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Fisheries Production: Management
Institutions, Spatial Choice, and
the Quest for Policy Invariance
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ABSTRACT

The fishery-dependent data used to estimate fishing production technologies are shaped by the incentive
structures that influence fishermen’s purposeful choices across their multiple margins of production. Using a
combination of analytical and simulation methods, we demonstrate how market prices and regulatory institu-
tions influence a dominant short-run margin of production—the deployment of fishing time over space. We
show that institutionally driven spatial selection leads to only a partial exploration of the full production set,
yielding poorly identified estimates of production possibilities outside of the institutionally dependent status
quo. The implication is that many estimated fisheries production functions suffer from a lack of policy invari-
ance and may vield misleading predictions for even the most short-run of policy evaluation tasks. Our findings
suggest that accurate assessment of the impacts of a policy intervention requires a description of the fishing
production process that is sufficiently structural so as to be invariant to institutional changes.
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INTRODUCTION

The specification of fishing production technology plays a critical role in informing fisheries
policy. Empirical production models—of both the primal and dual varieties—are used to assess
technical efficiency (e.g., Kirkley, Squires, and Strand 1995; Flores-Lagunes, Horrace, and Schnier
2007), measure excess capacity in limited-entry regimes (e.g., Felthoven 2002; Felthoven, Hor-
race, and Schnier 2009; Horrace and Schnier 2010), assess evidence of technical change (e.g.,
Squires and Vestergaard 2013a,b) and skipper skill (e.g., Kirkley and Squires 1998; Squires and
Kirkley 1999; Alvarez and Schmidt 2006), predict the effects of input controls (e.g., Squires
1987a; Dupont 1991), and examine the potential for consolidation (e.g., Weninger and Waters
2003; Weninger 2008; Lian, Singh, and Weninger 2010) and substitution across multiple species
(e.g., Squires 1987b; Squires and Kirkley 1991; Squires, Alauddin, and Kirkley 1994; Squires and
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Kirkley 1996; Pascoe, Koundouri, and Bjerndal 2007; Pascoe, Punt, and Dichmont 2010) in the
wake of output controls or multispecies individual transferable quotas (ITQs).

Much empirical analysis of fisheries simplifies the fishing production process by collapsing
context-specific micro-margins into aggregated inputs. For example, empirical work in fisheries
typically describes catch as a function of aggregated fixed inputs such as vessel length, tonnage,
engine size, and gear type, and variable inputs such as crew size, fishing time, and fuel consump-
tion. While such representations are an improvement over the single-index model of “effort”
(Squires 1987a), we argue that the production process of fishing cannot be easily reduced to such
a simple representation. Within the time horizon of a fishing season, fishing is primarily a pro-
cess of deciding how to deploy fixed inputs over time and space given imperfect knowledge
of the spatiotemporal dynamics of a fugitive resource. The answers to the questions “When?”,
“Where?”, and “How long?” to allocate gear dominate fishermen’s decision processes. Many of
the traditionally included variable inputs in fishing production models are thus not direct choice
variables for fishermen; rather, they are outcomes of fundamental decisions over the spatial and
temporal deployment of fishing gear. Moreover, the profit or utility-maximizing behavior of
fishermen and the incentives presented by markets and fisheries management institutions ex-
ert a selection effect upon fishermen’s decisions over the seascape. The result of this spatio-
temporal selection may be a selective and sparse “sampling” from the overall production set,
yielding poorly identified estimates of production tradeoffs outside of the sampled region in input-
output space.

The implications of this perspective on the fisheries production process are important for
fisheries policy evaluation. If fishermen’s spatiotemporal choices are shaped by the incentives in-
herent in management institutions, then the estimated a priori aggregate fishing production re-
lationship is unlikely to be stable to interventions in management. Thus, conventional aggregate
fishing production models do not identify policy invariant parameters and ultimately fail the Lu-
cas (1976) critique. The importance of the Lucas critique to fisheries modeling is not new; econ-
omists have long understood that non-marginal institutional or market changes may induce fish-
ermen to dramatically adapt their use of labor and capital inputs or even spur new technological
innovations in ways that undermine the long-run applicability of models estimated before the
change. However, the possibility that institutional selection effects can act upon the dominant
short-run margins of fishing production presents the inconvenient possibility that traditional
production estimates may be fragile or unsuitable for even the most circumscribed forms of ex
ante policy evaluation.

We demonstrate this fragility through a stylized representation of an aggregate multispecies
fishing production in the extreme short run, using the deployment of fishing time over space as
the only variable margin of decision making. Using a combination of analytical and simulation
techniques, we show how the properties commonly associated with aggregate production rela-
tionships can be synthesized from the deployment of a vessel’s fishing time over a set of spatially
distinct joint production technologies. We further demonstrate that when fishermen select lo-
cations to maximize utility subject to economic and institutional constraints, the shape and scale
of the revealed (i.e., empirically identifiable) aggregate production relationship is highly depen-
dent on the institutional setting under which production data is generated. Thus, the revealed
aggregate production relationship is not policy invariant, and is limited in its ability to inform
policy makers of the outcomes of fishery policy interventions a priori. Our findings suggest that
accurate prediction of the impacts of a policy intervention requires a description of the fishing
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production process that is sufficiently structural so as to be invariant to changes in management
institutions.

We illustrate these problems by focusing on the ability to substitute between species in a mul-
tispecies context, as reflected in the shape of the output transformation frontier. Species substi-
tution is critical to many questions in fisheries management since it summarizes the extent to
which fishermen can “target” a particular species. Targeting ability, in turn, determines the de-
gree to which fishermen may be able to accommodate their catch to quota holdings in a multi-
species ITQ system or respond to incentives to avoid bycatch. For example, previous studies us-
ing data prior to a policy intervention conclude that fishermen have limited targeting ability due
to weak substitution potential between species (Squires 1987b; Squires and Kirkley 1991; Squires,
Alauddin, and Kirkley 1994; Squires and Kirkley 1996; Pascoe, Koundouri, and Bjerndal 2007;
Pascoe, Punt, and Dichmont 2010). In contrast, ex post evidence from multispecies ITQ fish-
eries reveals far greater flexibility in output substitution than previously thought (Sanchirico
et al. 2006; Branch and Hilborn 2008; Abbott, Haynie, and Reimer 2015). An explanation for
these disparate findings consistent with our analysis is that since the empirical ex ante produc-
tion technology is jointly determined with institutions and incentives facing fishermen, it does
not necessarily yield a policy invariant estimate of production possibilities. Substitution possibil-
ities revealed under one set of incentives before a policy change may, therefore, not be informa-
tive about substitution possibilities under another set of incentives immediately after an institu-
tional change.

