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Abstract

Palynological analysis of assemblages from the Integrated Ocean Drilling Program 

(IODP) Expedition 323, Bering Sea Expedition, site U1343, located in deep water adjacent to the 

Bering Sea shelf edge, permit reconstruction of the terrestrial vegetation of the southern margin 

of central Beringia. Previous research done by Rachel Westbrook on marine isotope stages (MIS) 

1-6 indicates that the southern coast of central Beringia was a glacial refugium for boreal forest 

vegetation.

This study extends and augments Westbrook’s research by analyzing additional samples 

from IODP site U1343 spanning the last 258 - 615.3 kya, during glacial stages 8, 10, 12, 14, and 

16. Grass (Poaceae) and sedge (Cyperaceae) pollen dominate the assemblages with small but 

persistent amounts of boreal forest taxa, such as alder (Alnus), birch and dwarf birch (Betula and 

Betula nana), and spruce (Picea). A set of modern surface samples forming a transect from the 

southwestern margin of the Bering Sea shelf to Nome, AK were obtained and analyzed as 

potential modern analogs for the palynofloral assemblages from site U1343. Low percentages of 

boreal forest taxa in nearshore samples from this Bering Sea shelf transect reflect the vegetation 

of the coastal Seward Peninsula and the Yukon/Kuskoskim delta, regions dominated by 

herbaceous tundra with isolated stands of trees. Comparison of modern and fossil assemblages 

via canonical community ordination indicates that the IODP samples from site U1343 and 

modern samples from the Bering Sea shelf are most similar to surface samples from lakes and 

bogs surrounded by moist herbaceous/shrub tundra. These data suggest that boreal forest taxa 

persisted throughout MIS 8, 10, 12, 14, and 16 on the southcentral Beringian coast, where the 

vegetation was primarily moist herbaceous/shrub tundra with intermittent stands of trees.
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Chapter 1: Introduction and background

1.1 Expanding on previous work

Palynological research on MIS stages 2, 4, and 6 from IODP core U1343 was completed 

by Rachel Westbrook in 2014. Her research used a preliminary, unpublished age model for 

site U1343 and did not contain palynological analysis of assemblages from glacial stages that 

preceded MIS 6. This study extends her research and lengthens the palynological record for 

IODP core U1343 in order to compile a record of vegetation changes on the Bering Sea shelf 

during MIS 8, 10, 12, 14, and 16. I also recalibrated all of the palynological data with Asahi 

et al.’s (2016) current age model which places some of the previously analyzed assemblages 

in different marine isotope stages.

Westbrook’s (2014) research indicates that a glacial refugium existed during MIS 2, 3, 4, 

and 6, as suggested by the presence of tree pollen such as birch, spruce, and alder. Based 

upon the abundance of fern spores in samples from MIS 1 through 6, she determined that the 

southern margin of central Beringia remained relatively humid during glacial stages, with a 

vegetation cover of herbs, forbs, and isolated stands of trees and shrubs (Westbrook, 2014). 

This differs from reconstructions of eastern and western Beringia, which according to Elias 

and Crocker (2008) consisted of arid steppe vegetation. However, evidence of increasing 

humidity at sites proximal to the modern coast suggest that the vegetation of central Beringia 

may have been more mesic (Elias and Crocker, 2008). In continuing the study of IODP core 

U1343, my research explores MIS 8, 10, 12, 14, and 16 to determine whether boreal trees 

and shrubs persisted throughout 676 kya to 243 kya or were present only during the most 

recent glacial stages. Combined with Westbrook’s (2014) data, palynological analysis of the
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older glacial stages presented herein provides a record of vegetation changes on the southern 

margin of central Beringia throughout the last ~600 thousand years (kya).

1.2 Statement o f problem, research questions and hypothesis

In 2009, through efforts of IODP Expedition 323, seven sites were drilled in the Bering 

Sea (Expedition 232 Scientists, 2010; Takahashi et al., 2011). Site U1343 is located off the edge 

of the Bearing Sea shelf, about 700 km from today’s coastline (Takahashi et al., 2011). During 

glacial maxima, when sea level was ~130 m lower than modern (Lambeck et al., 2014), this site 

would have been approximately 100 - 200 km from the paleoshoreline (Figure 1 and Figure 2). 

Therefore, this site would have been adjacent to the Bering Land Bridge (BLB) during glacial 

stages and likely received terrestrial runoff, including sediment and plant material, from 

estuarine and deltaic systems (Heusser and Balsam, 1977; Expedition 323 Scientists, 2010). 

Therefore, I assume that terrestrial sediment, with constituent pollen and spores, was delivered to 

this site from the continental margin during glacial stages, when sea level would have been much 

lower and the site more proximal to shoreline.

In 2010, sediment samples from site U1343 were obtained by Dr. Sarah Fowell for 

palynological analysis. In 2014, Westbrook completed analysis of selected samples in order to 

reconstruct the vegetation and climate of the BLB during glacial stages represented by MIS 2, 4, 

and 6. I am continuing this research and expanding it with the addition of samples from MIS 8, 

10, 12, 14, and 16, juxtaposed with a transect of modern surface samples (Bering Sea transect) 

from sites located between Nome, AK and the western edge of the Bering Sea shelf (Figure 1).
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Figure 1: IODP Location map with sample site locations. IODP sites are denoted with a red 
circle and site U1343 is highlighted with a purple box. (Modified from: Westbrook, 2014).
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Figure 2: Map of Beringia with recreated paleo shorelines (Modified from Ehlers et ah, 
2011 and Amante and Eakins, 2009).
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This palynological research aims to test the following hypotheses, which are based on 

Westbrook’s (2014) prior results:

1) The lowlands of central Beringia provided an ice age refugium for boreal trees and 

shrubs during MIS 8, 10, 12, 14, and 16.

2) The ice age vegetation of the southern margin of Beringia was broadly similar from 

MIS 2 through 16.

3) Throughout the last 600 kya, glacial vegetation of southcentral Beringia can be 

characterized as moist herbaceous tundra with stands of trees, similar to the modern 

vegetation in the vicinity of the Yukon-Kuskokwim Delta.

1.3 Background

1.3.1 Beringia

Beringia was a thousand-mile-wide landmass that joined present day Alaska and eastern 

Siberia during periods of sea level regression during glacial stages throughout the Pleistocene 

(Martinson et al., 1987; Savva, K., 2014) (Figure 2). Today, Beringia is defined as the land and 

maritime area bounded on the west by the Lena River in Russia; on the east by the Mackenzie 

River in Canada; on the north by 72 degrees north latitude in the Chukchi Sea; and on the south 

by the tip of the Kamchatka Peninsula (National Park Service, 2018). During glacial maxima sea 

level was at its lowest, up to 130 meters below present day sea level (Lambeck et al., 2014), and 

Beringia was at its maximum extent. During such glacial maxima, glaciers were located in the 

Brooks Range and Alaska Range; however, the interior of Alaska and the lowlands of Central 

Beringia remained ice free (Hamilton et al., 1986; Manley, 2012). IODP site U1343 is adjacent 

to the southern edge of the continental shelf and therefore it is assumed to contain a record of the
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vegetation present on central Beringia’s coastal lowlands. Reconstructing the vegetation of the 

BLB will enhance understanding of the response of tundra and boreal forest plants to past 

climate changes and the role of central Beringia as a filter bridge for floral and faunal migrations. 

Because humans are among the migrants, these results also have archeological significance; the 

paleoenvironment of the BLB determined the resources available to human inhabitants during 

dispersal into North America (Wooller et al., 2018).

1.3.2 Modern Alaskan pollen spectra

The frequencies of plant taxa in pollen spectra do not coincide with their frequencies in 

the vegetation cover, for a variety of reasons. Wind-pollinated taxa and grains with thicker walls 

tend to be overrepresented in pollen spectra, while taxa with vector pollination, thinner exines, or 

vegetative reproduction are underrepresented (Faegri and Iversen, 1989; Traverse, 2007; Moore 

et al., 1991). Nevertheless, analysis of surface sediment from 101 lakes in northern Alaska 

reveals consistent differences in the modern pollen rain in lakes surrounded by Alaskan boreal 

forest, forest-tundra, and tundra vegetation and (Anderson and Brubaker, 1986). Pollen spectra 

from the boreal forest contained the highest amounts of spruce and birch, whereas forest-tundra 

samples had the highest frequencies of alder, and tundra samples contained the highest amounts 

of grass and sedge (Anderson and Brubaker, 1986).

1.3.3 Marine Oxygen Isotope Stage (MIS) notation

Marine isotope stages (MIS) are determined by changing oxygen isotope ratios that 

provide evidence for former glacial and interglacial oscillations and serve as a proxy for global 

climate changes (Lowe, 2014). The ratio of the stable isotopes 18O and 16O in the oceans is 

determined by the amount of 16O bound up in glaciers. These isotopes are preserved and 

recorded in foraminifera (forams), amoeboid marine protists with calcium carbonate tests. Once
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dated, foram tests can be analyzed for stable isotopes to determine the ratio of 18O and 16O 

present in the oceans in which they lived. Tests from odd numbered stages (e.g. MIS 1, 3, and 5) 

have low 318O values and represent the periods of warming (i.e. interglacial stages). Likewise, 

tests from forams that lived during even numbered stages (e.g. MIS 2, 4, and 6) have relatively 

high 318O values, which are representative of glacial stages (Martinson et al., 1987).

1.3.4 Glacial refugia

A glacial refugium is an area that facilitates the growth and survival of select species 

during glacial episodes when conditions are adverse or unfavorable. Species in refugia survive in 

small populations during glacial stages and expand their range during interglacial stages, when 

conditions are more favorable (Holderegger and Thiel-Egenter, 2009).

The presence of refugia in Alaska has been heavily debated, but genetic evidence 

supports the presence of isolated Alaskan populations. For example, Beatty and Provan (2010) 

found evidence for genetic isolation in Alaskan specimens of Orthilia secunda, an herbaceous 

taxa found in Alaska and Canada. If plants from southern Canada recolonized Alaska after 

deglaciation of the Laurentide Ice Sheet, then mutations specific to Canadian Orthilia species 

should be present in Alaskan species as well. However, Alaskan species have different 

regionally-specific mutations. This suggests a period of genetic isolation in glacial refugia prior 

to expansion and integration of the Alaskan and Canadian Orthilia populations during the 

Holocene (Beatty and Provan, 2010).

