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Abstract
A  comprehensive model for light scattering by size-shape distributions o f randomly ori

ented nonspherical particles is developed. The model uses spheroids as model parti

cles. The vector Helmholtz equation is solved with a new separation o f variables (S V M ) 

approach that allows one to calculate the ensemble-averaged single scattering optical 

properties o f ensembles o f  randomly oriented particles analytically. Since the use o f  the 

S V M  in spheroidal coordinates properly accounts for the geom etry o f the particles, the 

method is applicable to  a large range o f shapes ranging from elongated prolate needles 

via spheres to flat oblate disks.

The relation between geometric symmetries o f particles and symmetry relations o f  the 

electromagnetic scattering solution is investigated systematically in the general frame

work o f the theory o f point groups. The results are exploited in the model for increasing 

the computational efficiency.

A  comprehensive vector radiative transfer model is in part developed in this work. 

This radiative transfer model takes the output o f  the single scattering model as input 

and computes the Stokes vector components in a vertically inhomogeneous. plane parallel 

medium as a function o f  polar and azimuth angle and as a function o f optical depth.

The single scattering model is applied to investigate the impact o f particle shape on 

the optical properties o f  size-shape distributions o f  randomly oriented particles, such as 

aerosol layers or ice clouds in the atmosphere. The optical properties are found to be 

much more sensitive to a variation in the effective aspect ratio than to a variation in the 

effective variance o f a shape-distribution. The results o f  this study are used as input to  

the vector radiative transfer model in order to study the shape-sensitivity o f the radiation 

field in a macroscopic medium containing a size-shape distribution o f randomly oriented 

particles. It is found that both the radiance, and the degree o f linear polarization, and 

the degree o f circular polarization are strongly shape-sensitive in most viewing directions.
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Chapter 1

Introduction

Many particles encountered in nature have irregular nonspherical shapes. Examples are 

ice crystals and aerosols in the atmosphere, organic and inorganic hydrosols in the ocean, 

and air bubbles and brine pockets in sea ice. Several theoretical and laboratory studies 

have clearly shown that the scattering and absorption characteristics o f  nonspherical 

particles are fundamentally different from those o f spherical particles [1. 2. 3. 4]. It 

has been demonstrated that spherical particle models are inadequate for modeling the 

optical properties o f  ice clouds and aerosol layers [I. 5]. Thus, in order to adequately 

account for particle shape in climate models and remote sensing retrieval algorithms, 

the development o f  suitable nonspherical particle models has become an im portant field 

o f atmospheric research. The development o f  shape parameterization schemes for cirrus 

clouds [6] or aerosols can also greatly benefit from the development o f accurate models 

that are based on first principles.

The main scientific question is: To what extent does the shape o f particles in the 

atmosphere influence their optical properties and the radiation transm itted through, 

absorbed by and backscattered from the earth-atmosphere system? The heating/cooling 

rates o f ice clouds are determined by their optical properties. Therefore, this question 

is o f high relevance for climate studies. Another related question is: How does particle 

shape influence our ability to retrieve accurate information about ice clouds and aerosols

I I
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by remote sensing techniques? Precise knowledge with regard to this question is essential 

for the development o f robust and accurate remote-sensing retrieval algorithms.

The answer to these questions requires an extensive study due to the multitude of 

different particle shapes encountered in nature. In spite o f the considerable progress that 

has been made in recent years in the field o f nonspherical particle scattering, the quest for 

a thorough understanding o f the subject has just begun. Existing models only provide 

us with insights for narrow ranges of shapes, sizes and refractive indices, and although 

overlapping ranges between existing models could be established, many important ranges 

still remain unexplored.

The geometrical optics approximation, e.g.. has been used to study the optical prop

erties o f hexagonal ice crystals, including hexagonal plates, columns, and hollow columns, 

as well as bullet rosettes and snowflakes [7. 8. 9. LO. 11. 12]. However, the geometric 

optics approximation is limited to large particles that are at least 40 times larger than 

the wavelength o f light.

Another technique which is widely used is the Extended Boundary Condition Method 

(EBC.M ). which rigorously solves the electromagnetic scattering problem [13. 14. 15. 16. 

17]. This method produces accurate results for particles ranging from sizes comparable 

to the wavelength o f  light to sizes 150 larger than the wavelength, thus providing a strong 

overlap with the size validity range o f the geometric optics approximation [18]. However, 

the EBC.M is limited in the range o f particle shapes to which this method can be applied. 

For particles deviating too far from spherical shape, the EBC'M becomes ill-conditioned, 

which limits the usefulness o f this method in studies o f the effect o f  particle shape on 

optica! properties and radiative transfer.

The Separation o f Variables method can be applied to certain nonspherical particle 

geometries, such as bricks, spheroids [2. 19. 20. 21. 22], infinite circular or elliptical 

cylinders [23. 24. 25. 26]. or ellipsoids. In practice, the computational effort o f this 

method is rather high, and the computation o f the optical properties o f a size-shape 

distribution o f randomly oriented particles becomes impractical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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13

A strong desire to find adequate models that are based on reasonable and simplify

ing assumptions arises from the significant complexity o f the problem. The objective o f 

the work presented here is to develop and apply a new. comprehensive and innovative 

approach to scattering by nonspherical particles that can be used to undertake a system

atic study o f scattering by atmospheric nonspherical particles for ranges o f particle size, 

refractive index, and (most importantly) shape in which existing models fail to provide 

accurate results. The approach is to model size-shape distributions o f randomly oriented 

nonspherical particles by dielectric spheroids. This approach is based on the following 

perception:

• Averaging over size, orientation, and. most importantly, shape in a size-shape dis

tribution o f small randomly oriented particles produces smooth, featureless phase 

functions in which any conspicuous shape-related features are averaged out [27].

• Thus, the essential improvement required in comparison to a spherical particle 

model is an additional parameter that accounts for shape, such as a spheroid's 

aspect ratio. The essential difference between a spherical and a nonspherical par

ticle model is the averaging o f the optical properties over orientation and shape in 

addition to the integration over the size distribution.

• Since shape-related features disappear in the orientational and shape averaging, one 

can choose a simple shape, such as spheroids, for modeling size-shape distributions 

o f randomly oriented nonspherical particles.

Chapter 2 introduces the new approach to the single scattering problem and addresses 

the calculation o f ensemble-averaged optical properties in a size-shape distribution o f 

randomly oriented nonspherical particles. In contrast to other models, the approach 

developed here allows one both to perform the ensemble-average analytically and thus 

very efficiently, and to cover a large range o f particle shapes including highly elongated 

(prolate) particles, spheres, as well as flat (oblate) particles.

In Chapter 3. a group theoretical approach is developed for systematically accounting
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for geometrical symmetries o f  scattering particles in the single scattering theory devel

oped here. The sym m etry relations for the electromagnetic scattering solution found in 

this study lead to significant reductions in the necessary numerical computations.

A new vector radiative transfer model (V D IS O R T ) based on the discrete ordinate 

method is in part developed in this work. A comprehensive model description and 

model tests are presented in Chapter 4. In contrast to D ISORT, which computes only 

the intensity (and irradiance) o f the radiation field in a vertically inhomogeneous. plane- 

parallel medium, this model also computes the other three Stokes parameters describing 

the polarization o f the radiation field. The model has been generalized in such a way 

that it can also be applied to nonspherical particles.

Chapter 5 describes an analytical method developed in this work to compute the 

angular distribution o f  the Stokes vector from the V D IS O R T  solution. This method 

is shown to be superior to the common spline interpolation scheme, both in terms o f 

accuracy and in terms o f computer time.

As a model application, the sensitivity o f  the single scattering optical properties 

o f a size-shape distribution o f randomly oriented spheroids to shape is investigated in 

Chapter 6. The large validity range in terms o f shape o f  the model developed in this 

work allows one to put special emphasis on moderately and highly aspherical particles. 

The results o f this study clearly underscore the significant impact o f particle shape on 

t ho optical properties, even after averaging over size, shape, and orientation.

In Chapter 7 the results o f  the sensitivity stud}' for the optical properties are used in 

the vector radiative transfer code VD ISO RT to investigate the shape-sensitivity o f  the ra

diation field in a macroscopic multiply-scattering medium. The strong shape-sensitivity 

o f the single scattering optical properties results in an equally strong shape-sensitivity 

o f both the intensity, and the degree o f linear polarization, and the degree o f  circular 

polarization o f the radiation field in a medium containing a size-shape distribution o f 

randomly oriented nonspherical particles. This shape-sensitivity is found to be equally 

strong for moderately and highly aspherical particles, which demonstrates the im por

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 2

A Novel Separation of Variables 

Approach to the Electromagnetic 

Single Scattering Problem

The solution to the electromagnetic single scattering problem can be expressed in terms 

o f the so-called T-m atrix. The T-m atrix can be computed with the Extended Boundary 

Condition Method (E B C M ). which is based on an integral equation approach to the scat

tering problem. In this chapter, a method other than the EBCM  is presented to compute 

the T-m atrix for electromagnetic scattering [28]. The separation o f variables method 

(S V M ) is used to solve the electromagnetic scattering problem for a spheroidal particle 

and to derive its T -m atrix  in spheroidal coordinates (denoted by caligraphic font). The 

computation o f the T -m atrix  in the particle's natural coordinates entirely circumvents 

the notorious ill-conditioning that has plagued the EBCM  for highly aspherical particles, 

which is based on the use o f  spherical coordinates. A  transformation is developed for 

transforming the T -m atrix  in spheroidal coordinates into the corresponding T-m atrix in 

spherical coordinates (denoted by Roman font). The T-m atrix  so obtained can be used 

to compute optical properties o f  ensembles o f randomly oriented particles by employing

16
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an existing well-established and efficient analytical method to average over orientational 

angles. The T-matrices and optical properties computed with the SV M  and the EBCM . 

respectively, are compared for five different test cases. The comparisons show that for 

mildly aspherical particles the two methods give indistinguishable results. Differences 

appear when the departure from spherical shape becomes significant. Comparisons for 

large departures from spherical shape are not possible, because the EBCM  becomes ill- 

conditioned. Contrary to the EBCM . the new approach can be used to compute optical 

properties for arbitrary values o f  the aspect ratio. The SVM  relies heavily on the use 

of spheroidal functions. To  test the accuracy o f the expansion coefficients o f these func

tions for complex arguments and arbitrary shapes, a new testing method based on the 

completeness relation o f  the spheroidal functions is presented.

2.1 Introduction

In previous studies o f scattering by nonspherical particles, some researchers have focused 

on regular crystal shapes, such as hexagonal ice crystals, columns, hollow columns and 

bullet rosettes, and even more sophisticated but still highly regular snowflake shapes 

[7. 8. 9. 10. 11. 1*2]. Very often, however, observations show that regularly shaped crys

tals are the exception rather than the rule in natural cirrus clouds. Thus, highly irregular 

and widely ranging shapes are by far the most commonly observed in natural ensembles 

o f ice crystals [29], The computed scattering properties o f  perfectly symmetric crystals 

are useful for comparisons with laboratory experiments conducted under controlled con

ditions. However, comparisons o f measured scattering properties o f natural cirrus clouds 

with laboratory-measured phase functions show significant differences [30]. M ore and 

more evidence indicates that ice crystals o f a definite regular shape, such as hexagons, 

are o f limited use for modeling the radiative transfer through ice clouds in nature [31].

Because highly irregular and widely ranging shapes are common-place in nature, 

attempts to account for the shape o f each individual particle become impractical, if  not 

impossible. A spherical particle model is definitely too crude for many applications.
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and the assumption o f ideal crystal shapes is seldom justified in natural cirrus clouds. 

Nevertheless, to obtain computational expedience a practical nonspherical particle model 

must be based on simplifying assumptions. This requirement also reflects the recognition 

that often one does not have the information required to specify all the exact shapes 

actually present.

It is well-known that by averaging over size and orientation for a  distribution o f 

randomly oriented particles o f  identical shape, one is left with features in the phase 

function characteristic o f the assumed shape. However, observations typically show no 

shape-related features. This is precisely the reason why the assumption o f  an ensem

ble o f ice crystals o f a definite ideal shape gives unsatisfactory results when compared 

to observations o f scattering by natural cirrus clouds. A  recent study on scattering by 

small particles has shown that by averaging both over shape and size for a distribution o f  

randomly oriented particles, one obtains a smooth featureless phase function as typically 

encountered in a system o f natural scatterers ['27]. Thus, to improve a spherical particle 

model for scattering by an ensemble o f small crystals or aerosol particles o f irregular and 

widely varying shapes, it is important to introduce, in addition to the size parameter, a 

second parameter that accounts for the variation in shape o f the particle. The additional 

averaging over shape is the crucial difference between aspherical and a nonspherical par

ticle model. Since the averaging over shape tends to smear out any conspicuous features 

produced by individual shapes o f small particles, one might just as well choose a sim

ple particle shape. For this reason, several investigators have focused on scattering by 

spheroidal particles [‘2. 3. 19. '20. '21. 22. 32]. Spheroids have a simple axially-symmetric 

shape, but can be used to span shapes ranging from flat oblate disks via. spheres to elon

gated prolate needles by varying just one parameter, namely the particle ’s aspect ratio. 

Mishchenko [27] has pointed out that the phase function o f a size-shape distribution o f 

randomly oriented spheroids closely resembles that o f  an ensemble o f bricks (W est et al. 

[33]). even though spheroids have a perfectly smooth surface, while bricks have sharp 

rectangular edges. Thus, the simple spheroidal shape is a convenient and natural choice
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for modeling the optical properties including the Stokes scattering matrix o f a size-shape 

distribution o f randomly oriented nonspherical particles.

The scattering problem can be divided in two parts. The first part involves scattering 

o f light by a single particle, while the second part involves scattering by an ensemble 

o f particles o f a variety o f sizes, shapes, and orientations. The separation o f variables 

method (S V M ) and the extended boundary condition method (E B C M . which computes 

the T -m atrix ) are two widely used rigorous methods to solve the scattering problem for 

a single particle. Unfortunately, when applied to axisymmetric particles, the EBCM  

becomes ill-conditioned if the particle shape departs significantly from sphericity. This 

shortcoming limits the usefulness o f the EBCM to mildly aspherical particles. When 

using the SV M  for calculating scattering by spheroidal particles, on the other hand, one 

accounts for the geometry o f the particle by expanding each o f the incident, internal 

and scattered fields in the proper basis o f spheroidal wave functions. Consequently, this 

method is not limited to a certain range o f the aspect ratio. This independence o f the 

aspect ratio has been demonstrated for two-dimensional scattering by elliptical cylinders, 

where the SV M  has been successfully applied also to the extreme shape in which the 

cylinder degenerates into a strip [23. 24. 25. 26].

