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Abstract

This study presents a new methodology to identify landslide and landslide 

susceptible locations in Interior Alaska using only geomorphic properties from light 

detection and ranging (LiDAR) derivatives (i.e., slope, profile curvature, roughness) and 

the normalized difference vegetation index (NDVI). The study specifically focused on 

the effect of different resolutions of LiDAR images in identifying landslide locations. I 

developed a semi-automated object-oriented image classification approach in ArcGIS

10.5, and prepared a landslide inventory from visual observation of hillshade images. 

The multistage workflow included combining derivatives from 1m, 2.5m, and 5m 

resolution LiDAR, image segmentation, image classification using a support vector 

machine classifier, and image generalization to clean false positives. I assessed the 

accuracy of the classifications by generating confusion matrix tables. Analysis of the 

results indicated that the scale of LiDAR images played an important role in the 

classification, and the use of NDVI generated better results in identifying landslide and 

landslide susceptible places. Overall, the LiDAR 5m resolution image with NDVI 

generated the best results with a kappa value of 0.55 and an overall accuracy of 83%. 

The LiDAR 1m resolution image with NDVI generated the highest producer accuracy of 

73% in identifying landslide locations. I produced a combined overlay map by summing 

the individual classified maps, which was able to delineate landslide objects better than 

the individual maps. The combined classified map from 1m, 2.5m, and 5m resolution 

LiDAR with NDVI generated producer accuracies of 60%, 80%, 86%, and user 

accuracies of 39%, 51%, 98% for landslide, landslide susceptible, and stable locations, 

respectively, with an overall accuracy of 84% and a kappa value of 0.58. The proposed
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method can be improved by fine-tuning segmented image generation, incorporating 

other data sets, and developing a standard accuracy assessment technique for object- 

oriented image analysis.
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Chapter 1 Introduction

A landslide is defined as the movement of a mass of rock, earth, or debris down 

a slope (Cruden, 1991). A more inclusive term for a landslide is slope movement, as 

landslides are not limited to sliding and involve other processes like debris flows as well. 

Slope movements can be classified into five groups: falls, topples, spreads, slides, and 

flows (Varnes, 1978). When two or more of these slope movements occur, this is 

considered as complex. Landslides can occur independently or in association with other 

natural hazards such as earthquakes, flooding, etc. Since landslides can occur on a 

massive scale, they represent a serious threat to human life and the built environment. 

For example, on June 12, 2017, 156 people died in Bangladesh from a rain-induced 

landslide (Paul and Hussain, 2017). In 2016, the 7.8 magnitude Kaikoura earthquake 

triggered more than 10,000 landslides in New Zealand (Massey et al., 2018). On May 2, 

2014, around 2,000 people were killed because of the Ab Barak landslide in 

Afghanistan (Witze, 2014). The Oso Landslide on March 22, 2014 killed 43 people in 

Washington State, USA (Wartman et al., 2016). As population increases, more people 

are killed by landslides because of a general lack of knowledge about landslide 

occurrence and hazard preparation. Identifying historic landslide locations and potential 

landslide zones can help both the general public and stakeholder agencies to manage 

this geohazard better.

Landslides can initiate within bedrock or within the soil mass that covers bedrock. 

They drastically change the morphology of a landscape (Kavzoglu et al., 2014; Lee et 

al., 2012; Pradhan and Lee, 2009), changing the slope, aspect, and curvature of the 

ground surface. These changes provide identifying characteristics to geomorphologists
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and, together with meteorological factors, help to identify potential landslide zones 

(Guzzetti et al., 1999; Kavzoglu et al., 2014).

1.1 Landslide Studies

A significant number of studies have been made using various techniques to 

identify landslides and to develop landslide susceptibility maps. Researchers around the 

world have used Geographic Information System (GIS) tools to identify and to map 

landslides; Guzzetti et al. (1999) provided a review of these GIS techniques. The one 

common philosophy in developing susceptibility maps is that future landslides will occur 

under similar conditions as the past and present landslides. Hence, a landslide 

inventory is an important first step in landslide susceptibility mapping (Guzzetti et al., 

1999). Light Detection and Ranging (LiDAR), Interferometric Synthetic Aperture Radar 

(IfSAR), and satellite imageries (e.g., WorldView-2, Spot-5) have made it possible to 

identify landslides from before- and after-images of an area; however, the scale or 

resolution of these data plays an important factor in identifying landslides, as small- 

scale landslides are often not visible in coarser resolution images. In this study, I made 

a landslide inventory from visual inspection of hillshade images from 1m resolution 

LiDAR data, which is considered fine resolution data. I took a multiscale approach by 

resampling the 1m LiDAR data to 2.5m and 5m scales. I then used the inventory in 

subsequent analyses.

1.2 Qualitative Analysis

The models used by different researchers to identify landslides can be divided 

into two broad categories: qualitative and quantitative. Almost all the methods use GIS
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in conjunction with other software (e.g., Matlab, R) to do the analysis. The qualitative 

approach relies on visual identification of landslides from satellite and/or aerial imagery, 

field surveying, and interpretation of historical photographs. These techniques are tim e

consuming and subjective, and the accuracy depends on the expertise of the person 

involved. High-resolution imagery with sufficient geometric and radiometric corrections 

is needed to identify landslides visually (Dahal, 2014; Fiorucci et al., 2011), and often 

current digital imagery is not available. In this study, fine resolution 1m LiDAR data have 

made it possible to create a landslide inventory from visual inspection.

1.3 Quantitative Analysis

Quantitative analysis can be divided into three categories: 1) probabilistic 

models, 2) statistical models, and 3) machine learning algorithms. Different quantitative 

models are described in the subsequent sections.

1.3.1 Frequency Ratio Analysis

Frequency Ratio Analysis (FRA) is one popular probability model used in making 

susceptibility maps (Chen et al., 2016; Choi et al., 2012; Kumar and Anbalagan, 2015; 

Lee et al., 2012; Lee and Pradhan, 2007; Nourani et al., 2014; Ramesh and 

Anbazhagan, 2015; Son et al., 2016; Yilmaz, 2009; Youssef et al., 2015; Zhang et al., 

2016b). FRA depends on observed relationships between landslide occurrence and 

landslide causative factors, such as land cover, lithology, elevation, slope, aspect, 

curvature, rainfall, and distance from lineaments. As past landslide events are needed 

to identify the relationship between landslide occurrence and causative factors, this 

method requires a detailed inventory of past landslide locations. The FRA method uses
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a ratio of areas where landslides have occurred to the total area (Pradhan and Lee, 

2009). If the ratio is greater than 1 then the relationship between the landslide and 

factor’s range or type is strong. If the ratio is less than 1 then the relationship between 

landslide and factor’s range or type is weak (Lee and Sambath, 2006). All frequency 

ratio values are summed to calculate the susceptibility index in a training area. Higher 

susceptibility index values represent a higher landslide hazard.

