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Abstract 

The bioactive properties (antioxidant and antitumour activities, and hepatotoxicity) of 

the infusion and methanolic extracts of Chenopodium ambrosioides L., a plant 

commonly used in Portuguese folk medicine, were compared. The chemical 

composition in hydrophilic (sugars, organic acids and phenolic compounds) and 

lipophilic (fatty acids and tocopherols) fractions were determined. In general, the 

infusion revealed higher antioxidant activity, while the methanolic extract was the only 

one showing antitumour effects against colon, cervical and hepatocellular carcinoma 

cell lines. No toxicity in non-tumour cells was observed either for the infusion or the 

extract. The studied plant proved to be a good source of natural antioxidants and other 

bioactive compounds, which may have industrial use. As far as we know, this is the first 

detailed chemical characterization and bioactivity evaluation of C. ambrosioides 

methanolic extract and infusion. 

 

Keywords: Chenopodium ambrosioides L.; Antioxidant activity; Antitumour activity; 

Chemical compounds 
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1. Introduction 

Oxidative stress is an imbalance between the generation of reactive oxygen species 

(ROS; which include unstable oxygen radicals such as superoxide radical and hydroxyl 

radical and non-radical molecules like hydrogen peroxide) and the body's antioxidant 

defence capacity, having an important role in normal cell functioning. When produced 

in excess ROS can have harmful effects, affecting cellular lipids, proteins and DNA, 

leading to their modification, and often destruction, and inhibiting their normal function 

(Valko et al., 2007; Rosenfeldt et al., 2013). Relevant diseases such as cancer, diabetes, 

cirrhosis, heart disease or dementia disorders, as well as aging process have been 

associated with the uncontrolled production of free radicals (Valko et al., 2007; 

Halliwell, 2012).  

Some plants traditionally used have medicinal properties with great potential for 

therapeutic applications in the treatment of some of the aforementioned diseases, since 

they are a natural source of bioactive compounds, including antioxidants, such as 

polyphenols, vitamins, carotenoids, unsaturated fatty acids and sugars, which can be 

useful for various applications, especially as food additives and in health promotion as 

ingredients in formulations of functional foods and nutraceuticals (Ramarathnam, 

Osawa, Ochi, & Kawakishi, 1995; Skerget et al., 2005).  

Chenopodium ambrosioides L. (Amaranthaceae; syn: Dysphania ambrosioides (L.) 

Mosyakin & Clemants) is an example of a plant formerly used in Portuguese traditional 

medicine, normally consumed as infusion of its dried leaves and flowering stems. It is 

an exotic plant from Central and South America that in former times was introduced by 

migrants from those countries. Nowadays the species has escaped to wild and can be 

occasionally found in pathways and near homegardens. It has diverse pharmacological 
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applications in the treatment of influenza, cold or gastrointestinal and respiratory 

ailments, as well as vomiting, antihelmintic, healing of skin ulceration caused by 

Leishmania species, anti-inflammatory and antitumor properties (Nascimento et al., 

2006; Cruz et al., 2007; Carvalho, 2010; Kamel, El-Emam, Mahmoud, Fouda, & 

Bayaumy, 2011).  

Studies on chemical characterization and bioactivity evaluation of this plant, 

particularly in the most consumed form (infusion) are scarce. The present work aims to 

characterize the chemical composition of C. ambrosioides in hydrophilic (sugars, 

organic acids and phenolic compounds) and lipophilic (fatty acids and tocopherols) 

molecules, as also some bioactive properties (antioxidant and antitumour activities, and 

hepatotoxicity) of its infusion and methanolic extract. 

 

2. Materials and methods 

2.1. Sample 

Chenopodium ambrosioides L. (Amaranthaceae) (English names: Epazote, wormseed, 

Jesuit's tea, Mexican tea; Local names: Té; chá-bravo; chá de Santa Marinha), also 

known as Dysphania ambrosioides (L.) Mosyakin & Clemants, (Amaranthaceae), used 

to be cultivated in homegardens in Bragança (Northeastern Portugal). Nowadays it is 

less frequent in gardens and there are some specimens growing wild nearby the local 

villages. However, if available, inflorescences and upper leaves are still wild gathered, 

dried and used as herbal infusions. The material was collected in Varge (Bragança) from 

different plants considering the species availability and local consumers’ criteria for 

medicinal use. A sample was made putting together all the material from several 

specimens.   
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Voucher specimens are deposited at the Herbarium of the Escola Superior Agrária de 

Bragança (BRESA). The samples were lyophilized (FreeZone 4.5, Labconco, Kansas 

City, MO, USA), reduced to a fine dried powder (20 mesh) and mixed to obtain a 

homogenate sample.  

 

2.2. Standards and Reagents 

Acetonitrile (99.9%), n-hexane (97%) and ethyl acetate (99.8%) were of HPLC grade 

from Fisher Scientific (Lisbon, Portugal). The fatty acids methyl ester (FAME) 

reference standard mixture 37 (standard 47885-U) was purchased from Sigma (St. 

