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EXECUTIVE SUMMARY 

This technical report presents the findings of the laboratory analysis of potassium 

succinate (KSu) as a roadway deicer. Preliminary work for the Minnesota DOT and Local Roads 

Research Board (MnDOT/LRRB), titled Field Usage of Alternative Deicers for Snow and Ice 

Control, recommended laboratory analysis of a potassium succinate-based deicing product to 

compare its performance as a roadway deicer with commonly used deicers, such as sodium 

chloride (NaCl). Laboratory analysis included modified Strategic Highway Research Program 

(SHRP) ice-melting testing, a differential scanning calorimetry (DSC) thermogram, and friction 

measurements to quantify performance.  

The overall results indicate that the performance of KSu is similar to that of NaCl at 

improving friction on roadways during snow and ice conditions. The results of the DSC suggest 

that KSu can be applied as a roadway deicer at -5°C (23°F) and above. However, KSu does not 

function as a deicer at the colder temperatures at which salt brine works (the generally agreed 

upon lowest working temperature for salt brine is 15°F [-9.5°C]). 

The results of the laboratory testing show that KSu functions as a roadway deicer with 

slightly lower ice-melting rates than salt brine. The ice melting, DSC, and friction performance 

testing of KSu show that the product performs as a deicer at warmer temperatures than salt brine, 

with slightly less ice-melting capacity and similar friction performance. Based on these results, 

and previous results showing the lack of corrosion impacts to metals, equipment, and pavements 

by KSu and the similar biological oxygen demand (BOD) of KSu to potassium acetates, KSu 

appears to be a viable option as a roadway deicer at temperatures at or above -5°C (23°F).  

Potassium succinate can be used as a roadway deicer in areas where there is concern 

about impacts to infrastructure, equipment, or pavements—such as on bridges, elevated 
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roadways, in parking garages, or on newer concrete pavements. Potential concerns with the use 

of KSu as a roadway deicer are price, lack of full-scale manufacturing of KSu at this time, and 

the BOD exerted by the product. Additional testing to fully quantify the environmental impact of 

KSu on soil, water, flora, and fauna is recommended. If water quality and BOD are of concern, 

application of this product is not recommended in large quantities and during times of low water 

flow. 
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CHAPTER 1.0 INTRODUCTION 

This technical report presents the findings of the laboratory analysis of potassium 

succinate (KSu) as a roadway deicer. Preliminary work for the Minnesota Department of 

Transportation (MnDOT) and the Local Road Research Board (LRRB), titled Field Usage of 

Alternative Deicers for Snow and Ice Control, investigated alternative options for deicers and 

provided a summary of information on chlorides, acetates, formates, glycol and glycerin-based 

deicers, and other non-traditional deicers like succinates (Western Transportation Institute, 

2017). The recommendations from the preliminary project were to conduct testing on a KSu-

based deicing product to compare its performance as a deicer with the known performance of 

deicers such as sodium chloride (NaCl) and potassium acetate (KAc). To accomplish this, 

information from the preliminary effort was used to identify a source for KSu, a sample was 

acquired, and laboratory testing was conducted. 
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CHAPTER 2.0 BACKGROUND 

Succinate salts have been shown to aid in deicing and corrosion inhibition, specifically in 

work by Berglund et al. (2001). Succinate salts, which occur naturally, are also manufactured in 

what is considered an environmentally sustainable process that utilizes existing co-products, such 

as those from corn processing, and carbon dioxide. One gram of succinate is generated from a 

biological fermentation process of 1 gram of glucose from biomass such as cornstalks, corn fiber, 

and sugarcane (Potera 2005). Because this fermentation process uses carbon dioxide to make 

succinate, it is considered greenhouse-friendly. Berglund et al. (2003) developed a deicer 

formulation that contains succinic acid and/or succinic anhydride and a neutralizing base, which 

produces succinate salts and creates heat when in contact with water, allowing the succinate salt 

to act as a freezing point depressant. Some formulations contain glycols, which impede 

reformation of ice. Several heat reactions occur when this composition is exposed to water. The 

hydration of succinic anhydride, the dissolution of the base, and the neutralization of the acid 

produce heat and effectively melt ice. This dual action composition demonstrates effective ice-

melting characteristics (Berglund et al. 2003). 