1.3.2 Logistic Regression

Statistical methods are frequently used in landslide studies. While both bivariate 

and multivariate statistical analyses have been employed, Logistic Regression (LR) is a 

multivariate statistical technique that has been used often by researchers (Budimir et 

al., 2015; Choi et al., 2012; Devkota et al., 2013; Dieu Tien et al., 2011; Falaschi et al., 

2009; Felicisimo et al., 2013; Kavzoglu et al., 2014; Lee et al., 2012; Lee and Pradhan, 

2007; Lee and Sambath, 2006; Nourani et al., 2014; Pourghasemi et al., 2014; Regmi et 

al., 2014; Xu et al., 2013; Yilmaz, 2009; Zhang et al., 2016a). LR provides a 

quantification of the relationship between landslide occurrence and landslide causative 

factors (Falaschi et al., 2009). In this method, there is one dependent variable and 

multiple independent variables (landslide causative factors). One advantage of LR is 

that variables do not necessarily have to be normally distributed. The dependent 

variable is binary, being either 0 (absence of a landslide) or 1 (presence of a landslide). 

A linear regression equation is formed among the independent variables. The 

probability of a landslide in an area is calculated using:

P = - ^  (1)t ' l - e - z  v '

4



where p is the probability of an event occurring and z is the linear combination among 

the independent variables (Lee and Pradhan, 2007). The parameter z is calculated as:

z =  b0 +  b1x1 +  Ö2 X2 +  b3x3 +  bnxn (2)

where b0 is the intercept, b1 through bnare coefficients, and x 1 through xn are the 

independent variables. The probability of a landslide occurrence is calculated using 

Equations (1) and (2). A spatial database is created by converting the raster files (slope, 

aspect, curvature, etc.) into American Standard Code for Information Interchange 

(ASCII) format. Then they are analyzed using a statistical software package (e.g., R), 

and the correlation between a landslide event and each factor is calculated. Converting 

large amounts of data into ASCII format and then returning them back to rasters to use 

in GIS is a cumbersome and time-consuming process (Lee and Pradhan, 2007; Nourani 

et al., 2014). Also, to give satisfactory results, there has to be a linear relationship 

among the variables. It is often the case in landslide studies that data are nonlinear, and 

if the model over-fits the data, then it will contain noise resulting in many false positives.

1.3.3 Weights of Evidence

One bivariate model that is often used in landslide susceptibility mapping is the 

weights of evidence model (WoE) (Ahmed and Dewan, 2017; Chen et al., 2016; Lee et 

al., 2012; Mohammady et al., 2012; Neuhäuser and Terhorst, 2007; Ozdemir and 

Altural, 2013; Regmi et al., 2010; Van Westen et al., 2003). A landslide inventory is 

required to find the weights of the landslide causative factors. This method calculates 

the weight for each landslide predictive factor based on the presence or absence of 

landslides within an area. Positive and negative weights are assigned to different 

classes of a thematic map (e.g., slope, curvature, lithology, etc.). One drawback to this
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assessment is that when probability reaches 1 for the hypothesis (in this case, landslide 

occurrences), it does not leave any room for error regarding other class types or 

unexpected situations (Ahmed and Dewan, 2017).

1.3.4 Artificial Neural Networks and Support Vector Machines

Landslide mapping can be viewed as a classification problem where the main 

goal is to classify either landslide-prone areas or non-landslide areas (Ballabio and 

Sterlacchini, 2012). Machine learning algorithms, such as Artificial Neural Networks 

(ANN) and Support Vector Machines (SVM), are used to classify landslide-prone areas 

and can classify large amount of data. With advancements in processor computing 

power, machine learning techniques are becoming more and more feasible.

Several researchers have used SVM to make landslide susceptibility maps 

(Ballabio and Sterlacchini, 2012; Hong et al., 2016; Kavzoglu et al., 2014; Marjanovic et 

al., 2011; Micheletti et al., 2014; Pradhan, 2013; Su et al., 2015; Wu et al., 2014; Xu et 

al., 2012; Xu et al., 2016; Yao et al., 2008). SVM provides better results than other 

classification tools in identifying landslide-prone areas. It creates a high dimensional 

feature space through nonlinear mapping. The input vectors are mapped in this space 

and an optimal separating hyperplane is constructed (Vapnik, 1995). The method can 

classify n number of observations by separating them using the hyperplane, which is 

defined by a function. SVM can classify samples even if they overlap each other. Linear 

methods like logistic regression do not perform well when only DEM-derived parameters 

are available; however, SVM works well in this scenario and preserves most of its 

performance capability (Ballabio and Sterlacchini, 2012). SVM, like other machine
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learning algorithms, require a large amount of training samples to be able to perform 

satisfactorily. In this study, I used SVM for training samples from the landslide inventory.

ANN is a machine learning technique that is often used with the landslide 

susceptibility problem (Bi et al., 2014; Choi et al., 2012; Dou et al., 2015; Falaschi et al., 

2009; Gelisli et al., 2015; Lee et al., 2012; Lee et al., 2004; Li et al., 2012; Moosavi et 

al., 2014; Nourani et al., 2014; Pradhan and Lee, 2009; Samodra et al., 2017; 

Tsangaratos and Benardos, 2014; Xu et al., 2016; Yilmaz, 2009). It can classify 

nonlinear data. A neural network is developed by imitating the human brain structure. 

The ANN model is trained using a set of associated input and output values as 

examples. Most landslide susceptibility problems addressed using ANN have used a 

back-propagation algorithm to train the network. In ANN there is an input layer, one or 

more hidden layers, one output layer, weights, biases, and an activation function. 

Landslide causative factors are fed into the input layer after a data normalization 

process. The back-propagation algorithm then analyzes the input to find the appropriate 

weight and biases for the network. The output values represent landslide occurrence or 

absence. Several mathematical packages (e.g., MATLAB) are available to use the ANN, 

and it can be trained satisfactorily provided there is an adequate amount of training 

data. The training is continued until a minimal error is achieved. After the training, ANN 

is used as a feed forward network to produce a classification on test samples (Pradhan 

and Lee, 2009). It often takes significant time to train the network and there are no set 

rules in selecting the initial weight and biases.

