
Santa Clara University Santa Clara University 

Scholar Commons Scholar Commons 

Computer Science and Engineering Master's 
Theses Engineering Master's Theses 

12-17-2019 

Analysis of the Duration and Energy Consumption of AES Analysis of the Duration and Energy Consumption of AES 

Algorithms on a Contiki-based IoT Device Algorithms on a Contiki-based IoT Device 

Brandon Tsao 

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_mstr 

 Part of the Computer Engineering Commons 

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/eng_master_theses
https://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages


Brandon Tsao
Dr. Silvia Figueira



Analysis of the Duration and Energy Consumption

of AES Algorithms on a Contiki-based IoT Device

By

Brandon Tsao

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Masters of Science

in Computer Engineering
in the School of Engineering at
Santa Clara University, 2019

Santa Clara, California



Robots do not complain, question, or rest, which
makes them good role models for the rest of you.

- Vadim Kozlov, ficitonal character from Sid Meir’s
Civilization: Beyond Earth

iii



Acknowledgments

First, I would like to extend an immeasurable thanks to my research advisor for his

immense amount of patience helping me through this work. I would also like to thank

my friends and family for encouraging me through my graduate studies journey.

iv



Analysis of the Duration and Energy Consumption of AES

Algorithms on a Contiki-based IoT Device

Brandon Tsao

Department of Computer Engineering
Santa Clara University
Santa Clara, California

2019

ABSTRACT

With the growing prevalence of the Internet of Things, securing the sheer abundance of

devices is critical. The current IoT and security landscapes lack empirical metrics on

encryption algorithm implementations that are optimized for constrained devices, such

as encryption/decryption duration and energy consumption. In this paper, we achieve

two things. First, we survey for optimized implementations of symmetric encryption

algorithms. Seconds, we study the performance of various symmetric encryption algo-

rithms on a Contiki-based IoT device. This paper provides encryption and decryption

durations and energy consumption results on three implementations of AES: TinyAES,

B-Con’s AES, and Contiki’s own built-in AES. In our experiments, we found the algo-

rithms specifically built for constrained devices used about 0.16 the energy and time to

perform encryption and decryption when compared to algorithm implementation that

weren’t optimized for constrained devices.

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Experimental Setup and Methodology . . . . . . . . . . . . . . . . . . 20

5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1 CBC Mode for Contiki’s AES implementation . . . . . . . . . . . . . . . 42

A.2 Sample Clock Cycle Measurement Script . . . . . . . . . . . . . . . . . . 43

A.3 Sample Energy Measurement Script . . . . . . . . . . . . . . . . . . . . . 48

vi



List of Figures

5.1 Energy consumption of AES implementations . . . . . . . . . . . . . . . 27

5.2 Encryption duration of AES implementations . . . . . . . . . . . . . . . 28

vii



List of Tables

3.1 An example AES state of a plaintext block in hexadecimal . . . . . . . . 15

3.2 An example AES key, represented as 4x4 matrix in hexadecimal . . . . . 15

3.3 The AES Round Constants in hexadecimal . . . . . . . . . . . . . . . . . 15

3.4 AES S-Box in hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 AES state after SubBytes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 AES state after ShiftRows . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 AES state after MixColumns . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Energy Consumption of TinyAES Encryption . . . . . . . . . . . . . . . 24

5.2 Energy Consumption of TinyAES Decryption . . . . . . . . . . . . . . . 25

5.3 Energy Consumption of bcon’s AES Encryption . . . . . . . . . . . . . . 25

5.4 Energy Consumption of bcon’s AES Decryption . . . . . . . . . . . . . . 25

5.5 Energy Consumption of Contiki’s builtin AES Encryption . . . . . . . . 25

5.6 Timing of TinyAES Encryption . . . . . . . . . . . . . . . . . . . . . . . 26

5.7 Timing of TinyAES Decryption . . . . . . . . . . . . . . . . . . . . . . . 26

5.8 Timing of B-con’s AES Encryption . . . . . . . . . . . . . . . . . . . . . 26

5.9 Timing of B-con’s AES Decryption . . . . . . . . . . . . . . . . . . . . . 26

5.10 Timing of Contiki’s builtin AES Encryption . . . . . . . . . . . . . . . . 29

viii



Chapter 1

Introduction

The Internet of Things (IoT) is taking the world by storm, with solutions ranging from

consumer convenience to life-critical systems. By the year 2020, there will be over 20

billion digital devices [1], which also means 20 billion distinct points of vulnerability.

For example, implanted and networked medical devices such as pacemakers are already

common [2]. While the Internet connectivity will allow streamlined patches from retail-

ers, it also paves a path for potential hackers, as with the case of St. Jude Medical’s

Quadra Allure MP [3], where half a million pacemakers were recalled for a vulnerability

that could grant unauthorized access. The consequences could be as major as the loss of

personally identifiable medical data and as critical as the actual loss of life. Even seem-

ingly innocuous devices such as DVR boxes could be leveraged in large-scale attacks,

such as when a Mirai IoT Botnet [4] orchestrated one of the most prominent DDoS

attacks in modern computing history. Self-driving cars could be driven o↵ roads. Water

flow sensors could be silenced, preventing the alerting of a flood, or worse, fed false data

to actuate cybermechanical systems to actually start a flood [5]. The list goes on.

Unfortunately, while securing all these devices is certainly a good idea, traditional means

of security does not scale well to the IoT landscape. The small physical size of many IoT

devices, also known as motes, forces the use of smaller processors with fewer registers

and less cache memory. Additionally, IoT devices usually prefer batteries over a power

grid as a source of electrical power. While wired solutions exist, battery power usually

allows for faster, cheaper, and more flexible installations in many cases. Most IoT

1



devices are constrained in terms of both processing power and energy consumption.

Unfortunately, this makes it di�cult to implement secure cryptographic algorithms and

related operations that are known for their heavy footprint in both of these resources.

Regardless, a compromise must be reached the secure IoT devices. There has been much

work trying to create security algorithms and protocols that specifically address the

limitations of IoT [6]. Regardless of their viability, however, new encryptions algorithms

have not been trialed as much, and present a larger risk of containing undiscovered

bugs. On the other hand, traditional algorithms have been tried and proven to be

robust in most circumstances. However, IoT does not fall under the purview of “most

circumstances”; IoT devices cannot be treated as normal, classical computing devices.

Unfortunately, there is little empirical data on how well traditional algorithms actually

perform on IoT devices, or how modified algorithms hold up. Will traditional algorithms

take too long? Or will they use too much power, reducing a mote’s lifetime to a mere

hour? Will modified algorithm implementations prove to be just as secure? They might

have less clock cycles, but do they actually use less power? While doing a survey, there

were few papers found that provided actual data on the performance of traditional

algorithm implementations and those optimized for constrained devices.

To fill the gap in the current space, we obtain various metrics regarding power usage

and encryption/decryption duration for various algorithmic implementations of Rijndael

AES [7], the eponymous Advanced Encryption Standard. We conduct experiments using

multiple traditional and modified algorithm implementations on a constrained device,

specifically the Texas Instruments CC2650 [8]. The CC2650 is a highly power-e�cient

System on a Chip (SoC) including an ARM Cortex-M3 processor and wireless connectiv-

ity transceivers. This device runs Contiki, which is a lightweight, event-based operating

system. We quantitatively determine the extent to which optimized algorithms yield

better results in both of these aspects. Additionally, we investigate why they fared bet-

2



ter, by examining the source code of the algorithmic implementations. We found what

one might expect: that optimized algorithmic implementations performed far better

than the ones that were not optimized or were optimized for higher power devices. In

the experiments, multiple input payload sizes are used and all AES implementations

scaled linearly with these inputs, which was also expected.

The rest of this thesis is organized as follows: Related work is examined in Chapter 2.

We briefly give an overview of the Rijndael AES algorithm in Chapter 3. Experimental

setup and methodology is explained in Chapter 4. Chapter 5 discusses results and

discussions. We conclude the thesis in Chapter 6.

3



Chapter 2

Related Work

Regarding the survey portion of this thesis, we first survey other papers regarding the

state of security regarding IoT in addition to the specific security problems that IoT

faces. Second, explore attempted optimizations of IoT specific security solutions, espe-

cially ones that reduce required processing power or energy. Third, find and consolidate

hard data regarding these optimizations, focusing on symmetric encryption algorithms

that run on edge devices.

Kai Zhao and Lina Ge [9] performed a high level analysis in 2013, suggesting that IoT

not only does has to deal with the same security issues as other information domains,

but also faces other unique issues such as privacy protection and heterogeneous network

authentication and authorization. The paper claims that IoT solutions will continue to

grow into larger networks, making the task of securing the network much more di�cult.

Most IoT solutions aim for (i) comprehensive perception, (ii) reliable transmission, and

(iii) intelligent processing.

(i) Comprehensive perception is a measurement of an edge device’s ability to consis-

tently, accurately, and reliably obtain information about an object, e.g. successfully

taking a temperature reading from a room every hour. (ii) Reliable transmission is a

measurement of how many transmissions make it from their source to their destination,

e.g. sending the temperature readings from an edge device to a base station, and the

base station forwarding the information to a cloud server. (iii) Intelligent Processing

is a measurement is the actual computation of data (and where it is processed), e.g.

4



taking an average of the temperature readings in the cloud.

Availability comes into play with both (i) comprehensive perception and (ii) reliable

transmission, as the prevalent nature and generally unsecured physical location of edge

motes makes it relatively easy to disrupt. Unlike a cloud server which is locked behind

a metal cabinet in a patrolled data center, edge motes often exist in easily-accessible

public spaces. Denial of a mote would then be as easy as physically destroying the

mote. Confidentiality also poses a large issue. If nodes aren’t encrypted, physical access

would immediately lead to the leakage of sensitive data, such as communications keys

and destination IPs. Physical access also opens up a variety of side channel attacks that

could defeat encryption, such as Di↵erential Power Analysis, which can speed up the

time it takes to crack an encryption key.

(ii) Reliable transmission and (iii) intelligent processing are more closely related to

traditional security issues of the network layer and application layer. As such, they do

not need to be addressed specifically in regards to IoT security and will not be discussed

here.

Canteaut et al. [10] suggest multiple encryption algorithms that are suitable for IoT.

