
Santa Clara University Santa Clara University 

Scholar Commons Scholar Commons 

Computer Science and Engineering Master's 
Theses Engineering Master's Theses 

12-4-2019 

The Fog Development Kit: A Platform for the Development and The Fog Development Kit: A Platform for the Development and 

Management of Fog Systems Management of Fog Systems 

Colton Powell 
Santa Clara University 

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_mstr 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Powell, Colton, "The Fog Development Kit: A Platform for the Development and Management of Fog 
Systems" (2019). Computer Science and Engineering Master's Theses. 14. 
https://scholarcommons.scu.edu/cseng_mstr/14 

This Dissertation is brought to you for free and open access by the Engineering Master's Theses at Scholar 
Commons. It has been accepted for inclusion in Computer Science and Engineering Master's Theses by an 
authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu. 

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/eng_master_theses
https://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_mstr/14?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu




The Fog Development Kit: A Platform for the

Development and Management of Fog Systems

By

Colton Powell

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science and Engineering
in the School of Engineering at
Santa Clara University, 2019

Santa Clara, California



Acknowledgments

I would like to thank my advisor Dr. Behnam Dezfouli for all of his help throughout

the past year on this project. His guidance was essential in making this project a

reality, and the result was far more amazing than I would have ever expected. The

work on this project was extremely challenging, but was also equally rewarding. We

made a lot of accomplishments together throughout the past year, and they have

equipped me with the skills and confidence to do great work anywhere I go in the

future. Thank you for your guidance and your assistance!

In addition, I would like to thank all of my fellow researchers and colleagues

in the SIOTLAB that I’ve met over the past year. In particular, I would like to

thank Christopher Desiniotis for his hard work and significant contributions to this

project. You put in some serious effort into this project, and I will always remember

those long nights in the lab working on it with you!

I would also like to thank my family for all of their support. Specifically, I want

to thank my Mom for her support throughout all of this, and for allowing me to

focus on my schooling and making my dreams a reality. I also want to thank my

Dad for his encouragement on pursuing a career that I love, and to thank the rest

of my family for their support throughout my schooling.

Finally, I would like to thank my friends and professors for all of their support

during my time spent at SCU. You have all helped me in ways that I will be forever

thankful for.

iii



The Fog Development Kit: A Platform for the

Development and Management of Fog Systems

Colton Powell

Department of Computer Engineering
Santa Clara University
Santa Clara, California

2019

ABSTRACT

With the rise of the Internet of Things (IoT), fog computing has emerged to
help traditional cloud computing in meeting scalability demands. Fog computing
makes it possible to fulfill real-time requirements of applications by bringing more
processing, storage, and control power geographically closer to end-devices. How-
ever, since fog computing is a relatively new field, there is no standard platform
for research and development in a realistic environment, and this dramatically in-
hibits innovation and development of fog-based applications. In response to these
challenges, we propose the Fog Development Kit (FDK). By providing high-level in-
terfaces for allocating computing and networking resources, the FDK abstracts the
complexities of fog computing from developers and enables the rapid development
of fog systems. In addition to supporting application development on a physical de-
ployment, the FDK supports the use of emulation tools (e.g., GNS3 and Mininet) to
create realistic environments, allowing fog application prototypes to be built with
zero additional costs and enabling seamless portability to a physical infrastructure.
Using a physical testbed and various kinds of applications running on it, we verify
the operation and study the performance of the FDK. Specifically, we demonstrate
that resource allocations are appropriately enforced and guaranteed, even amidst
extreme network congestion. We also present simulation-based scalability analysis
of the FDK versus the number of switches, the number of end-devices, and the
number of fog-devices.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Simulation Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Resource Management and Allocation . . . . . . . . . . . . . . . . . 7

2.3 Fog Architectures and Platforms . . . . . . . . . . . . . . . . . . . . 10

3 The Fog Development Kit . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Agility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Application Independence . . . . . . . . . . . . . . . . . . . . . . . 14

4 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 TopologyManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 FlowManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 ResourceManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Verification and Evaluation using a Physical Testbed . . . . . . . . 31

5.1.1 Test 1: Resource Allocation and Deallocation . . . . . . . . 35

5.1.2 Test 2: Bandwidth Guarantee . . . . . . . . . . . . . . . . . 38

5.1.3 Test 3: Multiple Bandwidth Guarantees . . . . . . . . . . . 41

5.2 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



List of Figures

4.1 Overall system architecture. . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Enforcing bandwidth reservation using rate-limited queues. For each
path reservation, rate-limited packet queues are created and attached
to QoS configurations located on the egress ports towards the fog-
device as well as those towards the end-device. Then, flow table
entries are pushed via OpenFlow to enqueue traffic traveling from
the end-device to the fog-device, and vice versa, on these queues. . 27

5.1 The physical testbed used to implement the topology depicted in Fig-
ure 5.2. End-devices, switches, and fog-devices are connected through
physical links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 The network topology used for the development and testing of the
FDK. Ci represents a container running on a fog-device. . . . . . . 33

5.3 Overall bandwidth of the data received by fog-devices corresponding
to the images captured and sent by end-devices via detection-app.
Blue (solid) and red (dashed) bars denote service requests and shut-
down requests made by end-devices, respectively. Bars which are less
transparent indicate a greater amount of service or shutdown requests
made during a particular second. This figure shows the dynamics of
allocating and deallocating resources by the FDK when end-devices
randomly issue service and shutdown requests. . . . . . . . . . . . 35

5.4 Empirical Cumulative Distribution Function (ECDF) graphs for Test
1a. In this test, end-devices issue service requests sequentially. Groups
closer to the controller (and therefore FDK) complete all of their op-
erations slightly faster than those further from the controller. . . . 36

5.5 Empirical Cumulative Distribution Function (ECDF) graphs for Test
1b. In this test, end-devices issue service requests concurrently.
Groups closer to the controller experience significantly faster ser-
vice request fulfillment times compared to those further from the
controller. This is because the FDK processes requests sequentially. 37

vii



5.6 Bandwidth readings for end-devices 1, 4, and 6 throughout Test 2a
(300 Mbps allocation). The bars show the sequential execution of
sleep-app by 7 end-devices. These results show that there is no ad-
ditional variation in bandwidth for running fog applications in the
presence of sequential service requests made to the FDK by other
end-devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Bandwidth readings for end-devices 1, 4, and 6 during Test 2b (300
Mbps allocation). The vertical lines show the instances the 7 end-
devices start sleep-app concurrently. These results show that there
is no additional variation in bandwidth in the presence of concurrent
service requests made to the FDK by other end-devices. . . . . . . 40

5.8 Actual bandwidth readings for Tests 3a, 3b, and 3c for each Group.
End-devices 1 through 7 run iperf-app, and end-device 8 performs 15
concurrent runs of sleep-app at 30 and 60 seconds (as indicated by the
vertical lines) into the 90-second iperf-app transmissions. Even under
network congestion and stress during these times, the results show
that bandwidth allocations are enforced and no additional variation
is observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9 The two topologies used for scalability evaluation. These two topolo-
gies are referred to as ’Topology (a)’ and ’Topology (b)’ in the text. 44

5.10 Execution time of the RAA (excluding switch and fog-device config-
uration delay) versus network size and number of fog-devices. Sub-
figures (a) and (b) present the results for Topology (a) and (b) of
Figure 5.9, respectively. #FDs refers to the number of fog-devices
per level 2 switch in Topology (a) and level 3 switch in Topology (b).
The values in each parenthesis on the x-axis refer, from left to right,
to the number of level 1, level 2, and level 3 switches. . . . . . . . 45

5.11 Communication delay of resource allocation versus end-device to fog-
device distance (hops) for Topology (a) presented in Figure 5.9. . . 46

5.12 Communication delay of resource allocation versus end-device to fog-
device distance (hops) for Topology (b) presented in Figure 5.9. . . 47

viii



List of Tables

4.1 TopologyManager APIs . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 FlowManager APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 ResourceManager APIs . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



List of Abbreviations

ECMP Equal-Cost Multi-Path (routing)

FCT Flow Completion Time

FDK Fog Development Kit

IoT Internet of Things

MD-SAL Model-Driven Service Abstraction Layer

ODL OpenDaylight

OVS Open vSwitch

OVSDB Open vSwitch Database

QoS Quality of Service

RAA Resource Allocation Algorithm

RDA Resource Deallocation Algorithm

SDN Software-Defined Networking

SIOTLAB Santa Clara University Internet of Things Laboratory

VM Virtual Machine

YANG Yet Another Next-Generation (Data Modeling Language)

x



Chapter 1

Introduction

In today’s world of smart cars, smart cities, smart homes, Industry 4.0, and mobile

healthcare, almost every device is connected to the Internet. Whether they be

televisions, sensors, or wearable devices, these technologies often generate data and

require computation and storage needs that cannot be met at the network edge.

With the growing number of interconnected devices and IoT applications arises the

challenge of handling a massive amount of data in a highly efficient manner.

Cloud computing offers a partial solution to this dilemma by providing massive

infrastructure and powerful applications. However, cloud computing is not suit-

able for real-time and mission-critical application domains with stringent runtime

and latency requirements. Additionally, cloud computing cannot scale sufficiently

to handle the processing, storage, and communication demands of billions of IoT

devices [1–4]. Fog computing aims to solve this challenge by bringing additional

computing, storage, and control capabilities to the network edge. The increased

number of powerful computation and networking platforms has made the imple-

mentation of fog architectures a worthwhile undertaking [5]. Fog is intended to

work alongside the cloud, forming a things-fog-cloud continuum where applications

can be served promptly [1].

By using the things-fog-cloud continuum, requests generated by end-devices

(things) can be serviced in the fog, thereby avoiding transmission to the cloud and

significantly reducing packet latency and network congestion. Resource-constrained

1



devices such as medical devices can offload computation- and communication-intensive

tasks to nearby fog-devices to meet real-time constraints. For example, consider a

scenario where medical devices in a hospital monitor patients. Once a device de-

tects an anomaly, it can request resources from fog-devices for further processing

and real-time results. We refer to these systems as fog systems, where applications

on end-devices may offload their computational tasks to nearby fog-devices. These

systems may optionally connect to cloud data centers for increased accuracy in the

decision-making process.

There exist significant obstacles for research and development in the realm of fog

systems. First, end-devices need to request and reserve resources to meet the Qual-

ity of Service (QoS) demands of underlying applications, meaning that any efficient

fog system must operate with a resource allocator. Traditional load balancers are

not sufficient in fulfilling the needs of heterogeneous IoT applications, where end-

devices require guaranteed resources to meet their stringent runtime and latency

requirements. While many resource allocation platforms have been proposed [6–8],

few systems allocate both networking and computing resources. Furthermore, to

the best of our knowledge, no such platforms have integrated software-defined net-

working (SDN) into their architecture, where fog-device resource allocation, network

bandwidth allocation, and customizable routing policies are all consolidated into a

single, comprehensive platform. Second, most of the existing works employ simu-

lation to evaluate the efficiency of their resource management approaches [7–12];

thereby highlighting an apparent lack of development tools for research in this field.

In order to exhaustively test new approaches in realistic environments, and to accel-

erate research in fog computing, a standard research and development platform is

needed. Finally, it can be quite expensive to prototype and test the performance of

a real fog-based application. For example, creating even the most straightforward

2



application requires constructing an infrastructure of end-devices, fog-devices, and

networking hardware, which can be costly. Therefore, the creation of complex soft-

ware components and a costly physical infrastructure must precede the development

of such applications. This combination of complexity and cost poses an immense

barrier of entry for researchers and engineers. Since fog computing is still in its

infancy, there is no standard development kit or platform which has solved all of

these issues in the form of a single, complete development package. Without such

a platform, the advancement of pertinent, real-time applications will be slow, given

the barriers of entry.