FRA, LR, and WoE are more conventional techniques than ANN and SVM. ANN 

and SVM are pixel-based approaches where each pixel is considered in the analysis for
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landslide occurrence or absence. Moosavi et al. (2014) demonstrated that no significant 

differences existed between the ANN and SVM approaches.

1.3.5 Image Classification Approach

Image classification techniques, also pixel-based approaches, have been 

implemented in landslide identification. Maximum likelihood classification, 

parallelepiped, ISODATA, and K-mean are some examples of pixel-based image 

classification tools. Supervised image classification methods can be applied using tools 

in GIS (Kasai et al., 2009). Guzzetti et al. (2012) point out that one problem with pixel

based approaches is that they do not consider the local geomorphological context (e.g., 

size, shape, position) of the extracted feature. Pixel-based approaches can identify 

head scarps or sets of escarpments but not the whole body of the landslide, and it is 

difficult to map landslides in a large area with the aid of only a single feature such as the 

head scarps.

1.3.6 Object Oriented Image Analysis

The problems of pixel-based approaches can be overcome using the more 

advanced technique of Object Oriented Image Analysis (OOIA), which has been used 

successfully by Aksoy and Ercanoglu (2012), Li et al. (2015), and Martha et al. (2010), 

to identify landslides. The availability of high-resolution LiDAR digital elevation models 

(DEMs) has made OOIA possible. This approach is a semi-automatic method of 

identifying landforms and other objects by extracting features using spectral, spatial, 

and morphometric attributes of segmented images. It has been used widely in natural 

resource management, urban planning, landform studies, agriculture and forestry, and 

Aksoy and Ercanoglu (2012), Blaschke (2010), DraguJ and Blaschke (2006), and
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Martha et al. (2010) have used OOIA in landslide studies. Considerable progress has 

been made using OOIA as a tool in spatial planning (Blaschke, 2010). Specialized 

software is available that can handle OOIA well. Recently, the ArcGIS software was 

equipped with OOIA, and its capability in landslide identification is worth investigating.

In OOIA, landslides are considered objects with certain characteristics or 

signature values. Instead of considering each pixel for landslide presence or absence, 

landslides are considered as objects with certain characteristic signatures. Neighboring 

pixels are considered to have the same characteristics. There are two steps in OOIA:

1) image segmentation and 2) image classification. A segmentation process is applied 

on the image to clear out noise and for smoothing. Training samples are taken as 

objects. All objects with similar characteristics are given the same attribute or put into 

the same group. After training the model, it is applied to a different location to extract 

the same features, or to classify the image. As there is human involvement in this 

process, this method is considered semi-automatic.

Some researchers have used very different approaches in landslide 

identification. For example, Leshchinsky et al. (2015) developed the Contour 

Connection Method (CCM). It is neither statistical nor pixel-based. This method is a new 

algorithm to identify landslides using a python script in GIS. A LiDAR-derived DEM is 

used to make contours, and each contour has nodal connection with other contours 

based on a set of values. Leshchinsky et al. (2015) demonstrated that the density of 

nodal connections is representative of different parts (e.g., head scarp, body, and fan 

deposit) of a landslide.
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1.4 Goal of This Research and Thesis Organization

The goal of this research is to develop a methodology that can be used in Interior 

Alaska to identify landslides and potential landslide zones. The study area consists of 

39.76 km2 of rugged terrain without much road access; hence, it is difficult to map 

landslides using traditional field mapping techniques. At the current time, no detailed 

landslide inventory exists for Interior Alaska. The inventory prepared for the study area 

only provides locations of landslides and landslide susceptible areas, but does not 

provide any other information necessary to use the above-mentioned techniques (e.g., 

distance to faults and lineaments, rainfall density, etc.). Hence, traditional techniques 

are not suitable for use in this study.

Given this data limitation, I developed a modified image classification approach 

to identify landslide locations from available data, which were LiDAR derivatives (e.g., 

slope, curvature, and roughness) and the normalized difference vegetation index (NDVI) 

obtained from color infrared imagery. Van Den Eeckhaut et al. (2012) used LiDAR 

derivatives to identify landslides in Belgium using eCognition software. In contrast, I 

used LiDAR derivatives in ArcGIS 10.5 and a supervised image classification approach 

with segmented images prepared from OOIA classification techniques. The samples 

were trained using an SVM classifier, which is a machine learning algorithm to identify 

landslide and landslide susceptible locations. The developed methodology was 

implemented at different resolutions (i.e., 2.5m, 5m) of LiDAR data. Finally, I used 

accuracy assessment techniques to quantify the results.

This thesis is divided into six chapters. Chapter 1 is a review of previous studies 

on landslide identification and discusses various techniques associated with landslide
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identification. Chapter 2 provides descriptions of the training and test sites. Chapter 3 

describes the methodology used in this research, including a description of the accuracy 

assessment technique. In Chapter 4, I discuss the results derived from the accuracy 

assessment of LiDAR images at 1m, 2.5m, and 5m scales, and Chapter 5 concludes 

with a summary of this research, its limitations, and suggestions for future studies.
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Chapter 2 Study Area

The study area broadly consists of road corridors within Interior Alaska (Fig. 2.1). 

I prepared a landslide inventory from four study sites (i.e., Slate Creek, Copper River, 

Richardson, and Yukon). I chose multiple training sites in different geological settings to 

improve landslide identification within the long transportation corridors of Interior Alaska 

(Fig. 2.2).

2.1 Slate Creek

The Slate Creek landslide (Fig. 2.2a) is located on an east-facing river terrace 

near Mile Post (MP) 258 along the Parks Highway and adjacent to the Nenana River, 

approximately nine miles north of Healy, Alaska. It is located in the northern foothills of 

the Alaska Range, in which permafrost is present (Wahrhaftig, 1965). The landslide 

occurred in the Tertiary Nenana Gravel Unit, which is a poorly-consolidated fluvial 

deposit consisting mostly of pebble to boulder conglomerate and coarse-grained 

sandstone, with interbedded mudflow deposits, thin claystone layers, and local thin 

lignite beds (Wahrhaftig, 1970). As four distinct glacial advances have been recognized 

in the Nenana River area, the landslide area also contains outwash gravel, which 

overlays the Nenana Gravel on the top of the river terrace (Wahrhaftig and Black,

1958).