Stream ciphers are especially good candidates, as they do not require padding and

decryption can begin as soon as any amount of data is received. Creating additional

padding, as would be done in a block cipher, takes additional processing power. The

constant but potentially erratic transmission nature of edge motes encourages schemes

which can encrypt/decrypt without a full discrete unit of data. Unfortunately, industry

standards tend to prefer block ciphers such as AES. Some of these can be considered

block-based stream ciphers, e.g. AES in CTR mode. However, these modes still fall

behind in throughput and latency compared to dedicated stream ciphers. Therefore,

dedicated stream ciphers are still preferred in IoT applications. Specifically, the authors

strongly recommend the following stream ciphers: Grain v1, HC-128, MICKEY, Rabbit,

5



Salsa20/12, Sosemanuk, and Trivium. In our thesis, we want to provide hard data with a

popular block cipher in a non-streaming mode. This will provide necessary information

when deciding between the trade-o↵s of a stream cipher vs a block cipher.

Hui Suo et al. [11] performed a similar review. Their literature highlights the impor-

tance of key management and node authentication. Security measures such as frequency

hopping communication and public-key encryption are less practical with the limited

electric power, processing power, and storage capacity of constrained devices. The lack

of asymmetric cryptography further highlights the di�culty in setting up secure keys

among a considerably large number of motes. Assuming that keys can be set up, by-hop

encryption poses certain dangers as each node might have a plaintext version of the data

to be transmitted. This danger is increased in the IoT landscape, as nodes are more

susceptible to physical capture. However, the need in fully encrypting environmental

sensor data (e.g. weather temperature readings) is less important, as it would be easier

for an attacker to simply place their own sensor in the same area, assuming the environ-

ment is public. In this scenario, it would be more important to ensure the integrity and

authenticity of the sensor data, i.e. guaranteeing the sensor data is accurate and not

tampered with. Privacy and confidentiality come more into play in regards to medical

sensor data, such as human temperature readings, in which leaked data could result

in legal issues. The literature also briefly mentions the lack of regulatory legislature

regarding IoT due to its fairly young existence.

Xinlei Wang et al. [12] propose a solution for the issue of key management: Attribute

Based Encryption (ABE). Traditional encryption schemes usually require each node to

know not only the identity of the other nodes in the cluster, but also to have credentials

that would allow secure communications, i.e. both nodes having a public key to allow

the sharing of a symmetric key. In ABE, nodes do not need to pre-share secrets, which

simplifies key management, especially in an IoT landscape. However, this literature

6



focuses on ABE for mobile devices. While mobile devices can certainly play a critical role

in IoT, especially as access points for smaller devices, they usually are not as restricted

as actual edge motes. As ABE is still constrained by the complex mathematics as all

public key cryptographic schemes, it may not be the best solution for smaller motes.

The paper provides hard data on execution time, data / network overhead, energy

consumption, and CPU usage to allow for better informed decisions when considering

the trade-o↵s of this scheme.

These experiments utilized a laptop with a 64-bit 1.60 GHz processor and 4 GB of RAM

and a smartphone running Android 4.04 with a 32-bit, 1.6 GHz processor and 1GB of

RAM. On both devies, ABE took longer and utilized more CPU and memory than

RSA, the more traditional algorithm that was used for comparison. In the literature’s

conclusion, “without significant improvement, the classic ABE algorithms are best used

when the computing device has relatively high computing power and the applications

demand low to medium security.” However, the literature also points out that ABE

allows for better flexibility regarding access control, which would be a key factor in an

IoT landscape.

From our survey of the state of security of IoT, we found the main issues barring

traditional security measures were scalability (in the case of key management and mass

node authentication) and resource usage. If traditional symmetric encryption algorithms

were optimized for IoT devices and used less resources, they could be better used in

conjunction with novel key management schemes. In the case that traditional key

management schemes and traditional symmetric encryption algorithms are used in an

IoT problem space, the same algorithms with optimized implementations should still

fare better. The next part of the survey is to gather the work done in this area and see

if optimized algorithmic implementations provide positive benefits.

Salajegheh et al. [13] explore various software methods of reducing energy consumption.

7



The authors mainly achieved this by avoiding as much local context switching as possi-

ble, especially the declaration of local variables within local functions. This limits the

amount of context switching, and therefore the number pushes and pops a program has

to carry out. These are expensive operations, and reducing them as much as possible

will reduce energy. In the realm of encryption algorithms, however, these techniques

might not be suitable for immediate IoT implementation for various reasons: (i) altering

function scope can a↵ect how the algorithm leverages memory, possibly opening more

vectors for side channel attacks; (ii) memory changes can also a↵ect how addresses are

assigned, possibly increasing the chances of another function accessing sensitive variable

information; and (iii) programs must limit local variables and functions, forcing redun-

dant code which will increase the size of the binary. However, these are not necessarily

negative consequences, but need to be considered when weighing di↵erent trade-o↵s.

Additionally, we must consider the use cases and context of such optimizations. Often

times, changing function scope would not only require the modification of the core

operating systems of the constrained device to implement various encryption algorithms

by default, but would also require those functions to be part of the actual operating

system. Calling these “pseudofunctions” could pose an even greater di�culty as many

libraries requiring encryption would then have to invoke the operating system itself to

perform encryption and decryption. Not only does this pose a security risk by giving

external function access to OS level variables, but it also requires a costly context switch,

which most likely undoes the savings gained by globalizing variables.

One of NEC’s technical journals [6] also proposes a new algorithm altogether, specifically

designed for constrained devices. NEC’s own TWINE algorithm [14] can achieve a lower

power footprint than that of AES by using customized hardware, which uses 2k gates

compared to the 15k gates of a similar AES hardware core implementation. Of course,

this requires said specialized hardware. AES still outperforms TWINE in pure software

8



implementations, though the executable of TWINE can achieve sizes as low as 500 bytes.

This algorithm, while tested by NEC itself and others, is still less vetted than classic

algorithms such as AES, and is not yet as popular in terms of encryption standards.

Another way of reducing power while still using traditional algorithms is to create ded-

icated hardware to perform said algorithms. By performing the necessary arithmetic

operations of an encryption algorithm directly using gates allows the bypass of various

layers of software abstraction (and their accompanied hardware), therefore reducing the

overall power. Hardware also gives the advantage of generally being more resistant to

side channel attacks, as they are usually less transparent and more di�cult to directly

interact with without physical access, usually acting like black boxes.

While the arithmetic operations can simply be carried out by normal arithmetic gates

in serial, it makes sense to optimize the hardware to achieve as much as possible in a

single clock cycle. There are di↵erent approaches to this with varying levels of trade-o↵s

in terms of power usage, chip size, flexibility and scalability.

Hamalainen et al. [15] have created chips specifically designed to minimize the number

of gates, therefore reducing overall chip size and power consumption. They managed to

reduce the number of gates to about 3,100. With a 153 MHz clock, the chip is able to

achieve a 121 Mbps throughput of encryption via AES 128. Using 30 to 62 µW/Mhz,

this is about 4.8 to 9.9 nJ per block encrypted/decrypted.

S. Mangard et al. [16] created a chip architecture that focused on flexibility and scal-

ability, having a total gate equivalent of 10,800. Operating with a 64 Mhz clock, the

standard chip achieved throughput of 128 Mbps, with a high-performant variation using

about 15,500 gates running a throughput of 241 Mbps. This paper unfortunately did not

include power measurements, but we can assume the larger gate footprint would result

in larger power usage. Looking at the quantified results, S. Mangard et al.’s architecture

9



outperforms Hamalainen et el but uses more gates, and therefore more power.

However, such solutions would require hardware additions to each constrained device,

as well as firmware/software to interface with it for encryption/decryption, which would

likely incur an upfront redesign cost. This needs to be considered a trade o↵, as this

initial cost could still reduce costs in the long-run if lower power consumption leads to

less maintenance or longer field life.

The thesis of A.A.A.Y Hassan et al. [17] outlines some empirical data collected on

various symmetric key algorithms, such as AES and Blowfish [18]. We will expand on

some of these findings later in this thesis. While the paper was oriented toward the

IoT landscape, the tests were done on a laptop with a 64-bit Intel i5 processor running

Windows 10. The thesis provides metrics on encryption duration, space complexity,

and throughput. For a message inputs from 62 bytes to 223 bytes, AES and Blowfish

performed similarly in terms of time and throughput, with Blowfish outperforming AES

after 283 bytes, taking 0.80 and 1.24 times the time and throughput, respectively. How-

ever, there was only a second data point after 223 bytes so it’s unclear whether this

improvement continued or what the rate of further improvement was. It is also unclear

if these improvements would translate to a more constrained device. Nonetheless, the

paper recommends Blowfish for IoT given its reduced encryption time and increased

throughput over AES.

A similar paper by Michael Healy et al. [19] examined hardware and software implemen-

tations of three symmetric block-cipher encryption algorithms: Rijndael AES, RC5, and

Skipjack. Of these algorithms, AES remains to be the most secure. RC5 is vulnerable to

di↵erential attacks, in which an attacker would be able to obtain the encryption key pro-

vided they are able to encrypt a number of chosen plaintexts. However, in practice 244

of these plaintext/ciphertext pairs would be required to obtain the secret key, deemed

by the paper’s authors to be unlikely in the landscape of wireless sensor networks and

10



IoT. Additionally, the authors predicted that Skipjack’s 80-bit key could be vulnerable

to an exhaustive key attack within five years of the paper’s writing. That date has

since passed, and it is reasonable that this key can be brute forced by contemporary

computing resources.

When testing AES, two platforms were used: A MICAz mote with 4 KB RAM and 512

KB NVM storage, and a Tmoke Sky mote with 10 KB RAM and 1 KB NVM storage.

Both of these platforms contain a CC2420 radio chip with hardware security support,

including encryption via AES-128. However, the chip does not provide the ability to

perform AES-128 decryption, only encryption. This is likely a design choice, as forgoing

decryption capabilities will produce a smaller chip and sensor motes often do not need to

receive secure, encrypted data. Additionally, certain AES modes do not require separate

decryption functions, such are CTR mode.