In this thesis, we set out to address this problem by proposing the Fog Develop-

ment Kit (FDK)1: A development and management platform for fog systems. The

FDK is intended to bring together all of the elements of fog computing into one com-

prehensive framework, where developers can begin building fog-based applications

with ease and without all of the barriers mentioned above.

The FDK addresses development complexity by providing a cutting-edge re-

source allocation scheme, which supports any arbitrary fog-based application run-

ning on top of it. Specifically, by integrating SDN and virtualization technologies,

the FDK enables end-devices to utilize its messaging protocol to request for com-

puting and communication resources. If sufficient resources are available, the FDK

instantiates a container in a fog-device with the desired computing resources, finds

an efficient path through the network for communication between the end-device

and the fog-device, and allocates the requested bandwidth along the identified path.

The complexity of resource allocation is thus handled by the FDK. For example,

suppose a developer plans to build a facial recognition system, where resource-

constrained end-devices connected to cameras live-stream video data to fog-devices

1The FDK is accessible at the following address: https://github.com/SIOTLAB/Fog-
Development-Kit.git

3



for heavy-duty processing. Here, it is only required to develop an application for

the end-device to collect and stream video data, as well as the containerized ser-

vices running on fog-devices to receive and process the data. The FDK handles all

of the underlying system complexities such as managing computational resources

of fog-devices, path reservation, and bandwidth slicing between end-devices and

fog-devices.

The FDK supports developing applications in both physical and emulated en-

vironments. Built on top of OpenDaylight (ODL) [13], the FDK utilizes standard

SDN protocols to communicate with physical network devices. Moreover, the FDK

is designed to be used in unison with Open vSwitch (OVS) [14], which performs

network resource allocation using the OVSDB management protocol [15] and en-

forces data flow routing using the OpenFlow protocol [16]. Therefore, in addition

to supporting physical environments, the FDK was designed to be used with emu-

lation technologies so that developers could leverage tools such as GNS3 [17] and

Mininet [18] to prototype fog-based applications. GNS3 and Mininet provide the

capability of emulating network topologies on a personal computer. These tools

allow virtual machines and containers running on the computer to communicate

with each other in a virtualized environment. With this, the FDK can run on a

completely emulated network consisting of Linux virtual machines (VM) serving as

end-devices and fog-devices, and OVS VMs which handle the messages exchanged

between these devices. Therefore, the FDK enables the development of applications

in an emulated environment at zero additional cost. In addition, any applications

developed on top of the FDK can be ported from an emulated environment to a

physical infrastructure.

We evaluate the correctness and performance of the FDK by using a phys-

ical testbed consisting of eight end-devices, four fog-devices, and five OpenFlow

4



switches. Our results show that resource allocation and deallocation delays are less

than 279 ms and 256 ms, respectively, for 95% of transactions. We also show the

resiliency of the FDK by analyzing the impact of various network conditions and

levels of congestion on already-running application transmission speeds and show

that bandwidth allocations are accurately enforced and upheld regardless of net-

work conditions. In addition, we present a simulation-based scalability analysis to

demonstrate the impact of network size, topology type, number of end-devices, and

number of fog-devices on controller overhead and communication delay.

The rest of this thesis is organized as follows. We present the related work

in Chapter 2. In Chapter 3, we summarize the goals and features of the FDK.

Chapter 4 presents the system architecture and operation of the FDK. In Chapter

5, we present performance evaluation using a physical testbed and simulation. In

Chapter 6, we highlight potential future work, and lastly in Chapter 7 we conclude

the thesis.

5



Chapter 2

Related Work

In this chapter, we overview relevant simulation platforms and justify the impor-

tance of the FDK. Also, we summarize existing load balancing and resource alloca-

tion schemes and identify their shortcomings when applied to fog-based applications.

Finally, we investigate other existing fog architectures and platforms, and highlight

the benefits that the FDK holds over these alternatives.

2.1 Simulation Platforms

Due to the significant cost of creating fog and cloud network infrastructures, simulation-

based study is the most widely-used approach to evaluate the performance of pro-

posed mechanisms [7–9].

CloudSim [19] is perhaps the most popular cloud simulation platform available,

which is used for modeling the cloud and application provisioning environments.

It is a discrete event-based simulator written in Java, meaning that it does not

actually emulate (virtualize) network entities such as routers and switches. Instead,

CloudSim uses a latency matrix, which contains predefined values for the latency

between entities. Additionally, CloudSim can model dynamic user workloads by

exposing a set of methods and variables to configure the resources of simulated

VMs.

There are also many extensions to CloudSim, such as CloudSimSDN [10], Con-

6



tainerCloudSim [11], and iFogSim [12], which attempt to broaden CloudSim’s model

to include SDN, container migration simulation, and fog computing, respectively.

However, because CloudSim and these associated extensions are strictly-simulation

based, they ultimately do not solve the problems of cost and complexity associated

with developing an actual fog application. Rather, they simply avoid the problem

altogether by simulating the entire system. Therefore, while CloudSim is a worthy

platform for evaluating cloud architectures, load balancing algorithms, etc., it fails

to actually serve as a valid fog-based application development platform because

projects developed in CloudSim are not portable to a real environment. Likewise,

the same can be said for most other simulation platforms for similar reasons.

In contrast, the FDK can be used to develop actual fog applications in both

physical and emulated environments. Furthermore, after a fog application is devel-

oped in an emulated environment, that application can then be seamlessly ported

to a physical environment (and vice versa).

2.2 Resource Management and Allocation

Resource management is key to the success of any fog system and consists of two

main components: networking resource management, and computational resource

management.

Typically, networking resource management is accomplished using a load bal-

ancer, which attempts to find a suitable path to one or more destinations while

spreading traffic throughout the network to avoid congestion. In many cases, Equal-

Cost Multi-Path (ECMP) routing is used to manage network resources by distribut-

ing traffic throughout the network. However, ECMP is congestion oblivious and

studies [20, 21] suggest that ECMP’s performance is far from optimal and that it

7



is known to result in unevenly distributed network flows and poor performance. In

response, Katta et al. proposed Clove [20], a congestion-aware load balancer that

works alongside ECMP by modifying encapsulation packet header fields to manip-

ulate flow paths, ultimately providing lower Flow Completion Times (FCT) than

ECMP. Clove identifies disjoint paths and changes the 5-tuple of the overlay net-

work to distribute traffic over these paths. It also uses ECN to detect congestion.

Similarly, Zhang et al. proposed Hermes [21], a distributed load balancing system,

which offers up to 10%-20% faster FCT than Clove. While Clove can handle link

failures and topology asymmetry, Hermes can handle more advanced and complex

uncertainties such as packet black-holes and switch failures.

Unfortunately, load balancers do not adequately fulfill the network resource

management requirements of fog systems. Load balancers simply find multiple paths

for traffic distribution, whereas fog systems need to actually reserve bandwidth

along paths to fulfill application demands such as real-time exchange of medical

monitoring data.

There are mechanisms that utilize actual network resource allocation to provide

timely and reliable services. Akella et al. [22] proposed a method for guaranteeing

network resources and reliable QoS. They leverage OVS, OVSDB, and SDN tech-

nologies to create three tiers of cloud QoS levels, where each tier allocates a specific

amount of bandwidth to a user-cloud service. This is performed by dynamically

creating packet queues on switches along the communication path, followed by then

creating OpenFlow flows on those switches that enqueue traffic belonging to one

of the QoS levels onto the appropriate packet queue. Kumar et al. [23] proposed a

mechanism to extend SDN infrastructure to be “delay aware” by finding paths for

data flows to ensure end-to-end delays are guaranteed. To this end, they use a sim-

ilar scheme where packet queues are dynamically created along a path. Then, one

8



flow entry is created and assigned per queue, and all packets belonging to a critical

network flow are forwarded to the packet queue associated with that flow. They

also propose a path selection algorithm to meet the desired delay and bandwidth

constraints of each flow.

On the other hand, computational resource management often involves the use

of VMs and containers, which can be configured to use a specific, limited amount of

resources. The amount of resources allocated to a VM or container directly affects

the execution time of tasks and services. Therefore, the allocation of these resources

is critical in ensuring the timely processing of essential data. Containers hold an

advantage over VMs in the context of resource allocation in the fog, as they tend to

be more lightweight and, more importantly, provide finer granularity in allocating

resources. For example, when allocating processing power to VMs, the available

options only allow for the specification of the number of entire CPU cores that a

particular VM can use. On the other hand, container technologies like Docker [24]

provide interfaces for specifying more in-depth options when running a container.

For example, container options allow the specification of a fractional number of

cores that can be used (e.g., 1.25 CPU cores), in addition to the proportion of CPU

cycles that can be utilized, which enables more precise, granular control of resource

allocation.

Container management is typically performed through the use of orchestration

software, such as Docker Swarm mode [25] or Kubernetes [26], which provides func-

tionality for remotely managing, instantiating, and shutting down containers. These

container orchestrators currently serve as the backbone for computing resource al-

location in fog and cloud systems, and current research involves more advanced use

cases, such as investigating and optimizing live container migration techniques [27].

This is critical to the success of such systems, as live migration may interrupt run-

9



ning services, degrading performance and increasing completion delays. Ansari et

al. [9] investigated approaches to resource management and VM migration for fog-

based IoT applications in mobile networks. They proposed Latency Aware proxy

VM Migration (LAM), which solely considers latency when assigning a fog colony

to a mobile IoT device, and Energy Aware proxy VM Migration (EAM), which

considers the energy consumption of colonies. They simulated LAM, EAM, and

static VM allocation, compared all the three approaches and discussed the tradeoffs

involved. For simulation, they used EveryWare Lab’s user movement trace [28] to

emulate movement patterns of mobile devices. However, the authors acknowledge

the need to conduct further experiments on physical infrastructure.

2.3 Fog Architectures and Platforms

Many fog architectures involving automated resource management have been pro-

posed. Skarlat et al. [8] created a resource provisioning system using a fog-cloud

middleware component. The middleware oversees the activity of fog colonies, which

are micro data centers consisting of fog cells where tasks and data can be distributed

and shared among the cells. This system merely manages fog computing resources

and does not allocate those resources, nor does it perform any allocation of network

resources.

Yin et al. [7] built a novel task-scheduling algorithm and designed a resource

reallocation algorithm for fog systems, specifically for real-time, smart manufac-

turing applications. However, unlike the previous work, a management software

component is not used in their approach, and each fog-device is burdened with

the task of deciding whether to accept, reject, or send requests to the cloud. Re-

source reallocation is periodically run on a single fog-device, reallocating resources

10



among tasks in order to meet delay constraints. Their results show reduced task

delays and improved resource utilization of fog-devices. However, their experiments

are strictly simulation-based, and the resource management scheme only includes a

single fog-device during decision making.

Finally, Wang et al. [6] proposed a novel resource management framework for

edge nodes called ENORM. Upon startup of the system, an edge manager software

installed on all edge nodes gathers and stores available system resources. Then,

each edge node listens for resource requests from a cloud manager software installed

on a cloud server. Each resource request starts with a handshaking process that

eventually leads to the initialization of a fog application. In contrast, fog-devices

in our proposed scheme are managed by a central controller running the FDK. The

FDK then receives service requests from end-devices requesting the instantiation of

a fog application service with a specific amount of resources. If sufficient resources

exist, the FDK leverages SDN and containerization technologies to remotely perform

both computational and network resource allocation.