Succinate salts consist of potassium succinate, ammonium succinate, sodium succinate, 

and combinations of these (Berglund et al. 2001). For this work, the discussion will focus on 

KSu, because this succinate salt outperformed all other forms of succinate salts as a deicer and 

corrosion inhibitor in testing for the patent application. While succinates are more commonly 

used as corrosion inhibitors, research has been conducted to explore the functionality of deicers 

blended with succinates for anti-corrosion and deicing effects (Berglund et al. 2001; Seo 2007; 

Taylor et al. 2010). 
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2.1 Performance of Succinates Relative to Other Deicers 

In testing ice penetration (conducted with a slightly modified version of SHRP H205.3) 

using potassium succinate (KSu) and calcium magnesium acetate (CMA), Berglund et al. (2001) 

found that at -5°C and -10°C, KSu and CMA performed similarly (60 minutes), but KSu 

penetrated faster. At -15°C and -20°C, CMA did not penetrate ice, while KSu did exhibit ice 

penetration. No test data for NaCl or other deicers are provided in the patent. One should be 

critical of these test results because the patent text claims that the deicers were stored at room 

temperature (and apparently not equilibrated to the test temperature before being placed on ice). 

Furthermore, ice penetration using KSu is inconsistent at -15°C compared with other 

temperatures (6.0 mm at -5°C, 5.5 mm at -10°C, 7.5 mm at -15°C, and 4.5 mm at -20°C). Deicer 

penetration normally decreases as temperature decreases.  

Data reported by BioAmber1 on the ice-melting capacity of KSu show relatively low ice-

melting capacity at 20°F (-6.6°C) (about 1.75 mL/g deicer) compared with the other products 

tested (other aircraft/airfield deicers, including potassium acetate, potassium formate, propylene 

glycol, and ethylene glycol, some of which were mixed with urea), while at 5°F (-15°C) KSu 

shows average to low ice-melting capacity (about 1 mL/g deicer) compared with the other 

products tested (BioAmber Inc. 2011). This finding is in contrast to ice penetration data that 

BioAmber reports on the performance of KSu, which implies that the product outperforms all 

products at 20°F (-6.6°C) and 5°F (-15°C) (5.5 mm of penetration, and 3 mm of penetration, 

respectively). Interestingly, in the patent application (Berglund et al. 2001), BioAmber reports 

only ice penetration data, which suggests that KSu outperforms other deicer products, whereas 

ice-melting data reported in the Berglund et al. (2003) patent does not support this.  

                                                 
1 BioAmber is the only potential manufacturer of a succinate-based deicer in the U.S. at this time.  
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The ice undercutting testing for KSu shows mixed results. At 20°F (-6.6°C), KSu 

performance was similar to other deicers at 20 cm2/g (range of all deicers was 12–36 cm2/g), 

while at 5°F (-15°C) KSu performed the best at 10 cm2/g deicer (BioAmber Inc. 2011). 

The freezing point of a 50% solution of KSu is -12°C (10.4°F), while a mix of water, 

KSu, potassium acetate, and potassium formate at a ratio of 50:30:10:10, respectively, provided 

the lowest depression of freezing point to -19°C (-2.2°F) (BioAmber Inc. 2011). Based on these 

findings, the use of a blended product that includes KSu warrants consideration.  

2.2 Impacts to Infrastructure 

Alizadeh and Berglund (2015) found that KSu causes no corrosion to steel and 

aluminum, and when mixed with salt brine at 2% by weight reduces the corrosion rate of salt 

brine to steel by 40%, while slightly increasing the corrosion rate to aluminum. Further reduction 

of corrosion rates was not observed with increased amounts of KSu added to salt brine beyond 

2% by weight. No significant signs of pitting corrosion by KSu in galvanized steel were noted 

(BioAmber Inc. 2011). 

Potassium succinate causes minimal to no concrete scaling (BioAmber Inc. 2011). 

Experimental succinate-based deicer formulations have been certified for use on airport runways 

(BioAmber Inc. 2011, from reference SMI, Inc. Miami, FL). 

2.3 Impacts on Water and Soil 

There is limited information on the impacts of succinates; however, the biological oxygen 

demand (BOD) of KSu was analyzed by BioAmber. Table 1 provides BOD data reported by 

BioAmber, which show that BOD values for succinates are similar to those for acetates. 
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Table 1. Biological oxygen demand (BOD) imparted by deicers, reported by BioAmber. 

Deicer BOD (g O2/g fluid) 

Succinate Formula 0.15 

Potassium Acetate 0.142 

Potassium Formate 0.12 

Ethylene Glycol 1.02 

 

2.4 Cost 

Succinates were reported to cost less than $1 a pound3 for biosuccinate (Potera 2005). 