Similar results are derived from a study of white spruce trees, which provides evidence 

for boreal forest refugia in Alaska. Anderson et al.’s (2006) study used spruce chloroplast DNA 

to evaluate genetic isolation of Alaskan white spruce during the last glaciation. By comparing the 

genetic diversity of the white spruce from Alaska with that of Canada, they found that Alaskan
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populations shared few DNA haplotypes with the Canadian white spruce populations. This 

suggests that some trees survived in isolation in Alaska throughout the last glacial maximum 

(LGM). Subsequent range expansion mixed their genetic material with the Canadian variety of 

white spruce during the current interglacial.

1.3.5 Palynological evidence for Beringian refugia

Brubaker et al. (2005) examined mapped patterns of pollen percentages to determine 

whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, and 

Alnus/Duschekia) survived harsh glacial conditions within Beringia. Maps of pollen percentages 

from 149 sites plotted at 1000-year intervals from 21,000 to 6000 cal. yrs. BP support the 

survival of these taxa within Beringia during the LGM. Although abundance records for each 

taxon are unique, all display rapid increases in pollen percentages at sites deep within Berinigia 

following the LGM. These rapid comebacks suggest that populations remained local rather than 

migrating long distances, as the spatiotemporal patterns do not support recolonization by 

northward migration after the ice sheets receded. Rapid increases in pollen percentages in 

response to post-glacial warming suggest that Populus survived in the western Brooks Range. 

Larix, Pinus, and Alnus/Duschekia persisted in western Beringia, modern day Siberia, Picea 

survived in eastern Beringia, modern day Alaska, and Betula trees or shrubs were present in 

restricted refugia throughout Beringia (Brubaker et al., 2005).

It is possible that Beringia was bisected by a north-south belt of relatively mesic climate 

that could have allowed flora in the lowlands of central Beringia to survive harsh glacial 

conditions. Guthrie (2001) hypothesizes such a phenomenon, conjecturing that maritime cloud 

cover over central Beringia’s lowlands could have created wetter and more humid conditions, 

forming a “mesic belt” between regions of otherwise arid steppe vegetation. Subsequently, Elias
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and Crocker (2008) compiled and analyzed data, based on beetle assemblages, from 13 sites in 

western and eastern Beringia which supports Guthrie’s (2001) hypothesis. Their paleoclimate 

reconstructions indicate that the lowlands of central Beringia were dominated by shrub tundra, 

indicative of a more mesic environment. In contrast, higher elevation sites in eastern and western 

Beringia contained a steppe-tundra signature, indicating a relatively dry environment (Elias and 

Crocker, 2008).

Recent evidence from St. Paul Island, near the southern edge of the Bering Sea shelf, 

provides additional evidence for drier conditions at higher elevations (Wang et al., 2017). 

Palynological assemblages and sedimentary ancient DNA (sedaDNA) indicate that St. Paul has 

been covered by graminoid-forb tundra with prostrate shrubs for the last 18,000 years. Although 

pollen of Picea, Betula, and Alnus are present, the combination of low abundances (< 5% for 

Picea) and maximum frequency during intervals of minimum influx is consistent with long

distance transport. Furthermore, sedaDNA analyses do not support the local presence of these 

taxa.

Wang et al., 2017 conclude that if the island of St. Paul did not serve as a glacial 

refugium for woody taxa, then by implication there were no refugia elsewhere on southern 

coastal Beringia during the LGM. However, the higher elevation of St. Paul Island compared to 

the lowlands of surrounding central Beringia is an alternative explanation for these results. 

Changes in plant taxa with elevation are driven by related changes in temperature, wind, 

precipitation, and soil chemistry (Harsch and Bader, 2011). Whereas Wang et al. (2017) did not 

consider the temperature difference resulting from an estimated additional 130 m of elevation on 

St. Paul to be too small to prohibit colonization by woody taxa, they also do not consider the 

effects of precipitation. If Guthrie’s (2001) hypothesis is correct and maritime clouds and fog
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kept central Beringia relatively moist, it is possible that the site on St. Paul Island was above 

clouds, excluding it from the mesic belt.

1.3.6 Significance o f offshore pollen records

During Quaternary glaciations sea level was significantly lower than today, leaving 

central Beringia, the Bering Land Bridge between Alaska and Russia, exposed as dry land 

(Figure 2). Eustatic changes during interglacial periods flooded central Beringia. Through the 

efforts of IODP Expedition 323 Scientists (2010), cores have been obtained from a site beyond 

the edge of the Bering Sea shelf, near Zhemchug Canyon (Figure 1). IODP site U1343 is located 

about 700 km from today’s coastline, but this area was approximately 100-300 km offshore, 

during past glacial maxima. Previous research indicates ocean currents transport terrestrial 

materials from coastal discharge areas, such as rivers and deltas, to sites of deposition in marine 

basins (Heusser and Balsam, 1977). Therefore, it is feasible that the majority of the spores, 

pollen, and terrestrial sediment delivered to site U1343 during glacial stages was derived from 

the adjacent continental margin. Thus, palynological assemblages from these cores permit 

reconstruction of the terrestrial vegetation on the southern margin of adjacent southcentral 

Beringia.

Samples obtained for palynological analysis from site U1343 span MIS 1 to 19, as 

characterized by Lisiecki and Raymo (2005) (Figure 3). Samples from site U1343 have been 

dated using benthic foraminiferal oxygen isotope analysis (Asahi et al., 2016). Asahi et al.’s 

(2016) model employed inter-species calibration of benthic foraminiferal S18O values to revise 

and refine a previous age model, changing the ages of some palynomorph assemblages 

previously analyzed by Westbrook (2014).
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Samples from the Bering Sea shelf transect (Figure 4) allow comparison between pollen 

assemblages in marine surface samples and the vegetation of adjacent islands and coastlines. If 

assemblages from surface samples proximal to the Seward Peninsula and Yukon-Kuskokwim 

Delta are comparable to the modern pollen rain in these areas, there is additional support for the 

assumption that fossil pollen assemblages from the IODP sit U1343 reflect the coastal vegetation 

of southcentral Beringia.
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• fc ' DLN4 »
# -
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Figure 4: Locations of Bering Sea transect sample sites.
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Chapter 2: Methods

2.1 Age model

An updated, orbitally-tuned age model was constructed by Asahi et al. (2016) specifically 

for IODP site U1343. An inter-species calibration was used to produce a composite benthic 

foaminiferal 318O record. Comparison to the composite global benthic 318O stack curve LR04 

(Lisiecki and Raymo, 2005) established a highly refined age model for the past 1.2 million years. 

By adjusting for small offsets in the 318O values of different species of benthic foraminifera, this 

model allowed for a continuous composite 318O record. Correlation with the global stack curve 

assumes that the timing of the glacial and interglacial cycles is globally uniform: any deviation 

from this uniformity would result in a lag between the reported glacial and interglacial events 

and their occurrence (Asahi et al., 2016). Linear interpolation was employed to estimate the ages 

of samples from horizons located in between stage boundaries identified and dated by Asahi et 

al.’s (2016) age model.

In order to reconstruct the coastal vegetation of Beringia during glacial stages, I selected 

samples from MIS 8, 10, 12, 14, and 16 for processing. Due to the use of a preliminary age 

model (Asahi, pers. comm. with Fowell and Westbrook, 2014) some of the samples initially 

selected from MIS 16 were found to fall within MIS 15 once the updated age model was applied. 

In addition, sample ages previously provided by Westbrook (2014), are herein revised based on 

Asahi et al.’s (2016) published age model. This changed the ages and, in some case, the stages 

represented by Westbrook’s (2014) samples. For example, 6 of the samples that were presumed 

to be from MIS 6 were found to be from MIS 5 when the updated age model was applied.
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2.2 Sample processing

Samples from MIS 1 through 6, 8, 10, and 12 were processed by Rachel Westbrook and 

Susana Salazar Jaramillo prior to 2014 (Westbrook, 2014). Processing employed a modified 

version of the methods outlined by Heusser and Stock (1984), and residues were mounted in 

silicone oil. However, the silicone oil was too fluid, making it difficult to examine and relocate 

grains, as they would move freely about the slide.

Processing of samples from MIS stages 14, 15, and 16 also employed a modified version 

of the methods described by Heusser and Stock (1984) (Figure 5). However, the average sample 

volume was ~ 2 cc, as determined by water displacement, rather than the 5cc used by Heusser 

and Stock (1984). Marine sediment typically has lower pollen concentrations than terrestrial 

sediment due to grains being transported farther from the source. Therefore, a larger sample size 

would have been optimal, but only 2 cc were available. I processed these samples in three 

separate batches: batch one consisted of six samples from MIS stages 14 and 15, batch two 

consisted of six samples from MIS 15 and 16, and batch three consisted of two samples from 

MIS 16 and five samples from the Bering Sea shelf surface transect.

Sample batches one, two, and three all contained a substantial amount of clay, and 

samples from MIS 15 and the modern Bering Sea shelf transect contained a large amount of 

diatoms, both of which obscured palynomorphs on test slides. To remedy this, clay was removed 

through a series of water washes followed by brief centrifugation for approximately 60 seconds, 

leaving the clay in suspension. Washing and centrifugation continued until the decanted liquid 

was completely clear. Two additional hydrofluoric acid washes were added to remove abundant 

diatoms tests.
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Prior to mounting, samples were stained with safranin O in order to highlight reworked 

grains (Brubaker et al., 2005). Rather than use the low viscosity silicon oil, samples from batch 

one were mounted in glycerin jelly. Samples in batches two and three were mounted 6 months 

later in a batch of silicon oil with a higher viscosity than that available during batch one 

processing. As a result, samples in batches two and three were dehydrated with tert-Butyl alcohol 

to remove water before staining with safranin O and mounting in silicone oil. Silicone oil is 

preferentially used in these samples so that the pollen and spores can be flipped and rotated to 

facilitate identification.

2.3 Microscopy

Palynomorphs were counted using an Olympus CX41RF microscope at 400X -  1000X 

magnification. A minimum of 300 grains of terrestrial pollen and spores was counted on each 

slide, excluding added exotic Lycopodium, fungal spores, and aquatic taxa. Identification of 

pollen grains and spores was facilitated by comparison with type slides located at the University 

of Alaska Fairbanks Paleoecology Laboratory and photographic plates in Traverse (2007) and 

Moore et al. (1991).