2.2 Copper River

The Copper River training site (Fig. 2.2b) is located to the west of Richardson 

Highway near MP112 along the Tazlina River, which is a tributary of the Copper River.

13



150°W 148°W 146°W 144°W 142°W

Figure 2.1: Location of study sites: Slate Creek, Copper River, Richardson, and Yukon. 

Highways are indicated by red lines, and in the inset, areas with LiDAR coverage are 

indicated by a green hatched pattern. Nearby communities are indicated in italicized 

text.
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Figure 2.2: Landslide inventory prepared using visual inspection of LiDAR data:

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon. The base layer is a 

hillshade image derived from 1m resolution LiDAR (Hubbard et al., 2011).
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This training site is in the Copper River Lowland physiographic province (Wahrhaftig, 

1965) and consists of a relatively smooth plain that is entrenched by the Copper River 

and its tributaries. The mountains of the Alaska, Talkeetna, Chugach, and Wrangell 

Ranges surround the Copper River Basin. During the Pleistocene glaciations, glaciers 

advanced from these mountains and dammed the basin’s drainage, forming a proglacial 

lake known as Lake Atna (Ferrians et al., 1983). Thus, the soils of the Copper River 

Basin mainly consist of glaciolacustrine sediments. Permafrost began to form in these 

sediments following the retreat of glaciers and drainage of the lake (Ferrians et al.,

1983; Wahrhaftig, 1965; W iedmer et al., 2010).

2.3 Richardson Highway MP296

This site is located along the Richardson Highway, starting at MP296 and 

extending to the north to MP299 (Fig. 2.2c). It is in the Yukon-Tanana Upland 

physiographic province, which is characterized by rounded even-topped ridges with 

gentle side slopes (Wahrhaftig, 1965). The landslides on the north side of the highway 

are in pelitic schist and quartzite of Devonian or older age (Wilson et al., 2015). To the 

south of the highway, the slopes are covered with unconsolidated surficial deposits of 

Quaternary age (Wilson et al., 2015). The study site runs parallel to the Tanana River, 

and south-facing slopes in the low terraces of the Tanana River may contain 

widespread, shallow, and locally ice-rich permafrost (Reger et al., 2008; Reger and 

Solie, 2008).
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2.4 Yukon River

The training site along the Yukon River is located west of the E.L. Patton Bridge 

(Fig. 2.2d). This area is on the boundary between the Kokrine-Hodzana Highlands, the 

Rampart Trough, and the Yukon-Tanana Upland physiographic provinces (Koehler et 

al., 2013; Wahrhaftig, 1965). Bedrock outcrops exposed along the river mainly consist 

of Mississippian-Triassic intrusive and extrusive mafic igneous rocks, with some 

sedimentary rocks such as argillite, chert, greywacke, shale, and limestone (Wilson et 

al., 2015). Frozen surficial deposits mainly consist of loess, which is 1.5- to 15-m thick 

on ridge crests, and ice-rich in stream valleys (Koehler, 2011; Koehler et al., 2013; 

W eber et al., 1992; Wilson et al., 2015).
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Chapter 3 Methodology 

3.1 Data Sets

A publicly available Light Detection and Ranging (LiDAR) data set was used in 

this research. The Alaska Division of Geological & Geophysical Surveys (DGGS) hosts 

1 m resolution LiDAR data for an area of 7,770 km2 (3,000 mi2) with 1.6-km (1 -mi) width 

coverage along major infrastructure corridors (Hubbard et al., 2011). The more detailed 

LiDAR data are useful for characterization of geomorphic features, active faults, and 

other surficial geologic landforms. I resampled the LiDAR DEMs to 2.5m and 5m scales 

using the bilinear interpolation method, which calculates the value of each pixel by 

averaging the values of the four surrounding pixels.

To calculate the normalized difference vegetation index (NDVI), I used Spot 5 

color infrared imagery. This imagery is available for the entire state from the Alaska 

Statewide Digital Mapping Initiative (SDMI). This data set was acquired from the 

Division of Forestry, Department of Natural Resources website. Table 3.1 summarizes 

the details of the data used in this study.

3.2 LiDAR Derivatives

Slope, profile curvature, and roughness describe the morphometric properties of 

a landslide and generate a unique signature for different landforms; Fig. 3.1 to Fig. 3.3 

provide examples of these characteristics. Slope describes the degree of flatness (Fig. 

3.1); one fundamental characteristic of a landslide is a break in slope. Profile curvature 

is the curvature of the surface in the direction of slope, and for rotational landslides a 

change in curvature from body to toe is distinguishable (Fig. 3.2). Roughness is perhaps
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Table 3.1: Summary of data used in this study

Data Type Sensor Spatial Reference Scale Data Derivatives

LiDAR DEM Airborne NAD 1983 UTM
1 m x 1 m 

2.5 m x 2.5 m 
5 m x 5 m

Slope 
Profile Curvature 

Roughness

Color
Infrared
Image

Spot-5 NAD 1983 UTM 2.5 m x 2.5 m

Normalized 
Difference 

Vegetation Index 
(NDVI)
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Figure 3.1: Slope derived from the 1m resolution LiDAR digital elevation model. Study

sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 3.2: Profile curvature derived from the 1m resolution LiDAR digital elevation

model. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and

(d) Yukon.
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Figure 3.3: Roughness derived from the 1m resolution LiDAR digital elevation model.

Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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the most important characteristic of a landslide. Surface roughness describes the 

variability of a topographic surface at a certain scale (Grohmann et al., 2011). Common 

surface roughness measures are standard deviation of residual topography, standard 

deviation of profile curvature, standard deviation of slope, etc. Some methods can show 

local relief while other methods are good for delineating regional relief. The choice of 

measurement depends on the scale of the landform of interest. A landslide body has a 

higher roughness index than its surroundings. While roughness can be calculated using 

multiple techniques (Grohmann et al., 2011), I used the topographic roughness index 

(Fig. 3.3) (Jenness, 2004). I used Equation (3) to calculate roughness using a focal 

statistics tool with a 5 x 5 cell moving window from a LiDAR digital elevation model 

(DEM):

i m ean-m in im umrouqhness = ------------------------------------------------------------ (3)
m axim um -m inim um

where mean, minimum, and maximum are the names of rasters derived from the DEM.

The three thematic rasters (i.e., slope, profile curvature, and roughness) derived 

from LiDAR data were combined to create a multispectral composite band image (Fig. 