THE FISHERY PRODUCTION FUNCTION AND FISHERIES MANAGEMENT:

AN OVERVIEW

Natural resource economists and fisheries scientists have a long history of using aggregated and
general production functions to depict the fishing production process. In its earliest form, fish-
ery production was represented by an aggregate landings function, in which industry harvest y
was assumed to be a function of fishing effort E and the biomass of a single stock of fish X, y =
f(E, X), where effort was often interpreted as the number of boats in the fishery (Crutchfield and
Zellner 1961; Clark 1973; Clark and Munro 1975). Models based upon this simple representa-
tion of fishery production provide powerful “metaphors” (Smith 2012) that form the bedrock of
the theory of fisheries management, including canonical models of open access and sole own-
ership (Gordon 1954; Scott 1955). Nonetheless, literal interpretations of effort as the number
of boats led to the popular interpretation of the rent dissipation process as one of “too many
boats chasing too few fish;” limited entry was, therefore, the logical policy. However, the check-
ered record of limited-entry fisheries made it clear that there were many unregulated dimen-
sions of effort that fishermen could continue to manipulate, leading to unanticipated dissipation
of economic rents and challenges in managing fishing mortality (Pearse and Wilen 1979; Wilen
1979, 1988).

Economists responded to this evidence by extending models of fishery production to include
more realistic aspects of fishing technology. Early extensions viewed effort as part of a multistage
optimization process, whereby quasi-fixed factors of production x;—such as vessel length, ton-
nage, engine size, gear type, and crew size—and variable factors of production x,—such as ag-
gregate measures of fishing time and fuel consumption—are efficiently combined to form an
aggregate input index (effort) in the first stage, E=E(xy, X,), and subsequently used as an input
in the fishery production in the second stage y = f(E(x4,x,),X) (Rothschild 1972; Anderson 1976;
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Cunningham and Whitmarsh 1980; Hannesson 1983). Squires (1987a) pointed out that the ag-
gregate effort index can only be formed if it is possible to meaningfully rank alternative levels of
effort without knowing the levels of species harvested (i.e., homothetic separability)."

While many, if not most, fisheries are characterized by the joint production of multiple spe-
cies, this was largely ignored in early models of fishing production. The salience of joint produc-
tion became clear to economists as many multispecies fisheries began implementing portfolios
of total allowable catches (TACs) using collective or individual output quotas. Lack of output
substitutability can lead to failure to balance individual TACs with the actual catch composition
of the fleet, potentially resulting in rampant illegal discarding, data fouling, and overharvesting
of the “choke” species (Copes 1986). Early models of fishing production either focused on a sin-
gle species or combined multiple species into an aggregate index (output), effectively imposing
input-output separability on the fishing production technology.” Furthermore, management
systems for multispecies fisheries typically set TACs for each species individually without con-
sideration of potential biological or technical interactions between stocks. As recognized by
Squires (1987a), this form of management effectively assumes that separate production pro-
cesses exist for each species (i.e., production is nonjoint in inputs), thereby permitting each spe-
cies to be separately regulated without affecting harvest of any other species.

Recognizing the limitations of imposing a priori input-output separability and nonjointness
in inputs on the fishing production process, Squires (1987a,b) and Kirkley and Strand (1988)
examined fishing technology indirectly using dual formulations (Shephard 1970; Diewert 1974;
McFadden 1978), resulting in a significant body of literature.” In recent years, flexible primal ap-
proaches to characterizing multispecies fisheries have also emerged, relaxing the need for be-
havioral assumptions, such as cost minimization or profit maximization, that may not hold in
many regulated fisheries (Weninger and Waters 2003; Felthoven and Morrison Paul 2004; Pas-
coe, Koundouri, and Bjerndal 2007; Weninger 2008; Pascoe, Punt, and Dichmont 2010). In gen-
eral, these studies have found that the plausibility of assuming input-output separability and
nonjointness in inputs depends critically on the specific features of the examined fishery, espe-
cially in regards to fishing gear and the spatial and seasonal co-occurrence of the targeted species
(Jensen 2002).

The advancement of multi-output production models has allowed economists to address man-
agement problems unique to multispecies fisheries, particularly those associated with “catch-
quota” balancing issues for fisheries managed by output quotas. An early and highly influential
analysis of the effects of output controls on a multispecies fishery was conducted by Squires
(1987b), who investigated the failed attempt to manage multiple species through output controls
in the New England trawl fisheries. Squires found widespread complementarity among outputs,
concluding that output controls failed because individual species quotas were not set in balance
with natural output mixes and that fishermen were limited in their ability to substitute between

1. Squires (1987a) went on to provide a means to empirically test the structure of production for the existence of fishing effort
and demonstrated the theoretically proper manner by which to construct a consistent effort index.

2. Separability between inputs and outputs allows the total catch of multiple species to be represented by a composite index.
Input-output separability implies that the marginal rates of transformation between species pairs are independent of input choices.
This implies that fishermen make their decisions on optimal species independent of their decisions on input combinations (Squires
1987a).

3. A dual formulation exploits assumptions regarding a firm’s profit or revenue maximization or cost minimization behavior
to enable an indirect examination of output substitution possibilities through the use of a flexible, single-valued profit, revenue, or
cost function.
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species. This work was succeeded by a number of ex ante evaluations gauging the likelihood of
success for output controls in multispecies fisheries. Many have conveyed a similar message: out-
put controls for multispecies fisheries may be in jeopardy due to weak substitution potential be-
tween species (Squires and Kirkley 1991, 1995, 1996; Pascoe, Koundouri, and Bjerndal 2007;
Pascoe, Punt, and Dichmont 2010).

Contrary to the warnings conveyed by ex-ante evaluations, recent evidence from multispe-
cies fisheries with output controls—particularly those with individual or cooperative harvesting
rights—have found that fishermen are often far more capable of adjusting their output com-
position than previously thought (Sanchirico et al. 2006; Branch and Hilborn 2008; Abbott,
Haynie, and Reimer 2015). These disparate findings suggest that current empirical fisheries pro-
duction models may provide misleading inferences about the substitution potential of fishing
technology. We argue that this occurs because these models ignore one of the most fundamental
ingredients for adjusting output composition: the decision of where and when to fish, which may
be highly institution dependent.*

In hindsight, it is perhaps understandable that conventional representations of the fishery
production process may be deficient for policy analysis. For the most part, fisheries economists
have adapted conceptual and econometric structures originally developed to analyze more tra-
ditional production processes, most notably agriculture. But fisheries are unlike agriculture in
fundamental ways. Most importantly, in fisheries, the “plant” is brought to the input (fish stock)
rather than vice versa. The dominant short-run decisions thus involve repeatedly deciding
where and when to locate over space across time, whereas similar spatial decisions are far more
likely to be (quasi) fixed in the short-run for more conventional industries such as agriculture.
Production function estimates that regress temporally aggregated landings on measures of cu-
mulative input use thus obscure the most important micro-decisions that consume fishermen’s
continuous attention, namely how to use space and time in pursuit of the resource.