For an ensemble o f randomly oriented particles, the computation o f the light scat

tering properties o f the ensemble involves an integration over particle orientation. For 

spheroidal particles, this integration has been done numerically when using the SVM  

[2]. In applications o f the E BCM  to nonspherical axisymmetric particles, which (as cur

rently practised) relies on the use o f spherical coordinates, the T-m atrix that describes 

scattering by a single particle can also be employed to calculate the scattering properties 

o f an ensemble o f randomly oriented particles. Since the integration over orientational 

angles can be done analytically [32]. the T-matrix method becomes very efficient within 

its range o f validity for nonspherical particles. The integration over orientational angles 

yields the absorption and extinction cross section as well as the expansion coefficients 

o f the Stokes scattering matrix in terms o f the T-m atrix elements. This is another im

\
t.
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portant advantage o f the T-m atrix  method, since some o f the most versatile radiative 

transfer codes require these expansion coefficients o f the Stokes scattering matrix as 

input [34. 35. 36].

On this background the work presented in this chapter is based on the following 

premise:

• Just like a particle's mass determines its inertia independent o f  any forces, the 

light scattering properties o f a dielectric particle can be expressed in terms o f a 

T-m atrix which depends only on the particle size parameter, shape and complex 

refractive index and is independent o f  the incident electromagnetic field.

A single scattering method should therefore (if  possible) be aimed at computing the 

T-matrix. rather than the fields. Since the SVM. as commonly used, has focused on 

computing the fields, it will be modified in this study in order to derive and compute the 

T-matrix. using a new transformation from the T-m atrix in spheroidal coordinates to 

the corresponding T-m atrix in spherical coordinates. Then the resulting T-matrix will 

be used to compute optical properties. As mentioned above, this S V M  approach entirely 

circumvents the problems encountered in applications o f the E B C M  to highly aspherical 

particles while it retains the analytical-averaging advantage o f the T-m atrix method for 

computing the single scattering properties o f an ensemble o f randomly oriented particles.

2.2 Theory

2.2.1 Sphero ida l coord inates and wave functions

A spheroid can be constructed by rotating an ellipse with a certain interfocal distance 

d about one o f its axes. By performing a rotation about the m ajor or minor axis, one 

obtains a prolate or oblate spheroid, respectively. An advantage o f  modeling nonspherical 

particles by spheroids is that the scalar Helmholtz ecjuation is separable in spheroidal 

coordinates. Thus, the general solution o f the scalar Helmholtz equation can be written
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as a linear combination o f  spheroidal wave functions vnJJn (r). which can be written as

the product o f  a radial function Rn}m{c:£).  j  =  1....... 4. an angular function Sn,m(c :p ).

and an azimuthal function <J>m(o ).  Here, c =  kd/2. where the wave number k is real 

for non-absorbing particles and complex for absorbing particles. A  time dependence 

e.xp( — iujt) is assumed and suppressed throughout this and the following chapters. The 

spheroidal coordinates ( q . £ . o )  are related to Cartesian coordinates in the following way 

[37]

x

y

=  \ V/ (l -  q2) ( C - ±  1) coso  ( 2. L)

=  j  ~  I 2) (s2 ±  U sin o  (2.2 )

d
- =  2 ^  t2-3)

where the upper and lower signs pertain to oblate and prolate spheroidal coordinates, 

respectively. In the former case. 0 <  £ <  oc. and in the latter case. L < £ <  oc. In

either case. — 1 <  q <  1. and 0 <  o  <  2<r. The coordinate hypersurfaces characterized by

q =  constant. £ =  constant, and o  =  constant, are hyperboloids, spheroids, and planes

containing the rotation axis o f the ellipse, respectively. For each finite d. the spheroidal

hypersurfaces approach spherical shape as £ —*• oc. and

c£ —»• kr  (2-3)

q t cos 6 ( ’2-5)

where ( r . d . o ) are spherical coordinates. The unit vectors show the following asymptotic 

behavior as £ —> oc

£ -> r  ( 2.6 )

q -> - 6  ( 2.

where the sign in (2.7) comes from the fact that the cosine is monotonically decreasing 

in the interval 0 <  9 <  W ith  r x 6 =  o. it follows that (/). £. o ) is a right-handed 

coordinate system, i.e. q x £ =  o.

. j
I,.
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By substituting the separation o f variables ansatz into the scalar Helmholtz equation

( V 2 +  k2) *  =  0 (2.8)

and expressing the Laplacian differential operator V 2 in prolate or oblate spheroidal coor

dinates. one finds the differential equation for each o f the functions / ? „ ,L (c :f).  S „.m(c: q). 

and <$m(o ).  The solution for the azimuthal function is simply

4>m (o )  =  e ‘mo (2.9)

or alternatively, with even and odd functions.

&e.m(o)  =  cos m o  (2-10)

^o.mCo) =  sin mo. (2.11)

The solutions o f the other two differential equations [37] are the angular spheroidal

functions 5 „.m(c: q) and the radial spheroidal functions /?n 'L (c :0  o f  the j th kind, where

j  =  1........ 4. and R (n}m =  R (n)m and R (n}m =  Rn.L — i R (n.L. In the electromagnetic

scattering problem, the functions o f the first kind are appropriate for expanding the 

incident wave, while functions o f  the third kind must be used for the scattered wave. In

the prolate case, the general solution to the scalar scattering problem can be written as

a linear combination o f prolate spheroidal wave functions

^ } m ( c : q . Z . o )  =  (2.L2)

or o f analogously defined even and odd functions where <r =  e.o.  The oblate

functions can be obtained from these by making the substitution

£ -»> ^  (2.13)

c —>■ —ic. (2.14)

If an exponential odependence is chosen, then n =  0. 1 .. ..  and m  =  — n. —n +  1 n:

if even and odd functions are chosen, then m =  0. 1. . . .  and n =  m. m +  1.......

I,
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The angular functions can be expanded in associated Legendre functions [3<]

>n.m(c: rj) =  E '  P ^ ]+ r (n)  (2.15)S t
' = 0.1

where the primed sum extends over even (odd) indices r if (n — m)  is even (odd ), and 

where |m| < n. The expansion coefficients dim'n* can be computed by Bouwkamp's 

method [38]. They satisfy the relation

rf(m.n)(Q) _  const dlm|+r n (2-16)

where Sp-q is the Kronecker-delta. and where the constant can be set equal to unity such 

that

5 n.m(0. q) =  p {nm)(n)-

The angular functions are orthogonal in the first index [37]:

J  dqSn m(c. 7]) (c. 7]) A rn.n n̂.n

where

v  (|m| +  77i -+- r ) !  2

(2.17)

(2.18)

v  =  V '•'m.n — / , 4 m-n)‘ ( c ) 4 m-rl)(c ). (2.19)
r±£A (|m| -  m +  r)! 2(|m| +  r) +  1

Here the asterisk denotes complex conjugation. A'm.„ has been defined here such that it 

is always real, even if  c is complex, which deviates from other authors [19. 37].

Tw o useful relations for the spheroidal expansion coefficients

Defining

/ ‘ m-n,(c) =

■Vm.T, 2(|m| + r) + l (|m|-m + r)-m + r)! if r  and (n — m)  

have same parity 

and |m| <  n 

otherwise
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and substituting ("2.15) into (2.18). one obtains

E  /<m-")' (c )/ < m'n') (c ) =  Sn.n. (2 .21)
r=0 .1

where the orthogonality property o f the associated Legendre functions has been used. 

For convenience, one now defines normalized angular spheroidal functions

Z n.m( c : n. o )  =  S n.m (c: 77) e‘m°. (2.22)
\J m . n

These functions can be expanded in the basis o f  spherical harmonics

|j.m ) =  Vi.m( « . o )  =  { 2 'a )

by using (2.15) and (2.20):

I Z n.m) =  E / ^ m-n)(c)||mi +  r .m ). (2.24)
r=0 .1

Since the spherical harmonics are complete, every arbitrary function jc*) can be expanded 

in this basis, i.e.

K ’> =  'SZ a n . m ' (2.25)
n .m '

To show the completeness o f the one can start with the ansatz

W ) =  E  (2-26)
n.m'

and construct the coefficients by applying the bra (r/ [rn|. m | to both (2.25) and (2.26).

and using (2.24) and (2.21). This yields

X > ? + M .,n/<m-n)'(F l =  3n.m. (2-27)
7 = 0 . 1

By substituting a ?+|m|.m =  (q +  |m|.m|c-) in (2.27) and using (2.24) and (2.26). one

obtains the completeness relation in the usual form

E  E  \Z ^.m){Zn.m \ =  1 (2-28)
n=0 m=—n
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where I is the identity operator. One can express the completeness relation in terms o f 

the coefficients in ( 2.20) by taking the matrix elements on both sides o f (2.28) in

the basis o f the spherical harmonics. The left hand side is (s-F |m|. m|i|f +  |m|. m ) =  6s_t . 

and the right hand side is obtained by substituting (2.24) and using the orthogonality 

o f the spherical harmonics and (2.20). Thus.

E  / im'n,' ( c ) (2-29)
n — j TTi |. J 7711 1

The relations (2.21) and (2.29) are useful for deriving the transformation in Eq. (2.129) 

o f the spheroidal T -m atrix  into the spherical T -m atrix  (see Section 2.4). Eq. (2.29) can 

also be used for checking the numerical accuracy o f the spheroidal expansion coefficients

rf(m.n)_

2.2.2 So lenoidal solutions to the v ec to r  H e lm h o ltz  equation

In an isotropic, homogeneous, charge-free medium, the general solution to the vector 

Helmholtz equation in spheroidal coordinates can be written as a linear combination o f

solenoidal vector spheroidal wave functions v j/m  and o f the j th kind. These can

bo constructed in the following way [19. 37]:

=  V  x  ( a - ^ I ) .  (2-30)

=  k - l - Y x V ^ m. (2.31)

where the 44m  are the scalar spheroidal wave functions. The vector a can be any 

constant vector or the position vector a =  r. Alternatively, one can define even and odd 

vector functions

V ^ > .m =  V  x  (a • ) (2.32)

W  =  k - l - Y x V ^ l m (2.33)

where a =  c.o .  Explicit expressions for the la tter functions can be found in the literature 

[37].
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Since some authors use vector functions with an exponential o-dependence. while 

others prefer even and odd functions, the following useful relations are given to transform 

from one convention to the other:

The relation between the functions (2.30). (2.31) and (2.32). (2.33) is given by

V U) =  ( V 0 ) 4- /V0) ) (2 34)n .m  V * e.n.m ' o .n .m J

V U) =  ( - l ) m ( n (V ^ )  -  /V (j) ). (2 35)n. — m \ 1 / 1 w o .n .m  J ' j  )(n m)\

and similar expressions for W ^ L m. where m >  0. For m  =  0 the odd functions vanish, 

so that vJ/q =  V * Ĵ 0. If one expands an electromagnetic field in either basis o f  vector 

wave functions, i.e.

E  =  V [ c (1) V (J) 4- f (2) W (j) ]^  .  I n . m n.m  1 n.m  n.mJ
n.m

=  Z  4- n £ L m W ^ l J .  (2.36)
<r=c.o n .m

then the relation between the coefficients is given by

(k) . (t)
(fc) _ TJc.n.m  IT Jo.n .m  
 ̂n . m (2.37)

I 1 (fc) • • (*••)(*) _  r (n +  m Y- rk.n.m -r "lo.n.rn
€n-~m ‘ ' (n — m)\ 2 ' K ’

where m >  0 . and

< ! 3  =  n i l  o (2 - 39 )

for m =  0. These relations will be used in Section 2.3.2.

2.2.3 T h e  Separation  o f Variab les M eth o d

To expand the field incident to and scattered by a spheroidal particle. Asano and Ya

mamoto [19] chose even and odd vector spheroidal wave functions V ^ i.m  and W i2>.m 

with the choice a =  r in the definitions (2.30) and ("2.31) o f these functions. Farafonov 

[20] and Yoshchinnikov [21. *22] used a mixed set o f vector functions with a =  r and

. 1 
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a =  i .  where 5 is the unit vector in the ^-direction. In this study. Asano and Ya

mamoto’s method will be used, since, due to their choice o f the expansion functions, it 

is conceptually easier to develop a connection to the T-matrix method.

Asano and Yamamoto considered a spheroidal particle in a coordinate system with 

the r-axis coinciding with the particle's symmetry axis, and a polarized plane wave 

incident in the x-r- plane at an angle C with the c-axis. The electric field vector is either

in the incident plane (T M  mode) or perpendicular to it (TE  mode). The electric field o f

the incident plane wave in the TE  mode is given by

E ' =  E  E  * " [/ £ k (C )V < :L » (* 2r) +  i/ l ! » ( ( )W < ! ) ,m( t 2r )]. (2.40)
m=0 n=m

and the corresponding field in the T M  mode is

E ‘ =  E E ^ I t o v S J L M - ^ o w i i H
m=0 rc=m

The plane wave expansion coefficients are [19. 37]:

A 'X k ) =
f j+ U c o s Q

-Y'm.n r fs 'i ( r +  m Mr +  m +  H Sin C

fC2) fn  _  2(2 ~ V ™ ) V '  ___
. / n .m '  s ;  v  ^  /

COSC)
-v m.n r f ^ !  ( r + m )(r + m - f -  1) rfC 

The scattered and internal field in the TE  mode are given by

E ’ =  E  E  n ^ L v ' K ^ r )  +  M !!.mW i l m(t>r)].

(2.41)

(2.42)

(2.43)

S > So.
m = 0  n = m

(2.44)

m = 0  n=zm

(2.45)

and in the T M  mode by

E i =  f  f  '■1 -S!!.D1V f ,i .m(fr2r) -  i ' S . mW < L ( t 2r)]. S >  So.
rn = 0  n =  m

(2.46)

E ‘nl =  E  E  ' ' " M ! i rav i ; i . m(i-i r ) -  « \ S .m w l ‘i .m( t , r ) ] .  s < s „ .
m=0 n=m

(2.47)
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where kj =  kQn: ( j  =  1. 2) with ka being the wave number in vacuum and n t and n2 

being the complex refractive indices inside and outside the particle, respectively, 

is the coordinate hypersurface coinciding with the surface o f the spheroidal particle. 

Similar relations can be written for the magnetic field [19].