Recent input from BioAmber suggests that a price cannot be determined at this time because the 

product manufacturing has not yet been scaled up for mass production, but the company suggests 

the price of a 50% KSu solution would be similar to that of formate-based deicing products 

(P. Petersen February 23, 2017). Fortin Consulting, Inc. (2014) identified the cost of succinates 

as $2.50 per gallon, and up to $75 per lane-mile. 

                                                 
2 While this data are reported by BioAmber, they use the reference “Cryotech Deicing Technology, 

‘Cryotech E36® Environmental Impact’” and the linked web address no longer works. 
3 When oil prices were around $25 a barrel. 
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CHAPTER 3.0 METHODOLOGY 

Laboratory testing of potassium succinate (KSu) included using the modified Strategic 

Highway Research Program (SHRP) ice-melting tests, a differential scanning calorimetry (DSC) 

thermogram, and friction measurements to quantify the performance of KSu following anti-icing. 

The methods used are outlined in detail in the sections that follow. 

3.1 Ice-Melting Test (Modified SHRP) 

The SHRP ice-melting tests were conducted at the Montana State University Subzero 

Science and Engineering Research Facility (Subzero Lab) in a temperature-regulated 

environmental chamber using deionized water (Akin and Shi, 2012). The ice-melting test was 

conducted at 28°F (-2.2°C), with triplicate samples tested of each deicer type and temperature – 

deionized water salt brine control and KSu. All products were tested in liquid form, with 3.8 mL 

(or 4.53 ± 0.18 g of liquid) of deicer 

applied evenly over the ice surface with a 

syringe. After 10, 20, 30, 45, and 60 

minutes, the liquid volume was removed 

and volumetrically measured with a 

calibrated syringe (Figure 1). The results 

of the ice-melting test are presented in the 

results section. 

 

3.2 DSC Measurements 

The differential scanning calorimetry (DSC) thermogram was used to quantify the 

thermal properties of KSu, using a Q200 apparatus (TA Instruments, Salt Lake City, Utah). The 

Figure 1. Ice-melting test for KSu sample #3 
following application of deicer (modified SHRP 
test method). 
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liquid product was diluted with deionized water, at 1:2 volume ratio. Approximately 10 μL of the 

sample were pipetted into an aluminum sample pan and hermetically sealed for DSC 

measurements. Differential scanning calorimetry measures the amount of thermal energy that 

flows into a deicer sample during the solid-to-liquid phase transition. The thermograms are 

measured in the temperature range of 77 to -76°F (25 to -60°C) with a cooling/heating rate of 

3.6°F (2°C) per minute. The first peak at the warmer end of the heating cycle thermogram is used 

to derive the characteristic temperature of the liquid tested (Tc), which indicates the effective 

temperature below which ice crystals start to form in the solution. In field practice, the effective 

temperature is the lowest temperature limit at which the material remains effective within 15–20 

minutes of application and is the lowest temperature a deicer should be used to achieve effective 

ice melting (Ohio DOT 2011, Shi et al. 2011). The enthalpy of fusion (H, integrated surface area 

of the characteristic peak) is another parameter derived from the DSC thermogram (Akin and Shi 

2012). The results of the DSC test of KSu were compared with the results of reagent-grade 

sodium chloride brine made with deionized water. The relative performance of each product is 

discussed in the results section. 

3.3 Friction Measurements 

Laboratory testing to measure friction was conducted for liquid sodium chloride (salt 

brine) and liquid KSu at 28°F (-2.2°C). The liquid products were applied to asphalt pavement (9 

inch by 19 inch) using a pipette to drop 80 μL droplets in 4 rows with 9 drops per row and 

approximately 2-inch spacing per row for a targeted application rate of 40 gal/l-m (actual 

application rate of 37.5±2.6 gal/l-m). Typical anti-icing application rates used by state DOTs 

range from 40 to 75 gal/l-m.  
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The lab testing was conducted at the Subzero Lab at Montana State University. The 

Western Transportation Institute (WTI) team has established operating procedures to grow and 

harvest snow particles, and to 

simulate the sequence of events 

consisting of periodic snow 

precipitation, trafficking, and plowing 

(Muthumani et al. 2015). To simulate 

driving on snow, a custom-operated 

trafficking machine designed and 

constructed by WTI was used to 

simulate real-world conditions 

(Figure 2). The snow was sieved to 

1 mm grain size, and 800 grams of sieved snow were applied to the pavement sample. The 

applied snow was then compacted at 60 psi for 5 minutes using a custom-built compactor. After 

compaction, the snow on the pavement surface was approximately ½-inch thick. The speed of 

the trafficking device is about 1 ft/sec or 0.7 mph; the device applies a total vertical load of 1130 

lb. The sample was trafficked for 500 single tire passes, which took about 18 minutes. 