Louis, MO, USA), as also were other individual fatty acid isomers and standards: L-

ascorbic acid, tocopherols (α-, β-, γ-, and δ-isoforms), sugars (D(-)-fructose, D(+)-

melezitose, D(+)-sucrose, D(+)-glucose, D(+)-trehalose and D(+)-raffinose 

pentahydrate), organic acids and trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid). Phenolic compounds were purchased from Extrasynthèse (Genay, 

France). Racemic tocol, 50 mg/mL, was purchased from Matreya (Pleasant Gap, PA, 

USA). 2,2-Diphenyl-1- picrylhydrazyl (DPPH) was obtained from Alfa Aesar (Ward 

Hill, MA, USA). Foetal bovine serum (FBS), L-glutamine, hank’s balanced salt solution 

(HBSS), trypsin-EDTA (ethylenediaminetetraacetic acid), penicillin/streptomycin 

solution (100 U/mL and 100 mg/mL, respectively), RPMI-1640 and DMEM media 

were from Hyclone (Logan, USA). Acetic acid, ellipticine, sulphorhodamine B (SRB), 

trypan blue, trichloroacetic acid (TCA) and Tris were from Sigma Chemical Co. (St 

Louis, MO, USA). Water was treated in a Milli-Q water purification system (TGI Pure 

Water Systems, Greenville, SC, USA). All other chemicals and solvents were of 

analytical grade and purchased from common sources.  
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2.3. Evaluation of bioactive properties  

2.3.1. Samples preparation. The methanolic extract was obtained from the lyophilized 

plant material. The sample (1 g) was extracted by stirring with 25 mL of methanol (25 

ºC at 150 rpm) for 1 h and subsequently filtered through Whatman No. 4 paper. The 

residue was then extracted with 25 mL of methanol (25 ºC at 150 rpm) for 1 h. The 

combined methanolic extracts were evaporated at 40 ºC (rotary evaporator Büchi R-210, 

Flawil, Switzerland) to dryness.  

The infusion was also obtained from the lyophilized plant material. The sample (1 g) 

was added to 200 mL of boiling distilled water and left to stand at room temperature for 

5 min, and then filtered under reduced pressure. The obtained infusion was frozen and 

lyophilized. 

Methanolic extract and infusion were redissolved in i) methanol and water, respectively 

(final concentration 2.5 mg/mL) for antioxidant activity evaluation, or ii) water (final 

concentration 8 mg/mL) for antitumour activity evaluation. The final solutions were 

further diluted to different concentrations to be submitted to distinct bioactivity 

evaluation in in vitro assays. The results were expressed in i) EC50 values (sample 

concentration providing 50% of antioxidant activity or 0.5 of absorbance in the reducing 

power assay) for antioxidant activity, or ii) GI50 values (sample concentration that 

inhibited 50% of the net cell growth) for antitumour activity. Trolox and ellipticine 

were used as positive controls in antioxidant and antitumour activity evaluation assays, 

respectively. 

 

2.3.2. Antioxidant activity. DPPH radical-scavenging activity was evaluated by using an 

ELX800 microplate reader (Bio-Tek Instruments, Inc; Winooski, VT, USA), and 

calculated as a percentage of DPPH discolouration using the formula: [(ADPPH-
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AS)/ADPPH] × 100, where AS is the absorbance of the solution containing the sample at 

515 nm, and ADPPH is the absorbance of the DPPH solution. Reducing power was 

evaluated by the capacity to convert Fe3+ into Fe2+, measuring the absorbance at 690 nm 

in the microplate reader mentioned above. Inhibition of β-carotene bleaching was 

evaluated though the β-carotene/linoleate assay; the neutralization of linoleate free 

radicals avoids β-carotene bleaching, which is measured by the formula: β-carotene 

absorbance after 2h of assay/initial absorbance) × 100. Lipid peroxidation inhibition in 

porcine (Sus scrofa) brain homogenates was evaluated by the decrease in thiobarbituric 

acid reactive substances (TBARS); the colour intensity of the malondialdehyde-

thiobarbituric acid (MDA-TBA) was measured by its absorbance at 532 nm; the 

inhibition ratio (%) was calculated using the following formula: [(A - B)/A] × 100%, 

where A and B were the absorbance of the control and the sample solution, respectively 

(Pinela et al., 2012). 

 

2.3.3. Antitumour activity. Five human tumour cell lines were used: MCF-7 (breast 

adenocarcinoma), NCI-H460 (non-small cell lung cancer), HCT-15 (colon carcinoma), 

HeLa (cervical carcinoma) and HepG2 (hepatocellular carcinoma). Cells were routinely 

maintained as adherent cell cultures in RPMI-1640 medium containing 10% heat-

inactivated FBS (MCF-7, NCI-H460 and HCT-15) and 2 mM glutamine or in DMEM 

supplemented with 10% FBS, 2 mM glutamine, 100 U/mL penicillin and 100 mg/mL 

streptomycin (HeLa and HepG2 cells), at 37 ºC, in a humidified air incubator containing 

5% CO2. Each cell line was plated at an appropriate density (7.5 × 103 cells/well for 

MCF-7, NCI-H460 and HCT-15 or 1.0 × 104 cells/well for HeLa and HepG2) in 96-

well plates and allowed to attach for 24 h. Cells were then treated for 48 h with various 

extract concentrations. Following this incubation period, the adherent cells were fixed 
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by adding cold 10% trichloroacetic acid (TCA, 100 μL) and incubated for 60 min at 4 

ºC. Plates were then washed with deionised water and dried; sulphorhodamine B 

solution (0.1% in 1% acetic acid, 100 μL) was then added to each plate well and 

incubated for 30 min at room temperature. Unbound SRB was removed by washing 

with 1% acetic acid. Plates were air dried, the bound SRB was solubilised with 10 mM 

Tris (200 μL) and the absorbance was measured at 540 nm in the microplate reader 

mentioned above (Guimarães et al., 2013). 