When counting bisaccate pollen grains such as Picea (spruce) and Pinus (pine), the 

individual air bladders were counted individually, and the resulting number was divided by two 

to determine the total number of bisaccate pollen grains. In addition, the number of bisaccate 

pollen that were whole versus fragmentary (individual air bladders) was tracked to assess the 

likelihood of reworking or long distance transport. Betula (birch) pollen was differentiated from 

Betula nana (shrub birch) based upon a ratio of the grain diameter (D) and pore depth (P). If the 

D/P ratio was greater than 9, the grain was categorized as Betula nana; if it was less than 9, the
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grain was simply categorized as Betula (Clegg et al., 2005). In the event that a birch grain was 

flattened at an oblique angle or damaged such that the pore depth could not be measured, it was 

categorized as Betula. Therefore, the percentages of Betula nana reported herein are minimum 

values. Cyperaceae and Poaceae pollen grains were classified at the family level with no attempt 

to differentiate genera, because the same pollen morphology is produced by many different 

genera (Moore et al., 1991). Spores were categorized as monolete, trilete, fungal spores, and 

Sphagnum, but they were not subdivided into species based upon ornamentation or structure 

because most lacked the diagnostic perine.

2.4 Calculating pollen concentrations, percentages, and paludification index

Pollen concentrations were calculated using the following equation from Traverse

(2007):

Fossil Pollen Counted x Exotic Spike Added 
Total Fossil Pollen = Exotic Spike Counted

Pollen diagrams are based on identification of at least 300 grains per sample. The basic 

pollen sum is the total of all identified pollen grains and spores excluding: fungal spores, 

aquatics, marine palynomorphs, and unknown/indeterminate grains. It is calculated by adding 

the total numbers of tree, shrub, and herb pollen to the total numbers of monolete and trilete 

spores and used as the denominator for calculating percentages of taxa that belong to these 

groups. A separate pollen sum was used to calculate percentages of groups excluded from the 

basic pollen sum (fungal spores, aquatics, marine palynomorphs, and unknown/indeterminate 

grains) by adding the total number of grains for the group in question to the basic pollen sum
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(Figure 6). The percentage of ripped versus whole bisaccate pollen grains was calculated by 

dividing the number of ripped sacci by the total number of sacci found and multiplying by 100.

A paludification index Pest (angiosperm pollen / Sphagnum spores) constitutes a proxy for 

saturated organic matter (Figure 6). Values less than 10 correspond to wet conditions and greater 

paludification (White et al., 1977).

2.5 Bering Sea transect

Modern surface samples that form a transect across the Bering Sea shelf are located 

between 82 km and 775 km from the modern coast of Alaska (Figure 4). A reference point 

(Nome Airport: 64.5099N, 165.4435W) is used to estimate the distance from the modern 

coastline to the sample locations. The transect is used to determine the representation of modern 

pollen taxa in relation to modern coastal vegetation, serving as a basis for inferences regarding 

pollen transport and survival in the marine environment (Figure 6 and 7). The transect was 

assembled from two scientific cruises on the US Coast Guard icebreaker Healy (HLY061 and 

HLY0702) conducted across the Bering Sea shelf. Five of 35 available modern surface samples 

were strategically chosen from the two cruises based upon availability and distance from the 

current shoreline in order to have samples representative of nearshore (SPH5 and SHP2), mid

shelf (POP3a and DLN4), and the shelf edge (DBSE) (Figure 4).

2.6 Principal component analysis o f modern and fossil samples

To identify modern analogs, IODP samples were compared with modern surface samples 

from locations across Alaska and the Bering Sea shelf (Figure 8). Terrestrial surface sample 

datasets were provided by palynologists Drs. Thomas Ager, Patricia Anderson, and Linda 

Brubaker. Ager analyzed palynomorphs from 120 sites in western and southern Alaska (59.6°N
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Figure 6: Abundance (percent total identified) for IODP site U1343. Including total 
concentration data, which includes terrestrial taxa and spores.



Figure 7: Abundance (percent total identified) for Bering Sea transect.



Figure 8: Map of modern surface samples taken on the Bering Sea shelf from two 
cruises HLY061 and HLY0702.
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to 69.25°N and -144.65°W to -166.17°W) (Ager, 2003) while Brubaker and Anderson 

collected and analyzed surface pollen samples from a total of 278 sites throughout mainland 

Alaska (59.1°N to 71.23°N and -141.07°W to -166.47°W) (Anderson and Brubaker, 1986; 

Bigelow et al., 2003).

The original datasets from Ager, Anderson and Brubaker varied in their descriptions of the 

local vegetation at the sample sites. In order to standardize the vegetation descriptions, 

Westbrook (2014) plotted their site localities onto a modern vegetation distribution map of 

Alaska developed by Michael Fleming (Figure 9), which employs 23 vegetation classifications 

(Fleming, 1998). The vegetation distribution map was constructed from a phenology index of the 

1991 growing season using Advanced Very High Resolution Radiometer (AVHRR) satellite data 

(Markon et al., 1995). Vegetation classifications provided by Ager, Anderson and Brubaker were 

consistent with vegetation descriptions on the distribution map. Several of the modern surface 

samples from Ager, Anderson and Brubaker were not included in subsequent analyses due to 

overlapping locations or redundant vegetation classifications (Westbrook, 2014).

To facilitate identification of modern analogs, assemblages from IODP samples were 

compared to 220 surface pollen spectra and spectra from five marine surface samples using 

canonical community ordination (CANOCO 4.5) software, augmenting Westbrook’s (2014) 

prior analyses (Figure 10). Initially, Westbrook (2014) conducted a detrended correspondence 

analysis (DCA) to determine the gradient lengths of the first axis. If the gradient length is less 

than 4 standard deviations, then a linear response model such as principal component analysis 

(PCA) is an appropriate technique (Ter Braak and Smilauer, 2002). The first axis gradient length 

of my dataset was 1.868 standard deviations, therefore a PCA characterized by a linear response 

model with an indirect gradient analysis was applied. I followed typical PCA methodology and
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ödem Vegetation Distribution

Scientist
O Anderson & Brubaker 
•  Tom Ager 

Value
□  Ocean water 
I I Fresh water
□  Glaciers and snow
I I Alpine tundra and barrens
I I Dwarf shrub tundra
^ B  Tussock sedge/dwarf shrub tundra 
^ B  Moist herbaceous/shrub tundra 
^ B  Wet sedge tundra 
^ B  Low shrub/lichen tundra 
H  Low and dwarf shrub 
I I Tall shrub
^ B  Closted broadleaf and mixed forest 
M  Closed mixed forest 
^ B  Closed spruce forest 
^ B  Spruce woodland/shrub 
^ B  Open spruce forest/shrub/bog mosaic 
H  Spruce and broadleaf forest 
H  Open and closed spruce forest 
H  Open spruce and closed mixed forest mosaic 

Closed spruce and hemlock forest 
I 11991 fires
I 11990 fires and gravel bars 7
I I Canada/Russia t

I I Tall and low shrub " T *

700
H  Kilometers

Figure 9: Modern vegetation distribution map of Alaska including 24 classes total, 19 of which 
are vegetative. Surface sample data provided by Tom Ager (indicated by purple circles), and Pat 
Anderson and Linda Brubaker (indicated by green circles). (Modified from: Fleming, 1998). 
Modified from Westbrook, 2014.
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Legend
■ Species 
Alaska Biome
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■ MIS 1
□ MIS 2
□ M IS3
□ MIS 4
□ MIS 5
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□ MIS 12
■ MIS 14
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Figure 10: Simple ordination plot using Principal Components Analysis (PCA) showing 
U1343 samples (Westbrook IODP, Morris IODP) plotted with modern surface samples 
(Alaska Biome) and the Bering Sea transect samples. Plotting indicates IODP and Bering 
Sea transect samples plot with herbaceous tundra taxa quadrant.
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Westbrook’s (2014) approach by basing results on taxa only and implementing a square-root 

transformation that reduces the range in the dataset and generates a more compact plot. I did not 

weight dominant taxa relative to minor taxa. This means that the dominant taxa are plotted far 

from the center of the diagram (Figure 10). Ordination plots group the samples according to the 

proportions of constituent taxa, such that similar assemblages appear closer together. The results 

highlight various aspects of the modern samples, including lake vs. peat, tundra vs. forest, and 

tundra biome vs. forest biome (Figures 11 and 12) and allow quick visual identification of the 

closest modern analogs for the IODP assemblages (Figure 10).
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Figure 11: Simple ordination plot using PCA denoting surface samples classifications, 
separating classes into tundra vs. forest biomes with envelopes (Modified from Westbrook, 
2014).
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Figure 12: PCA orientation plot with modern surface samples categorized into eight 
specific tundra classifications (i.e. alpine tundra and barrens, dwarf shrub tundra, tussock 
sedge/dwarf shrub tundra, moist herbaceous/shrub tundra, wet sedge tundra, low 
shrub/lichen tundra, tall shrub, and tall and low shrub) vs. mixed and spruce forest 
(Modified from Westbrook, 2014).
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Chapter 3: Results

3.1 Palynomorph assemblages from MIS 8, 10, 12, 14, 15, and 16

IODP site U1343 samples ranging in age from 243 to 676 kya and were selected for 

proximity to glacial maxima as identified by Lisiecki and Raymo (2005) (Figure 3). High 

percentages of grass (Poaceae) and sedge (Cyperaceae) are present in both glacial and 

interglacial assemblages. Boreal forest taxa including birch (Betula and Betula nana), alder 

(Alnus), and spruce (Picea), are consistently present in varying abundances. Spores of Sphagnum 

and ferns are also consistently present and commonly abundant.

3.1.1 MIS 16 (676 - 621 kya)

Three samples from MIS 16 were analyzed (Figure 6), with estimated ages ranging from

676.1 -  623.5 kya. Grass (Poaceae 39.3 -  43.6%) and sedge (Cyperaceae 27.7 -  32.6%) 

dominate the assemblages with percentages far greater than that of tree or shrub taxa. Tree pollen 

is present in low percentages, including birch (Betula 1 -  2.3% and Betula nana 0 - 0.7%), alder 

(Alnus 8 -  12%), and spruce (Picea 2.2 -  2.3%). Small quantities of willow (Salix 0 - 6%) and 

Ericales (Ericaceae 3.7 -  6.3%) pollen are also present. Spore abundances (monolete and trilete 

spores, excluding Sphagnum) are 29.7%, 26.3%, and 30% at 623.5, 668.5, and 676.1 kya, 

respectively. Sphagnum is present in abundances ranging from 3.7 -  5.8%. Sage (Artemisia 

0.7%) is present in one of the three samples, at 623.5 kya.