3.4), where Bands 1, 2, and 3 were slope, profile curvature, and roughness rasters, 

respectively. The composite band image was used to generate a segmented image. I 

also used NDVI in the subsequent training phase (Fig. 3.5). NDVI is an index parameter 

that indicates the health of different plants. Since landslide head scarps often do not 

support vegetation, I hypothesized that the NDVI may work as an identifying parameter. 

Fig. 3.6 illustrates the workflow for the OOIA.
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Figure 3.4: Composite band image from combining slope, profile curvature, and 

roughness data. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and 

(d) Yukon.
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Figure 3.5: NDVI derived from the 2.5m resolution color infrared imagery. Study sites

are (a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 3.6: Workflow of Object-Oriented Image Analysis (OOIA) and classification in 

ArcGIS 10.5.
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3.3 Image Segmentation

A segmented image is generated using the "segment mean shift” tool in ArcGIS

10.5. Accuracy of the classification depends on the segmentation process. In this 

process, an image is segmented based on its spectral, spatial, and morphometric 

properties.

Prior to segmentation, I determined values for spectral detail, spatial detail, and 

minimum segment size. Appropriate values for these parameters are often found by trial 

and error (Aksoy and Ercanoglu, 2012; DraguJ and Blaschke, 2006). When the spectral 

detail is increased there is more variation throughout the segmented raster. When 

spatial detail is increased, there is more than one unique object in the segmented 

raster. Increasing the minimum segment size lessens the detail (ESRI, 2017). For this 

analysis, I used a spectral detail of 18, a spatial detail of 10, and a minimum segment 

size of 300 pixels.

I generated three segmented images for 1m, 2.5m, and 5m resolution LiDAR 

data (Fig. 3.7, Fig. 3.8, and Fig. 3.9, respectively). Segmentation divided the 

composited band image into different segments. For the 1m x 1m segmented data, the 

minimum and maximum segments had areas of 6.4x10-7 km2 and 2.95 km2, 

respectively. For the 2.5m x 2.5m data, the minimum and maximum segments were 

4.0x10-6 km2 and 4.18 km2, respectively, and for the 5m x 5m data, the minimum and 

maximum segments were 1.6x10-5 km2 5.62 km2, respectively.
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Figure 3.7: Segmented image generated from 1m resolution LiDAR. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 3.8: Segmented image from 2.5m resolution LiDAR. Study sites are (a) Slate

Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 3.9: Segmented image from 5m resolution LiDAR. Study sites are (a) Slate

Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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3.4 Training Samples

After the segmented images were prepared, I extracted training samples into 

three categories: landslides, landslide susceptible, and stable. In this study, the phrase 

‘landslide susceptible’ is used to define places where future landslides can occur, and 

the word ‘landslide’ is used to define locations of recent and/or historic landslides as 

determined by visual examination of the 1m LiDAR DEM. The word ‘stable’ is used to 

define places that have a relatively flat slope. W ater bodies and roads also are 

considered stable. This part is perhaps the most important step since the accuracy of 

the classified image will depend on how carefully the classifier has been trained. It also 

depends on the judgement of the person who is selecting the samples from the 

segmented images, which makes this process semi-automatic. I chose training samples 

as objects instead of individual pixels to follow the OOIA classification technique. In the 

study area, 21 objects were identified as landslides and 75 objects were identified as 

landslide susceptible locations. All other areas were designated as stable (Fig. 2.2). 

From this inventory, I chose 15 landslide objects, 57 landslide susceptible objects, and 

52 stable objects for training (Fig. 3.10). In one instance, random samples were taken 

from the same landslide susceptible object instead of choosing the whole object as a 

training sample (Fig. 3.10a). This was done to avoid over sampling.

3.5 Support Vector Machine (SVM) Classifier

ArcGIS 10.5 offers a range of classifiers for image classification purposes. The 

SVM classifier is a well-known tool that uses machine learning algorithms. It requires a 

large amount of training samples, but the samples do not need to be normally
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Figure 3.10: Training sample locations in the study area. Study sites are (a) Slate 

Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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distributed. I used this classifier to train the signature files, which then were used to 

classify the entire study area.

3.6 Classified Image

The classify raster function in ArcGIS 10.5 was used to generate classified 

images using the signature files. I implemented a generalization technique on the 

classified images to expand eight neighboring cells of the stable locations. Expanding 

helped to remove false positive pixels from the stable locations.

3.7 Accuracy Assessment

As with any image classification technique, accuracy assessment is an important 

measure to quantify the accuracy of a classification. At present, no standard evaluation 

method for assessing classified images from image segmentation exists (DraguJ et al., 

2011; Van Den Eeckhaut et al., 2012). I followed the same procedure used in traditional 

image classification techniques to quantify the accuracy.

The most common way to obtain accuracy is to compare classified points with 

referenced or ground-truthed points. This accuracy is calculated from a matrix or a table 

(known as a confusion matrix), where classified and referenced points are expressed as 

a tally of rows and columns, respectively (Table 3.2).

The major diagonal of the confusion matrix indicates the points that are correctly 

classified, and the overall accuracy of the classification is obtained by diving the sum of 

the major diagonal values by the total number of samples. As indicated in Table 3.2, the 

overall accuracy is 84%. The accuracy of individual categories also is important as the 

individual category may exhibit drastically different accuracies but all of them are
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Table 3.2: Sample confusion matrix table

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 1468 63 6 1537 0.96

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible

115 156 5 276 0.57

Landslide 61 78 48 187 0.26

Total 1644 297 59 2000

Producer
Accuracy

Kappa

0.89 0.53 0.81 0.84

0.52
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combined to determine the overall accuracy; hence, overall accuracy may be 

misleading in interpreting a classified image.

There are at least two ways to determine individual categories:

i) Producer’s Accuracy: This is obtained by dividing the total number of correctly 

classified data for a category by the total number of ground-truthed points in that 

category. It is important to remember that the total number of correctly classified data 

for each category is presented by each diagonal element in the error matrix. It is called 

producer’s accuracy as the producer of an image or map is concerned about how well a 

certain category on the ground can be classified (Congalton, 1991). The results of this 

analysis provide a producer’s accuracy of 89%, 53%, and 81% for stable, landslide 

susceptible, and landslide locations, respectively.

ii) User’s Accuracy: This is obtained by dividing the total number of correctly 

classified data for a category by the total number of classified data sampled in that 

category. User’s accuracy deals with commission error, which is when other categories 

represent false positives. User’s accuracy represents how well a map represents the 

original ground. A better name for this value is "reliability” (Congalton, 1991; Story and 

Congalton, 1986). For this study, the user’s accuracy is 96%, 57%, and 26% for stable, 

landslide susceptible, and landslide locations, respectively.