 

2.3.4. Hepatotoxicity. A cell culture was prepared from a freshly harvested porcine liver 

obtained from a local slaughter house, and it was designed as PLP2. Briefly, the liver 

tissues were rinsed in hank’s balanced salt solution containing 100 U/mL penicillin, 100 

µg/mL streptomycin and divided into 1×1 mm3 explants. Some of these explants were 

placed in 25 cm2 tissue flasks in DMEM medium supplemented with 10% fetal bovine 

serum, 2 mM nonessential amino acids and 100 U/mL penicillin, 100 mg/mL 

streptomycin and incubated at 37 ºC with a humidified atmosphere containing 5% CO2. 

The medium was changed every two days. Cultivation of the cells was continued with 

direct monitoring every two to three days using a phase contrast microscope. Before 

confluence was reached, cells were subcultured and plated in 96-well plates at a density 

of 1.0×104 cells/well, and cultivated in DMEM medium with 10% FBS, 100 U/mL 

penicillin and 100 µg/mL streptomycin (Abreu et al., 2011). 

 

2.4. Chemical composition in hydrophilic compounds 

2.4.1. Sugars. Free sugars were determined by high performance liquid chromatography 

coupled to a refraction index detector (HPLC-RI). Dried sample powder (1.0 g) was 

spiked with the melezitose as internal standard (IS, 5 mg/mL), and was extracted with 
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40 mL of 80% aqueous ethanol at 80 ºC for 30 min. The resulting suspension was 

centrifuged (Centurion K24OR refrigerated centrifuge, West Sussex, UK) at 15,000g 

for 10 min. The supernatant was concentrated at 60 ºC under reduced pressure and 

defatted three times with 10 mL of ethyl ether, successively. After concentration at 40 

ºC, the solid residues were dissolved in water to a final volume of 5 mL and filtered 

through 0.2 µm nylon filters from Whatman (Pinela et al., 2012). The equipment of 

analysis consisted of an integrated system with a pump (Knauer, Smartline system 

1000, Brelin, Germany), degasser system (Smartline manager 5000), auto-sampler (AS-

2057 Jasco, Easton, MD) and an RI detector (Knauer Smartline 2300). Data were 

analysed using Clarity 2.4 Software (DataApex). The chromatographic separation was 

achieved with a Eurospher 100-5 NH2 column (4.6 × 250 mm, 5 mm, Knauer) operating 

at 30 ºC (7971 R Grace oven). The mobile phase was acetonitrile/deionized water, 

70:30 (v/v) at a flow rate of 1 mL/min. The compounds were identified by 

chromatographic comparisons with authentic standards. Quantification was performed 

using the internal standard method and sugar contents were further expressed in g per 

100 g of dry weight (dw). 

 

2.4.2. Organic acids extraction and analysis. Organic acids were determined using 

ultra-fast liquid chromatography coupled to a photodiode array detector (UFLC-PDA). 

Samples (~2 g) were extracted by stirring with 25 mL of meta-phosphoric acid (25ºC at 

150 rpm) for 45 min and subsequently filtered through Whatman No. 4 paper. Before 

analysis, the sample was filtered through 0.2 µm nylon filters (Barros, Pereira, Ferreira, 

2013). The analysis was performed using a Shimadzu 20A series UFLC (Shimadzu 

Corporation, Kyoto, Japan). Separation was achieved on a SphereClone (Phenomenex, 

Torrance, CA, USA) reverse phase C18 column (5 µm, 250 mm × 4.6 mm i.d.) 
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thermostatted at 35 ºC. The elution was performed with sulphuric acid (3.6 mM) using a 

flow rate of 0.8 mL/min. Detection was carried out in a PDA, using 215 and 245 nm 

(for ascorbic acid) as preferred wavelengths. The organic acids found were quantified 

by comparison of the area of their peaks recorded at 215 and 245 nm with calibration 

curves obtained from commercial standards of each compound: ascorbic acid 

(y=8E+07x+55079; R2=1); citric (y=1E+06x+4170.6; R2=1); fumaric acid 

(y=172760x+52193; R2=0.999); malic acid (y=952269x+17803; R2=1); oxalic acid 

(y=1E+07x+96178; R2=0.999); quinic acid (y=601768x+8853.2; R2=1). The results 

were expressed in g per 100 g of dry weight (dw).  

 

2.4.3. Phenolic compounds extraction and analysis. The previously described 

methanolic extract and infusion were dissolved in water:methanol (80:20, v/v) and 

water, respectively (final concentration 1 mg/mL) and analysed using a Hewlett-

Packard 1100 chromatograph (Hewlett-Packard 1100, Agilent Technologies, Santa 

Clara, CA, US) with a quaternary pump and a diode array detector (DAD) coupled to an 

HP Chem Station (rev. A.05.04) data-processing station. A Waters Spherisorb S3 ODS-

2 C18, 3 µm (4.6 mm × 150 mm) column thermostatted at 35 °C was used. The solvents 

used were: (A) 0.1% formic acid in water, (B) acetonitrile. The elution gradient 

established was isocratic 15% for 5 min, 15% B to 20% B over 5 min, 20-25% B over 

10 min, 25-35% B over 10 min, 35-50% for 10 min, and re-equilibration of the column, 

using a flow rate of 0.5 mL/min. Double online detection was carried out in the DAD 

using 280 nm and 370 nm as preferred wavelengths and in a mass spectrometer (MS) 

connected to HPLC system via the DAD cell outlet. 

MS detection was performed in an API 3200 Qtrap (Applied Biosystems, Darmstadt, 

Germany) equipped with an ESI source and a triple quadrupole-ion trap mass analyzer 
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that was controlled by the Analyst 5.1 software. Zero grade air served as the nebulizer 

gas (30 psi) and turbo gas for solvent drying (400 ºC, 40 psi). Nitrogen served as the 

curtain (20 psi) and collision gas (medium). The quadrupols were set at unit resolution. 