The problem is to compute the unknown constants o f integration in the expansions 

(2.44) -  (2.47) by using the boundary conditions for the electric field

E'n +  E* =  E T  at £ =  f t .  (2-48)

£-; +  £•* =  E ‘0nt at £ =  ft-  (2-49)

and analogous conditions for the magnetic field [19]. The boundary conditions have to

be expressed explicitly in terms o f the spheroidal wave functions. This yields a system

o f linear equations for each value o f the index m o f  the form

A k { m )  • Xfc(m) =  b k(m ) .  k =  1.2 (2.50)

and

x . (m ) =  r-(U  _ 0 ) _ (2) (2)
' L k .m ,m  * '* fc.m-f*1 .m  ‘ Jr.m.m* 'A r.m -f-l.m ...........

\(l) ^{l) ^{2) ^(2) ) T f 9 s n

is the vector o f  the unknown coefficients for the T E  (k =  I) and the T M  mode (k  =  2). 

and where both the coefficient matrix A k(m ) and the inhomogeneity b*(m ) depend on 

the coefficients drm'"*(c ) and the radial spheroidal wave functions o f  the first and third 

kind at £ =  f t .  /?LJ.L (c : f t ) .  and their derivative The solution o f  the

electromagnetic scattering problem is obtained by solving (2.50) for each value o f m and

for both modes. Equation (2.50) can be found in explicit form in the paper by Asano

and Yam am oto [ 10]. which also includes a discussion o f the numerical implementation 

o f t his system o f linear equations and ways to avoid numerical ill-conditioning.

i
!
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2.2.4 T h e  E x ten ded  B o u n d ary  C on d ition  M eth od

The T-m atrix method as commonly used relies on expanding each o f the incident, scat

tered. and internal electric fields in vector spherical functions and N^.ln according

to
•>c n

E ‘ =  H  L  [« (n‘i  M i \ l ( k 2r)  ~  N l ‘ »l(T-2r ) ]  (2 . 52 )
n — I m ~  — n

=  E  £  + P < 2L N ^ ( i - 2r ) ]  ( 2 .5 3 )
n =  I m =  — n

E 'nt =  £  £  T ^ N ^ ^ r ) ] .  ( 2 .5 4 )
ri=l m = —n

The vector spherical functions are defined in complete analogy to  the vector spher

oidal wave functions. To obtain the vector spherical functions, one has to replace the 

scalar spheroidal wave functions •pn.m in Eqs. ( 2 . 3 0 )  and ( 2 . 3 1 )  by the scalar spherical 

wave functions c n,m given by

=  PLm)( c o s 0 ) z ^ ( k r ) e ' m° .  j =  1...........4 ( 2 .5 5 )

where the cj,1* and zh2* denote spherical Bessel and Neumann functions, respectively, 

while and zh^ denote nth order spherical Hankel functions o f the first and second 

kind, respectively.

Since M axw ell’s equations and the boundary conditions are linear, there must be a 

linear relation between the expansion coefficients in (2 . 5 2 ) .  ( 2 . 5 3 ) .  and ( 2 . 5 4 ) .  i.e.

O S ,  =  £  £  £  ( 2 . 5 6 ),(fc) -  £  £  £  
n' =  1 m 1 — — n* =  1

or in m atrix-vector form

p  =  T  a  (2 .5 7)

where T  is called the T-m atrix. Similarly, the other relations between coefficients can

be written as

a  =  Q x . b  (2.5S)

P =  Q 2 • b  =  Q 2 • ( Q i ) -1 a (2 .5 9)

i

■ t
!
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Tims, one obtains

T  =  Q 2 - ( Q i ) _ l . C2-60)

In the extended boundary condition method (E B C M ) [13. 14. 15. 16. 17]. expressions for 

the matrices Qx and q 2 are derived from an integral-equation approach. The resulting 

expressions involve various integrals over the particle's surface o f cross products o f the 

vector spherical functions. These surface integrals are usually evaluated numerically. 

The EBCM  method has been applied to nonspherical particles o f different shapes, such 

as spheroids [3. 32. 39]. finite circular cylinders [4. 40], and C’hebyshev particles [32]. As 

a consequence o f the inversion o f the matrix Q i  that has to be carried out in (2.60). 

numerical problems have been associated with the EBCM . In particular, the calculation 

o f the inverse matrix ( Q i ) -1 is ill-conditioned for nonspherical particles much larger than 

a wavelength or with large real or imaginary parts o f the refractive index [41], as well as 

for non-absorbing or weekly absorbing particles [IS], and for highly aspherical particles. 

Recent progress in numerical procedures, however, has made it possible to extend the 

applicability o f  the EBCM  to size parameters larger than 150 for both non-absorbing 

and weakly absorbing particles [IS].

Since the E B C M  relies on the use o f vector spherical functions, its application to parti

cles with shapes departing too much from sphericity remains an inherent ill-conditioning 

problem. The so-called iterative extended boundary condition method (lE B C 'M ) is based 

on dividing an elongated prolate spheroid in several sub-domains centered along the sym

metry axis, and using spherical function expansions in each sub-domain [42. 43]. Using 

this iterative technique. Iskander and Lakhtakia were able to extend the EBCM  for 

non-absorbing small prolate spheroids from aspect ratios o f 4 to aspect ratios o f 7 [43]. 

However, the price o f reducing the ill-conditioning o f the EBCM in this iterative manner 

is a substantial increase in computation time and computer code com plexity [41].

The origin o f the ill-conditioning problem is that the chosen expansion basis o f spher

ical functions in the EBCM  does not suit the geometry o f spheroidal particles. A  suc

cessful formulation o f the EBCM  in spheroidal coordinates has not yet been established
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for electromagnetic scattering. The derivation o f the Q- and the T-m atrix using the 

EBCM  relies on knowledge o f the free space dyadic Green's function [15]. which is well 

known in spherical coordinates [44. 45]. A  recent report on the derivation o f  the dyadic 

Green's function in prolate spheroidal coordinates [46] was based on the assumption 

that the vector spheroidal wave functions are orthogonal in both indices, i.e. that the 

integration over the scalar product o f two such vector functions will give two Kronecker- 

deltas. one for the order and one for the degree o f the vector functions. This is. however, 

not the case. Therefore, the EBCM  can. at present, not be reformulated in spheroidal 

coordinates. A  T -m atrix  in spheroidal coordinates has previously been reported only 

for acoustical and elastic-wave scattering [47. 48]. For spheroidal particles, the S V M  is 

therefore the method with the widest range o f applicability in terms o f extreme particle 

shapes.

In absence o f ill-conditioning problems, the T-m atrix method has a significant ad

vantage over other methods when it comes to calculating the scattering properties o f 

an ensemble o f randomly oriented particles. Tsang et al. [49] derived the scattering 

matrix for randomly oriented nonspherical particles in terms o f their single scattering 

properties, i.e. in terms o f the T-matrix. and performed the averaging over orientation 

numerically. Mishchenko developed a method to do the integration over orientational 

angles analytically [32]. taking advantage o f the C’lebsch-Gordan formalism. By this 

method, the optical properties including the expansion coefficients o f the Stokes scat

tering matrix o f randomly oriented particles, which are required as input to radiative 

transfer codes [34. 35. 36], can be calculated analytically in terms o f the T-m atrix  o f  the 

scattering particles. This analytical averaging makes the T -m atrix  method very efficient 

for practical applications.

The T-m atrix o f a particle depends on its complex refractive index, shape, and size 

parameter and characterizes its light scattering properties independent o f the incident 

field, just like a particle's mass characterizes its inertia independent o f any forces. It 

is therefore not surprising that Mishchenko was able to express the light scattering
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properties o f ensembles o f particles in terms o f the T -m atrix . The calculation o f  the T - 

matrix was initially developed by Waterman in order to  obtain the scattered fields [13]. 

But since the final goal here is to compute optical properties o f ensembles o f particles, 

the calculation o f the T-m atrix  will be considered the primary objective o f the single 

scattering effort. The T-m atrix  depends also on the orientation o f the particle with 

respect to the laboratory frame and on the choice o f vector expansion functions. Since 

the EBCM  has so far been confined to the use o f spherical vector functions, as pointed 

out above, the goal o f  this work is to overcome the resulting limitations o f the E B C M  in 

terms of the aspect ratio o f spheroidal particles by calculating the T-m atrix  in spheroidal 

coordinates (denoted by a caligraphic T )  using the S V M .

2.3 The T-matrix in spheroidal coordinates

2.3.1 V ector sph ero ida l functions w ith  an azim uthal d epen d en cy  o f  

defin ite p arity

Asano and Yam am oto chose vector spherical functions o f definite azimuthal parity, i.e. 

with the o-dependence contained in sine and cosine functions rather than in complex 

exponentials. The T -m atrix  in the basis o f vector spheroidal functions with a definite 

o-parity will now be defined as a preparation for deriving the T-m atrix  in this basis. 

One expands the incident and scattered fields in the form

E ‘ =  T  T  T  To' 11 V (1) +  a (2) W (1) ] (2.61)^   ̂ /  .. /  - L 'V .n .m  *  rr.n .m  ‘ Ltrr.n.m ’ ’ rr.n.mJ
n = l  m =  — n

E 5 =  T  T  T  Ik(1) V (3) 4- k (2> W (3) 1 (2.62)'  - '  - '  - I <7.n.m  • ^ tr.n.m  T T *r.n.mJ  ̂—
'J—e.o  n = l  m =  — n

where Vt/Jm and W SJnm. j  =  1.3 are the vector spheroidal wave functions defined in 

Section 2.2.1. By the same argument as used when defining the T-m atrix in spherical 

coordinates, there must be a linear relation between the incident and scattered field
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coefficients, the so-called T -m atrix  relation

=  V  V  V  V  T (fc-i ' , ) Q (fe,)/  ^  ̂ <7.n.m.<T/.n ' .m / a * , n * , m ' ‘
S k> (•2.63)

<t'=c.o Ar' = l n' = I m' = —n

This relation defines the T -m atrix  in spheroidal coordinates. The T-m atrix  represents 

a linear transformation in the space o f the coefficient vectors which transforms the co

efficient vector o f the incident field into that o f the scattered field. The crucial idea 

underlying this section is that any linear transformation can be unambiguously charac

terized by specifying how it acts on a set o f chosen basis vectors, i.e. for a given choice 

o f basis vectors one can find an unambiguous explicit matrix representation o f a linear 

transformation. Thus, in order to find the desired matrix representation o f electromag

netic scattering in spheroidal coordinates, one needs to specify a set o f basis vectors in 

the space of the coefficient vectors, for instance the canonical basis, with the j th canonical 

basis vector having components

(Q!r.n.m ) ]  ~  ^m.mj $k.kj • (2.64)

a , =  e . o

kj = 1.2

mj =  0. I . ...

r i j  =  m j .  n i j  -f- I . . . .

. here Sp „ is the Kronecker-delta. Then from (2.63)

/ a .n .m .a 3 . n j .m } = (».-<*> (•2.65)

In other words, the T -m atrix  is just a matrix representation o f a linear transformation 

in the explicit canonical basis given in (2.64). The practical implication o f the choice o f 

basis vectors can be seen by substituting ("2.64) into ("2.61) to obtain

V*1* • if/- — 1* 'TjUjinj • II hj — L

W *1’ • if k- — 2fTj n
(•2.66 )

l
1
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So instead o f using plane waves as incident fields, as was done by Asano and Yamamoto 

[19], tlie basis functions V i  rim and w i i L  o f various orders, degrees, and o f both parities 

are used here as incident fields. The electromagnetic scattering problem can. using 

the S Y M  together with these basis functions, be reduced to solving a system o f linear 

equations (see Eq. (2.50) in Section 2.2.3). which directly yields the T-m atrix in the 

basis o f spheroidal functions with definite o-parity.

Although it may be less appealing to intuition to use the vector spheroidal wave 

functions as incident waves instead o f plane waves, this approach is more pragmatic. 

One argument in favor o f using plane waves is that any arbitrary wave can be expressed 

as a superposition o f plane waves propagating in different directions. When using the 

SYM . each plane wave must, however, be expanded in terms o f the vector spheroidal 

functions with appropriate expansion coefficients (given in Section 2.2.3 by Eqs. (2.42) 

and (2.43)). It is therefore a more direct approach to use these vector functions instead o f 

plane waves as basis functions. Besides, when using the incident plane wave coefficients in 

(2.42) and (2.43). the whole S YM  computation o f the solution to the scattering problem 

has to be repeated for each new angle o f incidence. In the approach presented here, the 

T-m atrix  is computed once and for all. Thus, for any arbitrary wave incident at any 

angle and specified in terms o f its coefficients a^X.m. the scattered field can immediately 

be computed from (2.63) and (2.62) without having to repeat the S Y M  procedure. Also, 

the particular choice o f basis in (2.64) in place o f the plane wave expansion coefficients in 

(2.12) and (2.43) simplifies (on account o f the Kronecker-delta in n) the system o f linear 

equations in (2.50) that results from using Asano and Yam am oto's implementation o f 

the SYM .

Equations (2.63)—(2.66) lay out the basic idea o f the method developed here. In 

order to make use o f Asano and Yamamoto's work, and in particular their computer 

implementation, one has to translate the basic idea outlined above into the conventions 

chosen by these authors by comparing Eqs. (2.61) and (2.62) to Asano and Yamamoto’s 

only slightly differently defined incident and scattered fields in the T E  and T M  mode.
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Eqs. (2.40). (2.41). (2.44). and (2.46). For the incident field. Eqs. (2.40). (2.41). one has 

to replace the plane wave expansion coefficients Eqs. (2.42) and (2.43) by

(a ) TE -  mode. =  0. /£>, =  r n° *n.no 4m.mo (2.67)

(corresponds to E 1 =  mQ)

(b ) T M  -  mode. /<”  =  r " °  «5n.„0 f g l  =  0 (2.68)

(corresponds to E ‘ =  mJ

(c ) T M  -  mode. f (%  =  0. =  - / - (ri0 + I) 4 .„0 5m.mo (2.69)

(corresponds to E ‘ =  W < ^ o mJ

(d ) T E - m o d e .  =  r ^ Q+lH n,nQ 5m,mo. f g l  =  0 (2.70)

(corresponds to E ‘ =  W ^ o mo).