Historically, the spatiotemporal dimension of fishery production was largely ignored due to a
lack of understanding of spatial fishing behavior. In recent years, economists have begun to rec-
ognize the importance of incorporating space, time, and information into behavioral models of
harvesters, resulting in a flourishing body of literature on spatial choice of fishing locations
(Eales and Wilen 1986; Curtis and Hicks 2000; Holland and Sutinen 2000; Smith and Wilen
2003; Haynie, Hicks, and Schnier 2009; Abbott and Wilen 2011). The analysis of spatial choice
of fishing locations addresses short-term aspects of the fishing production process and assumes
that production decisions, such as capital investment, have already been made. In general, em-
pirical studies of spatial behavior find evidence that fishermen often behave according to eco-
nomic theory—being more likely to choose locations with high-expected revenues, short travel
distances, and low risk.

Evidence emerging from studies of spatial fishing behavior suggests that understanding the
spatiotemporal behavior of fishermen—and the influence of market conditions and manage-
ment institutions on this behavior—is an important, albeit neglected, input margin to consider
in models of fishery production. The mixture of species available to a fishery gear often varies
substantially over space and time, driven by inter-species differences in habitat preferences, for-

4. A notable exception is the “sample-selection” production model estimated by Campbell (1991), where area-specific produc-
tion functions are estimated and corrected for potential selection bias by incorporating results from an auxiliary probit model of
fishing area choice.
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aging and spawning behavior, and response to fluctuations in the marine environment. There-
fore, very different output bundles are possible for a given amount of measured aggregate inputs
(i.e., fishing hours), depending on how this effort is allocated in space and time. Most impor-
tant to our argument, recent work on location choices indicates that the institutional setting
of a fishery influences spatial fishing behavior (Haynie, Hicks, and Schnier 2009; Abbott and
Wilen 2010; Abbott and Haynie 2012; Abbott, Haynie, and Reimer 2015). As a result, the output
production possibilities revealed by data generated under a single institutional regime may pro-
vide a partial or misleading picture of the complete production technology, raising a number of
important questions for modeling aggregate fishery production. How does the spatial dimension
of fishing influence aggregate production relationships? How do institution-dependent deci-
sions of where and when to fish shape the production technology revealed by fishery-dependent
data? What are the implications of ignoring the institutional dependence of spatial choices for
ex ante policy prediction?

FISHING PRODUCTION TECHNOLOGY: A SIMPLE BASELINE MODEL
Our investigation begins with a simple model of fishing production that borrows from the work
of Jones (2005), which addresses the micro-foundations of the aggregate production function
in economic growth models. In his model, firms draw from a stock of ideas—a collection of local
production functions—showing different ways to combine labor and capital to produce an out-
put. These local production functions differ in their underlying labor and capital-augmenting
parameters. He then shows how the shape of the overall global production function of the econ-
omy, when the set of all local production techniques are available, is entirely driven by the
“menu” of local production functions, rather than the properties of the local production func-
tions themselves.” The fundamental insight is that the properties of the aggregate production
function are emergent properties of the heterogeneity in underlying production techniques. Un-
derstanding this heterogeneity is a critical element in knowing the properties of the aggregate
production technology.®

As a simple illustration of this larger point to the fisheries context, we adapt the theory of
Jones (2005) to consider the case of a stock-flow production process whereby fishermen apply
fishing technology (e.g., a fishing vessel and gear) to spatially heterogeneous stocks of fish spe-
cies to yield a flow of multiproduct catch or output. For simplicity, we consider a short-run pro-
duction process in which fishing technology is fixed, so that only a single variable input x, time
spent fishing, is applied to fish stocks to produce two outputs y; and y,, the catch of species one
and two, respectively (cf., Turner 1997). The global multispecies production technology is typ-
ically defined by the production possibilities set:

P(x) = {(y1,52) : T(x, 1, 92) <05 (y1,9,) = 0}, (1)

5. More specifically, he shows that a “menu” of production parameters for local Cobb-Douglas production functions will yield
a global production function in Cobb-Douglas form as well. He also shows that a global Cobb-Douglas production can be pro-
duced regardless of the underlying local production functions, under the condition that the local production techniques are se-
lected randomly from an underlying Pareto distribution.

6. As noted by Jones (2005), putty-clay models of production (e.g., Johansen 1959; Hu 1972) make a similar distinction be-
tween ex ante and ex post technology, with respect to capital-labor elasticities before and after capital investment, as opposed to the
local-global distinction made here.
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where non-positive values of T(x,y;,y,) define the quantities of y; and y, that can be feasibly pro-
duced from a given amount of input x.” When T(x,y,y,) = 0, production is technically efficient
in the sense that additional output of both y; and y, cannot be produced for the value of x. The
implicit function given by this equality defines the transformation frontier between inputs and
outputs. If we fix x and then examine the values of y; and y, that lie along the transformation
frontier, this defines the output transformation frontier—the production possibilities between
the two species.

In most applications, the production technology in (1) is imposed upon fishing vessels with-
out much consideration of its micro-foundations. How does this relationship spring from the
“on the water” decisions of fishermen, and what determines its shape? Furthermore, the existence
of substitution possibilities between outputs along the global output transformation frontier—
even after all modeled inputs are fixed—begs the question of exactly what underlying margin or
un-modeled input is manipulated to accomplish this substitution. How can the output mix be-
tween species be changed without altering the quantity of fishing time? At the basis of all conven-
tional multi-output production modeling lies an undefined mechanism for redirecting the com-
mitted inputs to produce any feasible output bundle that lies within the production set.®

In Jones (2005), this mechanism lies in the ability to allocate inputs, either in whole or part,
over a menu of local production functions. In our context, this mechanism occurs as fishermen
distribute fishing time x across different fishing locations to exploit a heterogeneously distrib-
uted fish stock. Suppose that there exists a Schaefer (1954) production technique at each possible
fishing location j, represented by the two-dimensional production function (y;,y,) = (a(z)),
b(z;))xv, where 0< v <1 is a neutral form of technical efficiency and z; is a vector of location-
specific state variables, such as local biomass of both species and the state of the local environ-
ment and habitat. The parameters a(z;) and b(z;) can, therefore, be interpreted as the catch per
unit effort (CPUE) for species one and two, respectively, conditional on state variables z; at
location j. A Schaefer production technology at each location j gives rise to the following local
production possibilities set:

b(z)
P(x,z) = S (32):n = =L y50 <y, < alz)x o, )

a(z;)
which can be depicted by a ray from the origin in output space (figure 1).’ For simplicity, and for
congruence with the short-run focus of the subsequent analysis, we consider only short-run pro-
duction over a time interval in which local state variables are constant at level Z;, and thus, local

7. See McFadden (1978) for the conditions on technology required to express the production set using the transformation
function T.