The ion spray voltage was set at -4500V in the negative mode. The MS detector was 

programmed for recording in two consecutive modes: Enhanced MS (EMS) and 

enhanced product ion (EPI) analysis. EMS was employed to show full scan spectra, so 

as to obtain an overview of all of the ions in sample. Settings used were: declustering 

potential (DP) -450 V, entrance potential (EP) -6 V, collision energy (CE) -10V. EPI 

mode was performed in order to obtain the fragmentation pattern of the parent ion(s) in 

the previous scan using the following parameters: DP -50 V, EP -6 V, CE -25V, and 

collision energy spread (CES) 0 V. Spectra were recorded in negative ion mode between 

m/z 100 and 1000. 

The phenolic compounds present in the samples were characterised according to their 

UV and mass spectra and retention times compared with standards when available. For 

the quantitative analysis of phenolic compounds, a 5-level calibration curve was 

obtained by injection of known concentrations (2.5-100 µg/mL) of different standards 

compounds: p-coumaric (y=884.6x+184.49; R2=0.999); ferulic acid (y=505.97x-64.578; 

R2=0.999); isorahmetin-3-O-rutinoside (y=327.42x+313.78; R2=0.999); luteolin-6-C-

glucoside (y=508.54x-152.82; R2=0.997); luteolin-7-O-glucoside (y=80.829x-21.291; 

R2=0.999); kaempferol-3-O-glucoside (y=288.55x-4.05; R2=1); kaempferol-3-O-

rutinoside (y=239.16x-10.587; R2=1); quercetin-3-O-glucoside (y=253.52x-11.615; 

R2=0.999) and quercetin-3-O-rutinoside (y=281.98x-0.3459; R2=1). The results were 

expressed in mg per 100 g of dry weight (dw). 

 

2.5. Chemical composition in lypophilic compounds 
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2.5.1. Fatty acids. Fatty acids were determined by gas-liquid chromatography with 

flame ionization detection (GC-FID)/capillary column, after trans-esterification 

procedure. Fatty acids (obtained after Soxhlet extraction) were methylated with 5 mL of 

methanol:sulphuric acid:toluene 2:1:1 (v:v:v), during at least 12 h in a bath at 50 ºC and 

160 rpm; then 3 mL of deionised water were added, to obtain phase separation; the 

FAME were recovered with 3 ml of diethyl ether by shaking in vortex , and the upper 

phase was passed through a micro-column of sodium sulphate anhydrous, in order to 

eliminate the water; the sample was recovered in a vial with Teflon, and before injection 

the sample was filtered with 0.2 µm nylon filter from Whatman (Pinela et al., 2012). 

The analysis was carried out with a DANI model GC 1000 instrument equipped with a 

split/splitless injector, a flame ionization detector (FID at 260 ºC) and a Macherey–

Nagel (Düren, Germany) column (50% cyanopropyl-methyl-50% 

phenylmethylpolysiloxane, 30 m × 0.32 mm i.d. × 0.25 μm df). The oven temperature 

program was as follows: the initial temperature of the column was 50 ºC, held for 2 min, 

then a 30 ºC/min ramp to 125 ºC, 5 ºC/min ramp to 160 ºC, 20 ºC/ min ramp to 180 ºC, 

3 ºC/min ramp to 200 ºC, 20 ºC/min ramp to 220 ºC and held for 15 min. The carrier gas 

(hydrogen) flow-rate was 4.0 mL/min (0.61 bar), measured at 50 ºC. Split injection 

(1:40) was carried out at 250 ºC. Fatty acid identification was made by comparing the 

relative retention times of FAME peaks from samples with standards. The results were 

recorded and processed using the CSW 1.7 Software (DataApex 1.7) and expressed in 

relative percentage of each fatty acid. 

 

2.5.2. Tocopherols. Tocopherols were determined by HPLC (equipment described 

above), and a fluorescence detector (FP-2020; Jasco). BHT solution in hexane (10 

mg/mL; 100 µL) and IS solution in hexane (tocol; 50 µg/mL; 400 µL) were added to the 
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sample prior to the extraction procedure. The samples (~500 mg) were homogenized 

with methanol (4 mL) by vortex mixing (1 min). Subsequently, hexane (4 mL) was 

added and again vortex mixed for 1 min. After that, saturated NaCl aqueous solution (2 

mL) was added, the mixture was homogenized (1 min), centrifuged (5 min, 4000g) and 

the clear upper layer was carefully transferred to a vial. The sample was re-extracted 

twice with hexane. The combined extracts were taken to dryness under a nitrogen 

stream, redissolved in 2 mL of n-hexane, dehydrated with anhydrous sodium sulphate, 

filtered through 0.2 µm nylon filters from Whatman, transferred into a dark injection 

vial prior to the analysis (Pinela et al., 2012). The fluorescence detector was 

programmed for excitation at 290 nm and emission at 330 nm. The chromatographic 

separation was achieved with a Polyamide II (250 mm × 4.6 mm i.d.) normal-phase 

column from YMC Waters operating at 30 ºC. The mobile phase used was a mixture of 

n-hexane and ethyl acetate (70:30, v/v) at a flow rate of 1 mL/min, and the injection 

volume was 20 µL. The compounds were identified by chromatographic comparisons 

with authentic standards. Quantification was based on calibration curves obtained from 

commercial standards of each compound using the IS methodology. The results were 

expressed in mg per 100 g of dry weight (dw).  