These two accuracies produce different results and the interpretation of their 

meaning is different. Producer’s accuracy considers the omission error, which is that 

ground-truthed points are not correctly classified in their categories and are omitted 

from those categories. On the other hand, users of a map trying to find a specific 

location on a map generally expect to find the same location on the ground; however,
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this is often not the case. A user can find a landslide location on the map, but he or she 

may not find a landslide at that location in the real world.

Another measure of accuracy is kappa analysis (Congalton et al.1983). It is often 

used in remotely-sensed data. The kappa analysis generates a statistic called KHAT, 

which measures the agreement between referenced and classified data. KHAT values 

greater than 80%, between 40% and 80%, and less than 40% indicate strong, 

moderate, or poor agreement, respectively, between classified and referenced data 

(ESRI, 2017). In Table 3.2, the KHAT or Kappa value is 52%, indicating moderate 

agreement.

In this study, I assessed the accuracy of 3,000 randomly generated points, using 

the stratified random function. This function generates points that are proportional to the 

relative area of each class (e.g., landslide, stable). Since stable locations had the 

highest proportion, these areas contained the highest number of random points.
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Chapter 4 Results and Discussion

Fig. 4.1, 4.2, and 4.3 are the classified images from the 1m, 2.5m, and 5m 

segmented images, respectively, which all incorporated the NDVI. Fig. 4.4, 4.5, and 4.6 

are the classified images from the 1m, 2.5m, and 5m segmented images without the 

NDVI, respectively. From visual inspection of the classified images, the finer resolution 

1m classified image with NDVI (Fig. 4.1) delineated landslide objects better than the 

coarser resolution 2.5m and 5m; however, it also produced more false positives that led 

to low user accuracy. At the other extreme, the 5m classified image without NDVI did 

not identify any landslide objects, with all landslide locations identified as landslide 

susceptible (Fig. 4.6). This may be attributed to the over sampling of training samples 

as landslide susceptible pixels. Overall, the addition of NDVI produced better results, 

and the 5m resolution LiDAR with NDVI generated less false positives than the 1m and 

2.5m scales. Note that I used the same training samples for all scales.

Tables 4.1 through 4.6 summarize the accuracy assessment results for the 1m, 

2.5m, and 5m resolution classified images with and without NDVI. Table 4.7 

summarizes overall accuracy and kappa statistics for the 1m, 2.5m, and 5m resolution 

LiDAR data, and Tables 4.8 through 4.10 summarize producer and user accuracy for 

landslide, landslide susceptible, and stable locations, respectively. The overall accuracy 

of 1m, 2.5m, and 5m resolution classified images varies between 80% and 83% with the 

highest accuracy obtained from the 5m resolution image with NDVI, and the lowest 

accuracy from the 1m resolution LiDAR without NDVI (Table 4.7). The high overall 

accuracy at each scale may be attributed to the fact that the majority of the accuracy 

assessment points were generated in stable locations that were correctly classified.
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Figure 4.1: Classified Image from 1m resolution LiDAR with NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 4.2: Classified Image from 2.5m resolution LiDAR with NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 4.3: Classified Image from 5m resolution LiDAR with NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Figure 4.4: Classified image from 1m resolution LiDAR without NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.

43



Figure 4.5: Classified Image from 2.5m resolution LiDAR without NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.

44



Figure 4.6: Classified image from 5m resolution LiDAR without NDVI. Study sites are

(a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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Table 4.1: Confusion matrix table for 1m resolution LiDAR with NDVI

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 2129 111 16 2256 0.94

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible 114 204 15 333 0.61

Landslide 149 180 83 412 0.20

Total 2392 495 114 3001

Producer
Accuracy 0.89 0.41 0.73 0.81

Kappa 0.48

Table 4.2: Confusion matrix table for 1m resolution LiDAR without NDVI

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 2094 121 16 2231 0.94

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible 229 281 45 555 0.51

Landslide 54 123 37 214 0.17

Total 2377 525 98 3000

Producer
Accuracy 0.88 0.54 0.38 0.80

Kappa 0.48
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Table 4.3: Confusion matrix table for 2.5m resolution LiDAR with NDVI

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 2044 107 15 2166 0.94

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible

305 322 40 667 0.48

Landslide 61 52 54 167 0.32

Total 2410 481 109 3000

Producer
Accuracy

Kappa

0.85 0.67 0.50 0.81

0.49

Table 4.4: Confusion matrix table for 2.5m resolution LiDAR without NDVI

Referenced Data

Class Value Stable Landslide
susceptible

Landslide Total User
Accuracy

Kappa

Stable 2065 102 16 2183 0.95

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible

315 335 63 713 0.47

Landslide 33 48 23 104 0.22

Total 2413 485 102 3000

Producer
Accuracy

Kappa

0.86 0.69 0.23 0.81

0.49
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Table 4.5: Confusion matrix table for 5m resolution LiDAR with NDVI

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 2117 100 16 2233 0.95

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible

209 319 24 552 0.58

Landslide 76 75 63 214 0.29

Total 2402 494 103 2999

Producer
Accuracy

Kappa

0.88 0.65 0.61 0.83

0.55

Table 4.6: Confusion matrix table for 5m resolution LiDAR without NDVI

Referenced Data

Class Value Stable Landslide
susceptible

Landslide Total User
Accuracy

Kappa

Stable 2206 220 42 2468 0.89

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible

204 264 64 532 0.50

Landslide 0 0 0 0 0.00

Total 2410 484 106 3000

Producer
Accuracy

Kappa

0.92 0.55 0.00 0.82

0.43

48



Table 4.7: Summary of overall accuracy and kappa statistics for multi-resolution LiDAR 

data

NDVI Without NDVI
Scale Overall

Accuracy
Kappa

Overall
Accuracy

Kappa

LiDAR 1m 0.81 0.48 0.80 0.48

LiDAR 2.5m 0.81 0.49 0.81 0.49

LiDAR 5m 0.83 0.55 0.82 0.43

49



Table 4.8: Summary of producer accuracy and user accuracy in landslide locations for 

multi-resolution LiDAR data

NDVI Without NDVI
Scale Producer

accuracy
User accuracy Producer

accuracy
User accuracy

LiDAR 1m 0.73 0.20 0.38 0.17

LiDAR 2.5m 0.50 0.32 0.23 0.22

LiDAR 5m 0.61 0.29 0.00 0.00

Table 4.9: Summary of producer accuracy and user accuracy in landslide susceptible 

locations for multi-resolution LiDAR data

Scale Producer
accuracy

NDVI

User accuracy

Without NDVI
Producer

User accuracy
accuracy

LiDAR 1m 0.41 0.61 0.54 0.51

LiDAR 2.5m 0.67 0.48 0.69 0.47

LiDAR 5m 0.65 0.58 0.55 0.50

Table 4.10: Summary of producer accuracy and user accuracy in stable locations for 

multi-resolution LiDAR data

NDVI Without NDVI
Scale Producer

accuracy User accuracy Producer
accuracy User accuracy

LiDAR 1m 0.89 0.94 0.88 0.94

LiDAR 2.5m 0.85 0.94 0.86 0.95

LiDAR 5m 0.88 0.95 0.92 0.89
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(Tables 4.1 through 4.6); however, the overall accuracy was not a good indicator of how 

landslide and landslide susceptible locations were correctly classified.