11



Chapter 3

The Fog Development Kit

The FDK addresses all of the problems mentioned in Chapter 2 by enabling the

creation and deployment of fog-based applications in physical and emulated envi-

ronments. The FDK also provides a comprehensive SDN-based resource allocation

scheme. This chapter presents the main features offered by the FDK.

3.1 Resource Allocation

The FDK provides comprehensive resource allocation capabilities to ensure that

requests made by end-devices are fulfilled completely and in a timely manner. This

is accomplished by providing a resource allocation scheme where both network re-

sources and fog-devices’ computational resources can be sliced and allocated. This

automated resource allocation offers several benefits. First, it ensures that the ser-

vices requested by end-devices own a dedicated slice of the network, and provides

the possibility of guaranteeing network latency and bandwidth for communication

with fog-devices. Second, to guarantee application processing deadlines, it ensures

that fog-devices are not overwhelmed by end-devices’ requests. These two features

are essential in many fog systems as they ensure expedited processing and seamless

interactions between end-devices and fog-devices, which are key advantages that fog

computing holds over cloud computing.

12



3.2 Agility

Working with the FDK does not necessarily require access to a physical testbed. To

support emulated topologies and in order to reduce the development and prototyp-

ing costs of fog-based applications, developers can use tools such as GNS3 [17] and

Mininet [18] to build a complete network of end-devices, fog-devices, and OVS nodes

using VMs and containers. Another VM can be used as the controller, running the

FDK and SDN controller software. The controller VM fulfills the requests made

by end-devices by allocating resources and instantiating containerized services in

fog-devices. Therefore, the FDK offers agility to developers by making it possible

to quickly begin creating fog-based applications using only a personal computer,

while also making the process significantly cheaper.

3.3 Portability

Fog-based applications running on emulated topologies may need to be ported over

to physical, production topologies once they are complete. To meet this need, the

FDK is designed to be highly portable. Fog-based applications written on top of the

FDK are intended to be portable in their entirety to physical systems. To satisfy

this, the FDK can be installed installed on a virtual or physical Linux machine

(acting as a central controller) with Python 3, Docker, ODL, and the necessary

ODL plug-ins installed. In addition, in order to take advantage of the network

resource allocation capabilities of the FDK, the switching devices throughout the

topology must support the OpenFlow 1.3 and OVSDB protocols. Considering the

wide-spread acceptance of OVS in large-scale environments [29], we used OVS as our

switch software. OVS can also be installed on any virtual or physical Linux machine.

13



Finally, large vendors such as Cisco and Juniper Networks also carry OpenFlow 1.3

and OVSDB compatible switches [30,31], which could allow for a port of the FDK

and any fog-based applications developed on top of it to a production-grade physical

network.

3.4 Application Independence

The key principle that the FDK is designed to fulfill is application-independence.

That is, the FDK aims to support any general fog-based applications being run

on top of it, in order to ensure that a variety of heterogeneous services can be

developed. To this end, the FDK provides a messaging protocol for end-devices

to request resources and instantiate specific containerized applications in the fog-

devices to handle their processing needs. Conversely, the messaging protocol also

provides methods to deallocate resources and terminate containerized applications.

Therefore, as long as all resource requests follow this protocol, any fog-based appli-

cation can request resources and leverage the power of fog-devices. In Section 4.3

we show how various types of applications can be adapted to work with the FDK.

14



Chapter 4

System Architecture

Figure 4.1 shows the overall fog system architecture including four major compo-

nents: controller, end-devices, switches, and fog-devices. End-devices are resource-

constrained and cannot completely satisfy application requirements [1, 3, 4, 32].

Therefore, these devices communicate with more powerful machines—fog-devices—

to offload their computing1 requirements. For example, an end-device may represent

a Raspberry Pi board that captures images and streams them to fog-devices run-

ning object recognition algorithms. Another example of an end-device is a smart-

phone that collects sensory data from multiple medical devices and transmits them

to fog-devices for anomaly detection. End-devices and fog-devices are connected

through switches that support flow-based forwarding. End-devices, switches, and

fog-devices are referred to as nodes. Nodes are monitored and configured by the

controller running the FDK.

The FDK itself is a user-space application that operates within the controller

and oversees the operation of end-devices, fog-devices, and switches. The FDK

interacts with ODL to control communication paths and manage network resource

allocation, and also leverages the Docker containerization technology to remotely

instantiate services on fog-devices with a specific amount of resources.

ODL is an SDN controller software that enables remote management and con-

figuration of networks. In the case of the FDK, these capabilities are leveraged using

1Here, computing is a general term that includes processing, storage, and communication.

15



FDK

ODL

OpenDaylight REST APIs

OVSDB

Service Abstraction Layer (SAL)

Controller Services/Applications

Docker Swarm 
Manager

TopologyManager FlowManager ResourceManager

NETCONF OpenFlow
Other

Protocols/
Interfaces

APP1 APP2 APPn…Fog-based 
Applications

End-devices

Switches
(Flow-based switching)

Fog-devices
(Containerized Applications)

Controller

Fig. 4.1: Overall system architecture.

ODL’s northbound REST interfaces and Model-Driven Service Abstraction Layer

(MD-SAL). At a high level, the MD-SAL allows developers to define data models

for ODL software plug-ins and extend the functionality of ODL. These plug-ins

provide additional northbound REST APIs. Invocations of these APIs may utilize

a variety of southbound network management protocols such as OpenFlow, NET-

CONF [33], and OVSDB to ultimately configure or modify devices on the network.

These invocations must also include a data body that is in accordance with the

YANG data model [34] defined by the corresponding ODL plugin being utilized.

Upon validation of the data body, it is pushed to the MD-SAL’s configurational

data store, which reflects the desired configuration of the network. Then, the cor-

responding plug-in uses the information placed in the configurational data store

to apply the desired changes to the appropriate network devices using southbound

protocols and interfaces. Once applied, these changes are reflected in the MD-SAL’s

operational data store, which represents the actual, physical state of the network.

In effect, the MD-SAL supports the development of extensions to ODL, making it

16



an extensible, modular, and versatile SDN controller that has the ability to grow

and evolve over time. In particular, the FDK utilizes ODL’s comprehensive set of

northbound REST APIs to perform network management using a variety of south-

bound protocols. For example, the FDK pushes OpenFlow flows to switches and

then remotely configures the switches via OpenFlow 1.3 and OVSDB, respectively,

even though the only interfaces accessed by the FDK are ODL’s northbound REST

APIs.

Docker [24] is a platform that allows for building, sharing, and executing appli-

cations within containers. Each container is defined by an image file, which specifies

its exact contents. Image files are typically stored in centralized repositories and

are accessible by remote compute nodes. Docker deploys containers by download-

ing the image file from the remote repository (unless the image is already cached

locally) and then instantiates the container using this file. Docker Swarm mode

is a feature that allows for the management and orchestration of such containers

on remote machines. Because these containers have specifiable resource allocation

parameters, the FDK leverages Docker Swarm mode to provide fog-device resource

allocation capabilities and to instantiate containerized services for end-devices.

The FDK combines and builds upon the functionality of Docker and ODL using

three manager objects that oversee the entire network and provide interfaces for

querying data and manipulating the topology. These objects are detailed in the

rest of this chapter.

4.1 TopologyManager

The FDK uses a TopologyManager component to query, update, and manage the

network topology. The core APIs for this component are described in Table 4.1.

17



Table 4.1: TopologyManager APIs

API Description

update_topology() Query topology information from ODL and
update the topology

create_queue() Create/update rate-limited queue on switch
delete_queue() Delete queue from switch
create_qos() Create QoS entry on switch
delete_qos() Delete QoS entry from switch
place_queue_on_qos() Place queue on QoS entry
remove_queue_from_qos() Remove queue from QoS entry
place_qos_on_port() Place QoS entry (containing queues) on

switch port
remove_qos_from_port() Remove QoS entry from switch port

On startup, the TopologyManager first issues queries to the MD-SAL’s operational

data store for data pertaining to the ODL OpenFlow plugin, the ODL node inven-

tory, and the OVSDB plugin to gather data on the entire topology. The results

returned by the OpenFlow plugin include information regarding all network devices

(i.e., end-devices, fog-devices, switches) and connecting links. The results returned

by the ODL node inventory contain more in-depth information on the OpenFlow

switches and their network interfaces, and provide information on the speed of the

interfaces and how much data has been transmitted across them since ODL started.

Finally, the results returned by the OVSDB plugin contain information about the

configuration of OpenFlow switches as well as the information required to configure

them remotely.

The TopologyManager consolidates all the information returned by these calls

within a single Topology object, which models the network topology as a graph.

Links are modeled as directed graph edges, with each one containing multiple data

fields such as the current utilization of the link, the current bandwidth allocations

on the link, and port identifiers at the endpoints. The nodes across the network are

modeled as end-devices, fog-devices, and switches using a set of device type classes

18



provided within the Topology object. The data stored for each node varies depend-

ing on its type. For example, each fog-device object contains information such as

the total amount of processing and memory resources on the device, which is later

used by the FDK to slice the resources and prevent over-allocation. Similarly, the

OpenFlow switch objects store information regarding their current configurations

and the flows installed in their flow tables, which is later used by the FDK to shape

network traffic paths and to manage the allocation of communication resources.

Therefore, the TopologyManager serves as a comprehensive directory of informa-

tion pertaining to the state and structure of the network and the availability of

resources across it.

After building the Topology object, the TopologyManager creates a background

thread to continuously update the network topology over time. This thread issues

the previously mentioned queries to the ODL operational data store to gather infor-

mation on the latest state of the topology. Then, the thread analyzes the differences

between the returned data and the current Topology object, and then updates the

Topology object to reflect the more recent topology information returned by ODL

by making the appropriate changes (such as adding links and/or nodes).

The TopologyManager also provides a large number of APIs for managing Open-

Flow switches via the OVSDB management protocol. These interfaces provide

capabilities for creating and deleting constructs such as packet queues, QoS en-

tries, and ports, which are used by the ResourceManager component of the FDK

when allocating network resources. It should be noted that all OpenFlow data and

OVSDB data are originally returned as separate topologies by ODL, and there is

no immediately-apparent way to relate data between the two. In the case of the

OVSDB data, the MAC address of the bridge being controlled by ODL is returned

in the query to the OVSDB plugin, which can then be converted to an OpenFlow

19



node ID by stripping out the colons in the MAC address, converting the remaining

hex value to a decimal value, and prepending ”openflow:” to the remaining decimal

value. The FDK then uses this relationship when storing data in Topology objects,

and effectively merges the two separate OpenFlow and OVSDB data sets into the

single aforementioned Topology object.

Finally, the TopologyManager provides a greeting server thread used to handle

greeting messages sent by end-devices and fog-devices. End-devices and fog-devices

are configured to send greeting messages upon boot up. Each message contains a

device type and a node ID field, in addition to some supplementary information.

The device type field specifies whether the device is a fog-device or an end-device,

and the node ID correlates the device with one that was found in the MD-SAL

operational data store. By building this association via greeting messages, the

TopologyManager can identify all of the nodes in the Topology and establish if

they are an end-device, a fog-device, or neither. These associations are key to

differentiating devices and establishing what actions are appropriate to perform on

a particular device. For example, the FDK only instantiates services on fog-devices,

as such an action would not be appropriate for other devices. Section 4.3 presents

this mechanism in detail.

