify peptides, which mitigates 

interference of nearly isobaric contaminant ions that cause an underestimate of differential 

expression (Ting et al. 2011, McAlister et al. 2014). We tested our workflow using a 10-plex 

design comparing the proteome of unstressed cells to heat-shocked cells over 9 time points, 

with three biological replicates.  



112 
 

Our TMT-MS3 workflow, which included pre-fractionation of peptide mixtures to reduce 

sample complexity and increase coverage of identifications, identified over 3000 proteins and 

quantified over 2000 proteins between a heat shock and unstressed control sample. In addition 

to providing insight into the dynamics of protein abundance changes during heat shock, we also 

identified post-translationally modified peptides whose relative abundance also changed 

dynamically. These data demonstrate that the high precision of TMT-MS3 enables peptide-level 

quantification of samples, which can reveal important regulation of protein post-translational 

modifications under various experimental conditions. 

 

Experimental Procedures 

Sample Preparation for TMT-Labeling and LC-MS/MS 

Yeast Growth Conditions 

We first performed a pilot TMT 2-plex experiment comparing unstressed cells to heat-

stressed cells at a single time point, followed by a TMT-10 heat shock timecourse that was 

performed with three independent biological replicates. For both experiments, yeast strain 

BY4741 (S288c background; MATa his3∆1 leu2∆0 met15∆0 ura3∆0) was grown >7 generations 

to mid-exponential phase (OD600 of 0.3 to 0.6) at 25°C and 125 rpm in YPD medium (1% yeast 

extract, 2% peptone, 2% dextrose). For the TMT-2 experiment, 500-ml of starting culture was 

divided in half, collected by centrifugation at 1,500 x g for 3 minutes, resuspended in either pre-

warmed 25°C medium (unstressed sample) or 37°C medium (heat shocked sample), and then 

incubated for 1 hour at 25°C or 37°C, respectively. Following incubation, samples were 

collected by centrifugation at 1500 x g for 3 minutes, the media was decanted, and the pellet 

was flash-frozen in liquid nitrogen and stored at -80°C until processing. For the TMT-10 

experiment, two 1 L cultures of exponentially growing cells were pooled, and then the culture 

was split across three flasks. Two flasks received 500-ml culture, while the third flask received 

250-ml culture plus 250-ml 25°C YPD (to maintain exponential growth at the 90, 120, and 240 
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minute time points). Heat shock was performed by adding an equal amount of 55°C preheated 

media to immediately bring the final temperature to 37°C followed by continued incubation at 

37°C. One-hundred twenty ml of cells were collected on cellulose nitrate filters by vacuum 

filtration from an unstressed sample and samples exposed to heat shock for 5, 10, 15, 30, 45, 

60, 90, 120, and 240 minutes. Cells were immediately scraped from the filters into liquid 

nitrogen and stored at    -80°C until processing.  

 

TMT 2-Plex Sample Preparation 

For the TMT-2 experiment, cell pellets were resuspended in 3 ml of lysis buffer (20 mM 

HEPES, 150 mM potassium acetate, 2 mM magnesium acetate, pH 7.4) plus EDTA-free 

Protease Inhibitor Tablets (Pierce catalog number 88266), and frozen dropwise into liquid 

nitrogen. Samples were lysed by cryogrinding using a Retsch MM 400 Mixer Mill (5 cycles of 30 

Hz for 3 minutes), returning the chamber to liquid nitrogen between rounds. Proteins were 

thawed in cold water and precipitated with 4 volumes of ice-cold acetone overnight, and 

resuspended in 5 ml of buffer containing 8 M urea, 5 mM dithiothreitol, and 1 M ammonium 

bicarbonate, pH 8.0. Ammonium bicarbonate was included to reduce protein carbamylation that 

occurs in urea-containing buffers (Sun et al. 2014). Samples were divided into 1 ml aliquots, 

flash-frozen in liquid nitrogen, and stored at -80°C until further processing.  

Protein samples were reduced by incubating with 5 mM tris(2-carboxyethyl)phosphine 

(TCEP) at 37°C for 1 hour and alkylated with 15 mM iodoacetamide at room temperature for 30 

minutes. Protein samples were extracted with chloroform-methanol (Wessel and Flugge 1984), 

resuspended in 100 mM triethylammonium bicarbonate (TEAB) pH 8.0 with 1 µg Trypsin per 50 

µg protein, and incubated at 37°C for 16 hours. Tryptic peptides were desalted with Sep Pak 

C18 columns (Waters) according to the manufacturer’s instructions and lyophilized. Peptides 

were resuspended in 100 mM TEAB pH 8.0, quantified using a Pierce Quantitative Colorimetric 

Peptide Assay Kit (ThermoFisher Scientific), and equal amounts of peptide samples were 
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labeled with Tandem Mass Tag (TMT) 2-plex reagents (ThermoFisher Scientific) according to 

the manufacturer’s instructions.  

 

TMT 10-Plex Sample Preparation 

For the TMT-10 experiment, samples were processed as described (Hebert et al. 2018). 

Briefly, previously flash-frozen cell pellets were resuspended in fresh 6 M guanidine HCl, 100 

mM Tris-HCl, pH 8.0, and cells were lysed by incubation at 100°C for 5 minutes, 25°C for 5 

minutes, and 100°C for 5 minutes. The rapid lysis via boiling in the presence of strong 

denaturants has been previously used to stabilize PTMs in the absence of specific inhibitors 

(Batth et al. 2018). Proteins were precipitated by adding 9 volumes of 100% methanol, 

vortexing, and centrifuging at 9,000 x g for 5 minutes. The supernatant was carefully decanted, 

the protein pellets were air-dried for 5 minutes and then resuspended in 8 M urea. 

