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Biophysical Characterization of a β-Peptide Bundle: Comparison
to Natural Proteins

E. James Petersson†, Cody J. Craig†, Douglas S. Daniels†, Jade X. Qiu†, and Alanna
Schepartz*,†,‡
Departments of Chemistry and Molecular, Cellular and Developmental Biology, Yale University,
New Haven, Connecticut 06520-8107

We recently described the high-resolution X-ray structure of a helical bundle composed of
eight copies of the β-peptide Zwit-1F (Figure 1A,B).1 Like many proteins in Nature, the
Zwit-1F octamer contains parallel and antiparallel helices, extensive inter-helical electrostatic
interactions, and a solvent-excluded hydrophobic core. Here we explore the stability of the
Zwit-1F octamer in solution using circular dichroism (CD) spectroscopy, analytical
ultracentrifugation (AU), differential scanning calorimetry (DSC), and NMR. These studies
demonstrate that the thermodynamic and kinetic properties of Zwit-1F closely resemble those
of natural α-helical bundle proteins.

CD spectroscopy indicates that Zwit-1F is minimally 314-helical in dilute solution (as judged
by the molar residue ellipticity at 205 nm, MRE205)2 but undergoes a large increase in helical
structure between 20 and 200 μM (Figure 1C). The concentration dependence of MRE205 fits
a monomer–octamer equilibrium with an association constant of 4.0 × 1030 M−7 (ln Ka = 70.5
± 1.9).3 This value matches the result of AU analysis, which fits a monomer–octamer
equilibrium with ln Ka = 71.0 ± 0.9.3 Taken together, the AU and CD data support a model in
which the unfolded Zwit-1F monomer is in equilibrium with the folded octamer.4

Few known natural proteins assemble as octamers. Examples include the histones5 (hetero-
octamer), TATA binding protein6 (octamer in 1 M KCl), and the well-characterized
hemerythrin (ln Ka = 84).7 Although Zwit-1F is less stable than hemerythrin, it is smaller in
mass (13.1 vs 110 kDa) and interaction surface area (7000 vs 15 000 Å2).1,8 To compare the
stability of Zwit-1F to that of proteins of diverse size and stoichiometry, we calculated the free
energy of association per Å2 of buried surface area (ΔGarea). The ΔGarea of Zwit-1F is higher
than that of hemerythrin, the tetrameric aldolase, and natural helical bundle proteins GCN4
and ROP (Table 1). In fact, ΔGarea for Zwit-1F is close to the average value (7.0 ± 2.8
cal·mol−1·A−2) observed for protein complexes burying at least 1000 Å2 of surface area upon
association.9,10 This comparison implies that the lower affinity of Zwit-1F is due to its small
size and not an inherent instability of β3-peptide complexes.

Temperature-dependent CD studies (Figure 2A) show Zwit-1F to exhibit a concentration-
dependent Tm, an inherent property of protein quaternary structure.14 The Zwit-1F Tm, which
increases from 57 °C at 50 μM to 95 °C at 300 μM, is comparable to Tm values of thermostable
proteins such as ubiquitin (Tm = 90 °C) and bovine pancreatic trypsin inhibitor (Tm = 101 °C).
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15 The Zwit-1F Tm is significantly higher than the Tm of GCN4 (41–78 °C at 1–880 μM)16 and
ROP (58–71 °C at 0.5–160 μM).17 We note, however, that the unfolding of Zwit-1F is less
cooperative: the width of the temperature derivative of the CD signal at half-maximum is 40
versus 20 °C for GCN4 or 15 °C for ROP.16,17

A high Tm is not a definitive measurement of thermodynamic stability, so DSC was used to
further characterize Zwit-1F unfolding (Figure 2B). At 300 μM concentration (where Zwit-1F
is 87% octameric), the temperature-dependent heat capacity (CP) peaks near the Tm identified
by CD. This peak is embedded in a sloping baseline (∂Cp/∂T = 5.1 cal·mol−1·K−2) 3.1
mcal·g−1·K−2) that is similar to the CP versus temperature plot of monomeric β3-peptides, for
which no cooperative unfolding peak has yet been observed.2 For most natural proteins,
(∂Cp/∂T) is about 1 mcal·g−1·K−2 in the folded state,15 but GCN4 (∂Cp/∂T = 3.6
mcal·g−1·K−2)16 and some ROP mutants (∂Cp/∂T = 4–5 mcal·g−1·K−2)13 have sharply sloped
pretransition baselines like Zwit-1F.