4.2 FlowManager

The FlowManager component provides a comprehensive interface for the manage-

ment of OpenFlow flows throughout the network. The core APIs for this component

are described in Table 4.2. First, the FlowManager provides a set of APIs to sim-

plify the process of creating flow table entries on OpenFlow switches. For example,

this component provides a method for creating a flow skeleton, which contains all of

20



Table 4.2: FlowManager APIs

API Description

create_flow() Push OpenFlow flow to switch
delete_flow() Delete OpenFlow flow from switch
track_flow() Track flow information
untrack_flow() Untrack flow information

the basic fields needed to create the flow table entries used by the FDK to enforce

traffic paths between end-devices and fog-devices. Then, the FlowManager’s flow-

modification APIs can be utilized to further build and shape entries by adding flow

actions, flow match fields, and other constructs to a flow skeleton. For example,

flows can be created to match packets by source and destination IP address (or addi-

tional identifiers). Upon a match, multiple actions can be applied to a packet—such

as transmitting it through a specific port (used to create network traffic paths) and

placing it on a packet queue. Once a flow table entry is built, the FlowManager’s

flow-creation APIs can be leveraged to push a newly-built entry to an OpenFlow

switch. Similarly, the FlowManager offers flow-deletion APIs that can be used to

remove such entries.

4.3 ResourceManager

The FDK uses the ResourceManager component to manage and allocate all net-

working and computing resources. The core APIs of this component are described in

Table 4.3. The ResourceManager maintains data structures regarding all resources

available in the network. This is possible with the help of an agent running on every

fog-device. This agent continually collects and relays information (such as proces-

sor and memory utilization) back to the ResourceManager over time. Similarly, the

ResourceManager also repeatedly queries the ODL node inventory to gather current

21



Table 4.3: ResourceManager APIs

API Description

service_end_device() Process service requests from end-devices,
run the RAA, and instantiate containers

service_shutdown_request() Process shutdown requests, run the RDA,
and shutdown containers

service_fog_device() Receive and process resource reporting mes-
sages from fog-devices

resource_alloc_algorithm() Attempt to allocate all resources for re-
quested service

resource_dealloc_algorithm() Attempt to deallocate all resources for a ser-
vice

link utilization information. This information is then stored in the Topology data

structure managed by the TopologyManager, which ultimately provides a complete

overview of all available resources throughout the network.

The main functionalities provided by the ResourceManager lie within the servers

that enable end-devices to request/release computing resources. These servers act as

an interface for managing containerized services and the allocation of resources. For

example, the service request server receives and processes requests from end-devices,

where each request specifies parameters such as an image name of a containerized

service to run and a set of resource requirements for the request. The image name

refers to the type of application processing requested. For example, an end-device

may specify an image implementing a medical classification application.

Once a request is received, the ResourceManager executes the resource alloca-

tion algorithm (RAA) presented in Algorithm 1. If sufficient resources exist, the de-

sired containerized service with the appropriate amount of resources is instantiated

on a fog-device, a communication path between the end-device and the fog-device

is reserved, and a bandwidth allocation along that path is enforced. Conversely,

the shutdown request server provides an interface to revert this process by shutting

down containers and deallocating resources.

22



Algorithm 1: Resource Allocation Algorithm (RAA)
Input:
ei = end-device requesting resources
RB(ei) = Bandwidth requirement of request from ei
RP (ei) = Processing requirement of request from ei
RM (ei) = Memory requirement of request from ei
Complete topology and resource data (from TopologyManager)

Output:
A response for ei indicating success or failure

1 TB(l) = Total bandwidth capacity on link l
2 TP (f) = Total processing capacity on fog-device f
3 TM (f) = Total memory capacity on fog-device f

4 AB(l) = Allocated bandwidth on link l
5 AP (f) = Allocated processing on fog-device f
6 AM (f) = Allocated memory on fog-device f

7 N = Set of all nodes
8 L = Set of all links
9 F = Set of all fog-devices

10 F ′ = ∅ //Request servicers

11 P = ∅ //Shortest-path tree

12 B = ∅ //Best known link dictionary

13 //identify request servicers

14 for fj ∈ F do
15 if TP (fj)−AP (fj) > RP (ei) &
16 TM (fj)−AM (fj) > RM (ei) then
17 Add fj to F ′

18 if F ′ == ∅ then return FAILURE response

19 k = max(2, size(L)/size(N ))
20 H = minHeap(k) //K-ary min heap

21 init link = (src : ei, dst : ei, weight : 0)
22 H.push(init link)
23 B[ei] = init link

24 //find least-cost paths from ei to fog-devices

25 while size(H) > 0 do
26 u = H.pop min()
27 if u.src 6= u.dst then P[u.dst] = u

28 for v ∈ {outgoing links of u.dst} do
29 //v.src is equivalent to u.dst

30 v.weight = B[v.src].weight + 1/(TB(v)−AB(v))
31 if (TB(v)−AB(v)) < RB(ei) then v.weight =∞
32 if v.dst 6∈ B then
33 H.push(v)
34 B[v.dst] = v

35 else if v.weight < B[v.dst].weight then
36 //Update link, shift based on weight

37 H.decrease key(B[v.dst], v)
38 B[v.dst] = v

39 //find the best fog-device to fulfill the request

40 min =∞
41 for fj ∈ F ′ do
42 if P[fj ].weight < min then
43 min = P[fj ].weight
44 fmin = fj

45 if min ==∞ then return FAILURE response

23



46 //configure switches along the path fmin to ei
47 v = P[fmin]
48 while true do
49 if v.src == ei then return SUCCESS response
50 Create rate-limited queues on v.src
51 Place queues on appropriate QoS entry in v.src
52 Create flows on v.src to redirect traffic to rate-limited queues
53 v = P[v.src]

The RAA uses a modified version of Dijkstra’s shortest-path algorithm in ad-

dition to some pre- and post-processing steps. The implementation of Dijkstra’s

algorithm leverages a k-ary min heap for optimal real-world performance [35]. If

n is the number of nodes and m is the number of links, then k = max(2,m/n) is

the number of children per node in the k-ary heap. It has been shown that this

algorithm has a run-time complexity of O(m logk n) [36]. Although there are theo-

retically faster implementations of this algorithm using a Fibonacci heap, the k-ary

heap implementation is known to be significantly faster in real-world scenarios [35].

The RAA’s inputs are an end-device ei, the resources requested by ei, and complete

topology data.

The RAA begins with a pre-processing step, where it iterates over all fog-devices

fj and assesses their available resources to create a list of request servicers F ′ (line

14). Specifically, F ′ is a list of fog-devices that have sufficient resources to fulfill the

request. Afterwards, if no request servicers exist, then the RAA returns a failure

response that is subsequently sent back to ei by the ResourceManager (line 18).

If at least one request servicer exists, then the RAA continues and executes

Dijkstra’s shortest-path algorithm to find the shortest path from ei to all other

nodes in the topology. The algorithm defines the cost across any link l, from the

node l.src to the node l.dst, as 1/(TB(l)−AB(l)). It is important to note that the

amount of available bandwidth on the link l, computed as TB(l) − AB(l), is never

affected by control (and normal background) traffic (e.g., OVSDB messages, service

24



requests, etc.) because a separate allocation for this traffic is made when the FDK

initially starts. However, the actual weight of l is defined as the total cost required

to reach l.dst from ei (unless there is insufficient bandwidth on l to fulfill the request,

in which case the weight is∞). To this end, the algorithm uses a dictionary B which

tracks the best known links used to reach nodes from ei. Therefore, we say that

l.weight = B[l.src].weight+1/(TB(l)−AB(l)), where B[l.src] is the best known link

used to reach l.src from ei (line 30). Using this weight relies on the fact that links

are stored on a k-ary min heap H, which then keeps the link with the lowest weight

at the top. This implies that any link l at the top of the heap can be used to reach

l.dst with the lowest possible total cost from ei (assuming l.src 6= l.dst), meaning

l is suitable to be added to the shortest-path tree P . This link weight also results

in the selection of paths throughout the network which tend to be short and have a

high amount of available bandwidth. Furthermore, H is continually updated during

algorithm execution with the help of the best known link dictionary B. Specifically,

B[n] returns the best known link to reach node n. If n 6∈ B (n has not been reached

already), then the link used to reach n is pushed onto H (line 33). Otherwise, n

has been reached already and the RAA checks if the new link used to reach n has a

lower weight than the best known link B[n]. If it does, then a modified decrease-key

operation is performed on H which replaces the link B[n] with the cheaper new link

(line 37). Then, the new link is shifted upwards in the heap. This process repeats

as the algorithm continues to visit nodes using different paths, eventually shifting

the best links to the top of H and choosing to include them in the shortest-path

tree dictionary P (line 27).

Once Dijkstra’s algorithm is finished, dictionary P contains the shortest-path

tree. To be more precise, P [n] returns the link attached to n facing ei that is

included in the shortest path from ei to n, as well as its weight and both nodes

25



at the endpoints of the link. To this end, P can be used to traverse and gather

information on the shortest path between ei and any other device in the network.

P is then used in the subsequent post-processing step. First, P [fj].weight

is checked for all fj ∈ F ′ and a fog-device fmin ∈ F ′, where P [fmin].weight =

min(P [fj].weight) ∀ fj ∈ F ′ is selected to fulfill the service request (line 44). If

P [fmin].weight = ∞, then no paths with sufficient bandwidth between ei and any

request servicers exist, and a failure response is returned to ei as a result (line

45). Otherwise, the path between fog-device fmin and end-device ei has a sufficient

amount of bandwidth and fmin is chosen to fulfill the request from ei.

The next step is to allocate network resources along the identified path be-

tween ei and fmin. The nodes along this path are accessed by traversing through

dictionary P . Network resource allocation begins with the creation of rate-limited

queues on each switch along this path. The ResourceManager accomplishes this

by making a call to the TopologyManager function create_queue(), which lever-

ages the OVSDB management protocol to create and configure the queues (line

50). The rate-limit is specified in the queue configuration data and is equal to

RB(ei). Once created, these queues are placed on QoS entries (created on startup

of the FDK by the TopologyManager) using a similar TopologyManager function

place_queue_on_qos() (line 51). These QoS entries map to switch ports connected

to the network links along this path, effectively resulting in each port having a set

of packet queues that limit egress traffic.

In addition to queues, flows must also be created to ensure that traffic is directed

along the identified path between ei and fmin and that packets exchanged between

the two devices are placed on the proper queues within each switch. Therefore, as

the ResourceManager installs packet queues on each switch, it also uses OpenFlow

to redirect traffic along the identified path and to the appropriate queues along that

26



End-
device

Fog-
device

Queue on Egress Port Towards Fog-device Queue on Egress Port Towards End-device

…

Fig. 4.2: Enforcing bandwidth reservation using rate-limited queues. For each path reser-
vation, rate-limited packet queues are created and attached to QoS configurations located
on the egress ports towards the fog-device as well as those towards the end-device. Then,
flow table entries are pushed via OpenFlow to enqueue traffic traveling from the end-device
to the fog-device, and vice versa, on these queues.

path by leveraging the FlowManager flow-creation APIs (line 52). Each OpenFlow

flow specifies a set of actions for the reserved path. Therefore, on each switch along

the path the FDK uses one OpenFlow flow that specifies multiple actions: one for

redirecting traffic to the desired port (therefore reserving a one-way path for com-

munications between ei and fmin), and another to place packets on the appropriate

queue for that port. Similarly, for communications in the opposite direction from

fmin to ei, another packet queue and OpenFlow flow is installed on each switch.

Therefore, the overhead of enforcing a path and reserving communication band-

width for one service involves the creation of two packet queues and two OpenFlow

flows on each switch along the identified path. Figure 4.2 depicts the creation of

rate-limited queues along a path to ensure network bandwidth allocation in both di-

rections. Finally, because the FDK never over-allocates resources, the rate-limiting

of bandwidth effectively results in the allocation of bandwidth.