Protein samples (~5 mg total) were diluted to 2M urea with 100mM Tris pH 8.0 and 

digested with a 1:50 ratio of Trypsin overnight at 25°C with gently mixing in the presence of 

2.5mM TCEP and 10mM chloroacetamide. Tryptic digestion was performed at 25°C to prevent 

carbamylation of free amines (Poulsen et al. 2013, Sun et al. 2014), with alkylation performed 

with chloroacetamide to prevent artifacts that can be falsely identified as diglycine 

(ubiquitination) (Nielsen et al. 2008). Digestion was quenched with 0.6% TFA to a pH less than 

2, and peptides were desalted with Sep Pak C18 columns (Waters) according to the 

manufacturer’s instructions and lyophilized A detailed protocol for the peptide desalting step can 

be found on the protocols.io repository under DOI dx.doi.org/10.17504/protocols.io.3hegj3e. 

Peptides were resuspended in 200mM TEAB to a final concentration of ~8 μg, quantitated with 

Pierce Colorimetric Peptide Assay, and diluted to 5 μg/μl in TEAB. We labeled 500 µg of each 

sample in 100 µl total volume and used 50 µg for fractionation (with the “excess” TMT material 

being used for a separate immuno-enrichment study). Each sample was mixed with a separate 

TMT label reconstituted in 50μl acetonitrile. Samples were incubated at RT for 1 hour. Labeling 
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was quenched with 8μl 5% hydroxylamine for 15 minutes and samples were combined, 

desalted, and lyophilized. Labeling efficiency was monitored by performing Mascot searches 

with the TMT-10 modification mass as a variable modification instead of fixed. The labeling 

efficiencies (96.3%, 97.4%, and 97.5% for Reps 1, 2, 3, respectively). The detailed step-by-step 

TMT labeling workflow can be found on protocols.io under DOI 

dx.doi.org/10.17504/protocols.io.3g9gjz6.  

 

LC-MS/MS Data Analysis 

For both TMT-2 and TMT-10, 50 µg of pooled peptides were fractionated (with the 

exception of TMT-10 replicate 2, where sample was lost in transit and a backup sample of 10 µg 

was fractionated) using a 100 mm x 1.0 mm Acquity BEH C18 column (Waters) using an 

UltiMate 3000 UHPLC system (ThermoFisher Scientific) with a 40-min gradient from 99:1 to 

60:40 buffer A:B ratio under basic (pH = 10) conditions (buffer A = 0.05% acetonitrile, 10 mM 

NH4OH; buffer B = 100% acetonitrile, 10 mM NH4OH).  The 96 individual fractions were then 

consolidated into 24 super fractions using a concatenation scheme as described (Wang et al. 

2011) (1+25+49+73, 2+26+50+74, etc.).  

Super-fractions from the TMT 2-plex experiment were loaded on a Jupiter Proteo resin 

(Phenomenex) on an in-line 150 mm x 0.075 mm column using a nanoAcquity UPLC system 

(Waters). Peptides were eluted using a 45-min gradient from 97:3 to 65:35 buffer A:B ratio 

(buffer A = 0.1% formic acid; buffer B = acetonitrile, 0.1% formic acid) into an Orbitrap Fusion 

Tribrid mass spectrometer (ThermoFisher Scientific). MS acquisition consisted of a full MS scan 

at 240,000 resolution in profile mode of scan range 375-1500, maximum injection time of 400 

ms, and AGC target of 5 x 105, followed by CID MS/MS scans of the N most abundant ions of 

charge state +2-7 within a 3-second duty cycle. Precursor ions were isolated with a 2 Th 

isolation window in the quadrupole, fragmented with CID at 35%, and analyzed in the ion trap 

with a maximum injection time of 35 ms and a scan setting of Rapid. Dynamic exclusion was set 



116 
 

to 20 seconds with a 10 ppm tolerance. MS2 scans were followed by synchronous precursor 

selection and HCD (65%) fragmentation of the 10 most abundant fragment ions. MS3 scans 

were performed at 30,000 resolution with a maximum injection time of 200 ms and AGC target 

of 100,000.  

For the TMT 10-plex experiment, super fractions were loaded on a 150 mm x 0.075 mm 

column packed with Waters C18 CSH resin. Peptides were eluted using a 45-min gradient from 

96:4 to 75:25 buffer A:B ratio into an Orbitrap Fusion Lumos mass spectrometer (ThermoFisher 

Scientific). MS acquisition consisted of a full scan at 120,000 resolution, maximum injection time 

of 50 ms, and AGC target of 7.5 x 105. Selection filters consisted of monoisotopic peak 

determination, charge state 2-7, intensity threshold of 2.0 x 104, and mass range of 400-1200 

m/z. Dynamic exclusion length was set to 15 seconds. Data-dependent cycle time was set for 

2.5 seconds. Isolation widths were 0.7 Da for MS2 and 2 Da for the MS3 scans. Selected 

precursors were fragmented using CID 35% with an AGC target of 5.0 x 103 and a maximum 

injection time of 50 ms. MS2 scans were followed by synchronous precursor selection of the 10 

most abundant fragment ions, which were fragmented with HCD 65% and scanned in the 

Orbitrap at 50,000 resolution, AGC target of 5.0 x 104 and maximum injection time of 86 ms.  