After the trafficking, snow was scraped from the pavement with a 4-inch stainless steel 

taping knife to simulate plowing. Static friction was measured on the pavement surface using a 

custom-made friction tester. The static friction tester had a ¼-inch thick, 4-inch square neoprene 

rubber contact surface (durometer rating of 30A). The apparatus was pulled horizontally across 

the pavement surface, and the force needed to overcome static friction was measured with a 

spring scale. The coefficient of static friction is defined as the ratio of the horizontal pulling 

Figure 2. Custom trafficking device in the MSU 
Subzero Lab environmental chamber, trafficking an 
asphalt sample with snow. 
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force that initiates sliding to the weight of the friction tester. Friction was measured on the 

pavement samples prior to each experiment on clean, dry pavement (stage 1), on the compacted 

snow before trafficking (stage 2), after trafficking (stage 3), and after scraping the snow (stage 

4). Static friction was measured at 6 locations on the pavement surface during stages 1 and 4, and 

at 3 locations during stages 2 and 3, with 3 measurements at each location. 

Friction was also measured using two 

optical sensors, the Lufft MARWIS and the 

Teconor RCM411, for some of the tests using 

salt brine only. The sensors were set up above 

the pavement samples, and the pavement 

samples were then moved so that readings could 

be captured from multiple locations (Figure 3).  

  
Figure 3. Teconor RCM411 friction sensor mounted 
in Subzero Lab above an asphalt pavement sample. 
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CHAPTER 4.0 RESULTS 

The results of all three types of laboratory testing are presented in this chapter. 

4.1 Ice-Melting Capacity 

The ice-melting capacity of a deicer is a commonly used tool to assess how a deicing 

product will perform at various temperatures. For the purpose of this test, 28°F (-2.2°C) was 

used as the test temperature because it is a mid-range temperature at which both KSu and NaCl 

are expected to perform well. This is based on the preliminary work by Berglund et al. (2001), 

who report that KSu can effectively penetrate ice below -6.7°C (20°F), and suggest that KSu 

performs similar to potassium acetate (KAc). 

Figure 4 shows the results of the ice-melting capacity test. Overall NaCl, salt brine made 

with deionized water and reagent-grade sodium chloride showed slightly higher ice-melting 

capacity than KSu (50% solution supplied by BioAmber). As is shown in Figure 4, ice melting 

began within the first 10 minutes of the experiment for both products. After 10 minutes, ice 

melting for both products continued, but at a decreased rate until the end of the test at 60 

minutes.  
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Figure 4. Ice-melting capacity of potassium succinate (KSu) and sodium chloride (NaCl) liquid 
brine in triplicate, shown as mL of ice melted per gram of liquid deicer applied and measured 
over time. 

 

Table 2 provides a summary of the ice-melting capacity of each product, reported as an 

average and the standard deviation. From the data, it can be observed that after 1 hour, the NaCl 

control has statistically significant higher ice-melting capacity than the KSu, with NaCl showing 

a consistently higher ice-melting rate over the course of the experiment. 
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Table 2. Summary table of ice-melting capacity data for potassium succinate (KSu) and sodium 
chloride (NaCl) liquid brine, shown as average ice melt in mL per gram of applied deicers and 
standard deviation. 

 

The measured ice-melting capacity of KSu in this experiment (at 28°F [2.6 mL/g deicer]) 

is consistent with past work by BioAmber, Inc. (2011), which measured the ice-melting capacity 

of KSu at 20°F (-6.6°C) (about 1.75 mL/g deicer) and at 5°F (-15°C) (about 1 mL/g deicer) 

shown graphically in Figure 5. 

 

Figure 5. Summary of ice-melting capacity data collected on KSu from this research effort and 
BioAmber, Inc. (2011). 

 

4.2 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) was used to measure the heat flow and capacity 

for reagent-grade salt brine made with deionized water and for KSu supplied by BioAmber. 

Time (min) Avg Stdev Avg Stdev
0 0 0 0 0

10 2.09 0.10 2.34 0.07
20 2.29 0.12 2.66 0.10
30 2.36 0.16 2.95 0.01
45 2.41 0.20 2.99 0.07
60 2.60 0.31 3.15 0.04
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Table 3 shows the results of testing where the measured characteristic temperature (Tc) for salt 

brine is -14.9±1.44°C (~5°F)4 and for KSu is -5.34±0.35°C (~22°F). The Tc is the temperature at 

which ice crystals begin to form. In the field, this translates to the effective temperature, or the 

lowest temperature limit, at which the material remains effective within 15–20 minutes of 

application and the lowest temperature a deicer should be used to achieve effective ice melting 

(Ohio DOT 2011, Shi et al. 2011). Based on these findings, salt brine works as a deicer at colder 

temperatures than KSu, and therefore KSu should not be applied for deicing purposes 

below -5°C (23°F). 