 

2.6. Statistical analysis 

Three samples were used and all the assays were carried out in triplicate. The results are 

expressed as mean values and standard deviation (SD). The results were analyzed using 

one-way analysis of variance (ANOVA) followed by Tukey’s HSD Test with α = 0.05. 

This treatment was carried out using SPSS v. 18.0 program.  

 

3. Results and Discussion 
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3.1. Evaluation of bioactive properties  

The results obtained in the evaluation of the bioactive properties (antioxidant and 

antitumour activities, and hepatotoxicity) of the infusion and the methanolic extract of 

C. ambrosioides are given in Table 1. The infusion gave higher DPPH scavenging 

activity and β-carotene bleaching and TBARS inhibitions than the methanolic extract. 

The latter revealed higher reducing power. The essential oil extracted from the leaves of 

C. ambrosioides (Kumar, Kumar, Dubey, & Tripathi, 2007) was also reported to show 

powerful antioxidant activity. To the best of our knowledge, no reports are available on 

the infusion or methanolic extract of the aforementioned plant.  

The effects of C. ambrosioides methanolic extract and infusion on the growth of five 

human tumour cell lines (MCF-7, NCI-H460, HCT-15, HeLa and HepG2), represented 

as the concentrations that caused 50% of cell growth inhibition (GI50), are also 

summarized in Table 1. The infusion of C. ambrosioides did not show any antitumour 

potential; however, the methanolic extract presented some activity on HCT-15, HeLa 

and HepG2 cell lines. It should be highlighted that no hepatotoxicity in non-tumour 

cells was observed for any of the samples (GI50 > 400 µg/mL). Trolox and ellipticine 

were used as positive controls of antioxidant and antitumour activities evaluation 

assays, respectively, but comparison with the samples should be avoided, because they 

are individual compounds and not mixtures.  

 

3.2. Chemical composition in hydrophilic compounds 

The chemical composition of the samples in sugars and organic acids was also analyzed 

and the results are shown in Table 2. The sugars found were fructose, glucose, sucrose 

and trehalose, sucrose being the most abundant.  
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Oxalic, quinic, malic, ascorbic, citric and fumaric acids were also identified and 

quantified (Table 2), being oxalic acid the most abundant organic acid. Some organic 

acids (e.g., citric acid) have been reported as having antioxidant capacity (Hraš, 

Halodin, Knez, & Bauman, 2000).  

Phenolic compounds found in C. ambrosioides are presented in Table 3 and Figure 1. 

Thirty-five compounds were detected, eight of which were phenolic acid derivatives 

(hydroxycinnamic acid derivatives). Among them, five compounds (peaks 1-3, 5 and 9) 

were p-coumaric acid derivatives identified according to their UV spectra and 

pseudomolecular ion. Peak 9 was identified as trans p-coumaric acid by comparison of 

its UV spectrum (λmax 312 nm) and retention time with a commercial standard. Peak 1 

was identified as a p-coumaroyl pentoside acid according to its pseudomolecular [M-H]- 

ion (m/z at 295) and the release of fragments at m/z 163 [p-coumaric acid-H]- (-132 mu, 

pentose) and m/z 119 (loss of 132+44 mu, pentose + CO2). Peaks 2, 3 and 5 presented 

pseudomolecular ions [M-H]- at m/z 287 and 387 releasing the same fragment ions at 

m/z 163 and 119, which allowed assigning them to p-coumaroyl acid derivatives, 

although their precise identities could not be established. The other three phenolic acid 

derivatives were identified as ferulic acid derivatives based on the observation of the 

ions at m/z 193 ([ferulic acid-H]-) and 149 ([ferulic acid-CO2-H]-). Peak 14 could be 

identified as free ferulic acid by comparison of its UV spectrum (λmax 326 nm) and 

retention time with a commercial standard. Peak 4 was associated to a feruloyl 

pentoside acid based on its molecular ion fragmentation pattern similar to peak 1, 

whereas no precise identity could be established for peak 6. 

 

The remaining phenolic compounds corresponded to flavone and flavonol derivatives, 

most of them derived from quercetin (λmax around 354 nm and MS2 fragment at m/z 301; 
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12 compounds) and kaempferol (λmax around 346 nm and MS2 fragment at m/z 285; 11 

compounds) (Table 3). Quercetin 3-O-rutinoside (peak 17), quercetin 3-O-glucoside 

(peak 21) and kaempferol 3-O-rutinoside (peak 24) were positively identified according 

to their retention, mass and UV-vis characteristics by comparison with commercial 

standards.  

Peak 10 ([M-H]- at m/z 609) could be interpreted as a quercetin O-diglycosides in which 

each of the sugar moieties are located at different positions on the aglycone, owing to 

the observation of fragments derived from the loss of each sugar residue. However, it 

might also be rationalised as a quercetin O-rhamnosyl-glucoside, in which the fragment 

at m/z 447 would correspond to the loss of the terminal glucose of the dissacharide, 

whereas that at m/z 463 might be rationalised as produced by an internal rearrangement 

in the sugar moieties following the loss of the internal dehydrated glucose/pentose and 

further linkage of the terminal rhamnose to the aglycone (Ma, Cuyckens, Heuvel, & 

Claeys, 2001). In that case, the greater abundance of the Y0 ion (m/z at 301; aglycone) 

than Y1 ion (m/z at 447; breakdown of the interglycosidic linkage) might support the 

existence of a 1,2 interglycosidic linkage (Cuyckens, Rozenberg, Hoffmann, & Claeys, 

2001), which allow the identification of peak 10 as quercetin 3-O-neohesperidose.  