Proteins were identified by database search using MaxQuant (Cox and Mann 2008) 

(Max Planck Institute) using the Uniprot S. cerevisiae database from October 2014, (The 

UniProt Consortium 2018) with a parent ion tolerance of 3 ppm and a fragment ion tolerance of 

0.5 Da. Carbamidomethylation of cysteine residues was used as a fixed modification. 

Acetylation of protein N-termini and oxidation of methionine were selected as variable 

modifications. Mascot searches were performed using the same parameters as above, but with 

peptide N-terminal fixed modification of TMT 2-plex (+225.16) or TMT 10-plex (+229.16), and 

variable modifications of diglycine (+334.20 (114.04 + TMT-10)) and TMT 2- or 10-plex on lysine 

residues, and phosphorylation (+79.97) of serine and threonine. Mascot search results were 

imported into Scaffold software (v4) (Searle 2010) and filtered for protein and peptide false 
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discovery rates (FDR) of 1%. For the TMT-10 experiment, the 1% FDR was applied to the entire 

dataset (i.e. all 3 biological replicates together). Across the TMT-10 replicates 1-3, the success 

rates for peptide identification were 17.8%, 17.0%, and 23.3%, respectively.  Data normalization 

and analyses were performed using R, and all R scripts for analysis are provided in File S1. 

Spectra containing missing values in any channel were excluded from the quantitative analysis. 

Spectra were further filtered to include only high-scoring peptide-spectrum matches (Mascot Ion 

Score cutoff of >15) for quantitation. For the TMT-10 experiments, the entire dataset for all 

replicates was normalized and analyzed together. Reporter ion intensities were 

log2 transformed, mean-centered for each spectrum, then median-centered for each channel to 

control for mixing. Peptide abundance for each time point was calculated using the average 

abundance for all spectra mapping to the protein. The overlap between peptides quantified in 

each TMT-10 replicate experiment is shown in Figure S1. Unstressed (time 0) cells were used 

as a reference within each TMT-10 biological replicate experiment to calculate relative log2 

abundance changes during heat shock across each stress timepoint, which is a strategy that 

has been successfully used to identify changes in relative abundance across multiple TMT 

experiments (Lee et al. 2011). All raw mass spectrometry data and MaxQuant search results 

have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al. 

2019) partner repository with the dataset identifier PXD014552 and 10.6019/PXD014552. 

Proteins with significant abundance differences in response to heat at each time point 

relative to the unstressed control were identified by performing an empirical Bayes moderated t-

test using the BioConductor package Limma v 3.36.2 and Benjamini-Hochberg FDR correction 

(Ritchie et al. 2015). Unless otherwise stated, we applied an FDR cutoff of 0.05 (see File S2 for 

the Limma output). Protein or peptide clustering was performed with Cluster 3.0 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using hierarchical clustering and 

Euclidian distance as the metric (Eisen et al. 1998). Timepoints were weighted using a cutoff 

value of 0.4 and an exponent value of 1. Functional enrichments of gene ontology (GO) 
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categories were performed using GO-TermFinder (https://go.princeton.edu/cgi-

bin/GOTermFinder), (Boyle et al. 2004a) with Bonferroni-corrected P-values < 0.01 taken as 

significant. Complete lists of enriched categories can be found in File S3. Significantly enriched 

regulatory associations were identified using the YEAst Search for Transcriptional Regulators 

And Consensus Tracking (YEASTRACT) database (Teixeira et al. 2018), using documented 

DNA binding plus expression evidence. Significant associations can be found in File S4. 

 

Quantitative Western Blotting 

Validation of LC-MS/MS was performed using the yeast TAP Tagged ORF collection 

(GE Dharmacon) in biological triplicate. Cells were collected and heat-shocked exactly as 

described for the TMT-2 sample preparation, with the duration of the 37°C heat shock being 1 

hour. The OD600 for the heat-shocked and unstressed control samples were recorded for 

subsequent normalization. Fifteen ml of each sample was collected by centrifugation at 1500 x g 

for 3 minutes, the media was decanted, and the pellet was flash-frozen in liquid nitrogen and 

stored at -80°C until processing. Sample processing for western blotting was performed as 

described (von der Haar 2007) with the following modifications. Samples were thawed and 

resuspended in 1 ml of sterile water, and then an equal number of cells (~ 1 x 107) was 

removed and collected by centrifugation at 10,000 x g for 1 minute. Cells were resuspended in 

200 µl lysis buffer (0.1 M NaOH, 50 mM EDTA, 2% SDS, 2% β-mercaptoethanol plus EDTA-

free Protease Inhibitor Tablets (Pierce catalog number 88265)). Samples were then incubated 

at 90°C for 10 minutes, 5 µl of 4 M acetic acid was added, and the sample was vortexed at 

maximum speed for 30 seconds. Samples were then incubated at 90°C for an additional 10 

minutes to complete lysis. Fifty µl of loading buffer (0.25 M Tris-HCl pH 6.8, 50% glycerol, 

0.05% bromophenol blue) was added to each sample, and samples were centrifuged at 21,130 

x g for 5 minutes to pellet cellular debris. Twenty µl of each sample was loaded onto a 4 - 20% 

gradient acrylamide gel (Bio-Rad), separated by SDS-PAGE, and transferred for 1 hour onto an 
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Amersham Protran Premium 0.45 nitrocellulose membrane (GE Healthcare). Western blotting 

was performed using a mixture of mouse anti-actin antibodies (VWR catalog number 89500-