The system o f linear equations (2.50) is then solved for several degrees m0 and for several 

orders n0. Comparing the considerations in (2 .61)-(2.65) to the formulation (2.44) and

(2.46) in Asano and Yam am oto ’s method, one obtains the following correspondence 

between the elements o f the solution vector Xfc(m0) in (2.50) and the T-m atrix  elements 

in the four cases (2 .67)—(2.70):

(a ) ,n_( 2)
“ l.n.mo

_  q-tl.I)'e.n.mo.ft.no.mo (2.71)

-n+l_(U
'* l.nmo

_  7-(2.1)
‘ o.n.mo .e.no .rno (2.72)

(b ) -n .m
'*2.n.mo

_  *7“(1 -1)' o,n,m.Q .o.no .mo (2.73)

' '2.n.mo
_  T (2.1)'c.n.mo .ci.no.mo (2-74)

(c )
:n_(l)

“ 2.n,mo
_  7"( 1-2)

' o.n.mo.e.no .mo (2.75)

_/n+L (2)
1 2.n,m0

_  7-(2.2)
'c.n.mo .e.no.mo (2.76)

(d )
:n_(2)

“ l.n.mo
— 7"(I-2)

’ c.n.mo .o.no.mo (2.77)

,-n + l —( t )
“ l.n.mo _  r (2-2>' o.n.niQ.o.no ,mo ’ (2.78)

These are all the T -m atrix  elements. Thus, one can see that the T -m atrix  in spheroidal
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j+k.k') _  £ .j-(k.k') (2 79)
rr n -m.n'n'm m.m rrn.m.n'.n'm ’ ' ' * '

coordinates is diagonal in m.  just like in spherical coordinates [32]. i.e.

Also.

j + i . i )  = 7~<1-1) = T {2'2) = T {2'2)
e .n ,m .o .n * ,m  o .n .m .e .n ' .m  c .n .m .o .n ' .m  o .n .m .c .n ' .m

=  r ( I ’2) _  7~<1 -2) = 7-(2.1) _  7-<2.1)
e n m c n 'm  'o n m o n 'm  ' c n m c n 'm  'o n m o n 'm

V n. m. n7.

(2.80)

The solution o f each system o f linear equations to given n0 and m0 yields the T-m atrix  

elements (2 .71)-(2 .78). Thus, i f  the T -m atrix  is to be determined for m  =  0 . . .  ..\/ and 

n =  //? V. one needs to solve 5Zm=o(-^ — m +  1) systems o f linear equations.

2.3.2 V ector sphero idal wave functions w ith  an exp on en tia l o - 

dependency

Instead o f the vector functions (2.32). (2.33). one may choose an exponential odepen - 

dency according to Eqs. (2.30) and (2.31). Eventually, the plan is to apply Mishchenko's 

procedure for analytically averaging over orientational angles in the computation o f opti

cal properties. The formulation o f this method is more concise when using an exponential

odependence. If the fields are expanded in this exponential basis, i.e.

E ‘ =  f ;  £  (2.81)
n=0 m = —n

=  £  £  [Pn. lnV{n3)m +  P {2)mW <3>J (2.82)
7i=0 m = —n

then the corresponding T -m atrix  is defined by the relation

t i l  = t  t  £  (-2-83)
k' = 1 n'=0 —

The transformation o f the coefficients from the basis with definite o p a r ity  into the one

with an exponential odependence is given by (2.37)-(2.39). From this, the transforma-
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tion o f the T -m atrix  can be inferred:

t :
ik.k')
n .m .n  ,m

n .m .n '  , — m r

- (  k .k ’ ) - ( k . k 1)•*7"^^ / r q~\
o .n .m .e .n ' .m '  ' '  o .n .m .o .n ' ,m '\

+ »T(k.k1)

r i k . k ' )
n. — m .n  . — m

_  ( ~ U m rj^k.k’)
2 L e .n .m .e .n '.m ' 1 ’ ' e .n .m .tf.n ' .m '

■ ) _ ĵ-(k,k') 1
* '  o .n .m .e .n ' .m ' '  o .n .m .o .n ',m 'J

_  ( ~ L) m rj ik .k ’) _  j T (k.k')
2  I e .n .m .e .n '.m ' p .n .m .o .n ' .m '

_  j ik .k ' )  _  jAk.k') ,
o .n .m .e .n ' .m ' o .n .m .o .n ' .m ' J

_  ( - i ) m+m _  .^-ik.k')
o  L ' f . n .m .e .n ' .m '  e .n .m .o .n ' .m '

.s j - (k .k ' )  I
‘ o . n . m . e . n ' . m '  t f .n .m .t f .n ' .m ' J

for n? > 0. For m =  m/ =  0. one simply has

j - ( k . k ' )    r j - ( k .k ' )
n.O.n' .O f .a .O .c .n ' .O *

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

For spheroidal particles. Eqs. (2.84)—(2.S7) can be simplified with (2.79) by replacing m'  

by m. One can then see from these equations, using (2.80). that

t !n. — m .n  , — m
_  f .k+h' <T-{k'k >

v '  n m n 'm  * (2.89)

An analogous relation has been reported for the T-m atrix o f  axially symmetric particles 

in spherical coordinates [32]. One also obtains from (2.79)

s j - (k .k ' )__________ c . j - ( k ,k ' )
n . m . n ' . m '  rn .m '  ' n . m . n ' . m * (2.90)

2.4 Transformation of the spheroidal T-matrix into the 

spherical T-matrix

The work presented here is the first derivation and computation o f the T -m atrix  for 

electromagnetic scattering in spheroidal coordinates. Therefore, the obtained numeri

cal results can be directly compared only to those o f the EBCM . For this purpose, the
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T-m atrix in spheroidal coordinates has to be transformed into the one in spherical co

ordinates. Furthermore, as explained in Section 2.5. the rotation o f the T-m atrix. which 

is vital for efficient handling o f particles o f random orientation, is more conveniently 

carried out in spherical coordinates.

To begin this derivation, one compares the vector spherical to the vector spheroidal 

wave functions. One can. without loss o f generality, restrict the comparison to the far 

field. The radial component o f the vector spherical and vector spheroidal functions
/o\ fn\

vanishes in the far field. The 0 -  and o-components o f the functions V„.i, and M n.m. for 

instance, show the following asymptotic behavior:

1/(3 )
* n.miJ)

, - ( 3 )

- ( - I
..„+L imSn.mjc. 6) e i k r

sin 9 kr
,+i dSn,m{c:0) e‘ik r

d6 kr

(2.91)

(2.92)

and

\ [ (3 ) ( -0*\ n+l

- U , (3 )
- ( - 0

! n .m

; \ n 4- 1 *

i m P j r ] (6) e'kr 
sin# kr

d P i r H e )  eikr
de kr

. e

(2.93)

(2.94)

where an extra factor ‘ n.m has been added in the vector spherical functions, for which 

manv authors use the convention

2n -F 1 (n — m)\
/n.m — (2.95)

47?n(n +  1) (n +  m )! ’

/oj /o\
From (2.7). it follows that \ n.m.n =  —' n m-fl- Thus, substitution o f (2.15) into (2.91) and

use o f (2.93) yields

x  :|m| +  r

- y ^ n  =  C U  =  ( - ' ) n £ ' : -----------di— Hc) m {
( 3 )
|rn[-f-r.m;tf" (2.96)

r = 0 . l

As before, the primed sum goes over even (odd) values o f r  if ( n — m) is even (odd ).
(3 ) (3 )Analogous relations can be obtained for the o  component o f V n.m and Mn.m. as well as

/31 f31 .
for the 9 -  and o-components o f W  n .m and N„.m . and for all the corresponding functions

moe

i m o

k
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o f the first kind. Comparison o f the far field expansion o f the incident field in the two 

sets o f vector functions

(  F i \  
£

\  d  /

= E a ( i )

1 0 ^
t'(D 
* n .m :r}

r (l)\  n.m:o /

/

a ( 2 )

\0

I f - i l ,  
i r (I)

\  n .m :o  /  _

-E'o

\  Eo )
(2.91

and

V E o I

=  E - U , ( I )
i.7n:0

\/(l)\  * n .m :o  /

,(2)

A- d )

(2.98)

\ * n .m :o  /  _

yields with the relation analogous to (2.96) between the components o f the vector func

tions

V  V  [a(1) M (l) +  a(2) N (1) 1/  „ /   ̂ lu n . m AVAn.m  * a n , m 1 n .m j
n = :l m  =  —n

= E E E'
n = 0  m — — n 7 = |m J.[m |+ i ' 7 .m

(2.99)

A fter reordering o f  summation, renaming o f indices, and comparing equal orders and 

degrees, one obtains

,(*) - fy
/ 71.771

or with (2.9-5) and (2.20)

4 1  = E  in-3y/'2™ ( n + l ) . \ m.af ^ n{k)m|

(2.100)

(2.L01)

where n >  1. For the sake o f a more compact notation, this relation may be brought 

into m atrix-vector notation by defining for each fixed index m the coefficient vectors

?T

lT
a*** (m) — (4 1 ) — [4\j(m).m* aA/(m) + i.m> • • •]

<*lk)(m) = ( « 1 )  =  [«H.m'«W +i .„••••]'

(2.102)

(2.103)
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and transformation matrices

Go(m) —

9.\I( m ).|m| (  ^  ) 9 .\ f {m  ).|m|-t-l ( )

‘7.\/(m) +  l.|m | (m ) f7 .U (m )+ l.|m |  +  l ( m ) ( 2 . L 0 4 )

where

S n . , ( m )  =  in 5 ^ 2 - n ( n  +  / r? -|m|

\ [ { m )  =  m a x { l .  | m | } .

Then

(*),

( 2 . 1 0 5 )

( 2 . 1 0 6 )

( 2 . 1 0 7 )

This can be brought into an even more compact form by summarizing the vectors o f 

different indices m and superscripts k into coefficient super-vectors

a =  [(«n.o)- ( «n . l ) .........(«L2o )- («n 2! ) -----V -  «  =  -W( 772 ) . A/( 772 ) +  1-----

( 2 . 1 0 8 )

=  [(o L !o )- (Qn !!)........ (Q!x2o M QL2i ) - " - ] r - n =  M - M  +  1. - . .a

and analogously, one defines a block diagonal super-matrix

G  =  d ia g (G o ( 0 ) . G o ( l ) ........... G o(0 ) .  G 0 ( l ) ------- )

Then

a =  G - a

( 2 . 1 0 9 )

C2.110)

(2.111)

Likewise, the scattered field can be expanded in vector spherical or spheroidal wave func

tions with expansion coefficients p it'll and nlt.in- respectively, and the relation between 

the corresponding coefficient super-vectors is

p =  G • K. (2.112)

• t
I..
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One can further define a matrix H o (m ) with elements

;n-s
h n . s i m)  -

•\J2/i s (s  4~ l)-^m.n 

n = . |m|. |m| 4- I . . . .

•f 5 — |m|

.s =  M ( m ) .  . \ [ ( m )  +  1. • • •

and a corresponding block diagonal super-matrix

H  =  d/a/7(H o (0) . H o( l ) .........H o(0). H 0( 1 ).. .. )

It is then straight forward to show with (2.29) that

(2.113)

(2.114)

G  H  =  1 (2.115)

where 1 is the identity matrix. The commuted product is not in all cases equal to the 

identity matrix. From (2.105) and (2.113). it follows that

Y 2 ' ^ n. s { m ) g s, i (m)  =  Snj  
s = .\ f  ( m ).A / (m )+  1

unless m =  0 and n and / are both even. In this case, using (2.20) and (2.21).

X

h n.A 0)g ,A 0)
s = .W (0 ) . .U (0 )+ l

(2.116)

-/ A'o„
A ° - "  5 = 1

-'O.n
-  Snj ~ frn.l(c: 0) (2. iii

where

F nj ( c : m )  =
n. I even and m =  0

(2.118)
: otherwise

t
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and M ( m )  is defined in (2.106). From the matrix Fo (m ) with elements F nj ( c :  m)  one 

can again construct a super-matrix F  analogous to (2.110) and (2.114). Equation (2.117) 

can then be brought into the compact form

H  G  =  1 -  F. (2.119)

From the definition (2.118). it follows that F  is idempotent. i.e.

F  F  =  F . (2 .120)

Furthermore, with (2.115) and (2.119).

G  =  G  • H  • G  =  G  • (1 -  F ) (2.121)

and consequently

G  F  =  0 . (2.122)

Analogously, one shows that

F  H  =  0 . (2.123)

Now one defines

T  =

T  =

* n .m .n * .m ' f  ' n .m .n /.m f '

1 fj42-2) )
'  n .m .n* .m * '  '  n . m . n ' . m ' '

 ̂  ̂ n .m .n ' .m '  >

(j<2.l) ) cj-(2.2) .
'  n . m . n ' . m ' '  '  n .m .n ' .m 1'

( 1.2 )

(2.124)

(2.125)

where it has already been mentioned that these two matrices are diagonal in the index m 

for spheroidal particles. The T-m atrix relations in spherical and spheroidal coordinates 

can now be written in the compact form

p =  T  • a

k =  T  ■ q

(2.126)

(2.127)
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W ith Eqs. (2.111). (2.112). (2.126). and (2.127). it follows that

T  =  G - T - H .  (-2.128)

This is the desired transformation o f the spheroidal into the spherical T-m atrix. The 

explicit form o f (2.128) is given by

1 n j .m .n 2 .m

I ni jni  + 1)
n2(n2 + I)

V "  '  I - ' r n . n  ; n ' - n  , \ A  m .n  ) . ,  . )
x Z -  2-* \ ~\r , Jnt -|mp c/Jn2_|m| ic; i n m n, m

n=r|m[.|m[+1 n '  =  |m[.|m|+1 V fn.n

(2.129)

A fter determining the spheroidal T -m atrix  with the SVM  as outlined in Section "2.3 

and transforming it according to ("2.129). the results o f the SVM  computation can be 

directly compared to the results o f the computation o f the spherical T -m atrix  with the 

EBCM . The usefulness o f ("2.129) is. however, not limited to allowing direct comparisons 

o f results. The spherical functions are more practical for averaging analytically over 

orientation according to Mishchenko's method than any other set o f functions including 

the spheroidal functions. The reason for this is explained in Section "2.5. Thus, the ill- 

conditioning o f the EBCM  for particles o f higher aspect ratios can be circumvented with 

the SVM  in the appropriate spheroidal coordinate system, while Mishchenko's method 

can still be applied for computing optical properties after transforming into the spherical 

coordinate system. The extra computer time necessary for the transformation (2.129) 

is negligible, especially since the coefficients in ("2.129) have already been determined as 

part o f the separation o f variables solution.

2.5 Rotations of the coordinate system

In order to efficiently handle ensembles o f  randomly oriented particles, one needs to 

know how to transform the T-m atrix under rotations. A  unitary representation o f the
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rotation group 5 0 (3 )  is given by i ' ( o )  =  exp(  — iJ - o ).  where J denotes the angular 

momentum operator, and o  is a vector whose norm is equal to the rotation angle, and 

whose direction indicates the axis and the sense o f rotation. Every general rotation can

be decomposed into three rotations about the Euler angles a. J. 7 . The corresponding

representation o f the 5 0 (3 )  is

=  c~ ‘J=" . (2.130)

If applied to a vector field P ( r ) .  a rotation generally transforms both the field vector 

and the position vector in the argument o f the function, i.e.