3.1.2 MIS 15 (621 - 563 kya)

Six samples from MIS 15 were analyzed (Figure 6), with estimated ages ranging from

615.3 -  567.7 kya. Grass (Poaceae 50.1 -  63.1%) and sedge (Cyperaceae 20.6 -  29.5%) 

dominate the assemblages. Trees and shrubs are present but relatively uncommon, including 

birch (Betula 1.3 -  5% and Betula nana 0 - 1%), alder (Alnus 2.6 - 4%), and spruce (Picea 2.5 -

29



8.9%). Willow (Salix 0.7 -  4.3%) and Ericales (Ericaceae 1.3 - 4%) are also present. Spore 

abundances (monolete and trilete spores, excluding Sphagnum) are 39%, 37.9%, 30%, 27.8%, 

14.8%, and 18.3% at 567.7, 577.6, 583.8, 600.1, 607.5, and 615.3 kya, respectively. Sphagnum is 

present in abundances ranging between 4 and 22.8%. Sage (Artemisia 1 -  1.3%) is also present 

in two of the six samples, from approximately 567 and 577 kya.

3.1.3 MIS 14 (563 - 533 kya)

Three samples from MIS 14 were analyzed (Figure 6), with estimated ages ranging from

560.8 -  548.4 kya. Grass (Poaceae 39.1 -  64.5%) and sedge (Cyperaceae 8.3 - 27%) again 

dominate the assemblages. Tree and shrub taxa include birch (Betula 1.3 -  3.7%), alder (Alnus

2.3 -  15.3%), spruce (Picea 2 -  5.5%), willow (Salix 2.3 - 8%) and Ericales (Ericaceae 5.3 - 

12%). Abundances of monolete and trilete spores, excluding Sphagnum, are 24.9%, 27.9%, and 

31.6% at 548.4, 554.4, and 560.8 kya, respectively. Sphagnum is present in abundances ranging 

between 6.1 and 8%. One grain of larch (Larix 0.7%) is present in one sample at 560.8 kya; sage 

(Artemisia 0.3%) is also present in this sample.

3.1.4MIS 12 (478 - 424 kya)

Three samples from MIS 12 were analyzed (Figure 6), with estimated ages ranging from

449.9 -  431.6 kya. Grass (Poaceae 40.3 - 49%) and sedge (Cyperaceae 27.3 -  29.3%) dominate. 

Tree and shrub taxa include birch (Betula 0.6 -  2.7% and Betula nana 0 -  1.7%), alder (Alnus

4.2 - 11%), and the highest percentages of spruce (Picea 3.3 -  9.7%) recovered from samples 

included in this analysis. Willow (Salix 2.6 -  5.7%) and Ericales (Ericaceae 2.7 -  5.2%) are also 

present. Spore abundances (monolete and trilete spores, excluding Sphagnum) are 27.9%, 31.6%, 

and 38% at 431.6, 441.2, and 449.9 kya, respectively. Sphagnum is present in abundances 

ranging from 6.8 -  8.5%. One grain of larch (Larix 0.3%) is also present at 441.2 kya.
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3.1.5MIS 10 (347 - 337 kya)

Three samples from MIS 10 were analyzed (Figure 6), with estimated ages ranging from

364.8 -  338.4 kya. Grass (Poaceae 44.5 -  59.8%) and sedge (Cyperaceae 15.6 -  24.4%) are 

present in percentages far greater than that of woody taxa. Tree and shrub taxa include birch 

(Betula 2 -  3.3% and Betula nana 0 -  1%), alder (Alnus 7.3 -  11%), spruce (Picea 3.7 -  7.3%), 

willow (Salix 1.7 -  6.3%) and Ericales (Ericaceae 3.3 -  6.6%). Spore abundances (monolete and 

trilete spores, excluding Sphagnum) are 26.6%, 27.6%, and 35.2% at 338.4, 344.5, and 364.8 

kya, respectively. Sphagnum is present in abundances ranging from 6.5 -  21.8%.

3.1.6MIS 8 (300 - 243 kya)

Three samples from MIS 8 were analyzed (Figure 6), with estimated ages ranging from

272.6 -  260.7 kya. Grass (Poaceae 40.7 -  43.4%) and sedge (Cyperaceae 26.3 -  32.7%) 

dominate. Tree and shrub taxa include birch (Betula 1.3 -  2.7% and Betula nana 0.7 -  1.7%), 

alder (Alnus 5.6 -  9.7%), spruce (Picea 2.3 -  4.3%), willow (Salix 3.3 - 7%) and Ericales 

(Ericaceae 5.7 - 7%). Spore abundances (monolete and trilete spores, excluding Sphagnum) are 

42.7%, 31.7%, and 30.4% at 260.7, 266.9, and 272.6 kya, respectively. Sphagnum percentages 

range from 4.6 - 8.6%. Sage (Artemisia 0 -1.7%) is also present in two of the three samples, at 

approximately 258 and 266 kya.

3.2 Bering Sea transect

The Bering Sea shelf samples contain high percentages of grass (Poaceae) and sedge 

(Cyperaceae), with lower and variable abundances of boreal forest taxa, including birch (Betula), 

alder (Alnus), and spruce (Picea) (Figure 13). Spores of Sphagnum and ferns are consistently 

present and commonly abundant in these assemblages.
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Figure 13: Bering Sea transect sample sites with pollen and spore percentages.
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3.2.1 Near shore: samples SPH5 and SPH2 (S2 - 16O km from shoreline, respectively)

Samples SPH5 and SPH2 are located 82 km and 16О km from the shoreline reference

point, respectively. Grass (Poaceae 33.1 and 42.8%) and sedge (Cyperaceae 26.9 and 26%) 

percentages are greater than that of the boreal forest taxa birch (Betula 4.8 and О%; Betula nana

2.7 and О%), alder (Alnus 13.9 and 14.5%), and spruce (Picea 3.7 and 4.3%). Willow (Salix 5.3 

and 5.9%) and Ericales (Ericaceae 5.3 and 3.3%) are also present. Spore abundances are 24.4% 

and 29%. Hemlock (Tsuga О.3 and О.7%) and pine (Pinus О and 1.2%) are also present in very 

small quantities.

3.2.2 Mid-shelf: samples POP3a and DLN4 (4Ol - З4З km from shoreline respectively)

Samples POP3a and DLN4 are located 4О1 km and 535 km from the shoreline reference

point, respectively. Grass (Poaceae 42.9 and 31.8%) and sedge (Cyperaceae 26.5 and 28.5%) 

percentages are greater than birch (Betula 3.9 and 1%; Betula nana 1.9 and 1.3%), alder (Alnus

12.9 and 15.6%), and spruce (Picea 3.5 and 3.3%). Willow (Salix 3.5 and 5.3%) and Ericales 

(Ericaceae О and 8.6%) are also present. Spore abundances are 34.5% and 41.9%. A very small 

quantity of sage (Artemisia 1%) is also present in sample DLN4.

3.2.3 Shelf edge: sample DBSE (77З km from shoreline)

One sample (DBSE) from the shelf edge was located 775 km from the shoreline reference 

point. Grass (Poaceae 42%) and sedge (Cyperaceae 4О.1%) dominate the sample. Minor 

percentages of birch (Betula nana О.6%), alder (Alnus 7.4%), spruce (Picea 1.3%) and Ericales 

(Ericaceae 7.7%) are also present, but willow (Salix) is not represented. The abundance of spores 

in this sample is 28.6%.
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Chapter 4: Discussion

4.1 Potential bias in pollen analysis

Palynological analysis is subject to limitations, the most significant of which is the 

reworking of grains. Any and all pollen and spores are potentially subject to reworking 

(Traverse, 2007). Reworked grains can be identified by reduced absorption of safranin O stain. 

Due to their differing thermal histories, reworked grains will appear brown or dark yellow as 

opposed to the pink or red appearance of unaltered, stained grains (Brubaker et al., 2005). 

However, Brubaker et al. (2005) found such reworked grains to be relatively rare, less than 20 of 

every 300 counted.

The IODP samples from glacial stages did not display much color variation, with most 

grains being light yellow to pink. However, specimens that fell closer to or within interglacial 

stages exhibited more color variation, ranging from pink to dark brown. This is probably due to 

reworking and mixing of grains with different thermal histories as grains were transported across 

the shelf to the deposition site.

Another indicator of reworking or long-distance transport is grain appearance: grains that 

have undergone mechanical damage during long-distance dispersal (i.e. fluvial transport) are 

likely to be torn or broken. This is especially true of bisaccate grains, such as pine (Pinus) and 

spruce (Picea). These grains are relatively large and have two mesh-filled air sacks that are 

susceptible to mechanical damage (Egberts, 2012). Therefore, sacci that are ripped away from 

the body or broken at the attachment point are potential indicators of reworking or transport over 

long distances. Bisaccate pollen grains from site U1343 and the Bering Sea shelf transect show 

little evidence of mechanical damage during glacial stages. 90% of total bisaccate grains from
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MIS 8, 10, 12, 14, and 16 were found to be intact, with both sacci attached to the body. 

Comparatively, 76% of total bisaccate grains from interglacial stage MIS 15 were found intact. 

Due to the intact condition of the majority of bisaccate grains recovered from glacial stages, it 

seems unlikely that these specimens were reworked from prior stages. The higher percentage of 

damaged bisaccate grains present in MIS 15 may be the result of long distance fluvial transport 

across the submerged Bering Sea shelf.

Another potential limitation of palynological analysis in the Arctic is that plants may 

reproduce vegetatively rather than pollinate during unfavorable conditions, such as cold and/or 

dry glacial stages (Faegri and Iverson, 1989; D. Mann, pers. comm., 2017). This could lead to 

underrepresentation of tree species such as spruce. However, all glacial stage samples from 

IODP site U1343 contain spruce pollen, with percentages ranging from 2.0 to 9.7%. Although 

the percentages of Picea from glacial stages are low, few are broken. Mechanical damage may 

be a result of long distance transport or reworking from prior interglacial stages, yet the majority 

are intact and in good condition. Therefore, I find it doubtful that all of these grains are 

reworked. Instead, I consider the undamaged grains to be strong evidence for local or regional 

climatic conditions, such as a warmer or more humid climate on the coast of southcentral 

Beringia, that allowed boreal taxa to persist and continue to pollinate.