294) and rabbit anti-TAP antibodies (ThermoFisher catalog number CAB1001) to 

simultaneously detect Act1p and the Tap-tagged protein of interest. Anti-TAP and anti-actin 

antibodies were used at a dilution of 1:1000 and 1:2500, respectively. IRDye® 680RD-

conjugated anti-rabbit IgG (LI-COR Biosciences catalog number 926-68073) and IRDye® 

800CW-conjugated anti-mouse IgG (LI-COR Biosciences catalog number 926-32212) were 

used as secondary antibodies at a dilution of 1:10,000. Detection was performed with a LI-COR 

Odyssey Imaging System using Image Studio v2.0. Densitometry was performed using ImageJ 

(Schneider, Rasband and Eliceiri 2012), and log2 fold changes upon heat shock were 

calculated for each TAP-tagged protein following normalization to actin. Raw images and pixel 

densities can be found in Files S5 and S6. 

 

Results and Discussion 

Precision of MultiNotch MS3 

We first sought to measure the precision of our TMT-MS3 workflow by characterizing the 

yeast response to elevated temperatures. One of the great advantages of TMT is the ability to 

multiplex, though there are mixed reports concerning whether increased multiplexing comes at 

the expense of protein identification and/or accuracy (Pichler et al. 2010, Pottiez et al. 2012). 

Thus, we first compared the accuracy and total protein identification of TMT-2 plex vs. TMT-10 

plex. For our pilot TMT-2 experiment, we measured changes in protein abundance before and 

after 60 minutes of a 25°C to 37°C heat shock. We then performed a TMT-10 plex experiment 

designed to capture proteome dynamics of cells responding to heat shock over 9 timepoints 

using biological triplicates (Figure 1). 

For both sets of experiments, cells were harvested and lysed, and then protein samples 

were prepared using a standard bottom-up proteomics workflow with in-solution trypsin 
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digestion, TMT 2-plex or 10-plex labeling, peptide fractionation, and analysis via MultiNotch 

MS3 on an Orbitrap Fusion (TMT-2) or Orbitrap Fusion Lumos (TMT-10).  

One of the major challenges in quantitative proteomics is that peptides exist across a 

broad dynamic range of abundances, with high-abundance peptides dominating the signal of 

complex samples (Corthals et al. 2000). Reducing sample complexity through fractionation 

improves the ability to detect and quantify low abundance peptides (Chen et al. 2006). In an 

ideally-resolved sample, peptides are found within a single fraction. One widely used workflow 

for offline sample fractionation is the separation of proteins by SDS-PAGE prior to trypsin 

digestion. However, this workflow is incompatible with TMT labeling, as proteins must be 

digested and labeled prior to fractionation. An alternative fractionation procedure is to separate 

peptide species by high-performance liquid chromatography (HPLC), with fractionation via 

basic-pH reversed-phase HPLC showing the best peptide coverage for complex human 

proteomes (Wang et al. 2011, Mertins et al. 2013). 

Thus, we fractionated our samples using basic-pH ultra-high performance liquid 

chromatography (UPLC) into 96 fractions, which were pooled into 24 super fractions. To 

measure the resolving power of basic-pH UPLC, we used the TMT 2-plex experiment to analyze 

the number of super fraction(s) in which each unique peptide was found (Figure 2A). By this 

analysis, 84% of peptides were found within a single super fraction, and 97% of peptides were 

found in two or fewer fractions. Additionally, peptides were evenly distributed across super 

fractions, with each super fraction yielding approximately 900 unique peptides (Figure 2B). 

Thus, basic-pH UPLC fractionation suitably reduces the number of redundant MS2 and MS3 

scans and increases the depth of unique peptide and protein identifications, which is important 

because the MultiNotch MS3 method has a slightly slower duty cycle than MS2-based reporter 

ion quantitation. 

We next tested the precision of the MultiNotch MS3 method. As a first measure of the 

precision of TMT proteomics, we used the TMT 2-plex experiment to analyze the coefficient of 
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variation (CV) of log2 fold changes in response to heat stress for each unique peptide (7,129 

total) identified by MaxQuant (Figure 3A). The CV values for 85% of quantified peptides were 

below 30% (6,070 / 7,129). The distribution of both standard deviations and CV% was lowest for 

peptides with two spectral counts, which represented the largest class of peptides (4,759 / 

7,129), and this trend was also observed across all biological replicates for the TMT-10 

experiment (Figure S2). We hypothesized that peptides with lower numbers of spectral counts 

were more likely to be lowly expressed in cells. Indeed, we found a strong correlation between 

estimated protein copy number per cell (from Ho et al. 2018a) and the number of peptide 

spectral counts (Figure S3). Thus, we have a somewhat counterintuitive result in that peptides 

with lower numbers of spectral counts tend to have lower CVs, whereas CV is often inversely 

proportional to sample size. This result had little to do with ion intensity, as we found poor 

correlation between CV and MS1 (r = -0.06) or MS3 (r = -0.15) ion intensities (Figure S4). 

Overall, the data suggests that our TMT proteomic workflow yields reliable measurements for 

low abundance proteins, which we sought to examine in more detail. 