The highest kappa value, 55%, was obtained from the 5m resolution LiDAR with 

NDVI, and the lowest kappa value of 43% was obtained from the 5m resolution LiDAR 

without NDVI. The 1m and 2.5m resolution classified images generated kappa values of 

48% and 49%, respectively, for both with and without NDVI (Table 4.7).

Producer and user accuracies provided a good indication of landslide and 

landslide susceptible locations in this accuracy assessment. The additional NDVI input 

generated better results in every instance of landslide identification. The 1m scale 

LiDAR with NDVI generated a producer accuracy of 73% for landslide locations, 

whereas the same scale LiDAR without the addition of NDVI generated a producer 

accuracy of only 38%. Similarly, the 2.5m LiDAR with NDVI generated a user accuracy 

of 32%, and without NDVI generated a user accuracy of only 22% in identifying 

landslide locations (Table 4.8). Overall, the addition of NDVI yielded better results in 

user accuracy. The proposed method generally performed better in identifying landslide 

susceptible locations (resulting in higher producer and user accuracy) than for 

identifying landslide locations as discussed above (Table 4.9). The highest producer 

and user accuracies were obtained for stable locations (Table 4.10). For example, a 

user accuracy of 95% was achieved in identifying stable locations in both the 5m 

resolution LiDAR with NDVI and the 2.5m resolution LiDAR without NDVI. In general, 

the addition of NDVI with segmented images from slope, profile curvature, and 

roughness yielded better results in identifying landslide locations.
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4.1 to 4.3) using the raster calculator to generate a combined classification map (Fig. 

4.7). For each individual classified image, I assigned pixels in landslide, landslide 

susceptible, and stable locations values of 2, 1, and 0, respectively. Through raster 

addition, this resulted in a combined map with six class values. The class value of 6 

means that the place (or pixel) was identified as a landslide at all three scales. A class 

value of 5 indicates that the place was identified as a landslide in two instances, but at 

one instance it was identified as landslide susceptible. The class value of 4 represents a 

place identified as a landslide at least one time. A class value of 3 means that the place 

was identified as either landslide susceptible at all three scales, or identified as a 

landslide, landslide susceptible, or as stable at all three scales. A class value of 2 

means that the place was identified as either a landslide in one instance and stable at 

two other scales, or landslide susceptible at two scales and stable in one other instance. 

A class value of 1 means that the place was identified as landslide susceptible in one 

instance and stable at two other scales. Finally, a class value of 0 indicates a place 

identified as stable at all three scales (Fig. 4.7).

Next, I reclassified the combined map in Fig. 4.7 into a new map using only three 

classes (as specified in Table 4.11), where the values 2, 1, and 0 represent landslide, 

landslide susceptible, and stable locations, respectively (Fig. 4.8). I conducted an 

accuracy assessment on the combined classified image to generate a confusion matrix 

(Table 4.12).

I used the same procedure for the 1m, 2.5m, and 5m resolution classified images 

without NDVI (Fig. 4.4 to Fig. 4.6). Fig. 4.9 is the combined classification map. This map

I combined the 1m, 2.5m, and 5m resolution classified images with NDVI (Fig.
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Figure 4.7: Combined classification map from 1m, 2.5m, and 5m resolution classified

images with NDVI. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson,

and (d) Yukon.
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Table 4.11: Reclassified values of the combined image from Fig. 4.7

Class values in combined image New values in the reclassified image
0

0
1

2

3 1

4

5
2

6
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Figure 4.8: Combined classified image from 1m, 2.5m, and 5m resolution LiDAR data

with NDVI. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and

(d) Yukon.
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Table 4.12: Confusion matrix table for combined classified image from 1m, 2.5m, and

5m resolution LiDAR with NDVI

Referenced Data

Class Value Stable Landslide
susceptible Landslide Total User

Accuracy Kappa

Stable 2102 31 8 2141 0.98

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible 309 357 34 700 0.51

Landslide 37 60 62 159 0.39

Total 2448 448 104 3000

Producer
Accuracy 0.86 0.80 0.60 0.84

Kappa 0.58
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Figure 4.9: Combined map from 1m, 2.5m, and 5m resolution classified images without

NDVI. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and (d) Yukon.
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has only five class values since the 5m resolution map without NDVI (Fig. 4.6) does not 

have any landslide values. As with the previous map, I gave the landslide, landslide 

susceptible, and stable locations values of 2, 1, and 0, respectively.

Again, I reclassified the combined map in Fig. 4.9 into a new map using three 

classes (as specified in Table 4.13), where the values 2, 1, and 0 represents landslide, 

landslide susceptible, and stable locations, respectively (Fig. 4.10). I conducted an 

accuracy assessment on the combined classified image without NDVI to generate a 

confusion matrix (Table 4.14).

The combined classified map from 1m, 2.5m, and 5m LiDAR with NDVI 

generated a kappa value of 58% and user accuracy of 39% for landslide locations 

(Table 4.12). This user accuracy is higher than for any of the individual classified maps 

(Tables 4.7 through 4.10). From visual inspection, the entire extent of landslide masses 

are identified in the combined map (Fig. 4.8), whereas in the individual maps, often only 

the head scarp, toe, or a smaller portion of the landslide was identified (Fig. 4.1 to Fig. 

4.3).

The combined classified map from 1m, 2.5m, and 5m LiDAR without NDVI 

generated a kappa value of 53% and user accuracy of 32% for landslide locations.