C P (r )  =  p '( r ' ) .  (2.131)

However, since the rotation operator commutes with the curl operator [50. 51], the

solution functions Vh{ln and o f the vector Helmholtz equation. ("2.30) and ("2.31).

and their spherical analogs and Nn jn simply transform according to

C 'M ^ l =  ( T x (  a-c-<Ji )

=  V x ( a - ( ‘V<Ji ) .  C2.132)

and similarly for the other vector functions. Thus the problem is reduced to investigating 

t lie transformation behavior o f the scalar functions. The angular part o f  the spherical 

wave functions is related to the spherical harmonics ("2.23). which are the eigenfunctions 

o f the operators J : and J*. i.e.

Jz\ j . m)  =  m \ j . m ) (2.133)

=  2 ( y + l ) | 7. m)  (-2.134)

(where the units are chosen such that h =  1). Since J 2 is a scalar operator, it is 

invariant under rotations. Consequently, a rotation o f the function |j . m )  can not alter 

the corresponding eigenvalue j .  Thus, a rotated eigenfunction \j. m)  can be written as a 

linear combination o f eigenfunctions belonging to the same quantum number j .  i.e.

C ( q . J . * ) | j . m )  =  D m'.m(Q- J - ‘ ) \j- m*). (2.135)
m '
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Thus, the subspace o f functions characterized by a fixed value o f j  is an invariant subspace 

under rotations, and one can. in fact, not find any smaller invariant subspaces. This 

means that the W igner D-matrices are an irreducible representation o f the S O (3 ) in the 

subspace characterized by a fixed value o f j .  They are given by

=  ( 2 . 1 3 6 )

where (2.133) has been used, and where the W igner d-functions

d n > . J 3 ) =  ( j m ' \ e - ‘J ^ \ j m )  ( 2 . 1 3 7 )

must not be confused with the expansion coefficients dim'n* o f the spheroidal functions.

From (2.132) and (2.135). one obtains the transformation o f the vector spherical functions

in terms o f the W igner D-matrices. and from this one derives the transformation o f the 

spherical T-m atrix [32. 49]:

E  E  ( « •  J - - ) ( 0 - ° - ° )  ( D ~ ‘1 C m ' <“ • •')■■
— n m.2 =  —

(2 . 1 3 8 )

In an analogous way. one can now derive a matrix representation o f the 5 0 (3 )  in the 

basis o f the angular spheroidal functions (2.22) by using (2.24):

L ( a .  3 . 7 ) | Z n,m) =  £  Z n.w ).  ( 2 . 1 3 9 )

where

=  E '  / { q S j W D j l L t a .  J . , ) .  ( 2 . 1 4 0 )
7=|m|.|m| +  l

The comparison o f (2.135) and (2.139) shows that there is an extra infinite summation 

in the transformation o f the spheroidal functions. The resulting transformation o f the
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spheroidal T-m atrix

7 )

=  E  E  P f c r: , ,, l f ° - J -  ■ i l T n t ^ . n . n ,  ' » ■  0 . 0 )  3 . - . )

ni .m | r*2 .mo

(2.141)

has an extra two infinite nested summations. Therefore, while spheroidal functions are 

more suitable for the micro-scale o f the problem, i.e. for a single particle, the spherical 

functions turn out to be more advantageous on the macro-scale, i.e. when dealing with 

ensembles o f many particles in random orientation. T h e  reason is the close relation 

between the spherical harmonics and the generating observable o f rotations J according 

to the eigenvalue equations (2.133) and (2.134). and the related fact that one can find 

invariant subspaces o f finite dimension in the basis o f  spherical harmonics, in which the 

matrix representation o f the 5 0 (3 )  is irreducible. Instead o f rotating the spheroidal 

T-m atrix. one can first transform it into the spherical basis according to (2.129). and 

then use it directly in connection with Mishchenko's method for analytical orientational 

averaging, for which, as it has become clear, spherical functions are more practical.

2.6 Numerical model tests

In this section a direct comparison is made between results obtained with the SV M  and 

results obtained with the E B C M . The following test cases are considered:

1. Prolate spheroids with size parameter x =  1 and aspect ratio a/b =  2

2. Oblate spheroids with size parameter x =  1 and aspect ratio a/b =  2

3. Prolate spheroids with size parameter x =  10 and aspect ratio a/b =  2

4. Oblate spheroids with size parameter x =  10 and aspect ratio a/b =  2

o. Prolate spheroids with size parameter x =  1 and aspect ratio a/b =  8.33.
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Figure *2.1. Prolate spheroids

In each o f these cases the index o f refraction is assumed to be n =  1.33-1-0.05/. The 

size parameter is defined as x  =  2 - r \ / \ .  where is the radius o f an area-equivalent 

sphere and where A is the wavelength o f the incident light. Figure 2.1 shows spheroids 

with aspect ratios equal to the ones used in these test cases.

The accuracy o f  the S V M  critically depends on how accurately one can compute the 

expansion coefficients from which the angular spheroidal functions are generated

(cf. (2 .15)). To check this, the following three preliminary tests relevant for the five test 

cases have been conducted:

(/') The radial spheroidal functions o f the first and second kind, denoted by /?Ll.m (c:£) 

and /?L2m (c :0  [37]. are expanded in terms o f the coefficients dim'n .̂ For several 

values o f c and £ corresponding to values o f x and a/b close to those used in 

the five test cases, these two functions have been computed and the results have 

been compared to numerical values that can be found in the literature [52]. The 

agreement lay between 9 and 15 significant figures. T h e  disadvantage o f this testing 

method is that tabulated values are available only at discrete values o f c and £. 

only for degrees m — 0 . 1. 2. and only for purely real and purely imaginary values 

o f c. Thus, neither the correctness o f the functions inside the scatterer. where c is 

complex, nor the accuracy for higher values o f  m. can be checked in this way.
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(//) The extinction cross section can be expressed in terms o f the spherical T-matrix 

according to [3]

C « f =  - ^ R e  f ]  £  +  T'm.n.L.nl (2.142)
n= I m = —n

which can be brought into the simple form

C « t =  - ^ R e S p ( T ) .  (2.143)

Here Re denotes the real part. T  is defined in (2.124). and S p (T ) denotes the trace 

o f the spherical T -m atrix. If a product o f matrices appears in the argument o f the

trace, it is invariant under a cyclic permutation o f the matrix factors. Thus, using

(2.128) and (2.119). one obtains

S p (T ) =  S p [(l  — F )T ]  (2.144)

and consequently

C =  - p R e S p [ ( l - F ) T ] .  (2.145)

As a test, one can compare numerical results for C e x t obtained by using the 

spheroidal T -m atrix  in (2.145) with those obtained using the transformed spherical 

T-m atrix in (2.143). Since the transformation in (2.128) depends on the d im'n\ 

this comparison provides a good practical test o f the precision o f the spheroidal 

expansion coefficients d im'nK The results o f this comparison are presented in Table 

2.1. where the difference S o C 'e x t -  defined by

C ex t ( s p h e r i c a l )  -  C 'e x t ( s p h e ro id a l )
^2 t e x t  ^ ----- r  : T\ ( 2 . 1 4 b )

C  e x t ( s p n e n c a l )

is seen to be less than 4 • 10-6 in all five test cases. These results further increase 

the confidence in the accuracy o f the spheroidal expansion coefficients.

[Hi )  The completeness relation for the angular spheroidal functions, which can be ex

pressed in terms o f the coefficients (see Eq. (2 .29 )). which are related to
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the dlm'n* b\- Eq. (2.20). can be used to undertake a more systematic study o f the 

accuracy o f these coefficients. One can investigate numerically to what precision 

this equation is satisfied for different lower indices s.t  and for different degrees m. 

W hen using (2.29). one should be aware that the leading term in the set o f coeffi

cients is the coefficient The farther the subscript .s deviates from

n — |m|. the smaller the numerical value o f the coefficient. If one checks numerically 

the condition

£ '  f {r - n)’ ( c ) r t m-n](c)  =  0 (2.147)
n = | m | .[m [+ l

when .s and t lie far apart, then the first factor will be very small when the second

factor has its maximum value, and vice versa. Thus, even if this sum is close to

zero when s and t lie far apart, one can not conclude very much about the precision 

o f the coefficients dim'n\ Close attention should therefore be paid to the case s =  t.

i.e. a particularly useful numerical check is the condition

£ '  / jm-n,- (c )/ jm-">(c) =  1. (2.14S)
n=|m|.|m|+l

The truncation o f the infinite sum should be such that the leading coefficient 

j.m.3+\m\ more or |ess in the mi<Jclle o f the summation interval.

The advantage o f using (2.29) instead o f the first testing method discussed above 

is that (2.29) can be used to check the accuracy o f the coefficients also for complex 

values o f c. for which no benchmark values can be found in the literature. In addi

tion. one is not confined to discrete values o f c and to low values o f  m. In principle. 

Eq. (2.21) could also be used to check the accuracy o f the coefficients dlm'nK This 

equation expresses the normalization o f the angular functions. However, since the 

coefficients  ̂ contain the normalization factor ;Vm.„. and since the latter is 

computed from Eq. (2.19). which is not independent o f  the coefficients dim’nK the 

use o f (2.21) does not provide an independent test o f the accuracy o f the coefficients 

for n =  n ' . Consequently, it could only be used as an independent test for n ^  n ' .
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For this case, the same restrictions as discussed for (2.29) apply to (2.21) when 5 

and t lie far apart.

The maximum order up to which the T-m atrix and the coefficients d\-m'n  ̂ are to 

be computed are chosen such that one obtains an accuracy in the computation o f 

C'rxt. using (2.143). o f at least 10-3 . This maximum expansion order varied from 

test case to test case. In each case, the coefficients dlm'n  ̂ or where tested up

to the highest necessary order against (2/29). The observed agreement typically 

lay between 10-8 and 10~ 13. but coefficients corresponding to complex values o f c 

were consistently less accurate than those corresponding to real values.

For the five test cases o f different shape and size, the T-m atrix and optical properties 

were obtained using an existing SV M  code based on the method o f Asano and Yamamoto 

[19]. The code was modified by replacing the plane wave expansion coefficients in (2.42) 

and (2.43) by appropriate Kronecker-deltas (cf. (2 .67 )-(2 .70 )) so that the incoming 

waves become the vector spheroidal wave functions (as explained earlier). The solutions 

obtained in this manner are related to the desired T -m atrix  (see (2.71) —(2.78) and (2.S4) 

in connection with (2.79) and (2.S9). as well as (2 .88)). The spheroidal T -m atrix  is 

t ransformed into the T-m atrix in the spherical basis by using (2.129). Thus, the T-m atrix 

in spherical coordinates obtained by transforming the T -m atrix  computed in spheroidal 

coordinates by use o f the S V M  can be directly compared to the T-m atrix  obtained by 

use o f the E B C M . To compute the latter, the EBCM  routines contained in Mishchenko's 

T-m atrix code have been used. Optical properties o f an ensemble o f randomly oriented 

particles, such as the extinction and scattering coefficients, the asymmetry parameter, 

and the scattering matrix were obtained bv using Mishchenko's analytical procedure 

for orientational averaging, which is also contained in his T-m atrix  code package. The 

optical properties were calculated using both the T-m atrix obtained with the SVM  and 

the one obtained with the E B C M . and the results were compared.

For mildly aspherical particles, such as those in cases 1-4 with an aspect ratio o f

2. one expects the EBCM  to  give fairly accurate results, so that direct comparisons

' s
I:S
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Table 2.1. Comparison SVM /EBCM

Case 1 2 3 4 5

ST  (abs) 5 • 1CT9 2 • 10~s 3 • 10~7 4• 10-7 5• 10“ 6

C f.xt 0.616701 0.599952 847.401 848.229 0.255740

C  5 C fI 0.227482 0.219721 547.401 556.409 0.219721

(cos 8) 0.19031 0.18657 0.90125 0.90722 0.22005

rjrt 4 • 10~ 7 5 - 10" 6 3 • 10~6 3 • 10"3 1 - 10"2

1̂ sea 2 • 10~s 1 - 10-6

<£>1O

1 - 10"3 CO r— o
1 to

d'i (cos 8) 2 • 10- * 2 • 10“ 6

1O

1 • 10~3 8 • lO” 2

S2d ext 2 - 10~8 4 - 10~6

1o

3• 10~6 8 • 10_ u

of results from both methods should show a reasonably good agreement, [n case 5. a 

prolate spheroid with an aspect ratio o f  8.33 and a size parameter o f  1 is investigated. 

The purpose o f test case 5 is to make a comparison o f both methods for spheroids 

departing farther from spherical shape.

The first row o f Table 2.1 shows for the five test cases the average absolute difference 

ST  between the T-m atrix elements obtained with the EBC'M and the SV M . The next 

three rows show the extinction and scattering cross section. Cext. C sca. and the asymme

try factor, (cos# ), computed with the SVM  and Mishchenko's procedure for orientational 

averaging. The unit o f the cross sections is /im2. The following three rows show the rela

tive deviation between these quantities and the corresponding results obtained with the 

EBC’M. Thus, for instance.

; , . C ,r , (S V M ) -  C „,(£-0C .V f)
:=  ----------- C „ , (S l\ U ) ------------  (2 ' u 9 )

and analogous expressions pertain to SxCsca and Si(cos9). The last row shows S2Cext as 

defined in (2.1-16).

One can see that the agreement between the two methods is remarkably good for 

cases 1-3. In case 4. the agreement is o f the same order as the required accuracy o f
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10-3 . whereas in case 5. the agreement is an order o f magnitude below the required 

accuracy.

For an ensemble o f randomly oriented particles with a plane o f symmetry, the Stokes 

scattering matrix, which connects the scattered field Stokes %ector to the incident field 

Stokes vector, is o f the form [53]:

/

F ,(0 ) =

\

Fn F\2 0 0 '

F 12 Fo 2 0 0

0 0 F33 F3,

0 0 - F 3A F,, j

(2.150)

Figure 2.2 shows the elements o f the scattering matrix, computed with the SV M  and the 

EBCM  and Mishchenko's averaging procedure, for case 1. The curves are indistinguish

able. Figure 2.3 shows the absolute difference between the elements o f the scattering 

matrix obtained with the SVM  and the E BCM  in test case 1. Figures 2.4-2.11 depict 

analogous plots for test cases 2-5. By comparing Fig. 2.3 to Fig. 2.7 and Fig. 2.5 to 

Fig. 2.9. one can see that the absolute difference between the results o f  the two methods 

increases with increasing size parameter, which is in accordance to the difference o f the 

optical properties in Table 2.1. The results for higher size parameters seem to differ more 

in the backseattering region (see Figs. 2.7 and 2.9). Note that the seemingly large differ

ence o f the phase functions F u  in Figs. 2.7 and 2.9 in the forward scattering direction is 

actually insignificant when expressed as a relative difference, due to the strong forward 

peak o f the phase function (see Figs. 2.6 and 2.S and note the logarithmic scale).