While the paper went over results from all algorithms, we will only discuss the results of

the hardware and software AES as those are most relevant to this thesis. In performing

actual encryption, hardware AES on the MICAz was performed 49 times faster than the

software implementation. On the Tmote sky, hardware AES was only 4 times faster. In

both experiments, the hardware AES implementation used less RAM than its software

counterparts.

Shammi Didla’s paper [20] is the closest in theme to this thesis, exploring their own

AES optimizations in reducing RAM, ROM, and executable size for edge devices and

outlining the methods used to achieve these optimizations. They even use a similar edge

device as this thesis, a TI CC2420. The optimizations implemented are similar to the

ones utilized in the algorithms we analyzed. The paper gives a concise overview of the

types of optimizations often used: (i) specialization of code, (ii) varying data sizes, (iii)

loop unrolling, (iv) function inlining, (v) reducing memory moves, (vi) eliminating local

bu↵ers, and the (vii) use of global variables.

11



Specialization of code would involve cutting out superfluous options that do not directly

pertain to the task at hand. With regards to AES, this means only loading necessary

tables for a given key size, e.g. 128, as di↵erent key sizes require di↵erent constants.

This is explored more in this thesis in Results and Discussion Chapter (5)

Using varying data sizes that suit the processor size of the target machine understand-

ably a↵ects performance. For example, using 16-bit types on a 1-bit or greater processor

will allow for more e�cient operations, but would hard fail on a 8-bit machine.

Reducing memory moves, eliminating local bu↵ers, and using global variables are all

examples of trying to reduce scope and state changes as much as possible. Depending

on the processor, changing local bu↵ers or passing pointers compiles to varying numbers

of operations, as di↵erent processors handle memory access di↵erently. Having a solid

understanding the processor, one can pick the option which will reduce the total number

of operations the most. Taking this further, one can also exploit the C precompiler to

define values to achieve a similar a↵ect.

Loop unrolling and function inlining are similar optimizations in which loops of iterables

and functions calls are replaced with repeated code, i.e. the entity that was being loops

or the contents of a function. This reduces array accesses and scope changes but reduces

code readability and greatly increases the source code size.

However, the paper showed that only some of these optimizations had a significant e↵ect

on RAM/ROM usage and encryption/decryption duration, such as specializing the code

to the keysize, which led to a 184% increase in key expansion speed.

The paper also explains that GNU GCC has flags (O1, O2, O3) to automatically attempt

its own optimizations such as loop unrolling, function inlining and register renaming.

However, these automatic attempts did not result in the same gains and sometimes

even had negative impacts, as was the case with the O3 compiler option which enables

12



automatic loop unrolling, resulting in a 14% decrease in encryption/decryption speed

and also increasing code size by a factor of 3. In the paper’s experiments, almost all

the manual variation of the optimizations outperformed that of the automatic compiler

flags.

13



Chapter 3

Symmetric Encryption

We chose to examine symmetric key encryption algorithm implementations primarily

because most communication over the wire is done with symmetric encryption, whereas

asymmetric algorithms are primarily used for key exchange protocols. For example, in

the HTTPS and SSH protocols, after a secret key exchange, data in flight is encrypted

with a symmetric key [21] [22]. For edge devices, this means that the majority of

encryption is done with symmetric encryption, assuming that public key generation and

symmetric key exchanges happen infrequently. This will especially be true if keys are

loaded on ROM flash or pre-shared before the edge device has been fielded. The issue of

regenerating a public-private key pair and constantly renegotiating symmetric key pairs

will not be covered in this thesis, but will be discussed in future work.

We specifically chose the Rijndael AES algorithm due to its ubiquity and current status

as an industry standard, as granted by NIST in 2001 [7]. There are many implementa-

tions of this algorithm in various languages, optimized for various platforms. This gave

us a wide selection of fair use and open source algorithmic implementations to test.

However, to understand how these di↵erent implementations are di↵erently optimized

for edge platforms, we must first understand how AES works in its various modes.

As a block cipher, AES operates on blocks, performing encryption per block of plaintext

to produce a block of cipher text. AES always operates on 128-bit blocks regardless of

key size (i.e. AES-128, AES-192, and AES-256 all use 128-bit blocks). These blocks are

comprised of a 4x4 matrix of bytes, known as the state.

14



Table 3.1: An example AES state of a plaintext block in hexadecimal

19 a9 9a e9
3d f4 c6 f8
e3 e2 8d 48
be 2b 2a 08

Table 3.2: An example AES key, represented as 4x4 matrix in hexadecimal

2b 28 ab 09
7e ae f7 cf
15 d2 15 4f
16 a6 88 3c

In order to perform encryption on plaintexts that are larger than the key size, the key

must first be expanded into round keys according to the Rijndael key schedule [7]. The

first word of every 128-bits of the key expansion starts with the operation RotWord,

which takes the previous word and rotates it leftwards. This transformation on the

example key (Table 3.2) can be seen below:

2

66666664

09

cf

4f

3c

3

77777775

=)

2

66666664

cf

4f

3c

09

3

77777775

The result of RotWord then undergoes the substitution step (ii) SubBytes. This result

is then XORed with the word four position previous (the first column of Table 3.2), and

XORed again with the first round constant (Table 3.3).

The second, third, and fourth words of each 128-bit block is XORed with the word four

positions previous, forgoing the RotWord transformation and SubBytes substitution.

Table 3.3: The AES Round Constants in hexadecimal

01 02 04 08 10 20 40 80 1B 36

15



Table 3.4: AES S-Box in hexadecimal

0 1 2 3 4 5 6 7 8 9 0a 0b 0c 0d 0e 0f
0 63 7c 77 7b f2 6b 6f c5 30 1 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75
4 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 0 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 2 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ↵ f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 8
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

After the creation of the first roundkey, AES will go through nine, eleven, or thirteen

rounds of the following steps: (i) SubBytes, (ii) ShiftRows, (iii) MixColumns, and (iv)

AddRoundKey. It will then go through a final round which omits the (iii) MixColumns

step, only performing the (i) SubBytes, (ii) ShiftRows, and (iv) AddRoundKey steps.

The omission of (iii) MixColumns in the last step makes for easier decryption, as it allows

the decryption (inverse encryption) functions to better mirror the standard encryption

ones.

(i) SubBytes is a simple substitution step where elements of the state are swapped out

for elements according to a lookup table substitution box (S-Box). This S-Box is a

constant generated from the multiplicative inverse over the finite field GF (28). Notice

how the first cell in the example state (Table 3.1) acts as a lookup guide in S-Box (Table

3.4), where the digit “1” refers to the row number and the digit “9” refers to the column

number. This a�ne transformation can also be expressed mathematically with matrices

(as below), with b0 the ith bit of a byte 01100011.

16



Table 3.5: AES state after SubBytes.

d4 e0 b8 1e
27 bf b4 41
11 98 5d 52
ae f1 e5 30

2

666666666666666666664

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

3

777777777777777777775

2

666666666666666666664

b0

b1

b2

b3

b4

b5

b6

b7

3

777777777777777777775

+

2

666666666666666666664

1

1

0

0

0

1

1

0

3

777777777777777777775

This step, in conjunction with AddRoundKey, is the primary way that AES achieves

confusion. Confusion is a cryptographic property that measures how many parts the

encryption key a↵ects a single bit of the plaintext. The more confusion an encryption

algorithm provides, the more di�cult it is to make out the relationship between the

plaintext and respective encryption key.

(ii) ShiftRows is a transposition step in which columns of the state are rotated. The

first row is ignored, while the second row is shifted left 1 byte, the third row shifted left

2 bytes, and the fourth row shifted right 3 bytes. The transformation after ShiftRows

from the current state (Table 3.5) can be seen in Table 3.6. This prevents the each col-

umn being encrypted independently with AES operating as four separate block ciphers

instead of a single unified one.

(iii) MixColumns is a linear transformation step. The columns of the state are multiplied

17



Table 3.6: AES state after ShiftRows

d4 e0 b8 1e
bf b4 41 27
5d 52 11 98
30 ae f1 e5

Table 3.7: AES state after MixColumns

04 e0 48 28
66 cb f8 06
81 19 d3 26
e5 9a 7a 4c

within GF (28) by a constant matrix, one at a time.

2

66666664

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

3

77777775

2

66666664

d4

bf

5d

30

3

77777775

The product of these matrices result in the first column in Table 3.7, which shows

the state after (iii) MixColumns. (iii) MixColumns in conjunction with (ii) Shift rows

is the primary way AES achieves di↵usion. Di↵usion is a cryptographic property that

measures of how much a given ciphertext would change if a single bit of the plaintext were

flipped or how much a given plaintext would change if a single bit of the ciphertext were

flipped.. The more di↵usion that an encryption algorithm provides, the more di�cult

it is to make out the relationship between a plaintext and its respective ciphertext.

(iv) AddRoundKey is a combination step in which the state is XORed with the round

18



subkey. 2

66666664

04

66

81

e5

3

77777775

M

2

66666664

a0

fa

fe

17

3

77777775

The (iv) AddRoundKey is the step in which the encryption key directly a↵ects on the

plaintext.

While delineated as separate steps, these operations can be combined in various arrange-

ments, to reduce the total number of required operations to encrypt a block, thereby

increasing throughput. This is an important consideration when optimizing for di↵erent

goals and will be discussed in greater length in Results and Discussion Chapter 5.

Other than the actual key size, AES-128, AES-192, and AES-256 di↵er in the number

of total rounds, with AES-128 running 10 rounds, AES-192 running 12 rounds, and

AES-256 running 14 rounds. The way the key itself is generated also di↵ers slightly, as

di↵erent key sizes utilize di↵erent elements of the round constant word array rcon. This

becomes important in optimizing for a smaller executable size, which will be discussed

in greater length in Results and Discussion 5.

19



Chapter 4

Experimental Setup and

Methodology

In this thesis, we aim to evaluate the performance of Rijndael AES, a representative

symmetric key based cryptographic algorithm, on resource constrained IoT devices. We

choose to study AES as a non-proprietary, standardized algorithm because it is used

in modern information infrastructure (such as The Internet itself) and has been proven

itself reasonably secure since it is the current Federal Information Processing Standard

[7].

We tried and examined three AES implementations: TinyAES [23], B-Con’s AES [24],

and Contiki’s own built-in AES [25].