To further examine the precision of low-abundance peptides in the TMT 2-plex dataset, 

we filtered the data for peptides with 2 spectral counts and analyzed the precision of the two 

peptide measurements. The data followed a right-skewed distribution, with the majority (95%) of 

peptides showing good agreement between measurements (r2 = 0.87, Figure 3B). Including the 

values from the remaining 5% of peptides markedly decreases the goodness-of-fit for all data 

points (r2 = 0.54), indicating that a small frequency of outlier measurements pose a challenge in 

this workflow. Thus, our interpretation for the counterintuitive result that peptides with lower 

numbers of spectral counts have lower CVs is that the majority of reporter ion scans yield 

reproducible quantitative measurements, but a small portion of scans are distorted by co-

isolation of contaminant peptides. Peptides with a larger number of spectral counts are more 

likely to encounter this problem, and thus have higher CVs on average. Ultimately, we conclude 

that the MultiNotch method yields high-quality data for the vast majority (95%) of peptide-level 
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measurements, while there remains a need to predict the quality of measurement in the 

absence of technical replicates, possibly through measuring the proportion of SPS ion intensity 

which did not map to the matched peptide. Finally, we should note that when we compare to the 

TMT-2 experiment, we identified a larger number of unique peptides (29467, 18118, 39993 for 

Replicates 1-3) and similar number of total proteins (3312, 3018, 3351 for Replicates 1-3) in the 

TMT-10 experiment, suggesting that both high accuracy and multiplexing are achievable without 

a large tradeoff in peptide identification. We also note that the inclusion of LysC in the protein 

digestion and longer on-line gradients (e.g. 3 hours) could improve peptide identification. 

 

Using Increased Multiplexing to Characterize the Dynamic Heat Shock Proteome. 

To determine whether our TMT workflow was able to recapitulate known biology while 

providing new insights, we examined the dynamic response to heat stress across 9 time points 

(from 5 – 240 minutes post heat shock) using TMT 10-plex reagents and three independent 

biological replicates. Out of 2,276 proteins with at least duplicate data using a stringent quality 

cutoff (see Methods), 1,148 proteins were differentially expressed (FDR < 0.05) in at least one 

time point. We used quantitative western blotting on 7 significantly induced proteins at the 60-

minute time point, and all 7 proteins independently validated the proteomic data (Figure S5). We 

also compared our data to two yeast heat shock proteomic studies. First, we compared our 

dataset to a SILAC study from Nagaraj et al. that looked at a 30-minute heat shock (Nagaraj et 

al. 2012). Compared to the SILAC experiment, we identified fewer differentially expressed 

proteins at 30 minutes post heat shock (150 vs. 234, Figure S6). This is likely due to a larger 

number of proteins quantified by Nararaj et al. (3,152 vs. 2,276) combined with more statistical 

power due to an additional biological replicate. Notably, the proportion of proteins identified as 

significantly differentially expressed was similar across both studies (7.4% in Nagaraj et al. vs. 

6.6% in this study). We next compared our data to a recent label-free study from Jarnuczak et 

al. that measured the heat shock response over 5 time points (Jarnuczak et al. 2018), 
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specifically their time point with the highest number of differentially expressed proteins (240 

minutes). While their study had more statistical power due to an additional biological replicate, 

we still identified more proteins as differentially expressed (Figure S6), and at a higher 

proportion (20.1% in Jarnuczak et al. vs. 27.0% in this study). Some of these differences in the 

ability to identify differentially expressed proteins are likely due to differences in experimental 

design (e.g. choice of heat shock temperature). However, some of the differences are likely due 

to the increased precision and lower variance of TMT-MS3, as smaller fold changes were more 

likely to be called significant in our dataset. 

Examining the most up- and down-regulated processes (>1.5-fold) during heat shock 

revealed processes likely important for acclimation to elevated temperatures. Proteins with 

significantly higher expression (>1.5-fold) following heat shock were enriched for functions 

known to be important for tolerating elevated temperatures. These included processes related to 

protein refolding (p = 3 x 10-14), oxidative stress response (p = 3 x 10-5), and metabolism of the 

known stress protectant molecule trehalose (p = 3 x 10-3). Other metabolic processes were also 

induced, including those related to redox chemistry (p = 3 x 10-21), amino acid metabolism (p = 

2 x 10-6), and nucleotide metabolism (p = 5 x 10-6). In contrast, proteins repressed during heat 

shock were enriched for functions related to ribosomal biogenesis (p = 1 x 10-22), RNA 

processing (p = 8 x 10-14), and gene expression (p = 2 x 10-7).  

We next sought to take advantage of our time series data to analyze the dynamics of the 

heat shock response in more detail. The maximal response occurred between 60 and 90 

minutes post heat shock based on both the number of differentially expressed genes and the 

magnitude of the changes (Figures 4 and 5C). We identified 10 proteins with significantly higher 

abundance within 10 minutes post heat shock that likely reflect increased stabilization of key 

proteins. Of these 10 proteins with extremely early “induction,” four are heat shock protein 

chaperones (Hsp26p, Hsp42p, Hsp78p, Hsp104p), two are ribosomal proteins (Rps29bp, 

Rpl35ap), two are metabolic enzymes (Ura1p, Gre3p), and two are involved in protein targeting 
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(Btn2p, Vac8). Intriguingly, the protein sorting protein Btn2p—the only protein with significantly 

increased abundance at the 5 min time point—works with the chaperone Hsp42p to regulate 

compartmentalization of protein aggregates for later repair or removal (Miller, Mogk and Bukau 

2015), Btn2p is known to be rapidly degraded by the proteasome during unstressed conditions 

(Malinovska et al. 2012), suggesting that changes in protein stability may play an important role 

in the early stages of the heat shock response. 