Peaks 15 and 20, both with a pseudo molecular ion [M-H]- at m/z 579 releasing 

fragments at m/z 447 (-132 mu; pentiosyl residue) and 301 (-132-146 mu; loss of 

pentosyl+ rhamnosyl residues), could be assigned as quercetin O-rhamnosyl-pentosides 

in which the pentose is the terminal unit owing to the lack of a fragment at m/z 433, 

which should result from the loss of the rhamnose residue if both sugars were located at 

different positions on the aglycone. The observation that Y0 > Y1 ion in the case of peak 

20 might point to a 1,2 interglycosidic linkage, whereas a 1,6 linkage might exist in 

peak 15 where Y1 > Y0 (Cuyckens et al., 2001). Peaks 29 and 30, both possessing a 
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pseudo molecular ion [M-H]- at m/z 623 and releasing fragments at m/z 447 (-176 mu; 

loss of a glucuronyl residue) and 301 (-176-146 mu; loss of glucuronyl+rhamnosyl 

residues) should correspond to quercetin O-rhamnosyl-glucuronides. Furthermore, as 

mentioned above, in peak 30 a 1,2 interglycosidic linkage could be observation  (Y0 > 

Y1 ), whereas a 1,6 linkage might exist in peak 29 (Y1 > Y0).  Peak 34 can be assigned to 

an acetyl derivative of peak 30 owing to its pseudomolecular ion ([M-H]- at m/z 665) 42 

mu higher than that peak.  

The pseudomolecular ion of peak 19 ([M-H]- at m/z 593) is coherent with a quercetin 

derivative bearing two rhamnosyl residues. In principle, it can be supposed that each 

sugar is located at different positions on the aglycone as suggested by the formation of a 

fragment ion at m/z 447 from the loss of one of the rhamnosyl moieties, although the 

possibility that they constituted a disaccharide cannot be disregarded, either. 

Peak 11 ([M-H]- at m/z 741) can be assigned to a quercetin derivative bearing pentosyl, 

rhamnosyl and hexosyl residues, based on the loss of 440 u (132+146+162 u) to yield 

the corresponding aglycone (m/z at 301, quercetin). The fact that the three moieties were 

lost simultaneously suggested that they might constitute a trisaccharide O-linked to the 

aglycone. Similarly, peak 12 would be associated to a quercetin O-disaccharide 

consisting of a pentose and a hexose. 

Peak 8 ([M-H]- at m/z 755) would correspond to a quercetin derivative possessing two 

rhamnosyl and one glucosyl moieties. The observation of a fragment at m/z 609 from 

the lost of a rhamnosyl residue (-146 mu) points to this sugar is located on the aglycone 

in a position different to the other two sugars that should constitute a disaccharide. The 

presence of quercetin 3-O-rutinoside (peak 17) as majority flavonoid in the plant might 

suggest that peak 8 could be quercetin 3-O-rutinoside-O-rhamnoside. 
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Similar reasoning as for the quercetin derivatives has been applied for assigning the 

identities of kaempferol (peaks 13, 16, 18, 22, 23, 25, 26, 31, 32 and 35) and 

isorhamnetin derivatives (peaks 27, 28 and 33), as indicated in Table 3. 

Finally, peak 7 ([M-H]- at m/z 579) was assigned to a flavone, luteolin C-hexoside-O-

pentoside, based on its fragmentation. Thus, the ion at m/z 447 could be interpreted as 

the loss of the pentosyl moiety (-132 mu) and a fragment of 120 mu characteristic of the 

cleavage of pyran ring in the more strongly linked C-hexoses, whereas the ion at m/z 

417 might correspond to the loss of the hexosyl moiety and a fragment of 30 mu 

resulting from CH2O functional group of the hexose, also observed in the case of C-

hexoses (Abad-Garcia, Garmon-Lobato, Berrueta, Gallo, & Vicente, 2008). The 

fragments ions at m/z 447 and 285 would correspond to the respective losses of the 

pentosyl and hexosyl moieties, respectively.  

Flavonoids were the major phenolic compounds present in this sample (768 mg/100 g 

dw), being quercetin (46.98%) and kaempferol derivatives (45.91%) the most abundant. 

Quercetin 3-O-rutinoside was the compound found in the highest amount (205 mg/100 

g dw, peak 17), followed by kaempferol dirhamnoside-O-pentoside (96 mg/100 g dw, 

peak 25). Phenolic acids were 6.58% of the total phenolic compounds in this sample 

and trans p-coumaric acid was the most abundant one (25.65 mg/100 g dw, peak 9). 

Herbal infusions are frequently used in traditional medicine due to their beneficial 

activities and among their constituents, special relevance has been given to phenolic 

compounds, which often exhibit high antioxidant capacity being able to counteract 

oxidative stress (Mejía, Songa, Hecka, Vinicio, & Ramírez-Mares, 2010; Pereira, 

Marcias, Perez, Marin & Cardoso, 2013). They act as antioxidants through various 

mechanisms, including hydrogen donating reactions, metal chelation, and up-regulation 

or protection of antioxidant defenses (e.g. intracellular glutathione levels) (Pereira et al., 
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2013). In particular, C. ambrosioides infusion is a rich source of diverse polyphenols 

that could contribute to the mentioned activity. 

 

3.3. Chemical composition in lipophilic compounds 

The results of lipophilic compounds (fatty acids and tocopherols) are shown in Table 4. 