Table 3. Average and standard deviation of characteristic temperature (Tc) and heat flow 
measured using DSC. 

4.3 Friction Coefficient 

To assess the relative performance of KSu on pavement, laboratory testing was 

conducted in which friction was measured before deicer application (stage 1), following 

application with compacted snow (stage 2), following snow and trafficking (stage 3), and 

following plowing (stage 4) for both KSu and salt brine (NaCl). Figure 6 shows the results of 

the friction performance testing. The blue lines show KSu friction performance during the test, 

and the grey/black lines show the NaCl friction performance. Both products show the same 

overall trend of friction starting high (stage 1), dropping with anti-icing and the addition of snow 

and compaction of snow (stage 2), remaining low with trafficking snow 

4 Note that for salt brine, the lower functional temperature is 5°F, but based on performance in the field, 
application of salt brine at temperatures below 15°F is not recommended. 

Product Avg Temp (°C) Stan Dev Temp Avg Heat flow (J/g) Stan Dev Heat CoV
Salt brine (control) -14.9 1.44 203.6 45.3 0.22
KSu -5.34 0.35 87.1 22.2 0.26
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on the pavement surface (stage 3), and then increasing with removal (plowing) of snow from the 

pavement surface (stage 4).  

 

Figure 6. Friction data reported on asphalt pavement for KSu and NaCl using manual friction 
measurement and non-invasive mobile mounted sensors. 

 

In Figure 6, the green zone is generally considered reasonable friction for driving 

surfaces, the yellow zone represents a reduction in friction to more slippery conditions, and the 

red zone represents an even greater reduction in friction to consistently slippery/icy road 

conditions. Both products show a return to higher friction values, or less slippery conditions 

following plowing (stage 4), but there does not appear to be a clear trend of one product 

performing better than another. Additionally, it appears that variability in the test method and 

between friction measurement methods makes it more challenging to see relative performance of 

each deicing product. What can be observed from Figure 6 is that the performance of KSu is 

similar to that of NaCl at improving friction on roadways during snow and ice conditions. 
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CHAPTER 5.0 CONCLUSIONS 

This technical report summarizes the results of laboratory testing of potassium succinate 

(KSu) to determine if it is a feasible roadway deicer. Laboratory testing included the modified 

Strategic Highway Research Program ice-melting test, differential scanning calorimetry (DSC), 

and friction measurements to quantify performance of KSu and salt brine. 

The overall results show that the performance of KSu is similar to that of NaCl at 

improving friction on roadways during snow and ice conditions. The results of DSC suggest that 

KSu can be applied as a roadway deicer at -5°C (23°F) and above. However, KSu does not 

function as a deicer at the colder temperatures that salt brine works (the generally agreed upon 

lowest working temperature for salt brine is 15°F [-9.5°C]). 

The results of laboratory testing showed that KSu has slightly lower ice-melting rates 

than salt brine. 

The ice melting, DSC, and friction performance testing of KSu show that the product 

performs as deicer at warmer temperatures than salt brine, with slightly less ice-melting capacity 

and similar friction performance. Based on these results and previous results that show a lack of 

corrosion impacts to metals, equipment, and pavements by KSu and the similar biological 

oxygen demand (BOD) of KSu to potassium acetates, KSu appears to be a viable option as a 

roadway deicer at temperatures at or above -5°C (23°F).  

A mix of water, KSu, potassium acetate, and potassium formate at a ratio of 50:30:10:10, 

respectively, may warrant investigation as a roadway deicer. Based on findings from the vendor, 

this mixture has been reported to perform down to -19°C (-2.2°F) (BioAmber Inc. 2011). 

Potential use of KSu may be focused in areas where there are concerns about impacts to 

infrastructure, equipment, or pavements, such as on bridges, elevated roadways, in parking 
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garages, or on newer concrete pavements. Potential concerns with the use of KSu as a roadway 

deicer are price, lack of full-scale manufacturing of KSu at this time, and the BOD exerted by the 

product. Additional testing to fully quantify the environment impacts of KSu on soil, water, 

flora, and fauna is recommended. If water quality and BOD are of concern, application of this 

product is not recommended in large quantities and during times of low water flow. 
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