To better identify temporal patterns in our data, we hierarchically clustered the 1,148 

proteins with differential expression (Figure 4B). Induced proteins could be roughly categorized 

into three clusters: rapid and strong responders (41 proteins with a peak response of 60 

minutes, average log2 fold change of 2.33), moderately induced responders (81 proteins with a 

peak response of 90 minutes, average log2 fold change of 1.18), and a broad cluster of mildly 

induced responders (469 proteins with a 90-min peak response, average log2 fold change of 

0.50). The 41 rapid responders included several proteins known to be involved in the first line of 

heat stress defense including several key chaperones (Hsp26p, Hsp42p, Hsp78p, Hsp104p), 

glycogen and trehalose metabolic enzymes (Glc3p, Gsy2p, Tsl1p, Gph1p), and aromatic amino 

acid catabolic enzymes (Aro9p, Aro10p). Additionally, there were several induced aldehyde 

dehydrogenases (Ald2p, Ald3p, Ald4p) and proteins involved in carbohydrate metabolism 

(Glk1p, Hxk2p, Gre3p, Sol3p, Yjr096wp, Pgm2p). The second wave of moderate responders 

also included additional chaperones or co-chaperones (Aha1p, Cpr1p, Cpr3p, Cpr6p, Hsp60p, 

Hsp82p, Sis1p, Ssa3p, Ssa4p, Sti1p) and trehalose metabolic enzymes (Nth1p and Tps2p). The 

broad mildly-induced responders included heat shock chaperones (Hsc82p, Ssa1p, Ecm10p, 

Ssc1p, Ssa2p, Kar2p, Sse2p, Mdj1p), but was also enriched for diverse metabolic functions 

including nitrogen metabolism (p = 3 x 10-14), nucleotide metabolism (p = 5 x 10-14), 

phosphorus metabolism (p = 1 x 10-9), and glucose metabolism (p = 4 x 10-5). 

 We hypothesized that the rapid responders may largely represent proteins that directly 

respond to heat shock, while the mildly induced responders may reflect indirect responses. To 
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test this, we used the YEASTRACT database to identify transcription factors that may be 

regulating gene expression for each cluster. The two major transcription factors that regulate the 

heat shock response in yeast include the heat shock transcription factor Hsf1p (Sorger and 

Pelham 1987), and the paralogous general stress-responsive transcription factors Msn2p and 

Msn4p (Martinez-Pastor et al. 1996). Genes encoding rapid responders were more likely to be 

regulated by Hsf1p (83%) than either the moderately (59%) or mildly induced (36%) genes (File 

S4). Similarly, the rapid response genes were also more likely to be regulated by Msn2p/4p 

(95%) than the moderately (84%) and mildly (60%) induced genes. Additionally, we identified 

several transcription factors that regulate the mildly-induced genes that are themselves either 

Msnp2/4p targets (Rdr1p, Xbp1p, Oaf1p) or both Msn2/4 and Hsf1 targets (Rap1p, Tup1p, 

Pho4p, Ino2p, Tye7p, Reb1p, Mth1p, Prs1p). These transcription factors regulate diverse 

processes that are likely indirectly impacted by heat shock, including cell cycle progression and 

lipid, glucose, and phosphate metabolism. 

 Lastly, we examined the relationship between mRNA induction during heat shock and 

the proteomic response. Jarnuczak et al. also measured the correlation of mRNA and protein 

level changes, and found a modest correlation (r = 0.49 for the pairwise comparison with the 

highest correlation). We performed a similar analysis using a heat shock microarray time course 

(5, 15, 30, 45, 60, and 120 minutes) from Eng et al. (2010) and we found a stronger correlation 

between changes in the heat shock transcriptome and proteome (r = 0.71). We explored the 

relationship between mRNA and protein further, which revealed some fundamental differences 

between how mRNAs and proteins are regulated during heat shock. First, in contrast with 

mRNA expression—where more mRNAs are repressed than induced during heat shock—we 

found that more proteins had increasing rather than decreasing abundance changes. This likely 

reflects the fact that proteins are more stable than mRNAs and that targeted protein degradation 

may be necessary to rapidly decrease protein levels (Belle et al. 2006, Liu, Beyer and 

Aebersold 2016). Similar to Lee and colleagues3, we found that changes in mRNA abundance 



126 
 

for induced transcripts correlated rather well with protein induction, while protein abundances 

changes were showed poor correlation with repressed mRNAs. This is consistent with proposed 

models suggesting the function of transcript repression is not to reduce protein abundance for 

those transcripts, but instead frees ribosomes and increases translation of the induced 

transcripts (Lee et al. 2011, Ho et al. 2018b). Intriguingly, despite the apparent lack of 

correlation for repressed mRNAs and their corresponding proteins, we did find that the 

functional enrichments for repressed mRNAs and repressed proteins were similar (i.e. ribosome 

biogenesis and translation). The poor correlation of repressed mRNAs and proteins occurs 

largely because repressed mRNAs show a wide range of repression values, while repressed 

proteins largely cluster around 1.5-fold repression (Figure S7). This “buffering” of repressed 

protein-level changes could be due to the increased stability of proteins vs. mRNAs (Belle et al. 