Up to 26 fatty acids were identified and quantified. Polyunsaturated fatty acids (PUFA) 

predominated over saturated fatty acids (SFA) and monounsaturated fatty acids 

(MUFA). α-Linolenic (C18:3n3; 48.54%) and linoleic (C18:2n6; 19.23%) acids 

contribute to the high levels of PUFA observed (68.44%). Linoleic acid is the most 

prominent PUFA in the Western diet and previous studies showed health benefits under 

the prevention of cancer diseases (Whelan, 2008). 

α-Tocopherol was, by far, the most abundant tocopherol in C. ambrosioides (199.37 

mg/100 g dw from a total tocopherols amount of 202.34 mg/100 g dw; Table 4). 

Tocopherols are very important natural antioxidants in plant foods, especially those that 

are rich in PUFA. Their effectiveness as antioxidants depends not only on their 

reactivity against harmful radicals, but also the relatively stable nature of his radical due 

to relocation of the unpaired electron on the ring cromanol (Kagan et al., 2003).   

 

Overall, C. ambrosioides infusion revealed, in general, higher antioxidant activity, 

while the methanolic extract was the only one showing antitumour effects against colon, 

cervical and hepatocellular carcinoma cell lines. Neither the infusion nor the extract 

reveal toxicity for non-tumour cells. Bioactive compounds such as some sugars and 

organic acids, phenolic compounds, unsaturated fatty acids and tocopherols were 

identified and quantified in C. ambrosioides. As far as we know, this is the first detailed 
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chemical characterization of C. ambrosioides and bioactivity evaluation of its 

methanolic extract and infusion. 
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Table 1. Bioactive properties of the methanolic extract and infusion of wild 
Chenopodium ambrosioides. 
 
 Methanolic extract Infusion Positive control* 
Antioxidant activity    
DPPH scavenging activity 
(EC50, mg/mL) 0.62 ± 0.08a 0.49 ± 0.02b 0.04 ± 0.00 

Reducing power  
(EC50, mg/mL) 0.47 ± 0.03b 0.65 ± 0.01a 0.03 ± 0.00 

β-carotene bleaching inhibition  
(EC50, mg/mL) 2.53 ± 0.04a 2.32 ± 0.37b 0.003 ± 0.00 

TBARS inhibition  
(EC50, mg/mL)  0.70 ± 0.29a 0.25 ± 0.01b 0.004 ± 0.00 

Antitumour activity    
MCF-7 (breast carcinoma) 
(GI50, µg/mL) >400 >400 0.91±0.04 

NCI-H460 (non-small cell lung cancer) 
(GI50, µg/mL) >400 >400 1.42±0.00 

HCT-15 (colon carcinoma) 
(GI50, µg/mL) 318.75±13.21 >400 1.91±0.06 

HeLa (cervical carcinoma) 
(GI50, µg/mL) 264.17±10.57 >400 1.14±0.21 

HepG2 (hepatocellular carcinoma) 
(GI50, µg/mL) 287.43±21.99 >400 3.22±0.67 

Hepatotoxicity    
PLP2 (GI50, µg/mL) >400 >400 2.06±0.03 
 
*Trolox and ellipticine for antioxidant and antitumour activity assays, respectively. EC50 values 
correspond to the sample concentration achieving 50% of antioxidant activity or 0.5 of absorbance in 
reducing power assay. GI50 values correspond to the sample concentration achieving 50% of growth 
inhibition in human tumour cell lines or in liver primary culture PLP2. In each row different letters mean 
significant differences (p<0.05). 
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Table 2. Chemical composition in hydrophilic compounds- sugars and organic acids- of 
wild Chenopodium ambrosioides. 
 
Free sugars g/100 g dw Organic acids g/100 g dw 

Fructose  0.24 ± 0.01 Oxalic acid 5.64 ± 0.30 

Glucose  0.46 ± 0.01 Quinic acid 0.97 ± 0.14 

Sucrose  1.43 ± 0.12 Malic acid 0.67 ± 0.06 

Trehalose  0.91 ± 0.03 Ascorbic acid 0.02 ± 0.00 

Total sugars  3.04 ± 0.07 Citric acid 0.26 ± 0.01 

  Fumaric acid 0.02 ± 0.00 

  Total organic acids   7.58 ± 0.52  

 
dw- dry weight. 
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Table 3. Retention time (Rt), wavelengths of maximum absorption in the UV-vis region (λmax), pseudomolecular and MS2 fragment ions (in 

brackets, relative abundances), identification and quantification of phenolic compounds in wild C. ambrosiodes. 

Peak Rt (min) 
λmax 

 (nm) 

Molecular ion  

[M-H]- (m/z) 

MS2 

(m/z) 
Identification 

Quantification  

(mg/100 g dw) 

1 6.8 310 295 163(100),119(60) p-Coumaroyl pentoside acid 3.53 ± 0.50 

2 7.1 314 278 163(6),119(13) p-Coumaroyl acid derivative 9.75 ± 0.44 

3 7.5 328 387 387(100)207(25),163(50),119(37) p-Coumaroyl acid derivative 1.41 ± 0.09 

4 8.2 328 325 193(100),149(38) Feruloyl pentoside acid 2.58 ± 0.27 

5 8.8 308 278 163(6),119(13) p-Coumaroyl acid derivative 1.21 ± 0.15 

6 14.8 326 473 267(27),193(100) Ferulic acid derivative 3.51 ± 0.14 

7 15.7 332 579 447(15),417(7),327(7),285(100) Luteolin C-hexoside-O-pentoside 2.27 ± 0.09 

8 15.9 354 755 609(2),301(100) Quercetin 3-O-rutinoside-(1→2)-O-rhamnoside 15.23 ± 0.41 