When comparing Fig. 2.3 to Fig. 2.5 and Fig. 2.7 to Fig. 2.9. one observes that the 

agreement o f results is better for prolate spheroids o f an aspect ratio o f 2 than for oblate 

spheroids o f the same aspect ratio, which again can be observed also in Table 2.1. A 

comparison o f Figs. 2.3 and 2.11 and. with the columns for cases 1 and 5 in Table 2.1. 

respectively, clearly shows that the agreement between the two methods is decreasing 

when the spheroid departs too much from spherical shape.
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s c a t t e r in g  ang^e scatte r  n g  a n g  e

Figure ‘2.2. Stokes Scattering matrix for test case 1
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Figure '2.3. Difference between elements o f the Stokes Scattering matrix in test case 1
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s c a t t e r ’n g  a n g 'e  s c c t t e r n g  a n g  e

Figure '2.4. As Figure 2.2. but for test case '2.
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Figure ‘2.5. As Figure ‘2.3. but for test case ‘2.
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scattering angle scattering angle

Figure ‘2.6. As Figure 2.2. but for test case 3.
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scattering angle scattering angle

Figure '2.7. As Figure '2.3. but for test case 3.
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Figure 2.8. As Figure 2.2. but for test case 4.
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Figure '2.9. As Figure ‘2.3. but for test case 4.
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Figure '2.10. As Figure '2.2. but for test case 5.
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sccttering angle scattering angle

Figure 2.11. As Figure 2.3. but for test case 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
pi



It is well-known that the T-matrix method, within its range of applicability, is very 

advantageous in terms o f  computer time [41]. But for highly aspherical prolate or oblate 

spheroids, the S V M  seems to be an interesting alternative to the EBCM  for computing 

the T-matrix and derived optical properties. Also, very little work has been done in 

the past two decades to improve the procedures for calculating the spheroidal expansion 

coefficients dim'n\ These coefficients are. however, absolutely vital for the S V M . There 

is still a lot o f  potential for extending the usefulness o f  the SVM by finding improved 

procedures for calculating these coefficients. To this end. a promising approach is to 

extend the new method recently developed for computing eigenfunctions for scattering 

by elliptical cylinders [54].

2.7 Summary

The underlying concept o f  this chapter was the perception that the fundamental quantity 

that characterizes the light scattering properties o f  a particle is the T-matrix. and that a 

method for solving the single scattering problem should, i f  possible, be primarily targeted 

at computing the T-matrix rather than the scattered electromagnetic field. Based on 

this perception, the purpose o f  this chapter was to establish a new method to calculate 

the T-matrix for spheroidal particles with the separation o f  variables method (S V M ).  

The strategy pursued in using the SVM  was to circumvent the notorious ill-conditioning 

of the EBCM  for highly aspherical particles by computing the T-matrix with the SV M  

in spheroidal coordinates instead of with the E B C M  in spherical coordinates. The  pro

posed modification o f  the SV M  involving the vector spheroidal wave functions instead o f  

plane waves as incident waves has one important advantage over the conventional SVM : 

The output is in form o f  the T-matrix. Thus, if one is interested in the fields, the S V M  

computations do not have to be redone for each new incident plane wave o f  interest. 

Instead, the T -m atr ix  is obtained once and for all for a given wavelength as the funda

mental property characterizing a particle in light scattering processes, and the scattered 

field can be obtained directly from the T-matrix  for any incident field o f the same wave-
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length. When interested in the optical properties o f  ensembles o f  randomly oriented 

particles, the T-m atrix  can be used to perform the integration over the orientational 

angles analytically. As explained in Section '2.5. this analytical step is most conveniently- 

carried out in spherical coordinates, due to the close relation between the spherical func

tions and the angular momentum operator, which is the generating observable o f the 

rotation group 5 0 (3 ) .

A  transformation, given in ('2.129). has been developed to transform the T-m atrix  

from the spheroidal expansion basis into the spherical expansion basis. This allows for 

not only" a direct comparison o f  the spheroidal and spherical T-matrices obtained with 

the S V M  and the E B CM . respectively. It also enables one to use the spherical T-matrix. 

generated from the spheroidal T-matrix obtained with the SVM. directly in Mishchenko's 

analytical procedure for calculating the optical properties o f an ensemble o f  randomly- 

oriented axisymmetric particles.

The relations in (2.21) and (2.29) that are derived in Section 2.2.1 for the coefficients 

o f  tfie spheroidal functions are useful analytical tools in the derivation o f  the T-matrix 

transformation in (2.129). In addition. (2.29) can be a useful practical tool for examining 

the numerical accuracy" o f  techniques employed for the computation o f  the coefficients 

<7rm nJ(c). The advantage o f  this method is that it can be applied to any value o f  r and 

m and for any value o f  c. including complex values.

Numerical comparisons have sho%vn a remarkable agreement between T-matrices and 

derived optical properties obtained by use o f  the SVM  and the EBCM . especially for 

small particles, although, as case 5 has shown, the agreement for larger aspect ratios is 

worse. There is also some indication that the agreement is better for prolate particles o f  

a given aspect ratio than for oblate particles o f  the same aspect ratio.

The SVM  seems to have the potential to fill an existing gap by providing useful 

results for prolate and oblate spheroids o f  extreme shapes. The range o f  applicability 

o f  the SVM  critically depends on the range o f  accuracy o f the spheroidal expansion 

coefficients drm n*(c). i.e. both the range o f  the indices and of the (in general complex)
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parameter c. Further extensive studies will be necessary to investigate that range o f  

accuracy, for which the testing methods proposed in this chapter should prove useful. 

The SVM  may also greatly benefit from future improvements o f the methods available 

or even the invention o f  new methods to compute these coefficients [54].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Point Group Symmetries in 

Electromagnetic Scattering

In this chapter, a relation between point group symmetries o f  light scattering particles 

and symmetry relations for the electromagnetic scattering solution in the T-matrix for

mulation is de%'e!oped [55]. A  systematic derivation o f  a representation o f  symmetry 

operations is presented in the vector space on which the T-matrix operates. From this, 

the symmetry relations o f  the T-matrix corresponding to the various symmetry oper

ations in point groups are derived. As examples, several symmetry groups relevant to 

modeling atmospheric particles are treated, such as the AJ-group o f  spherical symmetry, 

the T ^ L.-group o f  axisymmetric symmetry, and the P -^ -g ro u p  o f  dihedral axisymmet- 

ric symmetry. The P^/i-symmetry relations for the T -m atrix  in spheroidal coordinates 

are also derived. Previously known symmetry relations o f  the T-matrix for P>cA- and 

A'-symmetry can be verified with the group theoretical approach developed here. A 

previously not discovered relation is found for P^/i-symmetry. The full set o f  symme

try relations is presented for the T-matrix o f particles with P.\-/i-symmetry, i.e. for the 

important case o f  particles with dihedral symmetry and an .V-fold axis o f rotation.

66
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3.1 Introduction

The new S Y M  approach developed in the previous chapter relies on the use o f  spheroidal 

particles. For the T -m atr ix  o f  spheroidal particles, the symmetry relations (2.89) and 

(2.90) were found. Analogous symmetry relations have been reported for the T-matrix 

in spherical coordinates o f  axisymmetric particles [32]. The derivation in Ref. [32] 

was based on expressing the amplitude scattering matrix in terms o f the T-matrix. 

and inferring symmetry relations o f  the T-matrix from the symmetry properties o f  the 

amplitude scattering matrix. Symmetry properties o f  the T-matrix greatly simplify the 

analytic expressions for the optical properties o f ensembles o f  randomly oriented particles, 

and thus reduce the numerical computations.

While testing the modified S V M  method described in the previous chapter against 

the EBCM. it was discovered that half o f  the computed T -  and T-matrix  elements are 

actually zero, namely those for which k +  k' +  n +  n' is odd. This suggests additional 

symmetry relations o f  the T - and T-matrix o f  spheroidal pa rticles that have previously 

not been discovered. The objective o f this chapter is to develop a systematic and gen

eral method for accounting for a particle's symmetry properties in practical T-matrix 

applications.

The appropriate framework to describe symmetries in physics is group theory. In 

the case o f symmetric objects o f  finite extent, such as molecules in chemical physics or 

particles in the electromagnetic scattering problem, one is dealing with point groups. The 

name originates from the fact that there is one point in space which is always left invariant 

by tiie symmetry operations o f a point group, because otherwise the group would also 

include translations, which can not be symmetry elements o f  objects o f  finite extent. The 

theory o f point groups has been applied extensively and with great success in molecular 

physics. In electronic structure calculations, the molecular orbitals are first determined 

with the self-consistent field (SC'F) method using the Hartrce-Fock equation. Then, in 

the Configuration Interaction (C’ l) method, the electronic wave function o f the ground 

state can be expanded in the basis of Slater determinants formed from the molecular
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orbitals. This expansion includes an enormous number o f  terms, even for small molecules 

with only a few electrons. By exploiting the point group symmetries o f  a molecule, one 

can rule out a large number o f  terms and thus greatly reduce the number o f  terms in the 

C'l-expansion.

The problem in electronic structure theory is mathematically entirely different from 

the electromagnetic scattering problem. The time-independent Schrodinger equation

H v  =  E  v  (3.1)

is an eigenvalue problem, in which the Hamiltonian operator H  or its matrix represen

tation in a particular basis is known (or at least, as in the SC'F method, an initial guess 

for this operator exists which can be iteratively improved). The unknowns that are 

determined by solving this equation are the eigenvectors e> and eigenvalues E .  In the T- 

matrix formulation o f  electromagnetic scattering, the T-matrix  T  constitutes the linear 

relation between a vector, p. containing the expansion coefficients o f  the scattered field 

in some basis o f  vector functions and a vector, a. containing the expansion coefficients 

o f the incident field, i.e.

p =  T - a .  (3.2)

This relation is obviously not an eigenvalue problem. The unknown quantity that has

to be determined is. in contrast to the quantum mechanical eigenvalue problem, the

matrix operator, i.e. T .  Although the mathematical problems are very different, one 

can nevertheless take advantage o f  point group symmetries in both cases. Just as the 

Hamiltonian o f  the electronic configuration in a molecule with given positions o f  the 

nuclei commutes with any symmetry operations that leave the geometry o f  the molecule 

invariant, so does the T-m atrix  commute with any symmetry operations that do not 

alter a particle's geometry. The relation between point group symmetries o f  a particular 

particle geometry and the corresponding symmetry relations for the T-matrix is the 

subject o f  this chapter. In Section 3.2. the symmetry relations o f the T-m atrix  for 

different symmetry operations are derived. Section 3.3 deals with examples o f  point
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groups which contain several o f the symmetry elements treated in Section 3.2. The 

symmetry relations o f  the 7~-matrix in spheroidal coordinates for spheroidal particles 

are derived in Section 3.4. Finally. Section 3.5 gives a summary o f  results.

3.2 Representation of point group elements in the space of 

the coefficient vectors

The first ground-breaking step when applying group theory to a new problem is to find 

a representation o f  the group in question in the particular vector space o f  interest. The 

T-matrix is a linear transformation that operates on the vector space o f  the coefficient 

vectors a  and p with components aj^m and p'n.h. respectively. The transformation was 

given in Eq. (2.57): p =  T  - a. In order to find a representation o f  the elements o f  a 

point group in this particular vector space, one first has to investigate how the group 

elements operate on the vector spherical functions, which are again defined as

=  V x ( r - c ^ l ) .  (3.3)

N ^ ,  =  r ' T x M l  (3.4)

where CnJ.L are the scalar spherical wave functions o f the j th kind, and where r is the 

position vector.

3.2.1 T h e  reflection operation  crn

As a first example, a reflection in the jry-plane is considered. The abstract group element 

is denoted by an operator <t/,. where the letter a is commonly used for reflections (from 

German: Spicgelung). and where the subscript h stands for a "horizontal" plane of 

reflection. A  Cartesian vector (x . g . z ) is transformed under <7/, into ( x . y . —z). Note 

that operators are denoted without a "hat" in this chapter to avoid confusion with unit 

vectors. Figure 3.1 shows that the effect of ak on a vector function A (r )  is two-fold: 

Both the argument, i.e. the position vector r. and the vector A  are transformed. The
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Figure 3.1. Transformation of a vector function under ary

I
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position vector r =  ( r . O . o ) in spherical coordinates becomes r ' =  (r. -  — 0. o ) .  The 

vector A  is not a position vector and is expressed in local spherical coordinates, which 

are different at r and r'. As can be seen in Fig. 3.1. the r- and o- components o f  A  

in the local coordinate systems are the same before and after the reflection, while the 

0-component changes sign. Thus, the general rule for the transformation is

^ A r { r . 0 . o )   ̂

A g (r ,  0. o )  

y A 0 ( r . 6 . o )  j

ah.
1  A r (r. — — O.o )   ̂

- A o { r .  i t  — O.o )

\ A0 ( r . ~  -  O .o )  )

(3.5)

The vector functions (3.3) and (3.4) are given explicitly by

M n!L(^'r ) =  ‘:n.m h lnl ] ( t c r ) e x p ( im o )  ( f t  P ^ i u )  4 ^ - :  -  O dPn ^
sin 0 dO

(3.G)

N n3m(^r ) =  7n.m exp (tm o ) j r  -  h ^ ] {kr )  P [ m){u)

+  ± [ l c r h < nl \ k r ) } ' .  
kr do sin 0

(3.7;

Vector functions o f  the first kind are obtained from these expressions simply by replacing 

the spherical Hankel functions with the spherical Bessel functions j n. When applied 

to (3.6). the transformation rule (3.5) yields

M {j) - ( - i ) " +m (3-8)

where P ^ n\  — u) =  ( —l ) n+m p l m*( « )  has been used. Analogously, one obtains from 

(3.7)

r0 ) ( - l ) " +m N l/ i - (3.9)

Thus, by substituting (3.8) and (3.9) into (2.52) and (2.53). one obtains the transformed 

electric field

E‘ <T»>. (3.10)
n = l  m  =  —n
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and analogously for the scattered field. The effect o f  ah can now be expressed as a trans

formation o f the expansion coefficients rather than a transformation o f the expansion 

functions. By comparing (2.52) and (3.10). one can see that

aBO ( _ n " + ™ + * aB0 . (3.11)n.m V / n.m V /

In compact matrix notation, this can be written as a  £/i - a. where is a diagonal 

matrix with elements

( S i l S ' L - ™ .  =  ( - l ) n + m + k S n . n ' 6 m . m ' 6 k . k :  (3.12)

This is the desired matrix representation o f  the abstract group element ay,. The trans

formation o f  the T-matrix is then given b\r

T  E fc- T - E ^ 1 (3.13)

or explicitly

' p ( k . k ' )  <rh, / i i n ' + n  / +  m / i \ k ' - r k  r p ( k . k ’ ) /n i i\
n .m .n ' .m '  '  '  '  '  '  '  n .m .n ' .m "

If <7;, is a symmetry element o f  the particle, then a reflection o f  the particle at the hori

zontal plane will produce an identical particle with identical light scattering properties. 