The first implementation, TinyAES, is a“small and portable implementation of the AES

ECB and CBC encryption algorithms written in C,” written by kokke [23]. TinyAES

provides four public functions, an encrypt and decrypt function for both ECD and CBC

modes. The entire module uses less than 200 bytes of RAM and 2.3 KB ROM when

compiled for 32-bit ARM. TinyAES has been optimized for 8-bit, 32-bit, and 64-bit

processors. Porting TinyAES into contiki only requires copying and including the aes.c

and aes.h files. Symlinking is a possible alternative, though was not implemented in

our tests.

The second implementation, B-con, has written a collection of cryptographic algorithms,

including AES in both ECB and CBC modes [24]. None of B-con’s AES algorithms have

20



been optimized for speed or space. This library was included to test an AES library

that was not optimized for 8-bit processors. Porting B-con’s AES functions into Contiki

was similar to the porting of TinyAES.

The third implementation, Contiki AES, is the builtin AES library that comes with

contikiOS [25]. It can be found under contiki/core/lib/ [26]. This is actually a

wrapped implementation of Texas Instruments AES-128 implementation [27]. At the

moment, regarding platform independent functions, Contiki only provides the core AES

function, without supporting specific modes. ECB can be emulated by calling the AES

function on subsequent blocks, but CBC must be written independently. No additional

porting was necessary because this AES function is built-in to Contiki OS; however, since

we needed an apples-to-apples comparison of algorithm encryption/decryption modes,

we wrote our own CBC mode in accordance with NIST’s Recommendation for Block

Cipher Modes of Operation [28]. This source code is included in the Appendix.

To compare the energy and time cost of these implementations, we have adopted the

following test cases: all symmetric key algorithms were AES-128 operating solely in

the Cipher Block Chaining mode with constants KEY and IV (Initialization Vector); A

zeroed array of words IN (plaintext input payload) of SIZE bytes was encrypted into a

zeroed array of words OUT (encrypted output payload) of SIZE bytes. Array sizes from

8 bytes to 64 bytes were tested in steps of 8 bytes.

In terms of the evaluation platform, we use a RaspberryPi in tandem with a customized

Energy Measurement Platform for Wireless IoT Devices (EMPIOT)[29] to interpret the

triggers. This evaluation platform is primarily used for energy measurement.

The EMPIOT board allows us to physically measure power consumed in a given inter-

val. This is advantageous over using analytical and simulation-based energy estimation

schemes because the board measures the power used by a device’s physical later, allow-

21



ing the measurement of systems which have not already been profiled for simulation. It

also takes into account all of the attached peripheral systems.

To conduct the energy measurement portion of the experiment, we use two GPIO pins,

connected from the power measurement board to the test board to act as the START and

STOP triggers for the power measurement, with an additional grounding pin. A double

male USB-A to Micro USB cable conducts the actual power measurement. Featuring a

sampling rate of approximately 1000 Hz, EMPIOT is accurate to 0.4 µW in its energy

measurement and has less than 3% error in energy measurement for IoT devices using

802.15.4 or 802.11 wireless standards. Therefore, it is used to collect all energy data

presented in this work.

Custom software on a GMPIOT board uses triggers to measure the shunt voltage,

amperage, and voltage at various clock intervals. By calculating a Lebesgue integral

provided below we are able to calculate the total energy consumption of various opera-

tions. Due to the low energy nature of IoT platforms, 1000 trials are always performed

in order to artificially increase the total energy. A 10 millisecond clock delay is also

introduced to allow the measurement triggers to properly reset between iterations of

each trial batch. The source code of all the mentioned custom software is included in

the Appendix A.

The ARM embedded tool chain is used to compile each Contiki binary. We use Texas

Instruments’ own UniFlash to flash the binary to the CC2650 sensortag. The utility

Screen was used to grab stdout and serial output from the cc2650 sensortag in order

to verify certain information, such as the bu↵er size of the current trial. While Contiki

comes with its own implementation of AES 128, it is only available in its most basic

form, only supporting the Electronic Code Book (ECB) mode. As such, we develop our

own C module to implement Cipher Block Chaining (CBC) mode. This implementation

is not strictly cryptographically-secure as it was not made with side-channel attacks in

22



mind and has not been thoroughly tested.

Besides the energy consumption, we also evaluate the duration of a payload encryp-

tion and decryption, because a slow algorithm could reduce the overall performance

and increase latencies for other operations. This is typically directly correlated with

mathematical complexity: the more work a processor has to do, the longer it will take

to produce a valid result. This can be measured with clock cycles, which can then be

converted to a more human-friendly format, such as milliseconds.

The actual encryption and decryption duration measurements are performed using Con-

tiki’s builtin Rtimer library [26]. Rtimer was built to schedule real-time tasks. However,

we only used the library to obtain the current system time in ticks by taking the current

system time before and after the encryption or decryption of the input payload, taking

the di↵erence in ticks, and then converting the ticks to seconds via on a conversation

constant based on the platform architecture. To maintain consistency with the energy

measurements, 1000 trials were also performed per input payload.

Each algorithm was tested for both encryption and decryption on input payloads of 128,

256, 384, 512, 640, 768, 896, and 1024 bytes. Each input payload was hard-coded as

an array of 8-bit unsigned integer hexadecimal bytes. A custom python script was then

used to aggregate and average the collected data. The python plotting library matplotlib

[30] was used to generate the graphs.

23



Chapter 5

Results and Discussion

In this work we mainly evaluated the energy consumption and encryption duration for

di↵erent AES implementations. Our results on mean energy usage and encryption/de-

cryption duration are shown in Figure 5.1 and Figure 5.2, respectively, in which the five

curves represent the performance of the various encryption algorithm implementations.

The x-axis is composed of the input sizes of the encryption or decryption payloads,

which were multiples of 128 bites up to 1024 bites. The y-axis is the mean energy in

nanojoules of encryption or decryption times in milliseconds plot points, which are then

extrapolated to a best fitting function, which happens to be linear. Each encryption

algorithm implementation has its own color and marker which can be seen in the key of

both graphs: TinyAES encryption is represented by blue circle markers, TinyAES de-

cryption by green triangle markers, B-Con’s encryption by red square markers, B-Con’s

decryption by teal pentagon markers, and Contiki’s built-in encryption and decryption

by violet star markers. Error bars are included but are not visible as the standard de-

Table 5.1: Energy Consumption of TinyAES Encryption

Input Size Mean Standard Deviation
128 5776254.41 453748.090481
256 11316233.34 556543.545837
384 16851178.41 625003.229646
512 22307266.75 682791.689526
640 27880061.05 650531.153705
768 33418061.07 583860.227807
896 38919628.44 422866.189497
1024 44488234.96 350960.044748

24



Table 5.2: Energy Consumption of TinyAES Decryption

Input Size Mean Standard Deviation
128 9222666.73 582636.404009
256 18096184.37 638714.350689
384 27074312.20 629518.659772
512 35992270.97 446109.033318
640 44905314.57 361226.233756
768 53825850.26 568328.822880
896 62716041.24 644512.078094
1024 71679571.65 622131.081676

Table 5.3: Energy Consumption of bcon’s AES Encryption

Input Size Mean Standard Deviation
128 34980536.19 480931.577144
256 69648778.67 778682.112150
384 104473726.13 662301.146915
512 139225982.05 582437.445015
640 174113421.20 462882.471642
768 208796428.57 627184.169925
896 243726691.69 657868.505597
1024 277728811.23 648033.439441

Table 5.4: Energy Consumption of bcon’s AES Decryption

Input Size Mean Standard Deviation
128 37512281.31 461101.889541
256 74721708.89 615664.977466
384 111882055.08 647768.776925
512 149038857.20 655695.414154
640 186269443.71 581670.874856
768 223590153.77 339377.467727
896 261001405.10 422574.634364
1024 298185637.56 678970.709300

Table 5.5: Energy Consumption of Contiki’s builtin AES Encryption

Input Size Mean Standard Deviation
128 5511917.57 471070.692758
256 10570225.27 581100.922584
384 15609257.91 722173.748751
512 20798382.28 638867.691422
640 25912167.82 611921.279023
768 30913768.54 665213.459255
896 36112398.92 466012.060723
1024 41262320.63 98961.8039541

25



Table 5.6: Timing of TinyAES Encryption

Input Size Mean Standard Deviation
128 19.1281605003 1.39136440974
256 34.6738419443 1.65430405547
384 50.1406183503 1.70571148401
512 65.5634304345 1.78799878172
640 81.1430832435 1.73572347509
768 96.7376708984 1.54846664546
896 112.282752991 1.17970977749
1024 128.113058339 0.857033079629

Table 5.7: Timing of TinyAES Decryption

Input Size Mean Standard Deviation
128 28.6338681080 1.56291429807
256 53.6867294633 1.77974669423
384 78.7305559431 1.73421748834
512 103.788340136 1.4023591396
640 129.099712113 0.873406994751
768 154.160738972 1.54908713729
896 179.228907797 1.77475800433
1024 204.290133804 1.7281423693

Table 5.8: Timing of B-con’s AES Encryption

Input Size Mean Standard Deviation
128 101.560784152 1.40652522797
256 199.581337846 1.70730502491
384 297.543749397 1.73907246526
512 395.409915610 1.17621334125
640 493.353461653 1.17543460821
768 591.557512380 1.60771287288
896 689.600569479 1.78939773981
1024 787.689324581 1.63760184798

Table 5.9: Timing of B-con’s AES Decryption

Input Size Mean Standard Deviation
128 108.534087405 1.18521548711
256 213.380601671 1.6684281947
384 318.463527795 1.7820109496
512 423.322100972 1.74191246103
640 528.178384859 1.39258588696
768 633.340040843 0.902440647994
896 737.896597959 1.42046695757
1024 843.266676479 1.56507014887

26



Fig. 5.1: Energy consumption of AES implementations

viation is so small compared to the y-axis values. The specific numbers in our findings

on mean energy usage can be found in Tables 5.1, 5.2, 5.3, 5.4, and 5.5. The specific

number on encryption/decryption duration can be found in Tables 5.6, 5.7, 5.8, 5.9, and

5.10.