8. Frisch (1964) believed that such questions could be addressed by modeling technology using more than one implicit func-
tional relation between inputs and outputs. In particular, he suggested using p independent transformation functions to more pre-
cisely describe the mechanisms by which an assortment of outputs can be produced using a given quantity of inputs: P(x) =
{019,) : T y1, 9,) < 0,0 T(x, 31, ,) ). Frisch defined the relation between the number of outputs (M) and transformation
functions as the degree of assortment: « = M-p.

9. Formally, the technology in equation (2) displays weak output disposability, which holds if (y;, y,) € P(x) and 6 € [0,1], then
(0y1, 0y,) € P(x), meaning that a reduction in either output is always feasible as long as both outputs are reduced proportionally.
One way to justify weak output disposability is to redefine fishing time as “time on grounds j,” where this time can be allocated to
fishing, in proportion 6, and non-fishing time. This assumption guarantees convex global production sets in the subsequent anal-
ysis but is not necessary for proving our larger argument. Since we model catch rather than landed catch (where discards separate
the two), the more common assumption of free disposability is not justified here.
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Figure 1. An Example of a Global Production Set

Note: Each grey dot represents the technically efficient production vector corresponding to a particular lo-
cation. For some of these locations, their associated /ocal production set has been drawn as a grey ray from the
origin. The area encompassed by the black dashed line represents the g/obal production set, which is the con-
vex hull of the local production sets.

production techniques are determined solely by the parameters a(Z;) and b(%), henceforth re-
ferred to as a; and bj.w The technology implied by equation (2) reflects the fact that the com-
bined catch (y,,y,) always occurs in the fixed proportion b;/aj, indicating a complete lack of sub-
stitution potential between species at any location j. If a firm wants a catch composition ratio
that differs from b;/a;, another location with a different local production set must be selected.

The set of local production techniques across locations serves as a basis for a global produc-
tion set—which shows the set of all possible production bundles that can be produced using the
entire set of fishing locations that are available. As recognized by Jones (2005), this global pro-
duction set does not represent a single technology; rather, it is a reduced-form representation
capturing the substitution possibilities across different local production techniques. In general,
it is the distribution of local production parameters, rather than the properties of individual local
production technologies, that drive the shape and curvature of the global production frontier.
In our context, this means that the elasticity of substitution between species for the global tech-
nology depends on the relative distribution of species across locations.

To illustrate this more formally, consider the simple case where the single input fishing time
can only be allocated to a single fishing location. Imagine that there is a continuum of potential
fishing locations such that the combination of CPUE parameters a and b available to fishermen

through their spatial choices are represented by the constant elasticity of substitution (CES)
technology “menu”:

10. In the long-run, we would expect the (a;,b;) parameters to change in response to growing and/or moving stocks and chang-
ing environmental conditions. Such changes, however, are not changes in the local production technologies per se, but are instead
changes in underlying states z; accounted for in the local production technology. We therefore view the (a;,b;) parameters as
“reduced-form” parameters for a description of the technology that treats these states as fixed. Importantly, fishermen only per-

ceive the (a;,b;) parameters without ever knowing the ‘true’ state of the underlying states or their functional relationship to the
reduced-form parameters.
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H(a,b) = (8a" + (1- BV = N, 3)

where r> 1 and g, b, 8, N > 0. The role of N is to shift the menu out in (a,b) space, permitting
higher CPUEs of both species. Any combination of a and b along this technology menu is
associated with a local production set in the form of equation (2). The global production set
encompasses all possible combinations of y; and y, for a given amount of input x, when the
firm is able to choose any single combination of (a,b) according to the technology menu in equa-
tion (3). Technically efficient production requires (y;, y,) =(a,b)x, implying that a = y,/x and
b = y,/x at any given location. Thus, using these expressions to substitute in the technology
menu H(a,b) for a and b, the frontier of the global production frontier is easily shown to be
the CES function:

T(x,y15,) = By + (1 —13))’5)%—xN = 0. (4)

Thus, in this case, the shape of the global production frontier, and its elasticity of substitution
1/(1-r), depends entirely on the parameters that shape the technology menu for the location-
specific parameters.

A continuum of fishing locations, as implied by the technology menu in equation (3), is re-
quired for a continuous global transformation function under the assumption that fishing time
x can only be allocated to a single fishing location. However, it is possible for the global produc-
tion frontier to be continuous even with a discrete and finite number of fishing locations, as long
as fishing time is continuously divisible across fishing locations."" To see this, consider a sce-
nario in which fishing time x can be continuously divided over a square grid of discrete fishing
locations, where the CPUE parameters a and b vary over the grid.'* Figure 2 displays six dif-
ferent distribution scenarios for the CPUE parameters a (column one) and b (column two).
Each location in the grid is associated with its own (not necessarily unique) local production
set in the form of equation (2). The technically efficient production bundle (y;, y,) for each lo-
cation is mapped into output space for each of the six different distribution scenarios, as de-
picted by the scatter points in column three of figure 2. Since fishing time is continuously divis-
ible over locations, the global production set includes all convex combinations of production
possibilities—including inefficient production bundles along the ray to the origin—and thus,
the global production set is the convex hull of all local production technologies."

It is clear from figure 2 that the joint distribution of species abundance can drastically alter
the shape of the global output transformation frontier—exhibiting the full spectrum of relation-
ships between strong substitutability and complementarity, as well as combinations of both at
different points on the output transformation frontier. The top two rows in figure 2 depict spa-
tial distributions of species with relatively little overlap, resulting in a production set in which

11. See Shumway, Pope, and Nash (1984) for a discussion on the jointness implications for modeling production when allo-
catable inputs are fixed (such as fishing time here).

12. CPUE parameters a and b vary over the grid according to two-dimensional normal density functions, each with their own
mean and variance. Details can be found in the online-only appendix.

13. Our method for identifying the global production set as the convex set hull of all local production techniques bears some
resemblance to a pseudo-data modeling approach, whereby engineering process models and linear programming are combined to
generate aggregate production pseudo data, upon which econometric tools are applied to estimate the aggregate (or industry-wide)
production frontier (e.g., Griffin 1978; Smith and Vaughan 1979).
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Figure 2. Global Production Sets—Spatial Distribution of CPUE Parameters for Species One (Left Column)
and Species Two (Middle Column) and the Resulting Global Production Set (Right Column) for Six Biological
Scenarios (Rows)

Note: Dark-shaded areas correspond to areas with low CPUE, while light-shaded areas correspond to areas
with high CPUE. The black dots within the production sets correspond to the unique technically efficient loca/
production vectors, and the black curve represents the global transformation frontier.

the outputs are uniformly substitutes-in-production—i.e., catching more of one species requires
catching less of the other. In both scenarios, a firm can adjust the composition of their outputs
with relative ease (particularly in row one), in the sense that the opportunity cost of trading one
output for another is fairly constant along the entire frontier. Moreover, a firm can “costlessly”
target a single species in the sense that avoiding the catch of one species does not come at the
cost of reducing the catch of the other. This characteristic of production technology is associated
with free disposability, or “perfect control of harvest composition” (Turner 1997).