Consequently, a-/, leaves the T-matrix invariant, i.e.

T  =  £ / l - T - £ ^ 1 (3.15)

or

[T .E fc ] =  0 (3.16)

where the brackets denote the commutator o f the two matrices. Explicitly, one obtains

from (3.1-1)

m, =  0 unless (n +  n +  m'  m +  k1 +  k)  even. (3.17)

This is the desired symmetry property o f  the T-matrix for a particle having ovsymmetry.
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It is clear how to generalize the procedure outlined above to an arbitrary symmetry 

clement g o f some point group. One needs to find the transformation o f  the vector 

functions analogous to (3.8) and (3.9). in order to derive a representation G  o f  the 

symmetry operation g in the vector space o f  the coefficient vectors analogous to (3.12). 

The symmetry relation [T . G ] =  0 for the T-matrix can then be written out in explicit 

form for the symmetry operation g. In Subsections 3.2.2-3.2.5. results for some o f  the 

most important symmetry operations are presented.

3.2.2 T h e  inverse operation  i

An inversion at the origin, denoted by i. transforms ( x . g . z )  into ( —x . —y . —z). For the 

transformation o f  the vector spherical functions under an inversion, one derives

- U  - ( - l ) n M ' ( L  (3.18)

( - l r N W .  (3.19)

If the T-matrix is invariant under the inversion, then one finds that

n'm' =  ® unless ( n ' + n  +  t '- l-  k) even. (3.20)

3.2.3 T h e  rotation operation  C'\

Rotations are common symmetry elements o f particles. For instance, a hexagonal col

umn or plate that is rotated by 2~/6 about an axis perpendicular to and through the 

center o f the plane o f  the particle will be indistinguishable from the same particle before 

the rotation. The transformation o f  the T-matrix under rotations has been previously 

derived and applied in order to study ensembles of randomly oriented particles [49. 32].

The relevant transformation for the T-matrix in spherical coordinates has been given in

Eq. (2.138). This transformation is used here in order to investigate rotational symmetry 

properties o f the T-matrix.

In point groups, one usually deals with N-fold rotation axes. In the example o f  the 

hexagonal column or plate, the symmetry axis is 6-fold. i.e. a rotation by 2~/6 yields an
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identical particle. The abstract group element corresponding to a rotation by 2—j A* is 

denoted by C v .  and. if the axis o f  rotation is chosen along the r-axis. the corresponding 

Euler angles are a =  2tt/.Y. 3 =  7 =  0. Using the relation [56]

(3.21)

Eq. (2.138) simplifies to

^ . n ' . m'(2-/-V -0-0) =  e x p [ - / 2 s - ( m ( 0. 0. 0) .  (3.22).'1 )

If the particle has C.v-symmetry. then not only the group element C'\.  but also C y .

C y ........C y _ l  are symmetry elements o f  the particle. Thus. m,(2~l/.\. 0. 0) =

j~(k.k)' ^  0. 0 ) or exp( — i2—(m — m')l/.\7) — I. where/ — 1.2....... A ’ —I. Consequently.

( in — rn ' ) l/X  must be an integer. In case o f  C'e symmetry, for instance, this implies

/ =  1 : ( m — m ) =  O.G.12.18... . (3.23)

1 =  2  : (m  — m ) =  0.3. 6. 9 . . . . (3.24)

/ =  3 : (m  — m' ) =  0.2. 4 .6. . . . (3.25)

/ =  4 : (m  — m' ) =  0.3. 6. 9 . . . . (3.26)

l =  o : (m  — m' ) =  0. 6. 12. IS ...  . (3.27)

so

T (k.k') _  „ 
n.m.n'.m' unless (m  — m') mod 2 =  0

or (m  — m' )  mod 3 =  0 (3.28)

where 0 mod .V =  0 V.Y.

Analogous to the previous case, one obtains for CVsymmetry the symmetry relations

j (k .k’ ) _  q unless (m — m 1) mod 3 =  0. (3.29)

More generally, if the scattering particle has C.v-symmetry. and if the set o f  all prime 

numbers that occur in the prime number decomposition of .V is denoted by 3A. then

rp{k.k')   «
n . m . n ' . m ' unless (m  — m )  mod p =  0 for some p 6 .Vf. (3.30)

■ i1
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A special case is the C'oc-symmetry o f  axisymmetric particles, such as spheroids, finite 

circular cylinders, and Chebyshev particles. In this case, one can replace the angle 2~/.Y 

in (3.22) by any angle a. Therefore, i f  a particle has -symmetry, then

0. 0) =  e x p [ - / ( m - m ' ) a ]  ^ ' ^ ' ( 0 . 0. 0)

=  (0-0.0) Va (3.31)

which implies m =  m!. Thus, one obtains for axisymmetric particles the symmetry 

property

7~{k.k’) _  ^ oj 32)
n .m .n ' .m '  m .m  n .m .n ' .m "  '  " '

Often a particle has A’ additional C'2-symmetry axes perpendicular to the main sym

metry axis. Spheroids, finite circular cylinders, and hexagonal plates and columns are 

common examples. If the y-axis o f  the coordinate system is chosen along one o f  these 

CVaxes. then one obtains from (2.138)

0) =

(3.33)

Using ( r f -1) ! ^ ' ^  =  and d™ m, ( v )  =  ( - 1  ) n~m' . one obtains

T lk’k,), , ( 0 . - . 0 )  =n.m .n ,m '  - '

( _ 1)n+n'+m+m' r ( ^  , _ m, (0 . 0 . 0 ) . (3.34)

The T-matrix o f  a particle with a Co symmetry axis perpendicular to the main symmetry 

axis therefore has the symmetry property'

r p (k .k ’ )   .  ,  i n  +  n'-t-m +  m '  r r- (k .k ' )  . . .  . J - ,

n. — m .n ' .— m '  V ' n . m . n ' . m "   ̂ /
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3.2.4 T h e  reflection operation  crv

Analogous to the reflection operation 07,. one can investigate the effect o f  a reflection 

in the -rc-plane. Reflections in planes containing the z axis are generally denoted by

rrv. a[ with a subscript v for a “vertical-  plane o f reflection. In particular, a reflection

in the .rr-plane transforms the Cartesian vector (x . y . z ) into ( x . —y .z ) .  To be more 

specific, this operation is denoted by arz . In complete analogy to the reflection in a 

horizontal plane, one obtains for the transformation of the vector spherical functions

^  - ( - i r M ^ U  (3.36)

^  ( - l ) mN ^ _ m. (3.37)

From these relations, one can easily derive the symmetry relation for the T-matrix o f  a 

particle having o^-symmetry:

rr-(k.k')   . . . m  + m '  / . \k+le' y(k.k ) .«q\
—  — \ *■ / \ M  n . m . n ' . m ' *  I '  ^

A reflection in the yr-plane. denoted by ayz. transforms the Cartesian vector ( x . y . z )  

into ( —x . y . z ) .  The vector spherical functions transform under this operation according 

to

M ^ L  (3.39)

^  N n . - m -  (3-10)

The resulting symmetry relation for the T-matrix is

rp(k.k') _ , . \k+k' rp(k.k') /.j , . ,
n. — m . n ' .  — m '  * '  n . m . n ’ . m ' '  ' )

Figure 3.2 illustrates that the reflection operation ayz can be represented by a yz — 

C ' i l PrzC.\. By using Ecis. (3.38) and (3.22) for A' =  -1 one obtains

^  e X P [ l (  -  TU +  TTl') ( -  «/2 ) ]  (•- 1)'"> + 'n ' fc+ fc'

x  exp[/(m -  m ') -/ 2j n, _ m,

=  ( - 1  )k + k ,T {nkLk2.n>.-m> (3 -4 2 )
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Figure 3.2. Decomposition o f ay:
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which is identical, as expected, with (3.41).

The reflection operation o[. shown in Fig. 3.3 is given by o[. =  C ^ c r ^ C s .  Using

(3.38) and (3.22) for .V =  8. one obtains

^8  ,7-r J ' rn — m 1 t i \ m + m ’ +k-{-k '  r p (k .k  ) .. . i->\
1 n . m . n ’ . m '   ► 1 ( _ 1 ) / n . - m . n ’ . - m ' • (4 .4 -5 )

In a similar fashion, one can obtain other rotated reflection planes by combining reflection 

and rotation operations in an adequate way.

3.2.5 T h e  ro tation -re flection  operation  S v

A  rotation-reflection operation S y  is obtained by first performing a rotation about an 

axis by 2~/.Y. followed by a reflection in a plane perpendicular to the axis. If the rotation 

axis is along the r-axis. then one can write S y  =  C'yOh- Consequently, i f  both C'.v and 

Oh are symmetry elements o f  the particle in question, then the group element S y  does 

not provide an independent symmetry relation for the T-matrix. Figure 3.4 shows a 

parallelepiped. It has identical rectangular top and bottom faces, abed and e fgh .  and 

two different kinds o f  faces at the sides, two rectangular ones, adhe and begf.  and two 

parallelograms, abfe  and dcgh. The operation C 2 in Figure 3.4 denotes in this case 

a rotation about the vertical ;-axis and not. as usually in this chapter, a C> rotation 

perpendicular to the vertical axis. As can be seen in the figure, neither the rotation Co 

nor the reflection Oh is a symmetry element o f  this particle's point group. However, the 

rotation-reflection operation S 2 =  VhC2 is.

The transformation o f  the T-matrix under the operation S y  can be obtained imme

diately by combining (3.14) and (3.22). The result is

C . '  ^  exp[-/2~(m  -  m')/-Y] ( - l ) n'+" ( - l ) m'+m ( - l) fc'+ * ,m-

(3.44)

Invariance o f  the T -m atrix  under a rotation-reflection operation S y  therefore requires 

t hat

exp{27rt[(rc +  n'  4- k +  k' +  m 4- m ' ) [ ' l  +  {m! — m )//A']} =  1 (3.4-5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c *  b — 4 -

a ’v

xz

<z = c8 ‘
c

Figure 3.3. Decomposition o f  a[. 

i

C 2 d

S2 = ahc 2
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where S y  denotes a rotation by 2 ~ l/N  followed by a reflection o v  Note that an /-fold 

application o f S.y. denoted by (Sy)1. is not identical with S y .  Rather. (Sy)1 is equal to 

t J h C 'y  ( C y )  i f / is odd (even). If the particle has Sy-symmetry. then ( 3 . 4 5 )  implies that 

the quantity
n +  n’ -f- k -f- k' 4- m 4- m' , I
---------------- -------------------- h (m  -  m) —

must be an integer (including zero), where / =  L.2 .V — L. The T-matrix elements

are zero for any combination o f  the indices for which this condition is not satisfied.

3.3 Examples of point groups

I 'p  to this point, isolated symmetry operations have been considered. In this section,

point groups o f  such operations are investigated. It will be found that in a group not all

elements yield independent symmetry relations for the T-matrix.

3.3.1 T h e  point g rou p  K,

Groups are denoted by caligraphic font to avoid confusion with the symmetry operations. 

A special case are spherical particles, which have ^-symmetry (from German h'ugelsym- 

mctric) .  In this case, the calculation o f the T-matrix by means o f  the extended boundary 

condition method can be carried out analytically, and the resulting T-matrix turns out 

to be diagonal in all indices [57]. This symmetry property can be easily verified with 

group theory. The spherical particle is invariant under any rotation, i.e.

T (h'k' ), , (0 .0 .0 ) =  T (k'k'\ , ( a .J .  *,) Vo .J . (3.46)n . m . n  .m  ' '  n .m .n  , m  \ • t • v '

One can substitute (2.138) and use (3.32). since spheres are in particular axisymmetric. 

This results in

(0 .0 .0 )  =  £  ( j )  , (,.i) (0 .0.0) VJ.
m  i =  — n
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Integration over J and using the orthogonality property o f  the Wigner d-functions [56] 

yields

( 2 " + l  ) ^ i . m =  s n,n. £  ( 3 . 4 8 )
m i = — n

Since the right hand side contains a Kronecker-delta in n. the left hand side must contain 

one also. i.e. the T-m atrix  is diagonal in n. and since the right hand side is independent 

o f  m.  the left hand side must be. too. Thus. =  Sn.n'Sm,m' T i k'k \ where the

Kronecker-delta in m  stems from (3.32). Finally, since spherical symmetry also includes 

/-symmetry, one obtains with (3.20) and the fact that k. k'  only take on the values 1 and 

2

=  ^k.k' $n.n' Tn (,3.49)

where Tn depends only on n. The diagonality o f  the T-matrix  for spheres has previously 

been derived in the framework o f  the extended boundary condition method by evalu

ating several surface integrals over cross products o f  vector spherical functions, which 

is a moderately tedious exercise. This symmetry property o f  the T-m atrix  has been 

obtained here with hardly any analytical effort in the framework o f group theory, which 

demonstrates how powerful the group theoretical approach is.

3.3.2 T he point g ro u p  C ^v

Groups with an .Y-fold rotational symmetry axis C'y  are labeled with Cy.  The additional 

subscript e indicates that N  "vertical" reflection operations are contained in this symme

try group. Axisymmetric particles have an infinite number o f  reflection planes containing 

the symmetry axis. C’hebyshev particles belong to this point group. According to (3.32). 

the T-matrix is diagonal in m

T (k'k' ], , =  8 m m. T (k'k'\ . (3.50)n  m  n '  m '  TTX. TTl n  m  n ' »n  '  'm .m  n .m . n ' .m '

With this relation. Eq. (3.3S) becomes

rrik'k*)   / I \k+k* rjrik.k') , .y -  p
n., — rn.n; . — m 7 t ) n .m .n ' .m '  '  *’ ‘

• t
t
h
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which is equivalent to (3.41). These last two symmetry properties have been derived 

previously from the symmetry properties o f the amplitude scattering matrix [32]. It is 

an encouraging result to be able to reproduce them with little effort in the more general 

and systematic framework o f  group theory.