All the algorithms scale linearly with input size, in terms of both energy consumption

and time to perform the encryption/decryption. The durations are expected because

AES is a block cipher encryption algorithm. Energy is also expected to scale linearly,

although initial confidence was not as high, because it was unclear whether algorithmic

implementations that were not optimized for a smaller processor would have unexpected

adverse e↵ects on energy, such as forcing a much larger drain beyond a certain input

27



Fig. 5.2: Encryption duration of AES implementations

size.

Comparing the performance of the three implementations of AES, the results show that

the best algorithm is TinyAES, an algorithmic implementation specifically optimized for

smaller processors. B-Con’s AES algorithm implementation, which is not optimized for

smaller processors, performed more poorly. According to its author, “These algorithms

are not optimized for speed or space. They are primarily designed to be easy to read,

although some basic optimization techniques have been employed.”

In general, it can be assumed that if the implementation is optimized for a larger pro-

cessor, the algorithm would not run correctly on a smaller one. For example, on 32-bit

or larger systems, one can combine the SubBytes and ShiftRows steps of AES, lever-

28



Table 5.10: Timing of Contiki’s builtin AES Encryption

Input Size Mean Standard Deviation
128 18.217198989 1.24170762346
256 32.5560349684 1.55711460509
384 46.9968715009 1.73069093396
512 61.4654389187 1.78708865444
640 75.9161223406 1.74041673410
768 90.1617752878 1.66166751355
896 104.6128975330 1.40152716244
1024 119.0844699670 0.847051489196

aging 32-bit tables using 4096 bytes, something that is impossible on a 16-bit or lower

architecture.

TinyAES and Contiki’s built-in implementation for encryption perform similarly, with

Contiki’s outperforming TinyAES by a hair. At an input size of 1024 bits, Contiki’s

built-in implementation used about 8% less energy and time to perform encryption than

that of TinyAES (Tables 5.1, 5.5, 5.6, 5.8). TinyAES’ implementation used about 84%

less energy and time than that of B-Con’s (Tables 5.1, 5.3, 5.6, 5.8). The aggregated

data shows that specialized algorithms such as TinyaES and Contiki’s built-in AES

algorithm perform better on their target platforms. This is of no surprise, as these

algorithms were quite literally designed to perform better on these systems.

This being said, it should also be noted that AES was originally designed with the

criteria of high speed performance on low RAM devices with processors as small as 8-

bits. This, however, does not mean we cannot further optimize its implementations for

speed and energy consumption, especially with the contemporary ubiquity of constrained

devices.

We investigate the three algorithmic implementations in further detail to better under-

stand how they achieve their performance. AES contains many constant components,

such as the S-BOX lookup tables and round constants (rcon) [31]. All three algorithms

declare these as static constant arrays to leverage ROM versus RAM. as a result, this

29



frees up memory when memory is considered a scarce resource. TinyAES o↵ers the abil-

ity to generate the S-BOX tables dynamically, which would trade ROM for RAM. This

makes the TinyaES implementation more flexible, as ROM can be the limiting factor in

certain IoT devices. B-Con’s implementation pre-calculates all possible calculations of

the Galois Field, mainly multiplication. This Galois Field is used in the MixColumns

step of AES, making the operation a two-dimensional array access a faster, vectorized,

multiple step multiplication that can operate on multiple values at the same time.

In general, B-Con’s implementation uses a lot of double array accesses. Additionally,

both TinyAES and Contiki’s implementation attempt to perform as many operations in

a single step as possible. It also seems that TinyAES tried to limit the number of variable

declarations. Although most compilers should have optimization options for constant

folding/propagation [32], which should negate any advantages this would hope to gain.

However, as we had seen in Shammi Didla’s findings, automatic compiler optimization

does not always provide positive results, though manually accommodating code for

optimization, as in aes.c of TinyAES, always did (at least within their experiments).

The following code contains two multiplication helper functions. Notice how TinyAES

gives the option to declare the function either as an actual function or a macro. Within

the actual function, near the last bitshift, the last call to xtime() (line 13) is actually

redundant and unneeded. However, in kokke’s experiments, omitting it tends to create

a larger binary, suggesting that the last call somehow helps the compiler vectorize the

function better.

Listing 5.1: TinyAES’s aes.c

1 stat ic u in t 8 t xtime ( u i n t 8 t x )

2 {

3 return ( ( x<<1) ˆ ( ( ( x>>7) & 1) ∗ 0x1b ) ) ;

30



4 }

5

6 #i f MULTIPLY AS A FUNCTION

7 stat ic u in t 8 t Mult ip ly ( u i n t 8 t x , u i n t 8 t y )

8 {

9 return ( ( ( y & 1) ∗ x ) ˆ

10 ( ( y>>1 & 1) ∗ xtime (x ) ) ˆ

11 ( ( y>>2 & 1) ∗ xtime ( xtime (x ) ) ) ˆ

12 ( ( y>>3 & 1) ∗ xtime ( xtime ( xtime (x ) ) ) ) ˆ

13 ( ( y>>4 & 1) ∗ xtime ( xtime ( xtime ( xtime (x ) ) ) ) ) ) ; /∗ t h i s

l a s t c a l l to xtime () can be omit ted ∗/

14 }

15 #else

16 #define Mult ip ly (x , y ) \

17 ( ( ( y & 1) ∗ x ) ˆ \

18 ( ( y>>1 & 1) ∗ xtime (x ) ) ˆ \

19 ( ( y>>2 & 1) ∗ xtime ( xtime (x ) ) ) ˆ \

20 ( ( y>>3 & 1) ∗ xtime ( xtime ( xtime (x ) ) ) ) ˆ \

21 ( ( y>>4 & 1) ∗ xtime ( xtime ( xtime ( xtime (x ) ) ) ) ) ) \

22

23 #endif

We also examined the number of instructions these implementations compiled to for

32-bit ARM without any special compiler options. For example TinyAES’s SubBytes

function compiled to 308 operations while B-Con’s SubByte’s function compiles to 544

operations. For this particular function, this is primarily because TinyAES simply

uses less array accesses and only makes two 2-dimensional array access compared to

31



Listing 5.2: ”TinyAES SubBytes()”

1 stat ic void SubBytes ( s t a t e t ∗ s t a t e )
2 {
3 u in t 8 t i , j ;
4 for ( i = 0 ; i < 4 ; ++i )
5 {
6 for ( j = 0 ; j < 4 ; ++j )
7 {
8 (∗ s t a t e ) [ j ] [ i ] = getSBoxValue ( (∗ s t a t e ) [ j ] [ i ] ) ;
9 }

10 }
11 }

B-Con’s implementation, which makes three 2-dimensional array accesses (including

assignment) while also performing bitwise operations on the index. TinyAES also uses

a pointer to get the head of the array. Examples of this can be seen in listings 5.2

and 5.3. Overall, it does not seem like TinyAES’ and Contiki’s AES implementations

use drastically di↵erent coding methods than that of B-con’s implementation. The

optimized algorithmic implementations simply limit superfluous code, reducing overall

total operations.

TinyAES also manages to achieve a smaller executable size compared to the other al-

gorithm implementations. TinyAES goes further in its static declarations of constants,

even omitting some of the indices of the round constant word array (Rcon) altogether,

requiring the AES key size to be determined beforehand on start-up. As AES-128, AES-

196- and AES-256 all use di↵erent indices of Rcon and none of them use the zeroth index

[31]. TinyAES also chooses to forgo certain conveniences, such as automatically padding

inputs to match the 128 bit block size. TinyAES even has the option to define multi-

plication as a function or macro, to further reduce the executable size depending on the

compiler used. For example, using the Keil ARM compiler [33], defining multiplication

as a function reducing the executable from 2,087 bytes to 1,268 bytes. Conversely, when

32



Listing 5.3: ”B-Con’s AES SubBytes()”

1 void SubBytes (BYTE s t a t e [ ] [ 4 ]
2 )
3 {
4 s t a t e [ 0 ] [ 0 ] = aes sbox [ s t a t e [ 0 ] [ 0 ] >> 4 ] [ s t a t e [ 0 ] [ 0 ] & 0x0F ] ;
5 s t a t e [ 0 ] [ 1 ] = aes sbox [ s t a t e [ 0 ] [ 1 ] >> 4 ] [ s t a t e [ 0 ] [ 1 ] & 0x0F ] ;
6 s t a t e [ 0 ] [ 2 ] = aes sbox [ s t a t e [ 0 ] [ 2 ] >> 4 ] [ s t a t e [ 0 ] [ 2 ] & 0x0F ] ;
7 s t a t e [ 0 ] [ 3 ] = aes sbox [ s t a t e [ 0 ] [ 3 ] >> 4 ] [ s t a t e [ 0 ] [ 3 ] & 0x0F ] ;
8 s t a t e [ 1 ] [ 0 ] = aes sbox [ s t a t e [ 1 ] [ 0 ] >> 4 ] [ s t a t e [ 1 ] [ 0 ] & 0x0F ] ;
9 s t a t e [ 1 ] [ 1 ] = aes sbox [ s t a t e [ 1 ] [ 1 ] >> 4 ] [ s t a t e [ 1 ] [ 1 ] & 0x0F ] ;

10 s t a t e [ 1 ] [ 2 ] = aes sbox [ s t a t e [ 1 ] [ 2 ] >> 4 ] [ s t a t e [ 1 ] [ 2 ] & 0x0F ] ;
11 s t a t e [ 1 ] [ 3 ] = aes sbox [ s t a t e [ 1 ] [ 3 ] >> 4 ] [ s t a t e [ 1 ] [ 3 ] & 0x0F ] ;
12 s t a t e [ 2 ] [ 0 ] = aes sbox [ s t a t e [ 2 ] [ 0 ] >> 4 ] [ s t a t e [ 2 ] [ 0 ] & 0x0F ] ;
13 s t a t e [ 2 ] [ 1 ] = aes sbox [ s t a t e [ 2 ] [ 1 ] >> 4 ] [ s t a t e [ 2 ] [ 1 ] & 0x0F ] ;
14 s t a t e [ 2 ] [ 2 ] = aes sbox [ s t a t e [ 2 ] [ 2 ] >> 4 ] [ s t a t e [ 2 ] [ 2 ] & 0x0F ] ;
15 s t a t e [ 2 ] [ 3 ] = aes sbox [ s t a t e [ 2 ] [ 3 ] >> 4 ] [ s t a t e [ 2 ] [ 3 ] & 0x0F ] ;
16 s t a t e [ 3 ] [ 0 ] = aes sbox [ s t a t e [ 3 ] [ 0 ] >> 4 ] [ s t a t e [ 3 ] [ 0 ] & 0x0F ] ;
17 s t a t e [ 3 ] [ 1 ] = aes sbox [ s t a t e [ 3 ] [ 1 ] >> 4 ] [ s t a t e [ 3 ] [ 1 ] & 0x0F ] ;
18 s t a t e [ 3 ] [ 2 ] = aes sbox [ s t a t e [ 3 ] [ 2 ] >> 4 ] [ s t a t e [ 3 ] [ 2 ] & 0x0F ] ;
19 s t a t e [ 3 ] [ 3 ] = aes sbox [ s t a t e [ 3 ] [ 3 ] >> 4 ] [ s t a t e [ 3 ] [ 3 ] & 0x0F ] ;
20 }

33



using the Mentor Bench ARM GCC toolchain [34], compiling with multiply defined

as a macro creates a smaller executable than when defining as a function, respectively

2,087 bytes and 2,130 bytes. TinyAES also uses many #ifndef directives to allow the

option of only loading the functions that are required (e.g. only using ECB). B-Con’s

executable, on the other hand, is 190,245 bytes when compiled for 32-bit ARM. This is

likely due to the numerous pre-calculated, hard-coded, two-dimensional arrays.