As the spatial distributions of the species exhibit a greater degree of overlap (e.g., rows three
and four), the global production set progressively bows outward, indicating increased possibil-
ities for the joint production of species one and two. However, these additional joint output
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Figure 2 (Continued)

possibilities come at the cost of reduced targeting capabilities. Indeed, for small catch levels for
either species, the outputs are complements-in-production—i.e., catching less of one species re-
quires catching less of the other.'* This characteristic of production technology is typically as-
sociated with weak output disposability—or “imperfect control over species composition”
(Turner 1997)."

The global production frontier can also exhibit characteristics of both substitutability and
complementarity over different ranges of the frontier if the relative spatial distribution of the
two species is asymmetric, as in rows five and six. For these two scenarios, species two is widely
distributed across locations, while species one is contained to a specific area of the grid, result-

14. This is particularly true for the scenario depicted in row four, in which the two spatial distributions almost perfectly over-
lap. In fact, if spatial distributions of species one and two perfectly overlap, the global production set is equivalent to a ray from the
origin, indicating perfect complements.

15. See footnote 9.
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ing in a global production frontier in which species one can be perfectly targeted but species two
cannot. In fact, it is not possible to catch species two without catching species one for the sce-
nario depicted in row six. This characteristic of production technology is known as “null-
jointness™—an assumption commonly used to model technology with undesired byproducts,
such as pollution (Fire et al. 2005), but only arises here as a special case.

IDENTIFYING THE AGGREGATE PRODUCTION FUNCTION

FROM FISHERY-DEPENDENT DATA

Our investigation thus far demonstrates how the output substitution possibilities in a fishery can
be constructed, in theory, from the structural microfoundations of where to fish. Of course, an
important question still remains: how does an analyst identify the global production technology
empirically? In an ideal world, we would estimate the global frontier implied by equation (4)
using a comprehensive sample of fishing locations that produce catch compositions along the
entire global production frontier. Unfortunately, we rarely have such a dataset; instead, common
practice is to estimate aggregate production functions using data generated by the real-world
location decisions of fishermen. The following questions then emerge: can data generated by real-
world location decisions of fishermen identify the global production technology? If not, what
are we estimating when we use such data to characterize fishing production technology?

To investigate these questions, we construct a fishing production dataset generated from sim-
ulated location-choice decisions made by utility-maximizing fishermen. We then compare the
aggregate production frontier that is revealed by our simulated dataset to the global production
frontier depicted in figure 2, clearly demonstrating that the two production frontiers are not
equivalent.

LOCATION CHOICE MODEL

As in the baseline model, firms are assumed to adjust their catch of species one y; and two y, by
allocating fishing time x across a square grid of fixed-proportions local production techniques.
To focus on the role of spatial selection, we assume stationary local distributions of the resource
over our short-run production horizon.'® How a firm actually allocates fishing time across lo-
cations depends on the cost of traveling between locations and the relative prices of the two spe-
cies. To allow firms to divide fishing time x across multiple locations, we assume that firms
choose a single fishing location in each of T fishing periods of unit length, so that fishing time
is constant over all observations and equal to T."” Specifically, in each time period t=1,...,T, a
fisherman chooses from a discrete set of J locations to fish so that the proportion of total fishing
time allocated to location j is equal to T’lEthlltj,
location j at time t, and zero otherwise. The catch of each species is, therefore, the sum over

all catches made over the T periods: y, = EthlEJI:lItjytjs for s = 1,2, where y,; is the catch

where I,; equals one if a fisherman fished at

of species s at location j at time .
Consistent with much of the empirical literature (e.g., Eales and Wilen 1986; Curtis and
Hicks 2000; Holland and Sutinen 2000; Mistiaen and Strand 2000; Smith et al. 2010), we assume

16. While admittedly a stylized assumption, our model bears some resemblance to demersal trawl fisheries, which constitute
some of the world’s largest fisheries.

17. For instance, a production observation could be interpreted as a trip, so that fishing time x is total time spent fishing during
a trip, with T being the length of fishing time during a trip.
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fishermen select a fishing location at time ¢ to maximize their contemporaneous utility.'® We
model fisherman #’s utility to be the sum of a deterministic and stochastic component:

Utj =v; te (5)

where we have omitted the individual-specific subscript i for expositional clarity. We assume
that the stochastic components ¢;; enter into fishermen’s decision utility prior to selecting a lo-
cation, are independent and identically distributed Type 1 Extreme Value, and can be inter-
preted as an “optimization error” that arises from not knowing the distribution of CPUE param-
eters over space with certainty. The deterministic portion of utility is modeled as:

vy = pra; + pzbj f,BdH,j, (6)

where p; is the price of catch for species s, a; and b; are the CPUE parameters for species one and
two at location j, and d,_, ; is the distance between location j and the fisherman’s previous loca-
tion choice in period -1, with 8 representing the marginal cost of travel, which is the same for
all fishermen.

The catch of each species at a given location and time is modeled to be consistent with the
fixed-proportions technology in equation (2):

Y = uje_“’ and y,, = bje_”‘. (7)

The term 0 < e * < 1 represents a firm’s technical efficiency, where u, is assumed to have a one-
sided (non-negative) exponential distribution, which is consistent with the empirical production
literature (Coelli et al. 2005). The local production technique at a given location can, therefore,
be depicted as a ray from the origin in production space, as in figure 1. The CPUE parameters a
and b are assumed to remain constant over all individuals and T time periods, resulting in global
production frontiers that are identical to those depicted in figure 2. In contrast, the inefficiency
shocks u, are individual- and time-specific."®

ECONOMIC AND INSTITUTIONAL TREATMENTS

We generate simulated data of location choice sequences and production outputs under differ-
ent “treatments” to show that fishermen effectively sample from very different regions of the
global output production set, depending on the institutional and economic setting of a fishery.
Changes in the economic and institutional setting are reflected in the model through changes in
the cost of travel 3 between fishing locations and variations in the relative prices of the two out-
puts p = [py, po]. Changes in 3 can be viewed as a change in the technological cost of travel, due
to an increased fuel price for instance, or as a change in the institutional-dependent opportu-

18. A more complete model of fishing behavior would incorporate dynamic choices over fishing trajectories (e.g., Hicks and
Schnier 2006, 2008). However, doing so adds considerable computational complexity and tends to reduce the spatial dispersal in
location choices without fundamentally altering our qualitative findings.