2006). The repressed proteins are strongly enriched for the pre-ribosome complex (p = 3 x 10-

37), thus the buffering of repressed proteins towards similar relative levels may help maintain 

proper subunit stoichiometry during stress.  

 

Analysis of protein post-translational modifications 

The proteomics community uses several different peptide search engines for peptide 

spectrum matching, with each search engine having various strengths and weaknesses. 

Software with high-performance PTM identification may not be compatible with TMT-MS3 

quantitation, and software with TMT-MS3 quantitation may fail to identify modified peptides in a 

sample. For example, we have previously used Mascot Distiller to search for post-translational 

modifications (Byrum et al. 2012), which does not currently offer MS3 quantitation. Likewise, 

MaxQuant is also unable to naively handle SPS-MS3 data when searching for variable 

modifications on lysine residues. To circumvent this, phosphorylation and ubiquitination PTMs 

were searched using the Mascot database, and this information was used to manually extract 

MS3 intensities from raw files using the R package mzR (Chambers et al. 2012). We manually 
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validated to ensure quality spectral matches, which yielded 22 ubiquitinated lysines and 67 

phosphorylated serines or threonines—each with high-confidence spectra across the entire time 

course. Using scan number and m/z values of MS2 from the Mascot results, we extracted 

intensity values from the matched MS3 scans. The Mascot and MaxQuant datasets were joined, 

and we normalized changes in peptide-level PTMs to underlying changes in total protein 

abundance. 

We saw striking evidence of PTM changes following heat shock. Consistent with the 

findings of Kanshin et al. (2015), we saw evidence for dynamic changes in protein 

phosphorylation levels (Figure 6A). Proteins with at least 1.5-fold increased phosphorylation 

were enriched for endocytosis (p < 3 x 10-3), cellular important (p < 8 x 10-3), and notably, 

response to stress (p < 8 x 10-3). These latter proteins included an enzyme (Tps2p) and 

regulatory submit (Tps3p) of trehalose biosynthetic complex, both of which are known to be 

regulated by phosphorylation during stress (Trevisol et al. 2014). We also observed several 

proteins with increased or decreased lysine ubiquitination (Figure 6B). While we cannot 

distinguish between mono and polyubiquitination with tryptic digestion, both can target proteins 

for proteasomal degradation (Braten et al. 2016, Rutkowski et al. 2006), with polyubiquitination 

being the canonical signal (Pickart and Fushman 2004). Intriguingly—and consistent with 

ubiquitination playing a role as a regulator of protein degradation during heat stress—we 

observed an inverse relationship (r2 = 0.42) between total protein abundance at 90 minutes 

post-heat shock and fold-change in lysine ubiquitination at 15 minutes post-heat shock (Figure 

6D). Notably, there was no correlation between protein abundance changes and protein 

phosphorylation changes (R2 = 0.03; Figure 6C), suggesting that the ubiquitination trend is 

likely biologically meaningful. Overall, our TMT-MS3 workflow is precise enough to delineate 

protein-level and PTM-level changes in biological samples.  
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Conclusions 

 In this study, we present a TMT-MS3 proteomics workflow that yields precise and 

accurate measurements of peptide and protein abundance, using the well-studied yeast heat 

shock response as a test case. At the protein abundance level, our Multinotch MS3 analysis 

method for TMT proteomics was robust to detect differential expression, even in the case of a 

single replicate. Proteins with significant induction or repression largely recapitulated 

expectations, with HSP chaperones amongst the most strongly induced proteins, and proteins 

related to cell growth and protein synthesis among the most strongly repressed. Our method 

also performed particularly well in the quantification of low abundance peptides. Compared to 

SILAC and label-free methods, the TMT Multinotch MS3 workflow affords a significant increase 

in multiplexing capacity and technical precision for peptide-level quantitative measurements, 

which is necessary for designing high-power experiments to study temporal dynamics of 

changing PTMs in a variety of biological contexts. In fact, our analysis of PTMs suggests an 

additional layer of regulation that has been largely understudied in the context of the yeast heat 

shock response. While PTMs are known to play key regulatory roles during the adaptation to 

stress, to date there has been only a single study examining PTM changes during the yeast 

heat shock response (in this case phosphorylation) (Kanshin et al. 2015). In this study, we 

identified both phospho- and ubiquitin-modified peptides whose abundance changed during 

heat shock even following normalization to abundance changes of unmodified peptides for the 

same protein. We hypothesize that several of the other dynamic PTMs may be important and 

understudied components of heat shock adaptation. That these were identified without specific 

enrichment steps suggests that MultiNotch MS3 datasets can be mined for PTMs that change in 