A final limitation of palynological analysis, as it pertains to these samples, is human error 

or analytical bias. Analyst error could affect the total numbers of each taxon identified within a 

sample. I counted all of the IODP samples from MIS 8-16 and the five Bering Sea shelf transect 

samples, using the same protocols and resources to minimize error. Samples from MIS 1-6 

discussed herein were counted by Westbrook (2014), using the same type collections and 

photographic atlases. In both cases, pollen grains that were crumpled, crushed, or damaged
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beyond identification were tallied separately and not included in per taxon abundances (see 

Crumpled/damaged column: Figures 6 and 12).

4.2 Pollen transport to U1343

According to Heusser and Balsam (1977) coastal vegetation is primarily transported to 

marine settings via river systems. Based on pollen spectra for marine sediment samples collected 

on the continental slope and rise of the Northeastern Pacific Ocean they found a relationship 

between distance from shoreline and abundances of most taxa, with taxa numbers decreasing the 

farther they travel from shore. They noted a strong correlation between vegetation of the nearby 

coast and pollen abundances of taxa such as western hemlock (Tsuga heterophylla), spruce 

(Picea), alder (Alnus), oak (Quercus), redwood (Sequoia), and the daisy/dandelion family 

(Asteraceae) (Heusser and Balsam, 1977). The correlation between distance from shore and 

decreasing abundance is present, with two exceptions, pine (Pinus) and ferns spores. These 

increase in number as with distance from the shoreline. Heusser and Balsam (1977) hypothesized 

that this may be due to greater buoyancy of these grains. While pine (Pinus) and spruce (Picea) 

share a similar bisaccate morphology, with a body and two lateral air bladders, they are not 

identical. Spruce (Picea) grains are heavier and tend to be desposited shorter distances from the 

source than those of their bisaccate counterpart, pine (Pinus) (Traverse, 2007).

Pine occurs in only 9 of the 21 IODP samples that I analyzed. Where present, the 

concentrations are very low, less than 2%. The grains are generally in poor condition, with 76% 

of the air bladders ripped from the body. This is not surprising, as these grains probably came 

from southeast Alaska or eastern Russia, where pine grows today. Because pine is the most 

common pollen type to travel long distances (Heusser and Balsam, 1977), and there is little pine
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pollen in the IODP samples, there is little evidence of significant contributions from distance 

sources at site U1343. The spruce grains that are present in the IODP samples are largely in good 

condition. Therefore, the majority of the IODP samples are assumed to be representative of the 

regional coastal vegetation.

4.3 Bering Sea shelf transect as potential modern analogs

The Bering Sea shelf transect extends from just off the coast of the Seward Peninsula to 

the outer continental shelf east of U1343. The transect samples were analyzed to determine the 

abundances of boreal tree and shrub taxa relative to the distance from a coastline where stands of 

woody plants are found. The modern coastal vegetation of Alaska’s Seward Peninsula is 

composed of intermixed herbaceous tundra and dwarf shrubs, with intermittent stands of spruce 

trees (Boggs et al., 2014). If surface samples ~160 km off the coast of the Seward Peninsula are 

representative of the modern coastal vegetation, then glacial stage assemblages from site U1343, 

approximately 100 -  200 km from the coast of emergent central Beringia, could be expected to 

be representative of the vegetation on the paleo-coastline.

The Alaskan vegetation map from the Alaska Center for Conservation Science, Figure 

14, shows a transition across the Seward Peninsula (Boggs et al., 2014). The western side, 

around Nome, is dominated by herbaceous wet tundra with dispersed dwarf shrubs; further east, 

towards the village of White Mountain, intermittent groves of cottonwood (Populus balsamifera) 

and black and white spruce (Picea mariana and P. glauca) are present in the lowlands (Figure 

14, Hulten, 1968). If the pollen spectra from the modern nearshore or mid-shelf samples are 

similar to the assemblages from site U1343 (Figure 6), we could infer that the vegetation of the 

adjacent coast was also similar.
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Figure 14: Vegetation map of Seward Peninsula from the Alaska Center for Conservation Science 
(Landcover Mapping, 2016).
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At 82 km and 160 km from shore, respectively, Bering Sea transect samples SPH5 and 

SPH2 are located roughly the same distance from the modern coastline of the Seward Peninsula 

as IODP site U1343 was from the paleo-coastline of southcentral Beringia during past glacial 

maxima. Therefore, these samples are potential modern analogs for the effects of offshore 

transport on palynomorph assemblages, assuming past transport processes and pollen-vegetation 

relationships were similar to those today. However, there are multiple variables, such as marine 

currents, wind directions, and adjacent island vegetation that could affect the modern pollen 

spectra.

The prevailing travel direction for water currents in the Bering Sea is south to north, 

toward the Bering Strait (Figure 15, Expedition 323 Scientists, 2010; Stabeno et al., 1999). The 

prevailing winds in this area are southerly in the summer months and northeasterly in the winter 

months (Figure 16, Alaska Energy Authority, 2005).

Islands between the shoreline and the edge of the Bering Sea shelf that could contribute 

significantly to the regional modern pollen rain include St. Lawrence and St. Matthew. Both are 

barren at higher elevations, with lowlands that consist of dwarf shrub, mesic sedge, and wet 

herbaceous tundra (Fleming, 1998). The Pribilof Islands and Nunivak Island are about 400 km 

from the transect and thus are expected to be lesser contributors to the modern pollen rain. The 

vegetation of Nunivak is predominantly moist herbaceous shrub tundra, with areas of tall shrub, 

wet sedge, and alpine tundra (Fleming, 1998). The Pribilofs are covered by a mix of tall shrub, 

low shrub, wet sedge, and alpine tundra (Fleming, 1998). Betula nana is found on St. Lawrence, 

St. Matthew, and Nunivak islands, but not on the Pribilof Islands. None of these islands fall 

within the modern range of Picea, Alnus, or other species of Betula (Hulten, 1968). Based on a 

recent study by Wang et al. (2017), St Paul, one of the Pribilof Islands, was likely never a
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Figure 15: Bering Sea current directions (from Expedition 232 Scientists, 2010 and Stabeno et al., 
1999).
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Figure 16: Wind frequency distribution rose (from Alaska Energy Authority, 2005).
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refugium for these woody taxa. Records of sedaDNA indicate absence of these genera 

throughout the last 18,000 years, and palynological assemblages record little change between the 

modern and paleovegetation.

Due to the prevailing southeasterly summer winds, it is unlikely that wind transported 

modern pollen to sites west and south of St. Lawrence and St. Matthew islands. Whereas the 

vegetation on both islands consists of dwarf shrub, mesic sedge, and wet herbaceous tundra, I 

would expect to find more pollen from dwarf shrubs and sedges in the Bering Sea transect 

samples if the islands were the primary contributors to the modern pollen rain. Instead, the 

presence of pollen from tree and shrub taxa such as birch (Betula), spruce (Picea), and alder 

(Alnus), suggests that mainland Alaska is the primary source, as none of these taxa except shrub 

birch (Betula nana) are present on these islands (Hulten, 1968).

In addition to wind, marine currents could have transported pollen from coastal 

vegetation to sites on the Bering Sea shelf. The presence of pine (Pinus) in several samples 

suggests that some grains may have travelled all the way from Southeast Alaska, as Pinus is 

currently found only in the southeastern part of the state (Hulten, 1968). The other potential 

source of Pinus in the Bering Sea is eastern Russia, which also involve long distance transport, 

presumably by currents in the North Pacific (Figure 17). Very little Pinus is found in Bering Sea 

transect samples; it occurs in only 3 of the 5 samples at low frequencies (0.3 -  1.2%). Consistent 

with expectations for grains that have travelled long distances, the few grains present are in poor 

condition, many with the sacci ripped from the body.

Located south or east of the Bering Sea sample sites, the Yukon-Kuskokwim Delta region 

may be a significant contributor of modern palynomorphs. There, two major rivers empty into 

the Bering Sea, and the vegetation is primarily moist herbaceous/shrub and tall shrub tundra with
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Figure 17: Vegetation map of eastern Russia to show the location of stone pine (from 
Gerasimov, 1964).
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stands of spruce and broadleaf trees (Fleming, 1998). Vegetation from the Yukon-Kuskokwim 

Delta are similar to those seen in the surface assemblages from the Bering Sea (Figure 10 and 

14), indicating substantial similarities. Marine currents could have transported grains delivered 

by the Yukon and Kuskokwim rivers to sites SPH2 and SPH5 to the north. Whereas prevailing 

southeasterly winds would have carried pollen to the northwest, away from sites in the Bering 

Sea, there is some variation in the wind directions during the summer, with winds occasionally 

blowing from the northeast (Figure 16). Therefore, I infer that the pollen rain at the Bering Sea 

transect sites is derived primarily from the coastal vegetation of western Alaska and transported 

to sites of deposition by periodic northeasterly winds and/or marine currents.

The ordination diagram generated in CANOCO 4.5 is broken up into 4 quadrants, each 

dominated by different taxa. Samples from the Bering Sea shelf transect and site U1343 all plot 

in the same quadrant, which is populated by modern terrestrial samples derived primarily from 

moist herbaceous/shrub tundra with isolated stands of trees (Figures 9, 10, and 11) (Westbrook, 

2014). Assemblages with more spruce (Picea) and birch (Betula) plot closer to the center of the 

ordination diagram. In general, DBSE, DLN4, SPH2, and Pop3a plot further from the center of 

the diagram, in the vicinity of IODP samples from glacial stages 8-16 and interglacial stage 15. 

The Bering Sea shelf sample located closest to modern shoreline, SPH5, plots closer to the 

center, near IODP samples from stages 3, 4, and 5 and some of the samples from stage 10 

(Figure 10).

Despite minor variations in the proportions of trees, grass, sedge, and monolete spores, 

most of the IODP samples from glacial stages 1-16 plot adjacent to or between samples from the 

modern Bering Sea shelf transect (Figure 10). Therefore, I concur with Westbrook (2014) and 

tentatively conclude that the southcentral coast of emergent central Beringia was covered by
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vegetation similar to that found today on the Seward Peninsula and in the Yukon-Kuskokwim 

Delta region: moist herbaceous/shrub tundra with intermittent stands of trees.