19. It is fairly standard in the literature to model the deterministic portion of utility to be a function of location-specific ex-
pected catch or revenues. By modeling indirect utility as a function of the technically efficient CPUE parameters a; and bj, we are
implicitly assuming that the expected catches at location j are made assuming that expected technical efficiency is equal to one.
Note that this assumption does not affect our simulation results since u, is assumed to be location- and species-invariant, and does
not therefore change the relative attractiveness of a location. Thus, inefficiency shocks do not affect the location decisions of fish-
ermen. In general, the overall message of our simulation exercise does not depend on the form of expectations used in the location
choice model, as long as fishermen are modeled to act purposefully with respect to the underlying spatial distribution of CPUE, as
opposed to randomly.
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nity cost of travel. For example, under “race-to-fish” institutions, an additional opportunity cost
arises due to the time spent not fishing as other fishermen race to maximize their catch un-
der the rule of capture (Abbott and Wilen 2011; Reimer, Abbott, and Wilen 2014). Similarly,
changes in the relative output prices can be viewed as changes in the relative shadow prices be-
tween two species that may arise, for instance, from the transition from a system of insecure
harvest rights to a system of harvest quotas.”’

SIMULATION RESULTS

To focus our results, we generate four simulated datasets for a single biological scenario (row
three of figure 2) for all combinations of two different relative output prices (p = [-1,1], p =
[2,1]) and two different travel costs (8 = 0 and 8 = 4).>' For simplicity, fishermen are assumed
to start each trip from “port” in the southwest corner of the grid (cell [1,1]). All stochastic util-
ity components &, (E(ey) = 0.577; Var(e,;) = 7°/6) and inefficiency shocks u; (E(uy) = 0.25;
Var(u,;) = 0.125) are identical across simulations so that the only difference between data gen-
erating processes is the parameters representing the “treatment”™—i.e., the economic and in-
stitutional setting of the fishery. Each dataset contains observations from 1,000 fishermen, with
each fisherman making a location choice in each of T'=3 periods, for a total of 3,000 location
choices and 1,000 “seasonal” aggregate production observations.

The results from our simulation exercise show that fishermen select different location se-
quences across treatments depending on the economic and institutional setting—effectively
sampling from very different regions of the global output production set. The heat maps in fig-
ure 3 illustrate the density of location choices across the grid, while the scatter plots display the
resulting output bundles from the simulated location sequences. For ease of comparison, the
simulated output bundles overlay the global production set from figure 2. The output transfor-
mation frontiers revealed by our simulated data are depicted by black dashed lines, which act as
the convex hull for the simulated output bundles.**

For the scenario p = [2,1], fishermen place a positive value on the catch of both species with
a relatively higher value for species one, resulting in location choices concentrated on areas of
the grid with relatively high CPUE for species one. When there is no cost of travel (8 = 0), fish-
ermen concentrate their effort on locations near the peak of the CPUE distribution for species
one (figure 2), effectively sampling from the southeast portion of the global production set.
When fishermen incur travel costs (8 = 4), fishing effort shifts closer to port and away from
the peak of the CPUE distribution for species one, effectively shifting the sample of output bun-

20. An alternative way to generate institutional “treatments” is to simulate fishing effort as a profit-maximization problem
with different institutional constraints, holding everything else constant (e.g., Reimer, Abbott, and Wilen 2014). In this sense,
one can interpret the parameters 3 and p in our model as a combination of market prices and the shadow values that emerge from
binding institutional constraints. Since the objective of our simulation exercise does not depend on separately manipulating eco-
nomic and institutional parameters, we follow the more pragmatic approach of manipulating parameters that represent both the
economic and institutional context of the fishery.

21. The overall message of our simulation exercise—i.e., the institutional dependence of the aggregate production function—is
consistent across all biological scenarios. Results for the six scenarios depicted in figure 2, in addition to MATLAB code, is available
upon request.

22. For illustration purposes, we depict the global and revealed production sets as being convex with continuous frontiers, even
though the production sets from our simulation exercise will not be convex, simply because time is not continuously divisible
across all locations when there is a finite number of time periods. We include multiple time periods so as to approximate a convex
production set—and thus a continuous frontier—where the approximation improves as the number of time periods approaches
infinity. We thank an anonymous reviewer for pointing this out.
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Figure 3. Empirically Revealed Production Sets—Density of Location Choices over the Grid (Heat Maps)
and the Resulting Aggregate Production Bundles (Black Scatter Points) within the Global Production Set
(Shaded Area)

Note: The revealed output transformation frontier generated by the simulated data (the convex hull) is de-
picted by the black dashed line. Stochastic variable assumptions: Var(ey;) = /6, E(ug) = 0.25, Var(ug) = 0.125.

dles towards the center of the global production set. In both cases, the relatively low value of
species two results in negligible fishing effort in the northwest portion of the grid, leading to
an unsampled northwest portion of the global production set.

For the scenario p = [-1,1], catch of species one is undesired, perhaps due to regulations that
prohibit its retention or its existence as a choke species due to a binding output quota. When
there is no cost of travel (8 = 0), fishermen concentrate their effort on locations in the north-
west corner of the grid where CPUE is at its highest for species two and lowest for species one,
effectively sampling from the northwest portion of the global production set. When fisher-
men incur travel costs (8 = 4), fishing effort shifts closer to port and away from the northwest
corner of the grid, effectively shifting the sample of output bundles more towards the center of



158 | MARINE RESOURCE ECONOMICS | VOLUME 32 NUMBER 2 2017

the global production set. In both cases, the negative value of species one results in negligible
fishing effort in the southeast portion of the grid, leading to an unsampled southeast portion
of the global production set.

The end result in all scenarios is a revealed transformation frontier that differs considerably,
both in shape and scale, from the global transformation frontier. Indeed, with low travel costs,
the revealed transformation frontier suggests that one species can be perfectly targeted while the
other cannot—revealing a technology that is characterized by both complements-in-production
and substitutes-in-production along different sections of the frontier. In contrast, the global
transformation frontier is clearly characterized by substitutes-in-production along the entire
frontier. The transformation frontier revealed by utility-maximizing fishermen is, therefore, a
biased representation of the true global frontier in a manner reflecting the economic and insti-
tutional settings under which output data is generated.