From visual inspection, however, this map produced a large number of false positive 

landslide locations, especially for the Richardson and Yukon sites (Fig. 4.10c and 

4.10d). It is possible that some of the false positive landslide locations are paleo- 

landslides. One limitation of this study is that the landslide inventory was not field- 

checked, with the exception of the Slate Creek study site and some of the landslides at 

the Richardson site.
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Table 4.13: Reclassified values of the combined image from Fig. 4.9

Class values in combined image New values in the reclassified image
0

0
1

2
1

3

4
2

5
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Figure 4.10: Combined classified image from 1m, 2.5m, and 5m resolution LiDAR data

without NDVI. Study sites are (a) Slate Creek, (b) Copper River, (c) Richardson, and

(d) Yukon.
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Table 4.14: Confusion matrix table for combined classified image from 1m, 2.5m, and

5m resolution LiDAR without NDVI

Referenced Data

Class Value Stable
Landslide

susceptible Landslide Total
User

Accuracy Kappa

Stable 2107 99 17 2223 0.95

Cl
as

si
fie

d 
D

at
a

Landslide
susceptible 270 330 40 640 0.52

Landslide 31 62 44 137 0.32

Total 2408 491 101 3000

Producer
Accuracy 0.88 0.67 0.44 0.83

Kappa 0.53
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The accuracy assessment method used for the classified images is usually done 

for land cover classification. No standard classification procedure has yet been 

developed for object-oriented image classification. Since training samples were taken 

as objects in this study, it may have been more appropriate to generate a confusion 

matrix using ground-truthed objects (e.g., landslide, landslide susceptible, and stable).

While producer and user accuracy both quantify the accuracy of individual 

categories, the producer accuracy perhaps is more useful from a hazard management 

perspective. This is because the producer accuracy tells us how many ground-truthed 

points are correctly classified as landslides.

The roughness values depend on the method used for calculation. The method I 

used for roughness demonstrated extreme local relief even in the waves generated on 

the Yukon River surface (Fig. 3.3). Other methods may produce different results.

The spatial resolution and quality of the DEM, and color infrared imagery may 

affect the results of this study. Scale plays an important role in identifying landslides. 

From the combined classified map, it is evident that different parts of the same landslide 

body may be not be identifiable at different scales. This is the reason that the combined 

classified map gives a fuller picture, since it incorporates results from all three scales. 

The combined classified approach can be taken to generate landslide hazard zonation 

maps.

The image segmentation approach used in this study will need further 

development. Landslide identification using this technique depends on the minimum 

size of the segments. If a landslide body is smaller than the minimum segment 

generated from the segment mean shift function, it is possible that it would not be
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identified in subsequent phases. The spectral fingerprints of landslides and landslide 

susceptible locations are similar; however, the shape of the training objects helped to 

separate these different areas. It is important to select training samples that resemble 

all possible shapes in the study area. For my work, each training object included 

multiple different segments. The low user accuracy in identifying landslide objects can 

be attributed to the fact that the landslide and landslide susceptible objects both 

consisted of similar segments. Further study is necessary to generate a segmented 

image that will have more distinct segments for the landslide and landslide susceptible 

locations.
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Landslide identification is important as it helps to manage this type of geohazard 

in a planned way. The transportation corridors in Interior Alaska have significant 

importance to the state’s economy and transportation sector. Landslides located within 

these corridors may represent serious hazards to the roadways. Field identification of 

these landslides is often not feasible due to budget and time constraints. Hence it is 

important to develop an expedient and sufficiently accurate methodology that can be 

implemented using the limited data available. For this research, I developed a new 

method for landslide mapping using an object-oriented image classification approach in 

ArcGIS 10.5. I chose this approach since it can identify landslides rapidly using only 

LiDAR and color-infrared imagery.

Analysis of the results indicated that the combination of different derivatives from 

a LiDAR digital elevation model and the NDVI from color-infrared imagery can be used 

to identify landslide and landslide susceptible locations. The results also demonstrated 

that the scale of the LiDAR data plays an important role. The finer resolution image 

generated more false positives. The overall accuracy of LiDAR 1m, 2.5m, and 5m 

classified images with NDVI were 81%, 81%, and 83%, respectively. The 2.5m 

resolution LiDAR data with NDVI performed well in identifying landslide locations 

compared to the other scales with a user accuracy of 32%, a producer accuracy of 50%, 

and an overall accuracy of 81%. In general, the 5m LiDAR with NDVI performed well in 

identifying landslide, landslide susceptible, and stable locations, and generated the 

highest kappa value of 55%.

Chapter 5 Conclusions
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The results indicate that image segmentation plays an important role in object- 

oriented image classification. Different scales of data sets identified different parts of 

landslides, and the combined map generated the best result in identifying each class by 

combining all the pixels from individual maps. The combined map with NDVI attained 

user accuracies of 39%, 51 %, and 98%, and producer accuracies of 60%, 80%, and 

86%, for landslide, landslide susceptible, and stable locations, respectively. The overall 

accuracy of the combined map was 84%.

The method I developed for this research is fast and can be implemented easily 

over a large study area. It requires only LiDAR-derived products and NDVI from color- 

infrared imagery. Although not as accurate, the method can be implemented even 

without the NDVI. It is similar to the conventional image classification approach since it 

is supervised; however, it eases the rigorous procedure of visually identifying individual 

pixels and assigning them to different classes by developing training files using large 

objects containing many pixels. This method can be improved, however, by fine-tuning 

the segmented image generation, and of course, the results should be verified through 

field investigations.

Because I mainly used LiDAR data, this approach relies heavily on the 

geomorphic expression of landslides. As a result, the age of the landslide becomes 

important, as the method may not easily identify paleo-landslides that have subtle 

surface expression. A future step to address this issue is to conduct radiometric dating 

of the identified landslides within the transportation corridors. Another limitation with the 

LiDAR data is its narrow width along the corridors; this limited the size and orientation of 

landslides that I was able to identify.
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I only used LiDAR-derived parameters and NDVI in this study. A suggested 

improvement is to include other data sets (e.g., hydrology; soil, geology, and material 

properties) to incorporate other environmental and geologic parameters that are 

important to landslide occurrence. Furthermore, in Interior Alaska, the presence of 

permafrost is an important parameter. Incorporating permafrost distribution and slope 

aspect considerations would result in a more comprehensive methodology.

This method used the 2011 LiDAR data set. Should another LiDAR data set be 

collected along these transportation corridors, the two digital elevation models could be 

differenced to determine movement that occurred between data set acquisitions. This 

change detection would be a desk-top approach to validate my methodology.
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