4.4 Vegetation reconstruction from MIS 8, 10, 12, 14, 15, and 16

Due to the lack of sage (Artemisia) pollen, the IODP samples from glacial stages are not 

indicative of a steppe tundra environment (Westbrook, 2014) such as those recovered from the 

margins of eastern Beringia (Elias and Crocker, 2008). Steppe tundra environments are 

characterized by the presence of sage (Artemisia) which thrives in arid climates, such as those 

found at high latitudes in modern day Russia and Greenland (Elias and Crocker, 2008). Instead, 

the IODP assemblages contain small, but persistent amounts of tree and shrub pollen, including 

Betula, Alnus, and Picea. Whereas percentages of individual taxa are typically less than 10%, 

total percentages of tree and shrub pollen range from 20% to 37%. Based on these results, I infer 

that scattered spruce trees and tall shrubs, such as birch and alder, occupied coastal refugia in 

central Beringia during glacial stages.

According to White et al. (1977), there is a correlation between site paludification and 

temperature, with less saturation during colder times. Such differences may be the result of 

changes in the extent of regional sea-ice cover. Sea-ice cover expands as temperatures decrease, 

limiting regional evaporation (Guthrie, 2001) and decreasing paludification. Samples from MIS 

8, 14, 15, and 16 have peak values of Pest (>10), indicating dryer conditions during these MIS 

stages (Figure 6). In the case of MIS 15, an interglacial stage, it seems likely that factors other 

than temperature and sea ice affected the humidity. One such factor suggested by Guthrie (2001) 

is the influence of clearer skies in upland areas, this would increase moisture loss, creating a 

drier environment. Conversely, the presence of cloud cover, at lower elevations in central
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Beringia (Guthrie, 2001), may explain data for greater paludification during MIS 8, 14, and 16.

4.4.1 MIS 16

According to the ordination diagrams, samples from MIS 16 are indicative of moist 

herbaceous/shrub tundra (Figures 9 and 11). However, minor amounts of woody boreal forest 

taxa could indicate the presence of glacial refugia. Samples from MIS 16 plot between the 

Bering Sea shelf samples DBSE and Pop3a/DLN4. Sample DBSE is located farthest from the 

present day shoreline and Pop3a/DLN4 are located mid-shelf. The three MIS 16 samples have 

ages of 623 kya, 668 kya, and 676 kya; the other two samples were deposited earlier in MIS 16 

(Figure 3) during times of relatively high or fluctuating sea level (Lisiecki and Raymo, 2005). 

The youngest sample from MIS 16 plots closest to DBSE, suggesting that it may also have been 

relatively far from shore. It is possible that deposition of this sample occurred near the end of 

MIS 16, during deglaciation.

4.4.2 MIS 15

Bering Sea transect sample DBSE is the closest modern analog for three of the pollen 

assemblages from MIS 15 (Figure 10). It is also the sample farthest from the present day 

coastline, very near the shelf edge, which is compatible with the premise that sea level was 

higher during interglacial stages, and the paleocoastline was much farther away from the sample 

site. As previously stated, the samples from MIS 15 needed secondary processing with 

hydrofluoric acid in order to dissolve numerous diatoms. Diatom abundance has been linked to 

increased biological marine productivity during interglacial periods (Nair et al., 2015).

Overall, the pollen and spore assemblage reflects the same mesic herbaceous shrub 

tundra environment as MIS 8, 14, and 16 but with lower percentages of tree and shrub taxa (15 -  

21%). It must be noted, however that samples from MIS 15 have the most conclusive evidence
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for both reworking and long distance transport. Four of the five samples analyzed from MIS 15 

contained large amounts (50+ individual grains) of total broken or damaged pollen grains, many 

of which were damaged to the point that they could not be identified. Both color variability and 

the proportion of damaged grains are more common in samples from MIS 15, possibly due to the 

increased biological activity (from marine organisms like zooplankton and phytoplankton), 

higher sea level, and increased travel distance from shoreline to the sample site. Because these 

samples exhibit the largest variation in the color of the grains, ranging from brownish to bright 

pink, I argue that these samples are likely to contain reworked grains from prior assemblages. 

Thus the evidence suggests that it is the interglacial assemblages, rather than the glacial 

assemblages, that contain higher proportions of grains reworked from prior stages.

Whereas the total percentages of tree pollen are significantly lower (15 -  21%) than in 

the samples from glacial stages, this is not generally true of interglacial assemblages. Samples 

analyzed by Westbrook (2014) from MIS 1 and 5 contain greater proportions of tree taxa and 

plot closer to the center of the diagram (Figure 10). Either woody taxa were present in lower 

abundances during MIS 15, or woody taxa were present in similar abundances, and the 

differences are a result of selective transport across the shelf or varying degrees of reworking 

from prior glacial stages.

4.4.3 MIS 14

Two MIS 14 samples plotted closest to DLN4 and Pop3a (Figures 9), the two samples 

from the Bering Sea transect that are located mid-shelf. The other MIS 14 sample plotted closer 

to SPH2. The implication is that MIS 14 may have been a milder glaciation, leaving sea level 

higher and placing IODP site U1343 farther from the shoreline than usual during glacial stages.
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This is supported by Lisiecki and Raymo (2005) (Figure 3) who found evidence for higher sea 

levels during MIS 14 compared to the preceding and subsequent glacial stages.

Due to the undamaged condition of the spruce (Picea) grains, which have all of their 

sacci attached, and the lack of notable color differences, there is no clear evidence for the 

presence of reworked grains in the MIS 14 samples.

4.4.4 MIS 12

Samples from MIS 12 plot closely together on Figure 10, and some overlap with 

assemblages from MIS 8, 10, and 15. The overlapping MIS 12 samples plot closest to DBSE, the 

Bering Sea sample farthest from shore. The proximity of these samples indicates that the 

palynological assemblages from MIS 12 and 10 are very similar and potentially travelled similar 

distances from the paleoshoreline during their respective glacial stages.

4.4.5 MIS 10

Samples from MIS 10 have a particularly large spread on Figure 10. One sample plots 

near SPH5, the Bering Sea shelf sample closest to the shoreline. A second MIS 10 sample lies 

between SPH5 and DBSE, and the third plots near DLN4 and Pop3a. The variability in the MIS 

10 samples could be caused by the delayed build-up of glacial ice at the MIS 10/11 boundary 

(Figure 3), as determined by Lisiecki and Raymo (2005). Delayed ice buildup would result in 

higher sea levels and longer distance transport via ocean currents. Therefore, part of the 

variability in MIS 10 samples may be attributed to differences in temperature, sea level and 

transport distance. Additional evidence for variable environmental conditions throughout MIS 10 

are provided by the paludification index. A Pest value of 3 at 364 kya indicates relatively humid 

conditions at the transition from MIS 11 to MIS 10. A subsequent increase to a Pest of 11 at 335 

kya signifies drier conditions later in MIS 10, when temperatures were presumably cooler and
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sea ice more extensive. This is also seen in Figure 10, where the two older MIS 10 samples plot 

closer to the center of the diagram than the youngest sample.

4.4.6 MIS 8

Samples from MIS 8 plot closest to DBSE, the sample located farthest from shore on the 

Bering Sea shelf, or lie between DBSE, SPH2, and DLN4/Pop3a (Figure 10). There is also 

overlap between samples from MIS 8, 14, and 16, which could indicate similar coastal 

vegetation cover and possibly a similar distance from the paleoshoreline.

4.4.7 Westbrook IODP samples

As previously stated, the ages of Westbrook’s (2014) samples have been adjusted to 

conform to the updated age model provided by Asahi et al. (2016). All of the data from 

Westbrook’s samples, the IODP samples presented herein, and the Bering Sea transect were 

included in the CANOCO 4.5 PCA and ordination diagrams (Figure 10). Westbrook’s samples 

plotted in the same quadrant as my IODP samples and the Bering Sea transect, indicating mesic 

herbaceous/shrub tundra. However, the majority of Westbrook’s samples contained less grass 

(Poaceae) and therefore plotted closer to the center of the graph. Most of Westbrook’s samples 

surround Bering Sea shelf sample SPH5, located closest to the modern shoreline.

Westbrook’s interglacial samples have a larger spread in the quadrant than any of the 

glacial samples, similar to my samples from MIS 15. The samples that plot adjacent to SPH5 are 

from MIS 2, 3, 4, 5, 6, and 10. However, three of the interglacial samples, two from MIS 1 and 

one from MIS 5, are grouped together close to Bering Sea shelf sample DBSE, which is located 

farthest from the shoreline. Two other MIS 5 interglacial samples are outliers that plot far away 

from all other IODP and Bering Sea transect samples, though still in the same quadrant. These 

samples contain more spores and less grass than any of the other samples, which pulls them
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toward the monolete spore axis and away from the bulk of the samples. The increased presence 

of spores is indicative of a wetter environment during stage 5 (Westbrook, 2014). These outliers 

are due to sampling an earlier, and consequently warmer period of MIS 5.

4.5 Modern analogs

Based upon the PCA and ordination diagrams (Figures 9, 10, and 11, and 

Westbrook, 2014), all of the IODP and the Bering Sea shelf samples plot in the quadrant 

populated by modern terrestrial samples collected from sites surrounded by mesic 

herbaceous/shrub tundra. This indicates that the paleovegetation was similar to the modern 

vegetation type in the vicinity of the Yukon-Kuskokwim Delta and Seward Peninsula, which is 

classified as moist herbaceous/shrub tundra with stands of trees (Fleming, 1998).

Each of the individual Bering Sea shelf samples is a close modern analog for at least one 

of the IODP samples (Figure 10). The sample furthest from shore, DBSE, is the closest modern 

analog for samples from MIS 1, 8, 12, and 15, while samples from MIS 2, 3, 4, 5, 6, and 10 are 

most similar to assemblages from SPH5; MIS 14 is most similar to assemblages from SPH2. 

DLN4 and Pop3a are most similar to samples from MIS 8, 10, and 14. However, glacial samples 

from intervals of lowest sea level do not all plot near to SPH5. Evidently, distance from shoreline 

is not the only variable influencing the composition of the IODP assemblages in Figure 10. 