[Py :pol=[-1.1]; 5=4

[Pyp,l=[2,1]; 3=4

10

Figure 4. Empirically Revealed Production Sets with Targeting Ability and No Technical Inefficiency
Note: Stochastic variable assumptions: Var(ey) = ©2/6, E(uy) = Var(uy = 0.
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The extent to which the revealed transformation frontier differs from the global frontier de-
pends on how capable fishermen are of consistently targeting their desired catch compositions
and the degree of inefficiency fishermen experience at the local production level. For instance,
suppose that fishermen are still relatively capable of targeting but no longer experience any tech-
nical inefficiency (E(u,) = Var(u,;) = 0). The density of location choices is unchanged from
figure 3, but the resulting output bundles are scaled up towards the global transformation fron-
tier (figure 4). In this case, the revealed production frontier resembles the global frontier in cer-
tain areas, but not in its entirety. The revealed production frontier, therefore, provides good “lo-
cal knowledge” of the global frontier for the prevailing economic and institutional setting, but
does not unveil the set of all possible production outputs that might be sampled under other
environments. Now consider the case in which fishermen are less capable of targeting their
catch. In our simulation model, targeting capability can be reduced by increasing the variance
of the stochastic component of utility &, (Var(e,;) = 1007°/6), which increases the “optimiza-

[py.p,l=[-1,1]; 6=0 [py:p,l=[-1,1]; 5=4

[py:pol=l2,1]; A=4

2 4 6 8 10 o 1 2 3
Y1

Figure 5. Empirically Revealed Production Sets with Reduced Targeting Ability and Technical Inefficiency
Note: Stochastic variable assumptions: Var(e,) = 1007°/6, E(uy) = 0.25, Var(u,) = 0.125.
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[py.p,1=[-1,1]; 5=0

Figure 6. Empirically Revealed Production Sets with Reduced Targeting Ability and No Technical Inefficiency
Note: Stochastic variable assumptions: Var(e;) = 1007%/6, E(uy) = Var(uy) = O.

tion error” that arises from not knowing the distribution of CPUE parameters with certainty.”’
The resulting density of location choices and output bundles span greater portions of the spa-
tial grid and global production sets, respectively, resulting in a revealed transformation fron-
tier whose shape more closely mimics that of the global transformation frontier in its entirety
(figure 5). Eliminating technical inefficiencies in local production has the effect of scaling the
revealed output bundles to the global transformation frontier (figure 6). The combined result
is a revealed transformation frontier that closely resembles the global transformation frontier,
as we would expect from a sample of location choices that is essentially random. These findings
are anything but comforting. They suggest that the use of fishery-dependent data to draw infer-

23. Alternatively, and more consistently with the RUM formulation of discrete choice models in econometrics, increasing the
variance of ¢ is equivalent to increasing the role of “unobserved heterogeneity” in fishermen’s decision making—so that apparent
observation error may simply be the result of optimization over a wider set of variables than is observed by the modeler.
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ences about production technologies will only be successful under unpalatable circumstances,
namely where fishermen act quixotically, with their behavior minimally influenced by market
and institutional parameters.

DISCUSSION

Fisheries economists are often tasked with predicting the effects of significant changes in man-
agement institutions. For the most part, economists’ predictions about the implications of insti-
tutional change use ex ante data on revealed behavior under status quo institutions to predict ex
post consequences of policy change. Most of this empirical analysis and policy simulation relies
upon aggregate production function specifications with varying degrees of complexity and func-
tional flexibility.

This article highlights a fundamental problem with using aggregated ex ante production
functions for such predictions. We show that if output compositions are shaped by decisions
(e.g., where and when to fish) that are influenced by the institutional context of the fishery, then
the global production set may be selectively and sparsely sampled. The implication is that there
may be precious little data with which to identify important aspects of the production frontier,
such as the marginal rates of transformation or elasticities of substitution, in the very regions
most relevant after the policy change. Indeed, our simulations present situations where a signifi-
cant portion of the output transformation frontier is completely unidentified non-parametrically.
The result is that estimates using these ex ante data in flexible functional forms, such as the
translog or generalized Leontief, may be inadequate for informing policy makers about ex post
output transformation possibilities under alternative institutional conditions.>*

We have shown that the institutionally filtered data-generating process we are likely to ob-
serve under ex ante conditions may yield a statistically estimated frontier that mimics the global
frontier, to a local approximation, at the mean of ex ante conditions. But this is of limited utility
when the task is to predict policy changes under non-local ex post conditions—those where pre-
dictive insight is most needed. This is most readily seen in figure 3. The two lower graphs rep-
resent an ex ante situation in which species one and two are valuable targeted species. Sup-
pose that regulators wish to introduce a policy that significantly reduces the catch of species
one through a tax on bycatch of y; (shifting the price from 2 to —1) or an equivalent system
of vessel-specific bycatch quotas. Economists attempting to predict the effects of this policy
change would only have data gathered under the ex ante regulatory structures depicted in the
two lower graphs. It is plain that any inference drawn from the data alone suggest that the mar-
ginal rate of transformation of y; for y, would be large and positive for low levels of y;, signi-
fying that large amounts of y, must be given up for a reduction in y;. This could lead to dire
predictions of the cost of the policy in terms of reduced catch and profits. But in the actual
ex post situation, the species ratios that would emerge would be like those in the upper graphs
of figure 3—revealing hitherto unexplored possibilities for targeting of y,, even in the face of

24. Although our application is to fisheries with its own specialized production processes, the problem we address is poten-
tially relevant in any case where important, context-specific micro-margins of choice are subsumed into aggregates within produc-
tion, cost, and revenue functions. The implications of lumping policy-relevant behavioral margins into aggregated models of be-
havior have been discussed extensively in the policy evaluation (Heckman 2000, 2010; Wolpin 2013) and macroeconomic (Lucas
1976) literature. In particular, Lucas (1976) points out that if neglected behavioral margins are impacted by a policy change, then
there is no reason to expect that aggregate relationships that take the former behavioral responses for granted within reduced-form
parameters will be stable to interventions in management.
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mandated reductions in y;. In practice, whether any particular analysis generates such dramat-
ically false predictions will depend, in part, on the extrapolative properties of the particular func-
tional form and estimator. One can imagine scenarios in which a parametric estimate using ex
ante data manages to achieve a reasonable approximation to the output transformation frontier
under ex post conditions. However, if the situation is anything like that in figure 3, this fortunate
result will be the lucky outcome of extrapolation rather than anything gained from the data,
which are completely uninformative about ex post production possibilities.

The results from our simulation exercise are even more troubling because of the very sim-
plicity of the model that generated them. We use a purposefully streamlined model to demon-
strate that even in the extreme short run, when other factors known to be subject to institutional
change are held constant, the empirical production set may be poorly identified and thus have
little predictive ability. Adding complexity to the technology and more richness to the decision
space is likely to make the fundamental policy variance problem even more severe.