The DSC data fit well to a process defined by a two-state transition with dissociation of eight
subunits using the program EXAM.3,18 The fitted enthalpy and heat capacity change per mole
octamer are 107.4 ± 0.3 kcal·mol−1 and 1.4 ± 0.1 kcal·mol−1·K−1, respectively. Substituting
these values into the Gibbs–Helmholz equation3 yields an equilibrium constant of 5.3 × 1031

(ln K = 73.3 ± 1.4) at 25 °C, in excellent agreement with values derived from CD and AU data.
The integrated calorimetric unfolding enthalpy (ΔHCal) for Zwit-1F is 7.2 cal·g−1, within the
range observed for natural globular proteins (5.2–11.8 cal·g−1),19,20 but somewhat lower than
GCN4 (7.7 cal·g−1)21 and ROP (9.5 cal·g−1).17

The NMR spectra of many well-folded natural and designed proteins are characterized by
differentiated amide resonances and slow hydrogen/deuterium exchange.22 The amide N–H
resonances in the 1H spectrum of Zwit-1F, under conditions where the sample is 97%
octameric, span 1.4 ppm (Figure 3A). While this span is narrower than that observed in the
NMR spectra of large proteins such as α-lactalbumin (3 ppm), it is comparable to that seen for
coiled-coil proteins GCN4 and ROP (1.3 and 2.2 ppm, respectively).13,23,24 In contrast to
Zwit-1F, the amide resonances of the poorly folded, monomeric β-peptide Acid-1YA2,11 span
only 0.5 ppm.3 These results indicate that the Zwit-1F fold in solution creates distinct electronic
environments for the amide backbone protons.

Participation in a hydrogen bond can protect an amide N–H from exchange with bulk solvent;
since exchange occurs from the unfolded state, a slow amide exchange rate constant (kex)
correlates with protein stability in solution.22 Exchange is often characterized by a protection
factor (P) equal to krc/kex, where krc is the rate constant for exchange of a random coil amide
N–H under similar conditions. When a lyophilized sample of Zwit-1F is redissolved at 1.5 mM
concentration in D2O, 9 of 14 resolvable peaks require more than 4 h to become
indistinguishable from baseline. The time dependence of exchange corresponds to exchange
rate constants between 0.6 × 10−4 and 2.9 × 10−4 s−1. Using β-alanine (βG in our nomenclature)
as a random coil model,3,25 these values of kex correspond to a protection factor of 2 × 104 for
Zwit-1F. Thus, amide protons in Zwit-1F are less protected than those in large protein cores,
where P ≥ 105.22,26 However, the protection factor for Zwit-1F, like the span of amide
resonances, is comparable to ROP (105 at 250 μM)13 and GCN4 (104 at 1.0 mM).23,24

Acid-1YA2,11 undergoes amide N–H exchange in less than 10 min, showing that slow exchange
requires a stable β-peptide fold.3

The biophysical experiments presented here describe the thermodynamic and kinetic stability
of the Zwit-1F octamer in solution. The data allow us to quantify the similarity of Zwit-1F to
GCN4 and ROP, two small, well-folded α-amino acid helix bundle proteins. In fact, the Tm,
ΔGarea, and ΔHCal for Zwit-1F are even comparable to much larger natural proteins. Taken
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together with the recent high-resolution structure of Zwit-1F,1 these studies show that β-amino
acid heteropolymers can assemble into quaternary complexes that resemble natural proteins in
both solid-state structure and solution-phase stability. We note that our characterizations do
not preclude some molten globule character of the Zwit-1F core in solution.27 Nonetheless,
these studies establish Zwit-1F as a remarkably protein-like stepping stone in the path toward
fully synthetic mimics of biological molecules.

Supplementary Material
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Figure 1.
(A) Helical net representation of the Zwit-1F monomer. β3-Amino acids are designated by the
single letter corresponding to the equivalent α-amino acid. O signifies ornithine. (B) Zwit-1F
octamer structure determined by X-ray crystallography.1 (C) Plot of MRE205 as a function of
[Zwit-1F] fit to a monomer–octamer equilibrium. Inset: CD spectra (MRE in units of 103

deg·cm2·dmol−1) at the indicated [Zwit-1F] (μM).

Petersson et al. Page 5

J Am Chem Soc. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
(A) Temperature-dependent CD analysis of Zwit-1F. Plot of MRE205 as a function of
temperature at the indicated Zwit-1F concentration (μM). (B) DSC analysis of Zwit-1F
unfolding fit to a subunit dissociation model. Raw data are shown as black circles.3
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Figure 3.
(A) 500 MHz 1H NMR spectra of 1.5 mM Zwit-1F, acquired in phosphate-buffered “H2O” (9:1
H2O/D2O) or at the indicated times after reconstitution of a lyophilized Zwit-1F sample in
phosphate-buffered D2O. (B) Peak heights of the indicated resonances (normalized to the peak
at 6.70 ppm) fit to exponential decays.3 Bars indicate standard error.
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Table 1

Comparison of Protein Association Parametersa

protein (stoichiometry) MWmonomer ΔGarea

Zwit-1F (8) 1.6 kDa 5.9

hemerythrin (8) 13.8 kDa 3.37

aldolase (4) 39.2 kDa 3.911

GCN4 (2) 4.0 kDa 4.812

ROP (2) 7.2 kDa ≥3.013

a
ΔGarea values in units of cal· mol−1·Å−2. Interaction surface areas and ΔGarea calculated as described in Supporting Information.
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