The flows installed on switches match packets (flow classification) based on

source IP address, destination IP address, source or destination port number (de-

pending on the traffic direction), and protocol type. For communications from ei to

fmin, the source IP address is ei’s IP address, the destination IP address is fmin’s IP

address, and the destination port is a proxy port on fmin assigned to the container-

ized service. The protocol type specifies the transport layer protocol used by the

application. The transport layer protocols supported are UDP, TCP, SCTP, and

27



any user-space protocol that relies on these protocols. For example, QUIC [37, 38]

is a widely-used user-space protocol that is implemented on top of UDP, and is

therefore supported by the FDK.

Finally, a success response containing fmin’s IP address and the proxy port (if

the end-device has not asked for a particular port number) is returned to the service

request server (line 49), which then remotely instantiates a container on fmin using

Docker Swarm. The success response is then forwarded to the end-device as well.

At this point, all computational and networking resources have been allocated, and

once ei receives the success response message, it can begin communicating with the

newly created containerized service running on fmin.

There are multiple mechanisms available to direct packets to the appropriate

container when they arrive at fmin. The first mechanism is to dedicate a unique

proxy port on the fog-device to each service. To this end, for each containerized

service, the FDK finds a unique port number that has not been used on the fog-

device hosting the container. The FDK also allows end-devices to specify their

desired destination port number when making requests. However, without adding

additional capabilities, this mechanism does not allow two or more end-devices to

request the same port number on a fog-device. To address this issue, the fog-

device demultiplexes (using reverse proxy or OVS) the received packets to different

containers based on their source IP address. Therefore, once a service request is

fulfilled, the FDK only needs to return the IP address of the identified fog-device

to the end-device. An alternative approach to supporting multiple containers using

the same port numbers on the same fog-device is to assign each container an IP

address in the same subnet as that of the fog-device. In this case, the IP address

assigned to the container is returned to the end-device, instead of the IP address of

the fog-device. Also, the container’s IP address is used to configure the flow tables

28



on switches along the communication path. This approach, however, is not officially

supported by Docker due to its security issues. Specifically, this approach does not

allow the protection of containers from the outside world and from each other. In

contrast, using a proxy port requires ingress access to be explicitly granted, which

offers higher security. Therefore, although both mechanisms are supported by the

FDK, in this work we particularly focused on the former due to its higher security

and wide-spread adoption [39].

As seen throughout this section, applications must be adapted to the FDK in

order to benefit from fog resources. Therefore, end-devices must be programmed

to issue service requests so that these resources may be allocated. However, this

may not be possible with commercial, non-open-source applications running on the

end-devices. A simple solution is to use a middleware that issues service requests on

behalf of the application. Also, since the middleware can translate the destination

port number of packets originating from end-devices, a unique port number can be

assigned to each request, and therefore there is no need to use a demultiplexing

tool on the fog-devices to deliver incoming packets to the appropriate container. It

is also worth noting that the middleware does not need to be implemented on the

end-devices. As an example, consider a gateway node (such as a smartphone or an

IoT gateway) collecting data from multiple sensing devices. The gateway can then

request for resources on behalf of these devices, and therefore there is no need to

modify the software stack of the sensing devices.

To summarize, consider a scenario where multiple end-devices communicate

with multiple containers that run on a single fog-device and listen on the same

port. In this case, source IP address is the 5-tuple’s element that is used to classify

these flows by the switches as well as the fog-device. Alternatively, if a gateway that

includes a middleware is used to issue requests on behalf of multiple end-devices,

29



since the source IP address of all the requests generated by the gateway are the

same, the FDK generates a unique port number assigned to each service. In this

case, port number is the 5-tuple’s element that is used to classify these flows by the

switches as well as the fog-device. Therefore, the FDK offers a robust flow classi-

fication mechanism on switches and fog-devices as a part of its resource allocation

features. With this mechanism, end-devices are provided with the capability to

make multiple service requests in parallel. This implies that any end-device may

request an arbitrary amount of services (as long as sufficient resources exist), and

therefore run an arbitrary number of fog applications.

As the ResourceManager continues allocating resources over time, it keeps track

of all allocated resources. Once an end-device decides to terminate a service, it issues

a shutdown request to the shutdown request server, which then runs the resource

deallocation algorithm (RDA). The RDA identifies and releases the resources allo-

cated for the corresponding service. In short, OpenFlow flows along the reserved

path are deleted, network bandwidth is deallocated by deleting the appropriate

packet queues, and the containerized service in the fog-device is shutdown.

30



Chapter 5

Evaluation

In this chapter we first verify the correctness and performance of the FDK using

sample applications running on a physical testbed. We then present simulation-

based scalability analysis of the FDK.

5.1 Verification and Evaluation using a Physical

Testbed

In this section we verify the correctness and performance of the FDK using a physical

testbed running various applications.

Testbed. Figure 5.1 shows our testbed, which includes five OpenFlow switches,

four fog-devices, and eight end-devices. This testbed implements the network pre-

sented in Figure 5.2. Each end-device is a Raspberry Pi Model 3 B+ (running

Raspbian Linux) which is connected to a switch using a 1 Gbps cable. The ma-

chine hosting the four fog-devices includes a 4-port Intel 82580 NIC, where each

fog-device is a VM associated with a physical port. Another machine includes five

4-port Intel 82580 NICs as well as a 2-port NIC to build the five OpenFlow switches.

The 2-port NIC is paired with one of the aforementioned 4-port NICs to build a

6-port switch which is connected using a 1 Gbps cable to the controller. Both ma-

chines include two 16-core Intel Xeon CPUs and 64 GB RAM. Each fog-device and

31



Fig. 5.1: The physical testbed used to implement the topology depicted in Figure 5.2.
End-devices, switches, and fog-devices are connected through physical links.

OpenFlow switch uses Ubuntu Server 18.10 and leverages 4 CPU cores and 8 GB of

RAM. The OpenFlow switches run OVS 2.10.0 and support both OpenFlow 1.3 and

OVSDB. Docker daemons run on each fog-device, and are configured to listen for

remote TCP connections from the controller. The controller (including the FDK)

is hosted on an external server.

We partitioned the end-devices into three groups. Referring back to Figure 5.2,

we placed end-devices 1, 2, and 3 into Group 1, end-devices 4 and 5 into Group 2,

and end-devices 6, 7, and 8 into Group 3. This grouping helps us identify the effect

of the FDK on network overhead, which may vary depending on the location of the

end-devices. For example, assume that all the end-devices issue service requests

concurrently. The OpenFlow switch connected to the devices in Group 1, which

is the switch closest to the controller, would be placed under higher stress com-

32



Group 3Group 2Group 1

OpenDaylight

Controller

FDK

Docker

Fog-device 1

C1 Cn

Fog-device 2

C1 Cm

Fog-device 3

C1 Cx

Fog-device 4

C1 Cy

End-device 8End-device 7End-device 6End-device 5End-device 4End-device 3End-device 2End-device 1

Fig. 5.2: The network topology used for the development and testing of the FDK. Ci

represents a container running on a fog-device.

pared to those switches further from the controller, such as the switch connected

to Group 3. In this case, all service and shutdown request messages, OpenFlow

messages, OVSDB messages, Docker Swarm container instantiation messages, etc.,

pass through the switch connected to Group 1. At the same time, only a fraction

of these messages passes through the switch connected to Group 3. We created the

three Groups in an attempt to capture the effect of these variations.

Applications. We evaluate the application development capabilities of the

FDK by creating a set of sample applications. The first application, which includes

an iperf3 server and an iperf3 client, is called iperf-app and enables an end-device

(client) to communicate through TCP with a containerized service on a fog-device

(server). To develop iperf-app, we first created a Python script that hosts an iperf3

server using the iperf-python library [40]. We then packaged this script into a

Docker image. Finally, we modified the server script to communicate all bandwidth

readings to a background process running on each fog-device. This process receives

and saves the readings. On the end-devices, we created another Python applica-

tion that issues a service request to instantiate the aforementioned Docker image

as a container, starts the client that streams data to the server running in the con-

tainer, and then issues a shutdown request once the client terminates. The second

33



application developed is sleep-app, which sends a service request, sleeps for a partic-

ular duration, and then sends a shutdown request. These applications are used to

analyze the impact of service requests and varying levels of bandwidth utilization

on the FDK’s ability to service those requests. The third application developed

is an object detection application named detection-app. The application streams

image data from end-devices to the services in the fog-devices, which run object

detection algorithms to identify different objects found in images. The transport

protocol used by this application is QUIC. A real-world example of this application

is an object classification and packaging system. Another application is a real-time

surveillance system supporting facial recognition.

Verification. Before running any tests, and in order to confirm the function-

ality of the FDK, we issued service requests to the FDK from the end-devices and

verified that resources are allocated properly. To this end, we made temporary

modifications to the fog-side Docker images that would consume as many resources

as possible and then confirmed that the containers instantiated from these im-

ages did not exceed the resources allocated to them. For example, we modified

iperf-app in one test to spin up an infinite while loop script that consumed all

processing resources. Then, by using performance monitoring tools such as top we

confirmed that the container did not exceed the resource allocations requested by

the end-device. Similarly, we confirmed that network resources were appropriately

allocated using iperf-app, which revealed that bandwidth allocations were not ex-

ceeded. Finally, we used detection-app to represent a real-world scenario, where

we configured end-devices to randomly wake-up, issue a service request, and then

capture and stream images to services on the fog-devices running object recogni-

tion algorithms. Each service request specifies a desired bandwidth allocation of 40

Mbps. Each end-device, after about 7 seconds into its streaming period, ceases its

34



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (sec)

0

100

200

300

B
a

n
d

w
id

th
(M

b
p

s)

Fig. 5.3: Overall bandwidth of the data received by fog-devices corresponding to the im-
ages captured and sent by end-devices via detection-app. Blue (solid) and red (dashed)
bars denote service requests and shutdown requests made by end-devices, respectively.
Bars which are less transparent indicate a greater amount of service or shutdown requests
made during a particular second. This figure shows the dynamics of allocating and deal-
locating resources by the FDK when end-devices randomly issue service and shutdown
requests.

image streaming and sends a shutdown request. We performed similar verification

steps to ensure that resources were all allocated and deallocated properly. Figure

5.3 shows the total bandwidth of streaming data received by the fog-devices. To

generate this figure, all fog-devices were configured to be time-synchronized, and

each container was configured to record the number of bytes received per second

through its network interface.

Given that these applications use a variety of transmission rates, transport layer

protocols, and randomized service and shutdown request patterns, the operation of

the FDK was carefully verified before proceeding with performance evaluation tests.

In the rest of this section, we present performance evaluation of the FDK.

5.1.1 Test 1: Resource Allocation and Deallocation

The goal of Test 1 is to characterize the computational and communication over-

head of the FDK. This is accomplished by running applications across all end-devices

and recording the runtimes of various operations under different circumstances. We

track the duration of key operations including resource allocation (RAA), resource

35



0.2 0.3 0.4 0.5
Time (sec)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

RAA Execution Time

Group 1

Group 2

Group 3

0.20 0.25 0.30 0.35 0.40
Time (sec)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

RDA Execution Time

Group 1

Group 2

Group 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Time (sec)

(c)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

Service Request Fulfillment Time

Group 1

Group 2

Group 3

0.2 0.3 0.4 0.5 0.6 0.7
Time (sec)

(d)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

Shutdown Request Fulfillment Time

Group 1

Group 2

Group 3

Fig. 5.4: Empirical Cumulative Distribution Function (ECDF) graphs for Test 1a. In this
test, end-devices issue service requests sequentially. Groups closer to the controller (and
therefore FDK) complete all of their operations slightly faster than those further from the
controller.

deallocation (RDA), service request fullfillment, and shutdown request fulfillment.