Additional sources of variation include selective transport, due to prevailing wind and water 

currents, or minor differences in the source vegetation driven by changes in temperature and 

humidity.
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4.6 Refugium hypothesis

Consistent amounts of tree and shrub taxa (19 to 37%) are present throughout the IODP 

samples from glacial stages, and the majority are unbroken and well preserved. Thus glacial 

stages 8, 10, 12, 14, and 16 all contain evidence of glacial refugia for woody plant taxa on the 

southern coast of central Beringia. This is consistent with the findings of Brubaker et al. (2005), 

who suggested that minor but consistent abundances of spruce, birch, and alder at sites in eastern 

Beringia suggest that these trees and shrubs survived MIS 2 within Beringia.

These results contradict Wang et al. (2017), who conclude that woody refugia were 

absent from southern coastal Beringia. Although their pollen spectra also indicate low but 

persistent percentages of Picea, Betula, and Alnus, coincidence of greater abundance with 

intervals of minimal influx are interpreted as evidence of long-distance transport to the coring 

site on St. Paul Island (Wang et al., 2017). Although influx calculations were not performed due 

to uncertainties in the sedimentation rate, no correlation between abundance and concentration 

(Figure 6) is evident in the data presented herein. Instead, the percentages of woody taxa 

recovered from glacial assemblages appear to be independent of pollen concentrations. Samples 

with low concentrations do not correlate with higher percentages of woody taxa. Taken together 

with the preponderance of unbroken Picea pollen grains, I find that the concentration data favors 

a local source over long-distance transport for spruce and other woody plant taxa.

Slightly lower abundances of tree and shrub taxa (14 to 20%) are present in samples from 

MIS 15 compared to the samples from glacial stages. These interglacial samples were 

presumably transported from the coast of eastern Beringia. Higher percentages of damaged and 

unidentifiable grains are consistent with long-distance transportation across the submerged shelf.
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In addition, greater color variability within these assemblages indicates a greater proportion of 

reworked grains compared to the assemblages from glacial stages. This is also consistent with 

transportation across a previously vegetated shelf.

53



54



Chapter 5: Conclusions

5.1 Key points

Palynological analysis, PCA and community ordination diagrams of assemblages from 

IODP Expedition 323 site U1343, in conjunction with modern terrestrial and marine assemblages 

from Alaska and the Bering Sea shelf, support the following conclusions:

1. Based upon the presence of minor amounts of well-preserved woody taxa in 

assemblages from glacial stages 2-16, the lowlands of Central Beringia provided 

an ice age refugium for boreal trees and shrubs, including birch (Betula), alder 

(Alnus), and spruce (Picea).

2. The vegetation recorded in the IODP pollen assemblages is similar throughout 

glacial stages 2-16 (Figure 10). Surprisingly, interglacial samples from MIS 15 

contain lesser amounts of pollen from tree taxa and higher proportions of 

damaged grains. These assemblages also exhibit greater variation in grain color, 

indicative of reworking. Therefore, samples from interglacial stage 15 appears to 

contain a greater number of reworked grains than samples from glacial stages 8

16.

3. Identification of modern analogs indicates that the paleovegetation was similar to 

the modern vegetation type in the vicinity of the Yukon-Kuskokwim Delta and 

Seward Peninsula, which can be classified as moist herbaceous/shrub tundra with 

stands of trees.
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Appendix

A.1 Tables

T.1 MIS boundaries o f IODP samples

Sample Name Old MIS New MIS New Ages (kya)
U1343E_1H02 1 1 10.7
U1343E_1H03 1 1 13.7
U1343E_1H04 2 2 18.7
U1343E_1H05 2 2 23.8
U1343E_2H03 3 3 47.5
U1343E_2H04 4 3 54.8
U1343E_2H05 4 4 59.8
U1343E_3H01 5 4 69.2
U1343A_3H04 5 5 73.9
U1343E_3H03 5 5 77.7
U1343A_3H05 5 5 78.1
U1343E_3H04 5 5 82
U1343A_3H06 5 5 82
U1343A_4H02 5 5 89
U1343A_4H03 5 5 92.9
U1343E_4H02 5 5 96.6
U1343A_4H04 5 5 96.7
U1343A_4H05 6 5 100.7
U1343A_4H06 6 5 104.8
U1343E_4H05 6 5 109
U1343E_4H06 6 5 116
U1343E_4H07 6 5 123
U1343E_5H02 6 5 129
U1343E_5H03 6 6 137
U1343E_5H04 6 6 146
U1343E_5H05 6 6 152
U1343A_9H03 N/A 8 258
U1343A_9H04 N/A 8 266
U1343A_9H05 N/A 8 270
U1343A_11H05 N/A 10 335
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Sample Name Old MIS | New MIS New Ages (kya)
U1343A_11H06 N/A 10 344
U1343A_12H03 N/A 10 364
U1343A_14H02 N/A 12 431
U1343A-14H03 N/A 12 441
U1343A_14H04 N/A 12 449
U1343A_17H04 N/A 14 548
U1343A_17H05 N/A 14 554
U1343A_17H06 N/A 14 560
U1343A_20H02 N/A 15 567
U1343A_18H04 N/A 15 577
U1343A_18H05 N/A 15 583
U1343E_21H02 N/A 15 600
U1343E_21H03 N/A 15 607
U1343E_21H04 N/A 15 615
U1343E_21H05 N/A 16 623
U1343E_22H02 N/A 16 668
U1343E_22H03 N/A 16 676

61



T.2 Raw data counts o f IODP samples from Tilia with concentrations

IODP
Sample
Names

U1343 
A 9H0 

3

U1343 
A 9H0 

4

U1343 
A 9H0 

5

U1343 
A 11 
H05

U1343A
_11H06

U1343A
_12H03

U1343A
_14H02

U1343A
-14H03

Pinus 0 0 0 3.5 0 0 1 0
Picea 10 13 7 11 20 22 10 30
Tsuga 0 0 0 0 0 0 0 0
Alnus 29 20 17 25 22 33 15 13
Larix 0 0 0 0 0 0 0 1
Betula 6 8 4 8 6 10 8 2
Betula nana 2 5 3 1 0 3 0 0
Salix 10 21 19 19 5 11 17 8
Ericales, undiff 17 20 21 18 20 10 8 16
Poaceae 122 124 131 135 180 148 147 151
Cyperaceae 98 79 91 74 47 63 88 88
Chenop odiaceae 1 8 6 6 0 0 6 1
Artemisia 5 1 0 0 0 0 0 0
Asteraceae 0 1 3 3 1 0 0 0
Pulsatilla
ranunculaceae 0 0 0 0 0 0 0 0
Fungal undiff 128 60 73 42 56 35 97 89
Sphagnum 45 21 20 41 27 101 36 28
Botrychium 0 0 0 0 0 0 0 0
Selaginella 10 12 9 7 5 4 3 3
Pteridium 24 21 23 24 15 25 33 11
Lycopodium
local 19 2 7 0 9 3 3 1
Athyriaceae 0 0 0 0 0 0 0 2
Trilete undiff 35 22 32 12 24 13 12 10
Monolete Undiff 88 59 37 24 28 14 35 44
Isoetes 3 2 4 2 7 3 3 4
Potamogenton 5 2 1 0 0 0 0 0
Pond lilly 3 0 0 0 5 0 0 0
Crumpled/
Damaged 19 10 2 7 4 3 3 4
Unknown 2 0 0 2 1 2 0 2
Lyco Spike 248 216 174 215 207 192 143 192
Concentrations 11031 12056 15322 11625 12542 12796 17072 13038
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IODP
Sample
Name

U1343
A-

17H04

U1343
A-

17H05

U1343
A-

17H06

U1343
A-

20H02

U1343
A-

18H04

U1343
A-

18H05

U1343
E-

21H02

U1343
E-

21H03
Pinus 0 1.5 0 1.5 0 1 1 1
Picea 16.5 15 6 27 8 13.5 11 11.5
Tsuga 0 2 1 0 0 1 0 0
Alnus 33 46 7 8 15 9 11 12
Larix 0 0 2 3 2 0 0 0
Betula 4 6 11 4 14 15 7 7
Betula nana 0 0 0 2 0 3 0 0
Salix 7 24 18 13 8 2 7 11
Ericales, undiff 16 16 36 5 5 6 12 5
Poaceae 141 118 194 152 166 174 190 188
Cyperaceae 81 69 25 82 93 74 62 65
Chenop odiacea 2 4 0 1 1 2 0 0
Artemisia 0 0 1 4 3 0 0 0
Asteraceae 0 0 0 1 0 0 0 0
Pulsatilla
ranunculaceae 0 0 0 0 0 0 0 0
Fungal undiff 90 98 53 57 55 16 31 46
Sphagnum 27 39 23 39 31 98 28 14
Botrychium 0 0 0 0 0 0 0 1
Selaginella 2 3 0 13 8 2 4 2
Pteridium 15 22 0 32 36 0 2 5
Lycopodium
local 0 4 0 26 0 0 0 3
Athyriaceae 0 0 0 0 0 0 0 0
Trilete undiff 31 36 15 27 30 17 36 15
Monolete
Undiff 59 78 12 54 84 12 44 11
Isoetes 5 3 0 3 3 0 2 1
Potamogenton 0 0 0 3 0 0 0 0
Pond lilly 4 4 3 0 0 0 0 0
Crumpled/
Damaged 11 27 5 9 18 25 8 8
Unknown 1 0 1 4 0 1 0 2
Lyco Spike 124 231 125 327 198 302 181 207
Concentrations 21094 11558 19778 8212 13817 8199 14601 11887
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IODP Sample Name U1343E-21H-
4

U1343E-
21H-5

U1343E-
22H-2

U1343E-22H-
3

Pinus 0 1 0 0
Picea 16 7 7 6.5
Tsuga 0 0 1 0
Alnus 10 25 36 38
Larix 0 0 0 0
Betula 12 4 7 3
Betula nana 0 2 0 0
Salix 2 18 18 0
Ericales, undiff 4 11 19 11
Poaceae 178 122 118 131
Cyperaceae 76 91 83 98
Chenop odiaceae 1 8 6 6
Artemisia 0 2 0 2
Asteraceae 1 0 1 0
Pulsatilla ranunculaceae 0 9 4 5
Fungal undiff 8 35 54 52
Sphagnum 28 17 15 25
Botrychium 0 0 2 2
Selaginella 3 10 9 5
Pteridium 1 26 0 0
Lycopodium local 1 2 5 2
Athyriaceae 0 0 0 0
Trilete undiff 8 21 35 60
Monolete Undiff 26 51 41 35
Isoetes 0 0 0 0
Potamogenton 1 1 3 0
Pond lilly 2 2 0 0
Crumpled/Damaged 12 10 30 41
Unknown 1 0 5 0
Lyco Spike 183 211 153 124
Concentrations 13298 11937 17374 22531
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T.3 Percentage data o f IODP samples from Tilia