As is the case with TinyAES, it seems di↵erent compilers will produce di↵erent exe-

cutable sizes despite building from the same source code and for the same target archi-

tecture. If the best way to reduce encryption duration and energy consumption is to

time and measure the energy of each instruction, and only attempt to only leverage in-

structions that use the fewest clock cycles and least amount of power, then the compiled

binaries per compiler must be examined for the number of these few clock cycle and

low power instructions. Another technique could be simply reducing the total number

of instructions by combining multiple operations, as seen in the TinyAES and Contiki

implementations.

These results demonstrate that spending the e↵ort to further reduce the energy con-

sumption of IoT devices, allowing for a longer field life. This would also take less

maintenance to swap out power cells (or the entire IoT device), which further reduces

labor costs.

34



Chapter 6

Conclusion

In this thesis, we survey the state of security of the Internet of Things landscape and

found that IoT faces many unique challenges that traditional security solutions cannot

yet address. This is primarily due to the sheer number of motes that exist within an

IoT network and motes’ resource constrains, such as lower-bit processors, less storage

capacity, less RAM, and less electrical power. We also survey attempts at optimizing

traditional algorithmic implementations for constrained devices. We found successful

optimizations that leverages hardware and software techniques. In our final surveys, we

find some hard data regarding the performance some of these optimizations compared

to that of traditional algorithms.

Our own findings show that two encryption algorithm implementations optimized for

constrained devices, TinyAES and Contiki’s built-in AES, performed better than B-

Con’s AES, which was not optimized for constrained devices. The optimized algorithm

implementations yield smaller executables, provide faster encryption/decryption run

times, and reduce overall power consumption for the platforms they are optimized for.

Specifically, optimized AES implementations used about 0.16 of the energy and time to

complete encryption and decryption compared to unoptimized implementations.

We investigate the cause of these gains and found the energy and time savings was pri-

marily achieved through a variety of manual optimizations. These include optimizations

in leveraging ROM versus RAM, minimizing total operations, and taking advantage of

vectorized instructions. The actual reduction in executable size, run times, and power

35



consumption may vary depending on the compiler used, even for the same source code

and target architecture. These optimizations are not dependent on the actual functions

of Rijndael AES, which means that these optimization techniques can be utilized as to

optimize algorithmic implementations in general.

In combination with the data sets in the literature we surveyed, we hope the quantifiable

metrics found during our experiments further assist in evaluating optimized security

solution for the IoT landscape.

36



Bibliography

[1] Mark Hung. Leading the IoT. Gartner, 2017. URL https://www.gartner.com/

imagesrv/books/iot/iotEbook_digital.pdf. 1

[2] Matej Mikulic. Global number of pacemakers in 2016 and a forecast for 2023 (in

million units), sep 2019. URL https://www.statista.com/statistics/800794/

pacemakers-market-volume-in-units-worldwide/. 1

[3] Kristen Linsalata. Recall: Abbott pacemakers for hacking

threat, 2017. URL https://www.webmd.com/heart/news/20170905/

recall-abbott-pacemakers-for-hacking-threat. 1

[4] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Je↵rey Voas.

DDoS in the IoT: Mirai and other botnets. Computer, 50(7):80–84, 2017. doi:

10.1109/mc.2017.201. URL https://doi.org/10.1109/mc.2017.201. 1

[5] John Gutekunst. Docks flooded as failed dam sensor causes water levels

to rise near parker, apr 2019. URL https://www.havasunews.com/news/

docks-flooded-as-failed-dam-sensor-causes-water-levels-to/article_

0b34d75b-335a-5a72-bf63-6ec44ffe7a60.html. 1

[6] Okamura Toshihiko. Lightweight cryptography applicable to various iot devices.

NEC Technical Journal, 12, 2017. 2, 8

[7] National Institute of Standards and Technology. Federal information pro-

cessing standard 197, the advanced encryption standard (aes). Technical re-

37

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.statista.com/statistics/800794/pacemakers-market-volume-in-units-worldwide/
https://www.statista.com/statistics/800794/pacemakers-market-volume-in-units-worldwide/
https://www.webmd.com/heart/news/20170905/recall-abbott-pacemakers-for-hacking-threat
https://www.webmd.com/heart/news/20170905/recall-abbott-pacemakers-for-hacking-threat
https://doi.org/10.1109/mc.2017.201
https://www.havasunews.com/news/docks-flooded-as-failed-dam-sensor-causes-water-levels-to/article_0b34d75b-335a-5a72-bf63-6ec44ffe7a60.html
https://www.havasunews.com/news/docks-flooded-as-failed-dam-sensor-causes-water-levels-to/article_0b34d75b-335a-5a72-bf63-6ec44ffe7a60.html
https://www.havasunews.com/news/docks-flooded-as-failed-dam-sensor-causes-water-levels-to/article_0b34d75b-335a-5a72-bf63-6ec44ffe7a60.html


port, 2001. URL https://csrc.nist.gov/csrc/media/publications/fips/

197/final/documents/fips-197.pdf. 2, 14, 15, 20

[8] Cc2650. URL http://www.ti.com/product/CC2650. 2

[9] Kai Zhao and Lina Ge. A survey on the internet of things security. In Pro-

ceedings of the 2013 Ninth International Conference on Computational Intelli-

gence and Security, CIS ’13, pages 663–667, Washington, DC, USA, 2013. IEEE

Computer Society. ISBN 978-1-4799-2549-0. doi: 10.1109/CIS.2013.145. URL

https://doi.org/10.1109/CIS.2013.145. 4

[10] Caroline Fontaine Jacques Fournier Benjamin Lac MarÄśa Naya-Plasencia Renaud

Sirdey et al. Anne Canteaut, Sergiu Carpov. End-to-end data security for iot: from

a cloud of encryptions to encryption in the cloud. In Cesar Conference 2017, 2017.

5

[11] H. Suo, J. Wan, C. Zou, and J. Liu. Security in the internet of things: A review. In

2012 International Conference on Computer Science and Electronics Engineering,

volume 3, pages 648–651, March 2012. doi: 10.1109/ICCSEE.2012.373. 6

[12] X. Wang, J. Zhang, E. M. Schooler, and M. Ion. Performance evaluation of

attribute-based encryption: Toward data privacy in the iot. In 2014 IEEE In-

ternational Conference on Communications (ICC), pages 725–730, June 2014. doi:

10.1109/ICC.2014.6883405. 6

[13] Mastooreh Salajegheh. Software techniques to reduce the energy consumption of

low-power devices at the limits of digital abstractions. 2013. doi: 10.7275/js4x-0t46.

URL https://scholarworks.umass.edu/open_access_dissertations/704. 7

[14] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.

Twine: A lightweight block cipher for multiple platforms. In Lars R. Knudsen

38

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
http://www.ti.com/product/CC2650
https://doi.org/10.1109/CIS.2013.145
https://scholarworks.umass.edu/open_access_dissertations/704


and Huapeng Wu, editors, Selected Areas in Cryptography, pages 339–354, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-35999-6. 8

[15] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen. Design and

implementation of low-area and low-power aes encryption hardware core. In 9th

EUROMICRO Conference on Digital System Design (DSD’06), pages 577–583,

Aug 2006. doi: 10.1109/DSD.2006.40. 9

[16] S. Mangard, M. Aigner, and S. Dominikus. A highly regular and scalable aes

hardware architecture. IEEE Transactions on Computers, 52(4):483–491, April

2003. ISSN 2326-3814. doi: 10.1109/TC.2003.1190589. 9

[17] Abdalla Adam Abdalla Yousif Hassan. Evaluation of encryption algorithms for iot

security. Master’s thesis, University of Almughtaribeen, 2017. 10

[18] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blow-

fish). In Ross Anderson, editor, Fast Software Encryption, pages 191–204, Berlin,

Heidelberg, 1994. Springer Berlin Heidelberg. ISBN 978-3-540-48456-1. 10

[19] Michael Healy, Thomas Newe, and Elfed Lewis. Analysis of hardware encryption

versus software encryption on wireless sensor network motes. In Smart Sensors and

Sensing Technology, pages 3–14. Springer, 2008. 10

[20] Shammi Didla, Aaron Ault, and Saurabh Bagchi. Optimizing aes for embed-

ded devices and wireless sensor networks. In Proceedings of the 4th Interna-

tional Conference on Testbeds and Research Infrastructures for the Development

of Networks & Communities, TridentCom ’08, pages 4:1–4:10, ICST, Brussels, Bel-

gium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering). ISBN 978-963-9799-24-0. URL http:

//dl.acm.org/citation.cfm?id=1390576.1390581. 11

39

http://dl.acm.org/citation.cfm?id=1390576.1390581
http://dl.acm.org/citation.cfm?id=1390576.1390581


[21] A. Schi↵man E. Rescorla. The secure hypertext transfer protocol. RFC 2660, IETF,

August 1999. URL https://tools.ietf.org/html/rfc2660. 14

[22] T. Ylonen. The Secure Shell (SSH) Protocol Architecture. RFC 5251, IETF,

January 2006. URL https://tools.ietf.org/html/rfc4251. 14

[23] kokke. Small portable aes128/192/256 in c. https://github.com/kokke/

tiny-AES-c, 2019. 20

[24] Brad Conte. Basic implementations of standard cryptography algorithms, like aes

and sha-1. https://github.com/B-Con/crypto-algorithms, 2015. 20

[25] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating

system for tiny networked sensors. In 29th Annual IEEE International Conference

on Local Computer Networks, pages 455–462, Nov 2004. doi: 10.1109/LCN.2004.38.