abundance during environmental perturbation. 
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Figure 1. Schematic of Proteomic Workflow. Yeast cells were grown to mid-exponential 
phase at 25°C, an unstressed control sample was collected, and then cells were subjected to a 
37°C heat shock, with samples collected at the indicated time points. Protein samples were 
digested with trypsin, labeled with one of the 10-plex tandem mass tags (TMT-10), pooled and 
fractionated by high-pH UPLC, and analyzed by MultiNotch LC-MS3. The Venn diagram depicts 
the overlap for proteins identified in each biological replicate. 
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Figure 2. High pH UPLC fractionation efficiently separates TMT-labeled peptides. Protein 
samples were digested with trypsin, TMT 2-plex labeled, and then fractionated by UPLC under 
basic conditions, and the fractions were concatenated into 24 super fractions. Each super 
fraction was then analyzed by LC-MS3. A) Resolution of high pH fractionation. The X-axis 
shows the number of super fractions in which a given peptide was detected (bins); the 
histogram (Y-axis) shows the number and frequency of peptides in each bin. Note that the vast 
majority of peptides partition within only one or two of the 24 super fractions, greatly reducing 
sample complexity and increasing depth of coverage by LC-MS3. B) Sampling depth for each 
fractionation. The bar graph shows the number of peptides identified (Y-axis) in each super 
fraction (X-axis). 
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Figure 3. TMT-MS3 measurements of peptides are highly precise, even for low-
abundance species. An underlying principle of quantitative proteomics is that high-abundance 
proteins yield more peptide spectral counts or measurements (PSMs) than low-abundance 
proteins. The differential abundance of peptides (fold change) following 60 minutes heat shock 
was used to determine the precision of PSM measurements for TMT-2. A) Precision of 
measurements as a function of PSM number. Violin plots showing the coefficient of variation 
(CV) of fold change measurements for peptides with different numbers of PSMs. The number 
above each plot shows the number of data points in each plot. B) Precision of measurements 
for low-abundance peptides. Scatter plot shows log2 fold changes for 4,759 peptides with two 
spectral counts. 
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Figure 4. The temporal dynamics of the heat shock proteome. A) The number of 
differentially expressed proteins (FDR < 0.05) for each time point. B) The heat map depicts the 
hierarchical clustering of 1,148 proteins whose change in abundance was statistically significant 
(FDR < 0.05) at any time point. Each row represents a unique protein, and each column 
represents the average expression change of heat-stressed vs. unstressed cells at each time 
point. Red indicates induced and blue indicates repressed expression in response to heat. 
Enriched functional groups (Bonferroni-corrected P < 0.01, see Methods) are annotated to the 
right. Complete Gene Ontology (GO) enrichments for each cluster can be found in File S3.  
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Figure 5. Heat shock responsive mRNAs correlate with protein induction but not 
repression. A) The tables compare changes in protein abundance at each time point following 
heat shock to mRNAs that significantly increased (top) or decreased (bottom) in expression 
reported by Eng et al. (Eng et al. 2010) (at FDR < 0.05). Shading indicates Pearson correlation 
coefficients (r) between the two datasets, with values of maximal concordance reported. B) Plot 
of the correlation between induced (red) and repressed (blue) mRNAs at 15 minutes vs. their 
corresponding proteins at 60 minutes. C) The temporal dynamics for all significantly induced or 
repressed mRNAs and their corresponding proteins.  
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Figure 6. TMT-MS3 reveals dynamic changes in the abundance of protein PTMs during 
heat shock. Modified peptides were identified by searches of MS data using Mascot Distiller 
and were manually validated as described in the Methods. PTM abundance was normalized to 
overall abundance changes of the corresponding protein. The heat maps depict heat shock-
dependent increases (red) or decreases (blue) in A) phosphorylation or B) ubiquitination. Plot of 
the correlation between fold-changes in total protein levels and fold changes in A) 
phosphorylation or B) ubiquitination.  
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

Figure S1: Overlap Between Identified Peptides Across Replicates. The Venn diagram 
depicts the overlap peptides identified in each biological replicate. 
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Figure S2: Highly precise, peptide-level measurements for three independent TMT 10-
plex experiments. Reporter ion intensity data from three independent TMT 10-plex heat shock 
time-course experiments were used to calculate coefficient of variance as a function of PSM 
number. 
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Figure S3: Spectral Counts Correlate with Estimated Protein Abundance. Boxplots show 
the distribution of estimated protein abundance from Ho et al.19 on corresponding proteins 
binned by peptide spectral counts. 
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Figure S4: Peptide CV is Weakly Correlated with MS1 and MS2 Intensity. The scatterplots 
depict Peptide CV versus MS1 intensity A) or MS3 intensity B). The correlation (r) for CV% 
versus MS1 is -0.064, and r for CV% versus MS3 is -0.151. 
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Figure S5: TMT-MS3 is an accurate detection method for changes in protein abundance. 
The relative abundance for seven significantly-induced proteins at 60 minutes post heat-shock 
was validated via quantitative western blotting. Anti-actin and anti-TAP antibodies were used to 
detect, simultaneously in the same blot, the Act1p loading control and the TAP-tagged proteins 
of interest. A) Representative western blots. B) Quantitation of relative log2 fold changes before 
and after heat shock for each TAP-tagged protein following normalization to actin. Data 
represent the mean and standard deviation of three biological replicates. Raw images can be 
found in File S5, and densitometric data can be found in File S6. 
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Figure S6: Comparison of differentially abundant proteins from this TMT-MS3 study to 
those reported by studies that used SILAC and label-free approaches.  We compared 
significantly differentially expressed proteins from this TMT-MS3 experiment (Story et al.) to a 
set of SILAC (Nagaraj et al.47) and label-free (Jarnuczak et al.48) experiments. Because Nagaraj 
et al. used an FDR < 0.02, we maintained that threshold for each of these comparisons.    
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Figure S7: Evidence for buffering of protein repression. Correlation between pairs of 
proteins and mRNAs from Eng et al.43 that were both significantly (FDR < 0.05) A) repressed B) 
or induced following heat shock (at 60 minutes for proteins and 15 minutes for mRNAs). The 
violin plots depict the density of expression values for the C) repressed D) or induced protein-
mRNA pairs. 
 

 

 

 

  



150 
 

Appendix  

A.1 IBC Protocol Approval 
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