Service request fulfillment duration refers to the total duration between the time an

end-device sends a service request to the FDK and the time the end-device receives

a success response from the FDK. Similarly, shutdown request fulfillment duration

refers to the total duration between sending a shutdown request and the reception

of confirmation. For this experiment, we ran sleep-app across all eight end-devices

in the topology and measured the duration of the aforementioned performance pa-

rameters. We repeated this experiment 250 times for a total of 2000 sleep-app runs,

and ran two different versions of this test, bringing the number to 4000. These

different test versions are Test 1a and Test 1b, as follows.

Test 1a. In this test, the end-devices sequentially run sleep-app. For example,

end-device 1 issues a service request, sleeps for 3 seconds after receiving service,

and then issues a shutdown request. After completion, the rest of the end-devices

perform the same operation sequentially. Figure 5.4 presents the results of Test

1a. The duration of various operations are averaged out among the end-devices of

each Group and are then displayed as ECDF graphs. As seen in Figure 5.4, more

than 95% of all operations completed within 0.33 seconds across all Groups. In

addition, resource allocation times and service request fulfillment times are nearly

identical, as are the resource deallocation times and shutdown request fulfillment

times. This means that resource allocation is the main source of overhead in the

36



0.2 0.3 0.4 0.5
Time (sec)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

RAA Execution Time

Group 1

Group 2

Group 3

0.20 0.25 0.30 0.35 0.40
Time (sec)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

RDA Execution Time

Group 1

Group 2

Group 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Time (sec)

(c)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

Service Request Fulfillment Time

Group 1

Group 2

Group 3

0.2 0.3 0.4 0.5 0.6 0.7
Time (sec)

(d)

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

im
e)

Shutdown Request Fulfillment Time

Group 1

Group 2

Group 3

Fig. 5.5: Empirical Cumulative Distribution Function (ECDF) graphs for Test 1b. In
this test, end-devices issue service requests concurrently. Groups closer to the controller
experience significantly faster service request fulfillment times compared to those further
from the controller. This is because the FDK processes requests sequentially.

process of fulfilling service requests, and that resource deallocation is the main

source of overhead in the process of fulfilling shutdown requests. Also, operations

performed for devices in Group 1 tend to finish slightly faster than those for Group

2, which finish faster than those for Group 3. This is caused by the shorter queuing

and packet processing delays along the path to the controller with a fewer number

of switches. However, the difference in timing is on the order of a few milliseconds.

Test 1b. In this test, the end-devices concurrently run sleep-app. In this case,

all end-devices issue a service request to the FDK at the same time, sleep for 3

seconds upon receiving a successful response, and then send a shutdown request.

Figure 5.5 presents the results of Test 1b. The results presented in Figures 5.5(a) and

5.5(b) are nearly identical to the corresponding Figures 5.4(a) and 5.4(b) from Test

1a, with 95% of these operations completing within 0.28 seconds across all Groups.

However, the results for service request fulfillment times in Test 1b, shown in Figure

5.5(c), look considerably different compared to the corresponding Figure 5.4(c) from

Test 1a. Here, we can observe greater variations in the results, with Group 1, Group

2, and Group 3 showing median service request fulfillment durations of 0.72, 1.06,

and 1.71 seconds, respectively. Also, there is far less variation in the results for

shutdown request fulfillment times, as Figure 5.5(d) shows. In this regard, Group

1, Group 2, and Group 3 show median shutdown request fulfillment durations of

0.23, 0.24, and 0.25 seconds, respectively.

37



Because the service fulfillment process accesses and modifies various shared data

structures such as the Topology object representing the current state of the net-

work, the entire process is guarded by a mutex. This means that the FDK queues

concurrent service requests and handles them sequentially. This effect can be seen

in Figure 5.5(c). Here, because the end-devices in Group 1 are closer to the con-

troller than those in Groups 2 and 3, service requests from these devices sit closer

to the front of the queue than the requests arriving later from Groups 2 and 3.

Therefore, Groups 2 and 3 experience slower service request fulfillment times com-

pared to Group 1. Similarly, the process of resource deallocation is also guarded by

a mutex, meaning that concurrent shutdown requests are handled sequentially as

well. However, because the service requests are fulfilled sequentially, the sleep du-

rations and subsequent shutdown requests made by each sleep-app instance become

desynchronized and happen sequentially. As a result, we see a much smaller impact

on shutdown request fulfillment times in comparison to service request fulfillment

times in Test 1b.

5.1.2 Test 2: Bandwidth Guarantee

In Test 2, we evaluate the overhead of the FDK on the network. Specifically, we in-

vestigate if the FDK compromises bandwidth allocations (by reducing transmission

speeds) for running fog applications. We chose one end-device from each Group to

run iperf-app for 90 seconds with a 300 Mbps bandwidth allocation. This is the

maximum transmission rate of the Raspberry Pi Model 3 B+. Also, after subtract-

ing transmission overheads such as packet headers, the actual data transmission

rate supported is around 280 Mbps. Using iperf-app, an end-device continuously

streams data to a container for 90 seconds. Then, at 30 and 60 seconds into the

90-second transmission, all 7 other end-devices in the topology run sleep-app for one

38



10 20 30 40 50 60 70 80
Time (sec)

(a)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 1

10 20 30 40 50 60 70 80
Time (sec)

(b)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 4

10 20 30 40 50 60 70 80
Time (sec)

(c)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 6

Fig. 5.6: Bandwidth readings for end-devices 1, 4, and 6 throughout Test 2a (300 Mbps
allocation). The bars show the sequential execution of sleep-app by 7 end-devices. These
results show that there is no additional variation in bandwidth for running fog applications
in the presence of sequential service requests made to the FDK by other end-devices.

second. This results in a group of service requests, shutdown requests, OpenFlow

messages, OVSDB messages, and Docker Swarm container instantiation messages

flowing through the network. We ran this experiment 100 times for the chosen

end-device and repeated it for the other two chosen end-devices from the other two

Groups, for a total of 300 iperf-app runs and 4200 sleep-app runs. Finally, we used

two separate versions of this test and analyzed their impact on network congestion

and the transmission bandwidth of iperf-app. In the end, 600 iperf-app runs and

8400 sleep-app runs were performed. The two modified test cases, called Test 2a

and Test 2b, are outlined in detail as follows.

Test 2a. Here, the sleep-app runs occur sequentially with a 2-second gap in

between each run. Figure 5.6 shows the median value, as well as the upper and lower

quartile values, for all 90 bandwidth readings of end-devices 1, 4, and 6. Although

39



10 20 30 40 50 60 70 80
Time (sec)

(a)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 1

10 20 30 40 50 60 70 80
Time (sec)

(b)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 4

10 20 30 40 50 60 70 80
Time (sec)

(c)

275

280

285

B
an

dw
id

th
(M

bp
s) End-device 6

Fig. 5.7: Bandwidth readings for end-devices 1, 4, and 6 during Test 2b (300 Mbps alloca-
tion). The vertical lines show the instances the 7 end-devices start sleep-app concurrently.
These results show that there is no additional variation in bandwidth in the presence of
concurrent service requests made to the FDK by other end-devices.

additional messages are flowing through the network at around 30-45 seconds and

60-75 seconds, the transmission speed of iperf-app is not affected, indicating that

the bandwidth allocations are not compromised by the overhead incurred by the

other sleep-app runs performed during this time.

Test 2b. This test is identical to Test 2a, except that the sleep-app runs

occur after 30 and 60 seconds into transmission are executed concurrently. Figure

5.7 presents the results. Similar to the results of Test 2a, we see that there is

essentially no drop or variation in bandwidth.

40



5.1.3 Test 3: Multiple Bandwidth Guarantees

In this test, we evaluate the effect of a large amount of concurrent requests on the

service and transmission speeds of multiple fog applications running in parallel. We

subject the hardware to a stress test to measure how the FDK operates under large

volumes of requests and to see if bandwidth guarantees can be reliably fulfilled in

a highly-congested network.

For this test, we use end-devices 1 through 7 to run iperf-app concurrently, and

a bandwidth reading is collected per second for 90 seconds. Then, at 30 seconds

and 60 seconds into the 90-second transmission, end-device 8 executes 15 concurrent

runs of sleep-app at the same time. This process is repeated 100 times, meaning that

700 iperf-app runs and 3000 sleep-app runs are performed in total. Finally, three

different variations of Test 3 are executed, where different bandwidth allocations of

100 Mbps (Test 3a), 200 Mbps (Test 3b), and 300 Mbps (Test 3c) are reserved for

each iperf-app instance, bringing the total number of iperf-app and sleep-app runs

to 2100 and 9000, respectively.

Once the tests completed, we calculated the average of each one-second band-

width reading across the end-devices in the three groups. For example, in the case

of Group 1, we initially had 3 bandwidth data sets consisting of 100 runs each

(one for each of end-devices 1, 2, and 3), where each run consists of 90 bandwidth

readings. We then took the average of each bandwidth reading (per second) across

every run to create a single data set of 100 runs. Similarly, the same idea applies to

the devices and data for Groups 2 and 3. Note that we did not include end-device 8

in Group 3 for this test because it was performing 15 concurrent sleep-app runs and

would have experienced a degradation in performance if it were to run iperf-app

as well. This is due to the limited networking and processing capabilities of the

41



20 40 60 80
Time (sec)

(a)

94.0

94.5

95.0

95.5

96.0

B
an

dw
id

th
(M

bp
s)

Group 1 | 100 Mbps Allocation

20 40 60 80
Time (sec)

(b)

190.0

190.5

191.0

191.5

192.0

B
an

dw
id

th
(M

bp
s)

Group 1 | 200 Mbps Allocation

20 40 60 80
Time (sec)

(c)

270

275

280

285

290

B
an

dw
id

th
(M

bp
s)

Group 1 | 300 Mbps Allocation

20 40 60 80
Time (sec)

(d)

94.0

94.5

95.0

95.5

96.0

B
an

dw
id

th
(M

bp
s)

Group 2 | 100 Mbps Allocation

20 40 60 80
Time (sec)

(e)

190.0

190.5

191.0

191.5

192.0

B
an

dw
id

th
(M

bp
s)

Group 2 | 200 Mbps Allocation

20 40 60 80
Time (sec)

(f)

270

275

280

285

290

B
an

dw
id

th
(M

bp
s)

Group 2 | 300 Mbps Allocation

20 40 60 80
Time (sec)

(g)

94.0

94.5

95.0

95.5

96.0

B
an

dw
id

th
(M

bp
s)

Group 3 | 100 Mbps Allocation

20 40 60 80
Time (sec)

(h)

190.0

190.5

191.0

191.5

192.0

B
an

dw
id

th
(M

bp
s)

Group 3 | 200 Mbps Allocation

20 40 60 80
Time (sec)

(i)

270

275

280

285

290

B
an

dw
id

th
(M

bp
s)

Group 3 | 300 Mbps Allocation

Fig. 5.8: Actual bandwidth readings for Tests 3a, 3b, and 3c for each Group. End-devices
1 through 7 run iperf-app, and end-device 8 performs 15 concurrent runs of sleep-app
at 30 and 60 seconds (as indicated by the vertical lines) into the 90-second iperf-app
transmissions. Even under network congestion and stress during these times, the results
show that bandwidth allocations are enforced and no additional variation is observable.

Raspberry Pi.

Figure 5.8 shows the results for Test 3. Here, we formatted the results similar to

those of Test 2, where markers for the median value, upper quartile value, and lower

quartile value are displayed for each (averaged) bandwidth reading of every run.