20, 21

[26] 2018. URL https://github.com/contiki-os/contiki. 21, 23

[27] Uli Kretzschmar. AES128 âĂŞ A C Implementation for Encryption and Decryp-

tion. Texas Instruments, 2009. URL https://e2e.ti.com/cfs-file/__key/

communityserver-discussions-components-files/156/slaa397a.pdf. 21

[28] Morris J. Dworkin. Sp 800-38a 2001 edition. recommendation for block cipher

modes of operation: Methods and techniques. Technical report, Gaithersburg,

MD, United States, 2001. 21

[29] Behnam Dezfouli, Immanuel Amirtharaj, and Chia-Chi Li. Empiot: An energy

measurement platform for wireless iot devices. Journal of Network and Computer

Applications, 121, 04 2018. doi: 10.1016/j.jnca.2018.07.016. 21

40

https://tools.ietf.org/html/rfc2660
https://tools.ietf.org/html/rfc4251
https://github.com/kokke/tiny-AES-c
https://github.com/kokke/tiny-AES-c
https://github.com/B-Con/crypto-algorithms
https://github.com/contiki-os/contiki
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/156/slaa397a.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/156/slaa397a.pdf


[30] Paul Barrett, John Hunter, J Todd Miller, J-C Hsu, and Perry Greenfield.

matplotlib–a portable python plotting package. In Astronomical data analysis soft-

ware and systems XIV, volume 347, page 91, 2005. 23

[31] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2. 29, 32

[32] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional

branches. ACM Trans. Program. Lang. Syst., 13(2):181–210, April 1991. ISSN

0164-0925. doi: 10.1145/103135.103136. URL http://doi.acm.org/10.1145/

103135.103136. 30

[33] ARM Compiler v5.06 for ÂţVision armcc User Guide. ARM, 2016. URL

http://infocenter.arm.com/help/topic/com.arm.doc.dui0375g/DUI0375G_

mdk_armcc_user_guide.pdf. 32

[34] Sourcery CodeBench. Mentor. URL https://www.mentor.com/

embedded-software/sourcery-tools/sourcery-codebench/overview. 34

41

http://doi.acm.org/10.1145/103135.103136
http://doi.acm.org/10.1145/103135.103136
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375g/DUI0375G_mdk_armcc_user_guide.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0375g/DUI0375G_mdk_armcc_user_guide.pdf
https://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview
https://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview


Appendix A

Source Code

A.1 CBC Mode for Contiki’s AES implementation

1 stat ic void

2 encrypt cbc ( u i n t 8 t ∗ in , u i n t 8 t ∗ key , u i n t 8 t ∗ iv , unsigned

long s i z e ) {

3 u in t 8 t xor [ 1 0 2 4 ] = {0} ;

4

5 int b locks = s i z e / 16 ;

6

7 for ( int k = 0 ; k < b locks ; k++){

8 int j = k ∗ 16 ;

9 for ( int i = 0 ; i < 16 ; i++){

10 in [ i+j ] = in [ i+j ] ˆ iv [ i ] ;

11 }

12 a e s 1 28 d r i v e r . encrypt ( in+j ) ;

13 iv = in+j ;

14 }

15 }

16

17 const struct a e s 1 28 d r i v e r a e s 1 28 d r i v e r = {

18 set key ,

42



19 encrypt ,

20 encrypt cbc

21 } ;

A.2 Sample Clock Cycle Measurement Script

measure clock cycle.c

1

2 //Santa Clara Un ive r s i t y

3 // In t e rn e t o f Things Research Lab (SIOTLAB)

4 //2017

5

6 #inc lude ” c on t i k i . h”

7 #inc lude ”t i� l i b . h”

8 #inc lude ”sys / et imer . h”

9 #inc lude ”sys / ct imer . h”

10 #inc lude ”dev/ l e d s . h”

11 #inc lude ”power measurement . h”

12 #inc lude ”cpu/cc26xx�cc13xx/ c l o ck . c ”

13 #inc lude ”sys / c l o ck . h”

14 #inc lude ”dev/ t iny�AES128�C/aes . c ”

15

16 #inc lude <s t d i o . h>

17 #inc lude <s t d i n t . h>

18

19 #de f i n e LOOP INTERVAL (150)

43



20 #de f i n e CBC 1

21 #de f i n e SECOND 1000000

22

23 s t a t i c s t r u c t et imer et ;

24 s t a t i c s t r u c t ct imer t imer ;

25

26 v o l a t i l e bool s t a tu s = f a l s e ;

27

28 PROCESS( senso r tag l ed exper iment , ” s en so r tag l ed expe r iment ”) ;

29 AUTOSTART PROCESSES(&senso r tag l ed expe r iment ) ;

30

31 void dump( u in t 8 t ∗ s t r , unsigned long s i z e ) {

32 f o r ( i n t i = 0 ; i < s i z e ; i++){

33 p r i n t f (”%.2x ” , s t r [ i ] ) ;

34 }

35 p r i n t f ( ”\n ”) ;

36 }

37

38 s t a t i c void p r o c e s s t a s k ( void ∗ ptr ) {

39

40 // Local Var i ab l e s

41

42 // Timer Var iab l e s

43 unsigned long t ime s t a r t ;

44 unsigned long t ime stop ;

45 unsigned long c y c l e s ;

46

47 // encrypt ion v a r i a b l e s

44



48 const u i n t 8 t SIZE = 16 ∗ 7 ; // 128 bytes , 1024 b i t s

49 const u in t16 t PAYLOAD SIZE = SIZE ∗ 8 ;

50

51 u in t 8 t key [ ] = {0x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0

xa6 , 0xab , 0xf7 , 0x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c } ;

52 u i n t 8 t i v [ ] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0

x07 , 0x08 , 0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0 x0f } ;

53

54 u in t 8 t in [ ] = { 0x6b , 0xc1 , 0xbe , 0xe2 , 0x2e , 0x40 , 0x9f ,

0x96 , 0xe9 , 0x3d , 0x7e , 0x11 , 0x73 , 0x93 , 0x17 , 0x2a ,

55 0xae , 0x2d , 0x8a , 0x57 , 0x1e , 0x03 , 0xac , 0x9c , 0x9e , 0

xb7 , 0x6f , 0xac , 0x45 , 0xaf , 0x8e , 0x51 ,

56 0x30 , 0xc8 , 0x1c , 0x46 , 0xa3 , 0x5c , 0xe4 , 0x11 , 0xe5 , 0

xfb , 0xc1 , 0x19 , 0x1a , 0x0a , 0x52 , 0 xef ,

57 0xf6 , 0 x9f , 0x24 , 0x45 , 0xdf , 0 x4f , 0x9b , 0x17 , 0xad , 0

x2b , 0x41 , 0x7b , 0xe6 , 0x6c , 0x37 , 0x10 ,

58 0x6b , 0xc1 , 0xbe , 0xe2 , 0x2e , 0x40 , 0x9f , 0x96 , 0xe9 , 0

x3d , 0x7e , 0x11 , 0x73 , 0x93 , 0x17 , 0x2a ,

59 0xae , 0x2d , 0x8a , 0x57 , 0x1e , 0x03 , 0xac , 0x9c , 0x9e , 0

xb7 , 0x6f , 0xac , 0x45 , 0xaf , 0x8e , 0x51 ,

60 0x30 , 0xc8 , 0x1c , 0x46 , 0xa3 , 0x5c , 0xe4 , 0x11 , 0xe5 , 0

xfb , 0xc1 , 0x19 , 0x1a , 0x0a , 0x52 , 0 xef ,

61 0xf6 , 0 x9f , 0x24 , 0x45 , 0xdf , 0 x4f , 0x9b , 0x17 , 0xad , 0

x2b , 0x41 , 0x7b , 0xe6 , 0x6c , 0x37 , 0x10 } ; //8 � 1024

62

63 u in t 8 t in [ 2 0 4 8 ] = {0} ;

64 u i n t 8 t out [ 2 0 4 8 ] = {0} ;

65

45



66 // Driver

67 p r i n t f ( ” S i z e : %d\n ” , PAYLOAD SIZE) ;

68 p r i n t f ( ”PRE out : ”) ;

69 dump( out , SIZE) ;

70

71 l ed s on (LEDS RED) ;

72 // start power measurement ( ) ;

73 t ime s t a r t = RTIMERNOW() ;

74

75 // =============== //

76 // START MEASURING //

77 // =============== //

78

79 u in t16 t TRIALS = 100 ;

80 f o r ( i n t i = 0 ; i < TRIALS ; i++){

81 AES CBC encrypt buffer ( out , in , SIZE , key , i v ) ;

82 }

83 // ============= //

84 // END MEASURING //

85 // ============= //

86

87 // end power measurement ( ) ;

88 t ime stop = RTIMERNOW() ;

89 c y c l e s = t ime stop � t ime s t a r t ;

90

91 p r i n t f ( ”POST out : ”) ;

92 dump( out , SIZE) ;

93

46



94 p r i n t f ( ”START: %lu \n ” , t ime s t a r t ) ;

95 p r i n t f ( ”STOP: %lu \n ” , t ime stop ) ;

96 p r i n t f ( ” cyc l e s , r t imer second : %lu %d\n ” , cyc l e s ,

RTIMER SECOND) ;

97 p r i n t f ( ”MILISECONDS: %g\n ” , m i l i s e conds ) ;

98

99 l e d s o f f (LEDS RED) ;

100

101 c t ime r r e s e t (&timer ) ;

102 }

103

104 PROCESS THREAD( senso r tag l ed expe r iment , ev , data )

105 {

106 PROCESS BEGIN( ) ;

107 p r i n t f ( ”CC26XX LED Experiment\n ”) ;