IODP
Sample
Name

U1343 
A 9H 

03

U1343 
A 9H0 

4

U1343 
A 9H0 

5

U1343A
_11H05

U1343A
_11H06

U1343A
_12H03

U1343A
_14H02

U1343 
A 14H 

03
Alnus 9.7 6.7 5.6 8.2 7.3 11 5 4.2
Artemisia 1.7 0.3 0 0 0 0 0 0
Asteraceae 0 0.3 1 1 0.3 0 0 0
Athyriaceae 0 0 0 0 0 0 0 0.5
Betula 2 2.7 1.3 2.6 2 3.3 2.7 0.6
Betula nana 0.7 1.7 1 0.3 0 1 0 0
Botrychium 0 0 0 0 0 0 0 0
Chenop odiaceae 0.3 2.7 2 2 0 0 2 0.3
Crumpled/
Damaged 19 10 2 7 4 3 3 4
Cyperaceae 32.7 26.3 30.1 24.4 15.6 21 29.3 28.4
Ericales, undiff 5.7 6.7 7 5.9 6.6 3.3 2.7 5.2
Fungal undiff 29.9 16.7 19.5 12.2 15.7 10.4 24.4 22.3
Isoetes 0.6 0.5 0.9 0.5 1.7 0.6 0.7 1
Larix 0 0 0 0 0 0 0 0.3
Lyco Spike 248 216 174 215 207 192 143 192
Lycopodium
local 3.6 0.5 1.6 0 2.2 0.6 0.7 0.2
Monolete Undiff 16.8 13.4 8.5 5.8 6.7 3 8.2 10.7
Picea 3.3 4.3 2.3 3.6 6.6 7.3 3.3 9.7
Pinus 0 0 0 1.2 0 0 0.3 0
Poaceae 40.7 41.3 43.4 44.5 59.8 49.3 49 48.7
Pond lilly 1 0 0 0 1.6 0 0 0
Potamogenton 1.6 0.7 0.3 0 0 0 0 0
Pteridium 4.6 4.8 5.3 5.8 3.6 5.4 7.8 2.7
Pulsatilla
ranunculaceae 0 0 0 0 0 0 0 0
Salix 3.3 7 6.3 6.3 1.7 3.7 5.7 2.6
Selaginella 1.9 2.7 2.1 1.7 1.2 0.9 0.7 0.7
Sphagnum 8.6 4.8 4.6 9.9 6.5 21.8 8.5 6.8
Trilete undiff 6.7 5 7.4 2.9 5.8 2.8 2.8 2.4
Tsuga 0 0 0 0 0 0 0 0
Unknown 2 0 0 2 1 2 0 2
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IODP
Sample
Name

U1343A
_14H04

U1343 
A 17H 

04

U1343 
A 17H 

05

U1343 
A 17H 

06

U1343 
A 20H 

02

U1343 
A 18H 

04

U1343 
A 18H 

05

U1343 
E 21H 

02
Alnus 11 11 15.3 2.3 2.6 4.8 3 3.7
Artemisia 0 0 0 0.3 1.3 1 0 0
Asteraceae 0 0 0 0 0.3 0 0 0
Athyriaceae 0 0 0 0 0 0 0 0
Betula 1 1.3 2 3.7 1.3 4.4 5 2.3
Betula nana 1.7 0 0 0 0.7 0 1 0
Botrychium 0 0 0 0 0 0 0 0
Chenop odiaceae 2 0.7 1.3 0 0.3 0.3 0.7 0
Crumpled/
Damaged 11 11 27 5 9 18 25 8
Cyperaceae 27.3 27 22.9 8.3 27 29.5 24.6 20.6
Ericales, undiff 3.7 5.3 5.3 12 1.6 1.6 2 4
Fungal undiff 23.8 23 24.5 15 15.8 14.9 5.1 9.3
Isoetes 1.4 1.1 0.6 0 0.6 0.6 0 0.5
Larix 0 0 0 0.7 1 0.6 0 0
Lyco Spike 172 124 231 125 327 198 302 181
Lycopodium
local 0.5 0 0.8 0 5.2 0 0 0
Monolete Undiff 6.2 13.4 16 3.4 10.9 16.6 2.8 10.6
Picea 7.5 5.5 5 2 8.9 2.5 4.5 3.7
Pinus 0.3 0 0.5 0 0.5 0 0.3 0.3
Poaceae 40.3 46.9 39.1 64.5 50.1 52.7 57.9 63.1
Pond lilly 0.7 1.3 1.3 1 0 0 0 0
Potamogenton 0 0 0 0 1 0 0 0
Pteridium 1.9 3.4 4.5 0 6.4 7.1 0 0.5
Pulsatilla
ranunculaceae 0 0 0 0 0 0 0 0
Salix 5.3 2.3 8 6 4.3 2.5 0.7 2.3
Selaginella 2.9 0.5 0.6 0 2.6 1.6 0.5 1
Sphagnum 8.4 6.1 8 6.6 7.8 6.1 22.8 6.7
Trilete undiff 6.5 7.1 7.4 4.3 5.4 5.9 4 8.6
Tsuga 0 0 0.7 0.3 0 0 0.3 0
Unknown 1 1 0 1 4 0 1 0
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IODP Sample Name U1343E 21H0 
4

U1343E 21H0 
5

U1343E 22H0 
2

U1343E 22H0 
3

Alnus З.З 8.3 12 12.6
Artemisia O 0.? 0 0.?
Asteraceae 0.3 0 0.3 0
Athyriaceae O 0 0 0
Betula 4 1.3 2.3 1
Betula nana O 0.? 0 0
Botrychium O 0 0.З 0.З
Chenop odiaceae 0.3 2.? 2 2
Crumpled/Damaged 12 10 30 41
Cyperaceae 2З.З 30.3 2?.? 32.6
Ericales, undiff 1.З 3.? 6.3 3.?
Fungal undiff 2.6 10.4 1З.З 14.8
Isoetes O 0 0 0
Larix O 0 0 0
Lyco Spike 18З 211 1ЗЗ 124
Lycopodium local 0.3 0.З 1.2 0.З
Monolete Undiff ?.l ll.G 10.1 8.1
Picea З.З 2.3 2.3 2.2
Pinus O 0.3 0 0
Poaceae 5G.3 40.? 3G.3 43.6
Pond lilly 0.? 0.? 0 0
Potamogenton 0.3 0.3 1 0
Pteridium 0.3 6.1 0 0
Pulsatilla ranunculaceae O 3 1.3 1.?
Salix 0.? 6 6 0
Selaginella 0.8 2.3 2.2 1.2
Sphagnum ?.6 4 3.? З.8
Trilete undiff 2.2 4.G 8.6 14
Tsuga 0 0 0.3 0
Unknown 1 0 З 0
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T.4 Raw data counts o f Bering Sea transect samples from Tilia with concentrations

Bering Sea 
Transect Sample 

Name
SPH5 SPH2 POP 3a DLN4 DBSE

Pinus 0 3.5 і 2 0
Picea 14 13 її 10 4
Tsuga 1 2 0 0 0
Alnus 52 44 40 47 23
Betula 1В 0 12 3 0
Betula nana 10 0 6 4 2
Salix 20 1В 11 16 0
Ericals, undiff 20 10 0 26 24
Poaceae 124 130 133 96 131
Cyperaceae 101 79 В2 В7 125
Chenop odiaceae 9 1 5 6 0
Artemisia 0 0 0 3 0
Asteraceae 6 3 9 2 3
Pteridium 0 1 0 3 0
Fungal undiff 40 23 15 31 59
Sphagnum 14 15 27 22 10
Botrychium 0 0 0 0 0
Selaginella 1 В В 7 11
Isoetes 1 1 0 0 2
Lycopodium local 6 9 2 0 4
Athyriaceae 0 0 0 0 0
Trilete undiff 61 44 63 96 40
Monolete Undiff 3В 47 63 ВВ 5В
Nymphaeaceae 1 7 0 2 0
Saggittaria В 5 11 В 0
Crumpled/Damaged 56 29 53 45 50
Stratiotes aloides 0 0 0 10 0
Diphasiastrum 0 0 0 2 0
Lyco Spike 1В7 173 201 16В 221
Concentration data 2490В 22063 212В4 2В417 19147

бВ



T.5 Percentage data o f Bering Sea transect samples from Tilia

Bering Sea 
Transect Sample 
Name

SPH5 SPH2 POP 3a DLN4 DBSE

Pinus 0 1.2 0.3 0.7 0
Picea 3.7 4.3 3.5 3.3 1.3
Tsuga 0.3 0.7 0 0 0
Alnus 13.9 14.5 12.9 15.6 7.4
Betula 4.8 0 3.9 1 0
Betula nana 2.7 0 1.9 1.3 0.6
Salix 5.3 5.9 3.5 5.3 0
Ericals, undiff 5.3 3.3 0 8.6 7.7
Poaceae 33.1 42.8 42.9 31.8 42
Cyperaceae 26.9 26 26.5 28.8 40.1
Chenop odiaceae 2.4 0.3 1.6 2 0
Artemisia 0 0 0 1 0
Asteraceae 1.6 1 2.9 0.7 1
Pteridium 0 0.2 0 0.6 0
Fungal undiff 9.6 7 4.6 9.3 15.9
Sphagnum 2.8 3.5 5.7 4.2 2.3
Botrychium 0 0 0 0 0
Selaginella 0.2 1.9 1.7 1.3 2.5
Isoetes 0.2 0.2 0 0 0.5
Lycopodium local 1.2 2.1 0.4 0 0.9
Athyriaceae 0 0 0 0 0
Trilete undiff 12.3 10.3 13.3 18.5 9.2
Monolete Undiff 7.7 11 13.3 16.9 13.3
Nymphaeaceae 0.3 2.2 0 0.6 0
Saggittaria 2.1 1.6 3.4 2.5 0
Crumpled/Damaged 56 29 53 45 50
Stratiotes aloides 0 0 0 3.1 0
Diphasiastrum 0 0 0 0.4 0
Lyco Spike 187 173 201 168 221
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