While we abstract from many details of real-world fisheries, our findings are supported by
recent empirical work on the introduction of harvesting cooperatives to the Bering Sea/Aleutian
Islands groundfish trawl fishery in 2008. The introduction of harvester cooperatives discretely
increased the shadow cost of Pacific halibut bycatch as cooperative members adopted an indi-
vidual quota system for halibut bycatch. The change in shadow costs of bycatch changed spatio-
temporal fishing effort (Abbott, Haynie, and Reimer 2015) and, as a result, shifted the estimated
fishing production frontier, causing a sudden reduction in halibut bycatch with comparatively
minor losses to target catch (Reimer, Abbott, and Haynie 2017). Importantly, the change in the
revealed target/bycatch substitution occurred in the time frame of a single season within a stable
technology and without significant changes to vessel or gear. Fishermen primarily altered their
catch composition through redeployment of their gear in space and time (Abbott, Haynie, and
Reimer 2015). This empirical evidence is consistent with our contention that fishermen are
likely to adapt to market and management conditions, at least initially, by the redeployment
of their fishing gear in space and time, making the Lucas critique a disturbingly relevant short-
run phenomenon for applied fisheries economics.

How can fisheries economists conduct their analyses to improve the potential for accurate ex
ante policy prediction? There is no panacea. However, progress may arise from a return to first
principles: all economic models involve a characterization of (1) the production technology and
(2) an agent’s decision-making process (i.e., profit or utility maximization), conditional on mar-
ket and institutional parameters and constraints. Accurately predicting the impacts of a novel
policy change requires that the parameters of each model component be invariant to the change
itself—that they be ‘structural’ with respect to the intended policy counterfactual space (Heckman
and Vytlacil 2007). In terms of the production technology, this requires identification of produc-
tion parameters that are truly ‘technical’ in nature, as opposed to conflating the intersection of
technology and behavioral responses to market and institutional constraints. Specific prescrip-
tions will inherently be context-specific, but will generally require that the production process
be modeled at a sufficiently deep level that all important policy-endogenous decision margins
are explicitly included.

Developing a model for ex ante policy prediction can be broken into two components: (1) iden-
tifying the economic structure driving fisher behavior; and (2) identifying the policy-invariant pa-
rameters of the production technology. In our simple short-run model, policy acts directly on the
spatial choices of fishermen, while other margins of behavior are held fixed. Therefore, the policy-
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invariant technical parameters are contained within the local production techniques that deter-
mine location-specific catch rates, and the policy-relevant decision margins include the place-
ment of gear over space and time in response to the economic and policy parameters p;, p,,
and (. With such complete knowledge of the technical and economic structure of the model,
the process for ex ante policy prediction is straightforward in principle: impute the changes in
shadow prices consistent with a particular institutional change (e.g., Fulginiti and Perrin 1993;
Squires 1994),%> and then use the behavioral model to simulate behavior, catch outcomes, and
profits under the counterfactual policy.

Unfortunately, the real world of policy prediction is considerably less straightforward. In
practice, analysts do not know local production technologies or behavioral motives so precisely,
but must infer them from fisheries-dependent data. There are strong precedents for structural
economic modeling of fisher behavior: for example, predicting the behavioral response of fish-
ermen to the implementation of area closures (Smith and Wilen 2003) or individual output
(Reimer, Abbott, and Wilen 2014), input (Dowling et al. 2013; Mangel, Dowling, and Arriaza
2013), or habitat (Holland and Schnier 2006) quotas. If these models approximate the deci-
sion processes of fishers under a range of conditions, including the ex ante policy scenarios, then
they have the potential to identify policy-invariant relationships. However, they do so at the cost
of requiring large amounts of detailed micro-behavioral data as well as a willingness to impose
strong a priori restrictions on the decision process of fishermen, such as stochastic dynamic pro-
gramming (e.g., Huang and Smith 2014). Which assumptions to impose on fisher behavior must
ultimately be assessed by the out-of-sample predictive ability of competing models (McCracken
2000); in some cases structural models may need to incorporate findings from behavioral eco-
nomics to yield more robust predictions (Chetty 2015). In addition, interviews with fishermen
or contingent-behavior experiments may provide researchers with valuable ancillary data to help
them select models that are robust across the necessary range of institutional circumstances.

A second difficulty of predicting the impacts of institutional change is that the definition
and parameters of the local production technologies are often unknown. Parameter estimates
of local production techniques are generally hampered by a lack of sufficient data coverage
for all possible production techniques available to fishermen. This is particularly the case when
policy-invariant production techniques are numerous and finely differentiated or prone to non-
stationarity (e.g., variations in CPUE at fine spatial and temporal resolutions)—leaving some
local production techniques without sufficient historical observations for parameter estimation.
The problem, however, is beyond one of mere data sparsity. Instead, it is one of selective data
sparsity induced by the selective sampling of fishermen under the incentives of a given set of
institutions. While previous work has made progress in accounting for selection bias in the es-
timation of the parameters of local production techniques due to profit maximization on the
part of vessels (e.g., Campbell 1991), it does not address institutionally driven selection effects
that hamper the ability to identify underrepresented areas of the global production set. Securing
larger, more high-resolution datasets under existing management institutions will be, at best, a
partial solution under strong institutionally driven selection. The reason is that the asymptotics
for regions of the global production set that are distant from the mean will converge slower than
V/N due to selection and will, therefore, yield noisy estimates without strong structural assump-

25. Other management constraints (e.g., spatial closures) may be best incorporated as direct constraints on fishermen’s
choices.
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tions. In such situations, interpolation and/or imputation methods may be required to fill in the
“holes” created by sparse sampling of certain areas of the production set (e.g., Walters 2003;
Campbell 2004; Carruthers et al. 2014). Management may aid in this process by filling the data
gaps left by this sparsity by strategically shifting stock assessment surveys to less heavily fished
areas or time frames, or by providing incentives for fishermen to fish in these areas or times,
either through relaxation of regulations (as with experimental fishing permits) or outright sub-
sidization.

In the words of the sage: “prediction is very difficult, especially if it’s about the future.”*®
However, the need to predict the impacts of significant fishery policy changes will not go away.
Truly structural models—models whose parameters exhibit policy invariance and correspond-
ingly robust predictions under a wide array of biological, economic and institutional shocks—are
likely a pipedream. Our models are always incomplete, and our structural parameters are ulti-
mately reduced forms. Our data pass through “institutional filters,” providing limited informa-
tion about production technology under counterfactual management. Considerable assump-
tions about technology and behavior are necessary to span the chasm between the data and
the new scenario. However, researchers can take some comfort in the fact that all that is really
needed in any given situation is a model that is “structural enough” to generate robust predic-
tions for the policies and time horizons under immediate consideration (Heckman and Vytlacil
2007). Achieving the right balance of data and a priori assumptions to this end is likely to re-
main something of an “art” to fisheries economists, but it is a craft that can (and should) be se-
quentially refined through testing of our predictions against cold reality. To do otherwise, is to
risk drawing fragile inferences on the basis of an incongruous past.
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