108

109 c l o c k i n i t ( ) ;

110 e t ime r s e t (&et , LOOP INTERVAL) ;

111 c t ime r s e t (&timer , LOOP INTERVAL/2 , p roce s s ta sk , NULL) ;

112 init power measurement ( ) ;

113

114 // Time to s l e e p in microseconds ( e . g . 1000000 = 1 second )

115

116 whi l e (1 ) {

117

118 // s l e e p 1 seconds

119 // c l o c k d e l ay u s e c takes u int16 t , so a f o r loop was

the bes t way to ab s t r a c t

47



120 u in t16 t SLEEP MILISECONDS = 10 ;

121 f o r ( i n t i = 0 ; i < SLEEP MILISECONDS; i++){

122 c l o c k d e l ay u s e c (1000) ;

123 }

124

125 PROCESS WAIT EVENT UNTIL( e t imer exp i r ed (&et ) ) ;

126

127 // r e tu rn s the cur r ent system time in c l o ck t i c k s

128 p r i n t f ( ”Clock time : %lu \n ” , c l o ck t ime ( ) ) ;

129

130 // r e tu rn s the cur r ent system time in seconds

131 p r i n t f ( ”Clock seconds : %lu \n ” , c l o ck s e conds ( ) ) ;

132

133 // p r i n t f ( ”Toggle red LED\n ”) ;

134 e t ime r r e s e t (&et ) ;

135

136 }

137

138 PROCESS END() ;

139 }

A.3 Sample Energy Measurement Script

power measurement.h

1

2 //Santa Clara Un i v e r s i t y

48



3 // In t e rne t o f Things Research Lab (SIOTLAB)

4 //2017

5

6 #ifndef POWERMEAS

7 #define POWERMEAS

8

9 #include ”c on t i k i . h”

10 #include ”t i� l i b . h”

11 #include ”sys / et imer . h”

12 #include ”sys / ct imer . h”

13 #include ”dev/ l e d s . h”

14

15 void in it power measurement ( )

16 {

17 GPIO setOutputEnableDio (BOARD IOID DP0, 1 ) ;

18 GPIO setOutputEnableDio (BOARD IOID DP2, 1 ) ;

19

20 GPIO setDio (BOARD IOID DP0) ;

21 GPIO setDio (BOARD IOID DP2) ;

22 }

23

24 // Commands the power measurement dev i c e to s t a r t measurement

25 void start power measurement ( )

26 {

27 GPIO clearDio (BOARD IOID DP0) ;

28 GPIO setDio (BOARD IOID DP0) ;

29 }

30

49



31

32 // Commands the power measurement dev i c e to s top measurement

33 void end power measurement ( )

34 {

35 GPIO clearDio (BOARD IOID DP2) ;

36 GPIO setDio (BOARD IOID DP2) ;

37 }

38

39 #endif POWERMEAS

processing energy.c

1 //Santa Clara Un i v e r s i t y

2 // In t e rne t o f Things Research Lab (SIOTLAB)

3 //2017

4

5 #include ”c on t i k i . h”

6 #include ”t i� l i b . h”

7 #include ”sys / et imer . h”

8 #include ”sys / ct imer . h”

9 #include ”dev/ l e d s . h”

10 #include ”power measurement . h”

11 #include ”cpu/cc26xx�cc13xx/ c l o ck . c ”

12 #include ”sys / c l o ck . h”

13 #include ”dev/ tiny�AES128�C/aes . c ”

14

15 #include <s t d i o . h>

16 #include <s t d i n t . h>

50



17

18 #define LOOP INTERVAL (150)

19 #define CBC 1

20 #define SECOND 1000000

21

22 stat ic struct et imer et ;

23 stat ic struct ct imer t imer ;

24

25 volat i le bool s t a tu s = f a l s e ;

26

27 PROCESS( senso r tag l ed exper iment , ” s en so r tag l ed expe r iment ”) ;

28 AUTOSTART PROCESSES(&senso r tag l ed expe r iment ) ;

29

30 void dump( u in t 8 t ∗ s t r , unsigned long s i z e ) {

31 for ( int i = 0 ; i < s i z e ; i++){

32 p r i n t f ( ”%.2x” , s t r [ i ] ) ;

33 }

34 p r i n t f ( ”\n”) ;

35 }

36

37 stat ic void p ro c e s s t a s k (void ∗ ptr ) {

38

39 // Local Var iab l e s

40

41 // Timer Var iab l e s

42 unsigned long t ime s t a r t ;

43 unsigned long t ime stop ;

44 unsigned long c y c l e s ;

51



45

46 // encryp t ion v a r i a b l e s

47 const u in t 8 t SIZE = 16 ∗ 7 ; // 128 bytes , 1024 b i t s

48 const u in t16 t PAYLOAD SIZE = SIZE ∗ 8 ;

49

50 u in t 8 t key [ ] = {0x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0

xa6 , 0xab , 0xf7 , 0x15 , 0x88 , 0x09 , 0 xcf , 0 x4f , 0x3c } ;

51 u i n t 8 t i v [ ] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0

x07 , 0x08 , 0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0 x0f } ;

52

53 u in t 8 t in [ ] = { 0x6b , 0xc1 , 0xbe , 0xe2 , 0x2e , 0x40 , 0x9f ,

0x96 , 0xe9 , 0x3d , 0x7e , 0x11 , 0x73 , 0x93 , 0x17 , 0x2a ,

54 0xae , 0x2d , 0x8a , 0x57 , 0x1e , 0x03 , 0xac , 0x9c , 0x9e , 0

xb7 , 0x6f , 0xac , 0x45 , 0xaf , 0x8e , 0x51 ,

55 0x30 , 0xc8 , 0x1c , 0x46 , 0xa3 , 0x5c , 0xe4 , 0x11 , 0xe5 , 0

xfb , 0xc1 , 0x19 , 0x1a , 0x0a , 0x52 , 0 xef ,

56 0xf6 , 0 x9f , 0x24 , 0x45 , 0xdf , 0 x4f , 0x9b , 0x17 , 0xad , 0

x2b , 0x41 , 0x7b , 0xe6 , 0x6c , 0x37 , 0x10 ,

57 0x6b , 0xc1 , 0xbe , 0xe2 , 0x2e , 0x40 , 0x9f , 0x96 , 0xe9 , 0

x3d , 0x7e , 0x11 , 0x73 , 0x93 , 0x17 , 0x2a ,

58 0xae , 0x2d , 0x8a , 0x57 , 0x1e , 0x03 , 0xac , 0x9c , 0x9e , 0

xb7 , 0x6f , 0xac , 0x45 , 0xaf , 0x8e , 0x51 ,

59 0x30 , 0xc8 , 0x1c , 0x46 , 0xa3 , 0x5c , 0xe4 , 0x11 , 0xe5 , 0

xfb , 0xc1 , 0x19 , 0x1a , 0x0a , 0x52 , 0 xef ,

60 0xf6 , 0 x9f , 0x24 , 0x45 , 0xdf , 0 x4f , 0x9b , 0x17 , 0xad , 0

x2b , 0x41 , 0x7b , 0xe6 , 0x6c , 0x37 , 0x10 } ; //8 � 1024

61

62 u in t 8 t in [ 2 0 4 8 ] = {0} ;

52



63 u in t 8 t out [ 2 0 4 8 ] = {0} ;

64

65 // Driver

66 p r i n t f ( ”S i z e : %d\n” , PAYLOAD SIZE) ;

67 p r i n t f ( ”PRE out : ”) ;

68 dump( out , SIZE) ;

69

70 l ed s on (LEDS RED) ;

71 start power measurement ( ) ;

72

73 // =============== //

74 // START MEASURING //

75 // =============== //

76

77 u in t16 t TRIALS = 100 ;

78 for ( int i = 0 ; i < TRIALS ; i++){

79 AES CBC encrypt buffer ( out , in , SIZE , key , i v ) ;

80 }

81 // ============= //

82 // END MEASURING //

83 // ============= //

84

85 end power measurement ( ) ;

86

87 p r i n t f ( ”POST out : ”) ;

88 dump( out , SIZE) ;

89

90 l e d s o f f (LEDS RED) ;

53



91

92 c t ime r r e s e t (&timer ) ;

93 }

94

95 PROCESS THREAD( senso r tag l ed expe r iment , ev , data )

96 {

97 PROCESS BEGIN( ) ;

98 p r i n t f ( ”CC26XX LED Experiment\n”) ;

99

100 c l o c k i n i t ( ) ;

101 e t ime r s e t (&et , LOOP INTERVAL) ;

102 c t ime r s e t (&timer , LOOP INTERVAL/2 , p roce s s ta sk , NULL) ;

103 init power measurement ( ) ;

104

105 // Time to s l e e p in microseconds ( e . g . 1000000 = 1 second )

106

107 while (1 ) {

108

109 // s l e e p 1 seconds

110 // c l o c k d e l a y u s e c t a k e s u in t16 t , so a f o r loop was

the b e s t way to a b s t r a c t

111 u in t16 t SLEEP MILISECONDS = 10 ;

112 for ( int i = 0 ; i < SLEEP MILISECONDS; i++){

113 c l o c k d e l ay u s e c (1000) ;

114 }

115

116 PROCESS WAIT EVENT UNTIL( e t imer exp i r ed (&et ) ) ;

117

54



118 // re turns the curren t system time in c l o c k t i c k s

119 p r i n t f ( ”Clock time : %lu \n” , c l o ck t ime ( ) ) ;

120

121 // re turns the curren t system time in seconds

122 p r i n t f ( ”Clock seconds : %lu \n” , c l o ck s e conds ( ) ) ;

123

124 // p r i n t f ( ”Toggle red LED\n”) ;

125 e t ime r r e s e t (&et ) ;

126

127 }

128

129 PROCESS END() ;

55


	Analysis of the Duration and Energy Consumption of AES Algorithms on a Contiki-based IoT Device
	Title
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	3 Symmetric Encryption
	4 Experimental Setup and Methodology
	5 Results and Discussion
	6 Conclusion
	Bibliography
	Index
	Glossary
	A Source Code
	A.1 CBC Mode for Contiki's AES implementation
	A.2 Sample Clock Cycle Measurement Script
	A.3 Sample Energy Measurement Script