Each sub-figure represents all of the data collected for an entire Group. These results

demonstrate less than 1 Mbps variations for 100 Mbps and 200 Mbps allocations,

and less than 5 Mbps variations for 300 Mbps allocations. More specifically, Figure

5.8 shows that the actual bandwidth readings are just below the allocated amounts

at all times, regardless of traffic stress on the switches. As previously mentioned,

42



this is because of transmission overheads (such as packet headers) and the limited

processing power of the Raspberry Pi boards.

In the case of the 300 Mbps iperf-app runs, there are more variations in the

bandwidth readings than the 200 Mbps and 100 Mbps runs. However, these varia-

tions do not correspond to the additional messages flowing throughout the network

at 30 and 60 seconds into the 90-second iperf-app transmission. We believe that this

is caused by the processing and queuing delays of OVS kernel path. Similar obser-

vations have been made in [29], which confirms that enhancing the switching rate

and reducing variations can be achieved by using OVS DPDK and certain GRUB

configurations. We leave these enhancements as future work.

5.2 Scalability Analysis

A closer look into the operation of the FDK reveals that the five delay components

of fulfilling a request are: (i) sending a request from an end-device to the controller,

(ii) execution of the RAA to identify a fog-device and a communication path by

the controller, (iii) configuration-related communications between the controller and

switches and fog-device, (iv) execution of configuration commands on the switches

and the fog-device, and (v) sending a reply back to the end-device to confirm the

reservation. Therefore, we can categorize these delays into three groups: communi-

cation delay : items (i), (iii) and (v), processing delay of controller : item (ii), and

processing delay of switches and fog-devices : item (iv).

The communication delay and processing delay of the controller are affected

by network size, which is defined by the number of nodes and the number of links

connecting them. In addition, the communication delay is affected by other factors

such as queuing delay and link speed. The processing delay of configuring switches

43



… … … …

…

…

… … … …

… …

…

…

(b)(a)

Fog-device  SwitchEnd-device

…

……

Level 1

Level 2

Level 1

Level 2

Level 3

Fig. 5.9: The two topologies used for scalability evaluation. These two topologies are
referred to as ’Topology (a)’ and ’Topology (b)’ in the text.

and fog-devices depends on the hardware and software capabilities of these devices.

In particular, the delay of path reservation on a switch depends on the delays

of updating the forwarding table and queue allocation. Similarly, the delay of fog-

device configuration (container instantiation) depends on the processing capabilities

of the fog-device.

Since fog-device and switch configuration delays depend on the hardware and

software characteristics of these components, in this section we neglect these delays

and instead focus on the impact of controller processing delay and communication

delay on resource allocation. To evaluate the performance of the FDK versus net-

work size, we developed a simulation tool using the OMNet++ framework [41]. Fig-

ures 5.9(a) and (b) present the topologies used, which are inspired by leaf-spine and

fat-tree architectures [42], respectively. Topology (a) includes two levels of switches,

where each level 1 switch is connected to 1/3 of the (nearest) level 2 switches. Note

that, in order to increase the number of hops between end-devices and fog-devices,

we did not connect each level 1 switch to all level 2 switches. Topology (b) is a

tree-like topology that includes three levels of switches, where each level 1 switch is

connected to one level 2 switch, and each level 2 switch is connected to one level 3

switch. The controller is connected to the middle switch in level 2 in Topology (a)

and level 3 in Topology (b). In both topologies, the switches of the highest level

44



(10,5) (15,7) (20,10) (25,12)

Number of Switches (level 1, level 2)
(a)

0.02

0.04

0.06

R
A

A
E

xe
cu

ti
o

n
T

im
e

(s
ec

)

Using Topology (a)

#FDs = 5

#FDs = 10

#FDs = 20

(10,5,2) (15,7,3) (20,10,5) (25,12,6)

Number of Switches (level 1, level 2, level 3)
(b)

0.01

0.02

0.03

R
A

A
E

xe
cu

ti
o

n
T

im
e

(s
ec

)

Using Topology (b)

#FDs = 5

#FDs = 10

#FDs = 20

Fig. 5.10: Execution time of the RAA (excluding switch and fog-device configuration
delay) versus network size and number of fog-devices. Sub-figures (a) and (b) present the
results for Topology (a) and (b) of Figure 5.9, respectively. #FDs refers to the number
of fog-devices per level 2 switch in Topology (a) and level 3 switch in Topology (b). The
values in each parenthesis on the x-axis refer, from left to right, to the number of level 1,
level 2, and level 3 switches.

are horizontally connected.

Figure 5.10 shows the RAA execution delay on a single core of a Xeon E5 3

GHz processor. The time required to evaluate the allocation of resources across all

fog-devices to a given end-device is computed, and each point presents the median

of these results for all the end-devices. In other words, referring back to Algorithm

1, we assume that F ′ = F , meaning that all fog-devices are eligible to run the

service requested by the end-device. Error bars show higher and lower quartiles.

As discussed in Section 4.3, the time complexity of the RAA is O(m logk n). Also,

for a given topology, increasing the number of fog-devices per switch increases the

execution time because a higher number of paths must be evaluated whenever a

service request arrives. Increasing the number of fog-devices from 10 to 20 causes

approximately a 120% and 64% increase in execution time in Figures 5.10(a) and (b),

respectively. Comparing Figures 5.10(a) and (b) shows that the execution time on

Topology (b) is about 22%, 39%, and 54% lower than that of Topology (a) when the

number of fog-devices per highest level switch are 5, 10, and 20, respectively. This

45



3 4 5 6 7 8

Edge-device to Fog-device Distance (hops)
(a)

0.0

0.2

0.4

0.6

0.8

1.0

C
o

m
m

u
n

ic
a

ti
o

n
D

el
ay

(s
ec

)

Using Topology (a) | Configuration: (25,12) | End-devices per Level 1 Switch: 5

(100 Mbps,10 Mbps)

(500 Mbps,10 Mbps)

(990 Mbps,10 Mbps)

(100 Mbps,20 Mbps)

(500 Mbps,20 Mbps)

(980 Mbps,20 Mbps)

3 4 5 6 7 8

Edge-device to Fog-device Distance (hops)
(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o

m
m

u
n

ic
a

ti
o

n
D

el
ay

(s
ec

)

Using Topology (a) | Configuration: (25,12) | Number of End-devices per Level 1 Switch: 20

(100 Mbps,10 Mbps)

(500 Mbps,10 Mbps)

(990 Mbps,10 Mbps)

(100 Mbps,20 Mbps)

(500 Mbps,20 Mbps)

(980 Mbps,20 Mbps)

Fig. 5.11: Communication delay of resource allocation versus end-device to fog-device
distance (hops) for Topology (a) presented in Figure 5.9.

reduction is because of the fewer number of paths in Topology (b). For example,

although the number of nodes in Topology (b)’s configuration (25,12,6) is higher

than that of Topology (a)’s configuration (25,12), the number of paths between each

end-device and fog-device is lower in the former topology.

The next set of results presents the communication delay of resource allocation.

Figures 5.11 and 5.12 show the median communication delay during resource allo-

cation versus the number of hops between end-devices and fog-devices for all the

possible allocations of fog-devices to end-devices. Each configuration is presented

as a tuple (x, y), where x refers to the bandwidth used by all data flows (end-

device to/from fog-device) and y refers to the bandwidth allocated to the exchange

of control flows (items (i), (iii), and (v)) between nodes and the controller.

Both Figures 5.11 and 5.12 exhibit the impact of the number of hops and back-

ground traffic on allocation delay. The figures show that a higher number of hops

46



4 5 6 7 8

Edge-device to Fog-device Distance (hops)
(a)

0.0

0.2

0.4

0.6

0.8

1.0

C
o

m
m

u
n

ic
a

ti
o

n
D

el
ay

(s
ec

)

Using Topology (b) | Configuration: (25,12,6) | End-devices per Level 1 Switch: 5

(100 Mbps,10 Mbps)

(500 Mbps,10 Mbps)

(990 Mbps,10 Mbps)

(100 Mbps,20 Mbps)

(500 Mbps,20 Mbps)

(980 Mbps,20 Mbps)

4 5 6 7 8

Edge-device to Fog-device Distance (hops)
(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o

m
m

u
n

ic
a

ti
o

n
D

el
ay

(s
ec

)

Using Topology (b) | Configuration: (25,12,6) | Number of End-devices per Level 1 Switch: 20

(100 Mbps,10 Mbps)

(500 Mbps,10 Mbps)

(990 Mbps,10 Mbps)

(100 Mbps,20 Mbps)

(500 Mbps,20 Mbps)

(980 Mbps,20 Mbps)

Fig. 5.12: Communication delay of resource allocation versus end-device to fog-device
distance (hops) for Topology (b) presented in Figure 5.9.

increases the number of switches that must be configured along the reservation

path. More specifically, they show that doubling the number of hops doubles the

allocation time. A higher utilization level of links by data flows causes a higher

queuing delay on the egress ports of switches. Queuing delay affects all communica-

tion delay components including items (i), (iii) and (v). For example, a 5x increase

in the bandwidth allocated to data flows results in about 380% higher allocation

delay. In cases of high bandwidth utilization by data flows, these results show that

doubling the bandwidth allocated to control flows can cut the allocation delay by

half. However, this introduces a trade-off between resource allocation delay and the

communication resources available for data flows.

Figures 5.11 and 5.12 also reveal that increasing the number of end-devices

results in a higher allocation delay. Specifically, when increasing the number of

end-devices from 5 to 20, communication delay is increased by 25% and 32% in

47



Topology (a) and (b), respectively. The cause behind this increase is a higher

communication delay (caused by OVSDB) between the controller and switches that

grows as the number of flows and queues on each of the switches increases. For

example, the allocation of each queue on a switch inflates the number of bytes

exchanged during the resource allocation process as follows: 55 extra bytes are sent

from the controller to the switch, and 1000 extra bytes are sent from the switch to

the controller.

When discussing Figure 5.10 we highlighted that Topology (b) reduces execution

time by about 50%. In contrast, Figures 5.11(b) and 5.12(b) demonstrate that there

is a higher communication delay of path reservation in Topology (b). This increase

is about 5% when the number of end-devices is 20, and it is further increased for a

larger number of end-devices (not shown in the results). This is because the lower

number of communication paths between the controller and switches in Topology

(b) causes a higher queuing delay that intensifies delay component (iii). This is also

the reason behind the large increase in communication delay versus the number

of end-devices in Topology (b) (when comparing Figures 5.11(b) and 5.12(b)). In

summary, by putting together the results of Figure 5.10 and 5.12, when the number

of level 1 and level 2 switches are 25 and 12, respectively, Topology (b) results in 30

ms lower RAA execution delay and 22 ms higher communication delay. It should

be noted that, if the number of end-devices surpasses 20, the RAA execution delay

would be the same but the communication delay would further increase.

48



Chapter 6

Future Work

In this chapter we present potential future works to extend the FDK.

With regards to network resource allocation, we plan to include transmission

delay guarantees by adopting approaches similar to [23]. Furthermore, the FDK

does not support resource negotiation with end-devices. This means that if the

amount of resources requested by an end-device exceeds the resources available in

the system, the end-device simply receives a failure response message from the FDK

and cannot determine which resource demands should be reduced or by how much.

We plan on including available resource information in responses to end-devices to

promote flexible and more efficient service requests. Moreover, it is not immediately

apparent how an end-device can calculate what amount of resources is appropriate

to request. For example, determining the actual amount of processing and memory

capabilities required to execute a fog application in a timely and efficient manner

depends on various factors such as data processing algorithms, data generation rate,

and the sensitivity of an application to delays. As such, a proven, efficient solution

to this problem is not immediately apparent and will be the key to enhancing

interactions and establishing a greater synergy between end-devices and fog-devices.