9 16.4 312 163 119(100) trans p-Coumaric acid 25.65 ± 0.77 

10 16.9 356 609 463(30),447(33),301(36) Quercetin 3-O-neohesperide 7.19 ± 0.32 

11 17.2 354 741 301(100) Quercetin O-pentosyl-rhamnosyl-hexoside 27.60 ± 0.31 

12 17.6 356 595 301(100) Quercetin O-pentosyl-hexoside 3.55 ± 0.46 

13 18.1 348 739 285(100) Kaempferol O-dirhamnosyl-hexoside 20.38 ± 0.74 

14 18.3 326 193 149(17),135(100) Ferulic acid 6.43 ± 0.53 

15 18.6 354 579 447(100),301(33) Quercetin O-rhamnosyl-pentoside 8.06 ± 0.87 

16 19.0 348 739 593(83),431(17),285(67) Kaempferol dirhamnoside-O-hexoside 4.80 ± 0.49 

17 19.4 354 609 301(100) Quercetin-3-O-rutinoside 204.95 ± 6.39 

18 19.8 346 725 285(100) Kaempferol O-pentosyl-rhamnosyl-hexoside 31.42 ± 1.36 

19 20.2 352 593 447(64),301(100) Quercetin dirhamnoside 56.63 ± 0.35 



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

dw- dry weight; tr- traces

20 20.4 354 579 447(45),301(100) Quercetin O-rhamnosyl-pentoside 1.22 ± 0.03 

21 20.8 350 463 301(100) Quercetin 3-O-glucoside 12.91 ± 0.80 

22 21.5 348 563 431(53),285(100) Kaempferol O-rhamnosyl-pentoside 4.93 ± 0.08 

23 22.4 344 739 593(24),431(24),285(100) Kaempferol dirhamnoside-O-hexoside 11.31 ± 0.44 

24 23.1 348 593 285(100) Kaempferol 3-O-rutinoside 74.82 ± 2.29 

25 23.5 342 709 563(25),431(63),285(100) Kaempferol dirhamnoside-O-pentoside 95.89 ± 1.64 

26 23.9 344 563 431(47),285(100) Kaempferol O-rhamnosyl-pentoside 36.15 ± 1.40 

27 24.6 350 607 461(50),315(100) Isorhamnetin dirhamnoside tr  

28 25.1 352 593 461(80),315(100) Isorhamnetin O-rhamnosyl-pentoside 1.60 ± 0.09 

29 26.0 352 623 447(50),301(43) Quercetin O-rhamnosyl-glucuronide 2.48 ± 0.04 

30 26.6 352 623 447(33),301(51) Quercetin O-rhamnosyl-glucuronide 33.99 ± 0.28 

31 29.6 344 607 459(30),431(20),285(50) Kaempferol O-rhamnosyl-glucuronide 6.54 ± 0.28 

32 30.5 346 607 431(100),285(86) Kaempferol O-rhamnosyl-glucuronide 56.08 ± 0.35 

33 31.2 350 637 461(100),315(87) Isorhamnetin O-rhamnosyl-glucuronide 0.50 ± 0.00 

34 31.7 352 665 623(14),447(35),301(18) Quercetin (acyl)glucuronide-O-rhamnoside 12.53 ± 0.56 

35 35.1 344 649 607(6),431(42),285(31) Kaempferol (acyl)glucuronide-O-rhamnoside 35.26 ± 1.43 

     Phenolic acids 54.07 ± 1.55 

     Flavonoids 768.27 ± 10.70 

     Phenolic compounds 822.33 ± 12.25 
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Table 4. Chemical composition in lipophilic compounds of wild Chenopodium 
ambrosioides. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
dw- dry weight. SFA- Saturated fatty acids; MUFA- Monounsaturated fatty acids; PUFA- 
Polyunsaturated fatty acids.   
 

Fatty acids Relative percentage Fatty acids Relative percentage 

C6:0 0.10 ± 0.01 C18:3n3 48.54 ± 0.13 

C8:0 0.49 ± 0.02 C20:0 0.83 ± 0.00 

C10:0 0.34 ± 0.01 C20:1 0.19 ± 0.01 

C12:0 0.17 ± 0.03 C20:2 0.17 ± 0.03 

C13:0 0.41 ± 0.01 C20:3n6 0.12 ± 0.01 

C14:0 0.48 ± 0.02 C20:4n6 0.04 ± 0.01 

C14:1 0.47 ± 0.05 C20:3n3+C21:0 0.29 ± 0.01 

C15:0 0.44 ± 0.02 C20:5n3 0.03 ± 0.01 

C16:0 14.16 ± 0.03 C22:0 1.85 ± 0.05 
C16:1 0.14 ± 0.03 C22:2 0.01 ± 0.00 
C17:0 0.32 ± 0.01 C23:0 0.21 ± 0.00 
C18:0 1.57 ± 0.08 C24:0 2.52 ± 0.09 
C18:1n9 6.90 ± 0.12 SFA 23.87 ± 0.08 
C18:2n6 19.23 ± 0.12 MUFA 7.69 ± 0.16 
  PUFA 68.44 ± 0.08 
Tocopherols  mg/100 g dw   
α-tocopherol 199.37 ± 4.92   
β-tocopherol 0.56 ± 0.00   
γ-tocopherol 2.28 ± 0.10   
δ-tocopherol 0.13 ± 0.00   
Total tocopherols  202.34 ± 5.02   
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Figure 1. HPLC phenolic profile of Chenopodium ambrosiodes, obtained at 370 nm (A) and 280 
nm (B) for flavonoids and phenolic acids, respectively.  
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