In terms of scalability, for large-scale fog systems with stringent resource al-

location deadlines, it is essential to partition the network into regions controlled

separately. Specifically, we propose to use a local controller in each region. These

local controllers are provided with pre-allocated resources by the main controller,

49



and these resources can be allocated to end-devices immediately. Each local con-

troller can also request (from the main controller) for more resources based on

network dynamics. In addition, instead of using dedicated boxes, local controllers

could be implemented in some switches. An alternative approach to reducing the

execution delay of RAA is to create multiple logical overlay networks based on link

delays and bandwidth. Then, for example, if an end-device is requesting 100 Mbps,

only the overlay networks with links satisfying the requested amount of bandwidth

will be considered.

As mentioned earlier, we assign a separate rate-limited queue to each egress port

along the path identified for a reservation. For systems including a large number of

reservations between end-devices and fog-devices, the use of software switches such

as OVS allows the deployment of a higher number of flows and queues in comparison

to hardware switches. In the case of software switches, OVS’s mega-flow cache can

be employed to aggregate flows. To this end, instead of flow matching on 5-tuples,

multiple flows (sharing a properties such as destination fog-device or egress port)

could be aggregated [43]. However, to efficiently benefit from this feature, RAA

(Algorithm 1) must be revised as well.

The FDK opens up vast possibilities for the research and development of fog

systems in areas such as image classification, medical monitoring, and industrial

monitoring and process control [44,45]. In addition to the enhancement and evalu-

ation of the system’s building blocks (e.g., resource allocation algorithms and live

container migration), further experimentation can be performed using the FDK to

identify the shortcomings of existing solutions as well as developing production-

ready solutions.

50



Chapter 7

Conclusion

In this thesis, we proposed the Fog Development Kit (FDK): A platform for the

development and management of fog systems. The FDK provides a comprehensive

resource allocation scheme and stands ahead of other alternatives by enabling both

computational and networking resource allocation. Also, the FDK is application-

independent and offers a significantly shorter and simplified development cycle for

fog-based applications. In addition to supporting physical, production-grade envi-

ronments, the FDK significantly reduces development costs by supporting the use of

emulation tools as well. Therefore, the FDK offers applications portability between

physical and emulated environments. These features make the FDK a valuable tool

in prototyping and developing any fog system, as they can be created and tested

virtually on personal computers and then be easily ported to a physical topology.

Moreover, these capabilities differentiate the FDK from existing simulation plat-

forms. By allowing end-devices to request an arbitrary amount of resources and

services from fog-devices, the FDK enables the development of large and complex

fog systems at essentially no cost, while at the same time abstracting and eliminat-

ing the complexity of resource allocation away from developers.

51



Bibliography

[1] M. Chang and T. Zhang, “Fog and IoT: An Overview of Research Opportu-

nities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016. 1,

15

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role

in the Internet of Things,” in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, 2012, pp. 13–16. 1

[3] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer, vol. 49,

no. 5, pp. 78–81, 2016. 1, 15

[4] Y. Cao, P. Hou, D. Brown, J. Wang, and S. Chen, “Distributed Analytics and

Edge Intelligence: Pervasive Health Monitoring at the Era of Fog Computing,”

in Proceedings of the Workshop on Mobile Big Data. ACM, 2015, pp. 43–48.

1, 15

[5] I. Amirtharaj, T. Groot, and B. Dezfouli, “Profiling and Improving the Duty-

Cycling Performance of Linux-based IoT Devices,” Journal of Ambient Intelli-

gence and Humanized Computing, pp. 1–29, 2018. 1

[6] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “ENORM: A

Framework For Edge NOde Resource Management,” IEEE Transactions on

Services Computing, 2017. 2, 11

52



[7] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation in Fog

Computing Based on Containers for Smart Manufacture,” IEEE Transactions

on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721, 2018. 2, 6, 10

[8] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource Provisioning

for IoT Services in the Fog,” in IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA), 2016, pp. 32–39. 2, 6, 10

[9] N. Ansari and X. Sun,“Mobile Edge Computing Empowers Internet of Things,”

IEICE Transactions on Communications, vol. 101, no. 3, pp. 604–619, 2018.

2, 6, 10

[10] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,

“CloudSimSDN: Modeling and Simulation of Software-Defined Cloud Data

Centers,” in 15th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, 2015, pp. 475–484. 2, 6

[11] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Contain-

erCloudSim: An Environment for Modeling and Simulation of Containers in

Cloud Data Centers,” Software: Practice and Experience, vol. 47, no. 4, pp.

505–521, 2017. 2, 7

[12] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,“iFogSim: A Toolkit

for Modeling and Simulation of Resource Management Techniques in the In-

ternet of Things, Edge and Fog Computing Environments,” Software: Practice

and Experience, vol. 47, no. 9, pp. 1275–1296, 2017. 2, 7

[13] The Linux Foundation, “OpenDaylight.” [Online]. Available: https:

//www.opendaylight.org/ 4

[14] “Open vSwitch.” [Online]. Available: https://www.openvswitch.org/ 4

53

https://www.opendaylight.org/
https://www.opendaylight.org/
https://www.openvswitch.org/


[15] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,”

Dec 2013. [Online]. Available: https://tools.ietf.org/html/rfc7047 4

[16] “OpenFlow Switch Specification,” 2012. [Online]. Available: https://www.

opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf 4

[17] Galaxy Technologies,. GNS3 Network Simulator. [Online]. Available: https:

//gns3.com 4, 13

[18] Mininet Team. (2019) Mininet. [Online]. Available: https://mininet.org 4, 13

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,

“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing En-

vironments and Evaluation of Resource Provisioning Algorithms,” Software:

Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011. 6

[20] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J. Rexford,

“Clove: Congestion-Aware Load Balancing at the Virtual Edge,” in Proceedings

of the 13th International Conference on Emerging Networking EXperiments

and Technologies (CoNEXT). ACM, 2017, pp. 323–335. 7, 8

[21] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient Data-

center Load Balancing in the Wild,” in Proceedings of the Conference of the

ACM Special Interest Group on Data Communication (SIGCOMM), 2017, pp.

253–266. 7, 8

[22] A. V. Akella and K. Xiong, “Quality of Service (QoS)-Guaranteed Network

Resource Allocation via Software Defined Networking (SDN),” in IEEE 12th

International Conference on Dependable, Autonomic and Secure Computing,

Aug 2014, pp. 7–13. 8

54

https://tools.ietf.org/html/rfc7047
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://gns3.com
https://gns3.com
https://mininet.org


[23] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam, S. Mohan,

and R. B. Bobba, “End-to-End Network Delay Guarantees for Real-Time Sys-

tems Using SDN,” in IEEE Real-Time Systems Symposium (RTSS), 2017, pp.

231–242. 8, 49

[24] Docker, “Enterprise Container Platform for High Velocity Innovation.”

[Online]. Available: https://www.docker.com/ 9, 17

[25] Docker, “Swarm Mode Overview.” [Online]. Available: https://docs.docker.

com/engine/swarm/ 9

[26] “Production-Grade Container Orchestration.” [Online]. Available: https:

//kubernetes.io/ 9

[27] K. Govindaraj and A. Artemenko, “Container Live Migration for Latency Crit-

ical Industrial Applications on Edge Computing,” in IEEE 23rd International

Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1,

2018, pp. 83–90. 9

[28] EveryWare Lab. User Trace Simulations Project. [Online]. Available:

http://everywarelab.di.unimi.it/lbs-datasim 10

[29] V. Fang, T. Lvai, S. Han, S. Ratnasamy, B. Raghavan, and J. Sherry, “Eval-

uating Software Switches: Hard or Hopeless?” EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2018-136, 2018. 13, 43

[30] Cisco Systems, “OVSDB Plugin Release Notes, Release 2.3.1,” Jun 2018.

[Online]. Available: https://www.cisco.com/c/en/us/products/collateral/

switches/nexus-9000-series-switches/white-paper-c11-740091.html 14

55

https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/
http://everywarelab.di.unimi.it/lbs-datasim
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-740091.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-740091.html


[31] Juniper Networks, “OVSDB Support on Juniper Networks Devices,” Aug

2018. [Online]. Available: https://www.juniper.net/documentation/en US/

junos/topics/reference/general/sdn-ovsdb-supported-platforms.html 14

[32] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications

and Issues,” in Proceedings of the 2015 workshop on mobile big data. ACM,

2015, pp. 37–42. 15

[33] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network Config-

uration Protocol (NETCONF),” RFC 6241, 2011. 16

[34] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configu-

ration Protocol (NETCONF),” RFC 6020, 2010. 16

[35] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest Paths Algorithms:

Theory and Experimental Evaluation,” Mathematical Programming, vol. 73,

no. 2, pp. 129–174, 1996. 24

[36] R. Sedgewick, Algorithms in C++, 3rd ed. Addison-Wesley, 2002, vol. 2, p.

299. 24

[37] The Chromium Projects, “QUIC, a multiplexed stream transport over UDP.”

[Online]. Available: https://www.chromium.org/quic 28

[38] P. Kumar and B. Dezfouli, “Implementation and analysis of QUIC for MQTT,”

Computer Networks, vol. 150, pp. 28–45, 2019. 28

[39] Docker, “Docker Swarm Reference Architecture: Exploring Scalable, Portable

Docker Container Networks.” [Online]. Available: https://success.docker.com/

article/networking 29

56

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/sdn-ovsdb-supported-platforms.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/sdn-ovsdb-supported-platforms.html
https://www.chromium.org/quic
https://success.docker.com/article/networking
https://success.docker.com/article/networking


[40] M. Mortimer, “iperf-python,” https://github.com/thiezn/iperf3-python, 2019.

33

[41] OMNeT++. (2019) OMNeT++ Discrete Event Simulator. [Online]. Available:

https://omnetpp.org.org 44

[42] S. A. Jyothi, M. Dong, and P. Godfrey, “Towards a Flexible Data Center Fab-

ric with Source Routing,” in Proceedings of ACM SIGCOMM Symposium on

Software Defined Networking Research, 2015, p. 10. 44

[43] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,

A. Wang, J. Stringer, P. Shelar et al., “The Design and Implementation of

Open vSwitch,” in NSDI, 2015, pp. 117–130. 50

[44] B. Dezfouli, M. Radi, and O. Chipara, “Rewimo: A real-time and reliable

low-power wireless mobile network,” ACM Transactions on Sensor Networks

(TOSN), vol. 13, no. 3, p. 17, 2017. 50

[45] S. A. Magid, F. Petrini, and B. Dezfouli, “Image Classification

on IoT Edge Devices: Profiling and Modeling,” Cluster Computing,

https://doi.org/10.1007/s10586-019-02971-9, 2019. 50

57

https://github.com/thiezn/iperf3-python
https://omnetpp.org.org

	The Fog Development Kit: A Platform for the Development and Management of Fog Systems
	Recommended Citation

	Title
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	2 Related Work
	2.1 Simulation Platforms
	2.2 Resource Management and Allocation
	2.3 Fog Architectures and Platforms

	3 The Fog Development Kit
	3.1 Resource Allocation
	3.2 Agility
	3.3 Portability
	3.4 Application Independence

	4 System Architecture
	4.1 TopologyManager
	4.2 FlowManager
	4.3 ResourceManager

	5 Evaluation
	5.1 Verification and Evaluation using a Physical Testbed
	5.1.1 Test 1: Resource Allocation and Deallocation
	5.1.2 Test 2: Bandwidth Guarantee
	5.1.3 Test 3: Multiple Bandwidth Guarantees

	5.2 Scalability Analysis

	6 Future Work
	7 Conclusion
	Bibliography