3.3.3 T h e  point g ro u p  T*.x h

Point groups that have additional axes perpendicular to the main symmetry axis are 

called dihedral point groups and are labeled with a V  instead o f  with a C. The subscript h 

in P  yoh denotes the existence o f  a “ horizontal" (07,) reflection plane, i.e. a reflection plane 

perpendicular to the main symmetry axis. This point group also contains :V “ vertical" 

reflection planes containing the main symmetry axis, as well as the inverse operation i. 

The symmetry relation (3.17) due to the "horizontal" reflection plane becomes equivalent 

to the inversion symmetry (3.20). because T  is diagonal in m.  Thus, in addition to (3.50) 

and (3.51). there is one more symmetry property in the P ^ - g r o u p .  namely

=  0 unless ( n +  n' +  k +  even. (3.52)

Therefore, n +  n' and k 4- k'  must have the same parity, which makes the C'2-symmetry

(3.35) equivalent to the a v-symmetry (3.51) in this symmetry group. The symmetry

property (3.52) has not been discovered and exploited previously. It can be used to

reduce the number o f  T -m atrix  elements to be computed by a factor of 2.

Examples o f  particles that belong to the V^h. point group are spheroids [3. 32. 39. 28] 

and finite circular cylinders [4. 40]. which play an important role in modeling the optical 

properties o f  ensembles o f  randomly oriented nonspherical particles. Note that both 

spheroids and finite circular cylinders have different shapes and consequently different 

T-matrices. but their T-matrices have nevertheless the same symmetry properties (3 .50)- 

(3.52). simply because both types o f  particles belong to the same point group. Also, the 

symmetry properties are independent o f the size or the refractive index o f the particle, 

as long as the refractive index does not vary throughout the particle such that it would 

break the symmetry o f  the particle's geometry.
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Figure 3.5 shows a triangular column and a graphic representation o f  its symmetry 

elements a,.. 07,. C 3. and C ' i . I f the f/-a.xis is chosen along C’z- then crt. denotes in this 

case a reflection in the i/r-plane. The inverse operation i is missing in this point group. 

Thus, the relevant symmetry relations of the T-matrix which apply in this case are 

(3.41). (3.17). (3.29). and (3.35). By comparing (3.41) and (3.35). one can see that 

m +  m ' f  n +  n' must have the same parity as k 4- k ' . which is equivalent to (3.17). One 

is therefore left with three independent symmetry relations:

j - ik.k ) _  q unless (m — mT =  0 .3 .6 .9 . . . .  (3.53)n.m.n .m \ / v /

T^nmn’ m’ =  ® unless (n n -f- m +  Tii +  k +  k') even (3.54)

j - ik .k - ' )  _  / _  . - r (k .k ' )  C i  0 0 )
n. — m.n*. — m' * * n.m.n'.mf* ' '

Consequently, not all o f  the four symmetry operations (3.41). (3.17). (3.29). and (3.35) 

provide independent symmetry relations, similar to the case o f  the ZTc/, point group. 

Also, the rotation-reflection operations in the V 3 h and V ^ h  group have not been consid

ered. The phenomenon o f  interdependence o f symmetry relations will now be investigated 

in a more systematic way. Three symmetry operations Q. R . S  and their matrix repre

sentations Q . R .S  in the space o f  the coefficient vectors are considered. The symmetry 

relations o f the T-matrix are

T  =  Q T Q " 1 (3.56)

T  =  R T R " 1 (3.57)

T  =  S T S " 1. (3.58)

If in additional a relation holds o f the form

S =  R Q  (3.59)

then the three relations (3.56)-(3.58) are not independent, since one obtains for instance 

from (3.56) and (3.57) R - l T R  =  Q T Q -1 . and by multiplying with Q _I from the left

3.3.4 The point groups T>xh
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Figure 3.5. Symmetry elements o f a triagonal column
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and with Q  from the right, one immediately obtains (3.58). With this result in mind, 

one can inspect the group multiplication table o f the P 3/,-group. which lists all possible 

combinations o f  the elements in this point group (Table 3.1). The element E  is the 

identity operation. The table is to be interpreted as follows: In the column o f  a'v and 

the row o f  S3, for instance, one finds the element C V  This means that 5’3<t' =  CS. where 

the column element a[. is applied first and the row element S3 second. One can see that 

from the elements C 3. C'2. 07̂  one can obtain the elements E,  C'J. C " .  S3. a v. a'v. and 

from those plus the original three group elements one obtains the remaining elements C"2. 

a".  and S 3. One can easily verify that one can not find a smaller set than the original 

three elements C 3. C 2. a  ̂ for constructing all the other elements. Thus, the essential 

group elements are C’3. C'2. and <77,. and all other group elements can be obtained from 

these. W ith  the above remark, it follows that only C'3. C 2. and Uh give independent 

symmetry relations for the T-matrix. namely the relations (3.53)-(3.55). In particular, 

it is clear that any rotation C’y can be obtained by an /-fold application o f  C\\. Thus. 

C \  is the only essential group elements among all C’y  in any C \-  or P .v-type  point 

group, and consequently, the symmetry relation (3.30) reported above for C'\ symmetry 

can actually be reduced to

m, =  0 unless (m  — m')  mod .V =  0. (3.60)

From this one obtains that for .V —7 oc. (3.60) becomes identical with (3.32). Also, in 

groups having both a C’.v element and a 07, element, the rotation-reflection operations 

•S'.v.S'y......... *S*y 1 can be obtained from C .v -C 'y . . . . .  C 'y -1 in connection with ah-

The choice o f  the essential group elements is not unique and therefore a matter o f 

convenience, but the resulting symmetry relations o f  the T-matrix are independent of 

that choice.

Similarly to the “Dzh group considered above, one can write down the symmetry 

relations o f the T-m atrix  for a particle belonging to the T,.t/l-group

T n.m.]n’.m' =  0 unless (m -  m ') =  0.4 .8. 12 . . .  (3.61)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1. Group multiplication table o f the dihedral point group T>3h

E C 3 c l c 2 c 2 C " Oh S 3 S I O v < O’l

E E C 3 c l c 2 C 2 C "l 2 Oh S 3 S i O v < o 'l

C '3 C '3 c 23 E C ' l C 2 ĉ 2 S 3 S I Oh o 'l Or O'r

c $ C ' l E c 3 C ' C ' l c 2 s i Oh S 3 < ■ o 'l O r

C'o C 2 C "  *- 2 cC, 2 E C 3 C32 O v < o 'l Oh S 3 s l

C'o C o C o C "2 C l E C z O'v < O v <?2° 3 Oh S 3

C "
2 C o C"> C o C 3 c l E o ' l O r < S 3 s i Oh

<?h <y>i S 3 S I a v < o 'l E C '3 C ’l C o C "2 C "c 2

S 3 S 3 S’2■->3 Oh o 'l a v o [ C 3 C ' l E C ' l C'o C'o

s i s i Oh S 3 a[. o 'l o v c l E C '3 cc 2 C ’l C o

Of (Tv < < Oh S 3 s 20 3 c 2 C "u 2 C ' l E C'3 C ' l

< ■ < < o v <?2
3  3 Oh S 3 c 2 C ' l C o C 'l E C '3

< < trv < S 3 s i O h C ' l C 2 c ”c 2 C '3 r 2l 3 E
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n .m .n ' .m ' 0 unless (n +  n' +  k +  k' ) even (3.62)

(3.63)

The point group can be o f  special interest when attempting to model size-shape 

distributions o f  randomly oriented particles. It is advantageous, as became clear in

scattering problem, which is capable o f  producing accurate results even for particles of 

extreme elongated or flat shapes. The extended boundary condition method (E BC M ).

of size-shape distributions o f randomly oriented particles analytically [28] by use o f  the 

analytical-averaging formalism originally developed in connection with the EBC M  [32].

applied to bricks. The Helmholtz equation is also separable in rectangular coordinates. 

In fact, the corresponding eigenfunctions in Cartesian coordinates are even significantly 

easier to calculate than the spheroidal eigenfunctions. The question that has not been 

addressed in the pertinent literature is why spheroids are preferable to bricks in mod

eling size-shape distributions o f randomly oriented particles. The justification for using 

spheroids rather than bricks can be found by comparing the point group symmetries 

of both particles. Bricks with two equal sides belong to the V^h. point group . When 

comparing the relations (3.61)-(3.63) to the ones o f  -symmetry. Eqs. (3.-50)—(3.-52). 

one immediately sees that particles belonging to the group have a higher symmetry 

than those belonging to the group, since significantly more elements o f  the T-matrix 

of a P.-c/i-particle are zero. Thus, the computation o f the T-matrix. which takes consid

erably more time than the computation o f  the eigenfunctions o f  the Helmholtz equation 

in a particular coordinate system, is greatly reduced for spheroidal (or other axisymmet-

Chapter 2. to use a particle geometry in which the Helmholtz equation is separable, be

cause one can then use the separation o f  variables method (SV M ) for solving the single

on the other hand, with which a lot o f  progress in the study o f scattering by nonspherical 

particles could be made, is limited to only mildly aspherical particles. The SV M  solution 

for spheroidal particles has been investigated in several studies [19. 2. 20. 21. 22]. With 

the SVM  approach developed in Chapter 2. it is possible to obtain the optical properties

The modified S V M  approach is not restricted to spheroidal particles. It could easily be
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ric particles) as compared to bricks. This is the reason why spheroids are indeed the 

simplest choice within the SVM  for modeling nonspherical particles if  a spherical particle 

model produces not accurate enough results.

The T-matrix  symmetry relations for Pgh-symmetry can be obtained in an analogous 

way

=  0 unless ( m -  m') =  0. 6. 12, 18 . . .  (3.64)

T mm.i’.m' =  0 unless (n  +  n' +  k +  k') even (3.65)

j-(k.k') _  , , 1 k+k' j-(k.k') ( ‘i  66)
1 n . - m . n ' . - m '  ~  t L > 1 n .m . n ' . m '  (-J .O O j

and it is clear how to generalize these relations to any T>\h point group

Tl^mn'm'  ~  ® unless(m — m')  =  0. N.  2.V. 3Ar . . .  (3.67)

^ n m n 'm '  ~  0 unless (n +  ti' -f m -(- m'  +  k 4- k' ) even (3.68)

n, — rn.n'.  — m ; V n .m .n ' .m 1*

The symmetry relations for the Vsh point group can be useful in future applications 

of the T-matrix method for calculating the optical properties o f  hexagonal columns or 

plates, which are commonly observed geometries in laboratory clouds that develop under 

controlled conditions. These shapes also occur in natural cirrus clouds, although irregular 

ice-crystal shapes are by far the most common [29].

Current models for scattering by size-shape distributions o f  randomly oriented non

spherical particles rely on the use o f  model shapes that are axisymmetric [32. 28. 27. 58. 

59]. In future applications, one may also wish to drop this restriction and rather use 

model particles that have different dimensions along all three coordinate axes, such as 

bricks with sides x. ij. z. x  ^  y ~. or ellipsoids with axes a. b. c. a ^  b ^  c. For both 

classes o f  particles, the T-matrix could be calculated with the S Y M  in rectangular and 

ellipsoidal coordinates, respectively, thus avoiding possible ill-conditioning problems o f 

the EBCM  for highly aspherical shapes. From the above considerations, one can im

mediately predict which model would be more efficient. Since both classes o f  particles
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belong to the Voh group, the T-matrices would have the same symmetry properties, and 

both choices o f particles would therefore be equally good from this perspective. However, 

since the rectangular eigenfunctions are much simpler than the ellipsoidal eigenfunctions, 

rectangular particles would be computationally more efficient.

3.4 The T-matrix in spheroidal coordinates

I 'p  to this point, the assumption was that the expansion functions o f  the incident and 

scattered fields are the vector spherical functions (3.3) and (3.4). In this section, the 

symmetry properties o f  the spheroidal T-matrix. which was derived in the previous 

chapter with the S V M  using vector spheroidal functions V n!m and W (nJ.L. is investigated.

In analogy to Eq. (3.5). one obtains for the transformation o f  a vector functions in 

spheroidal coordinates under the operation <r

(  Artin-Z-o) x 

A z ( i ) . Z . o )

y a 0(t).£.o) j

^ - . - M "  -  n -Z -o )   ̂

- - M '  ~  n -Z -o )  

A0( - - n.Z.o)

(3.70)

Only the property P i m)( —u) =  ( —l ) n+m Pr.m)(u) o f  the associated Legendre functions 

was used in the derivation o f  the symmetry relation (3.17) from (3.5). It is straight

forward to show that an analogous property holds for the angular spheroidal functions 

•b’r.m (c: q) ■ Thus, the derivation of the symmetry property o f  the spheroidal T -m atrix  

corresponding to <r^-symmetry is completely analogous to that o f the spherical T-matrix. 

The  result is

m*n' m ’ ~  ^  unless ( n' +  n +  tti  m  +  k' -f k) even. (3.71)

Similarly, one can show in close analogy to the investigation o f the spherical T-matrix 

that ey-symmetry implies

k,k')________   . __i \ m-f-m' f )
n. — m . n ' .  — m '  '  / '  '  n .m .n ' .m '* (3.72)
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For (-symmetry, one obtains

=  0 unless (n '  +  n +  k' +  k) even. (3.73)

The transformation o f  the spheroidal T-matrix under rotations is given by (2.141). The 

rotation matrices in spheroidal coordinates are given in Eq. (2.140). and the inverse 

matrices are

(3.74)

Since one is interested in spheroidal particles, one has to consider rotations about the 

c-axis. i.e. 3 =  7 =  0. Substituting (2.140) and (3.74) into (2.141) and using (2.136) 

and (3.21). one obtains

*..<»• o-°>
CO CO

_  V -"  Y '  I . (m .n , )  . (m '. n 'l  Am’.n2)-
~  2—4 2-4! 2—4 ? —lm i 7“ !ml 7< —!m'l ■'7, - [ 'n 'l

^1*^2 g=|m|.|m| +  I 7/ =  |m/|.|m, |-i-l

x e x p [ - ( (m  -  m,)Q]7^*;*',na.m»(0. 0 . 0) (3.75)

which reduces with Eq. (2.21) to

r l h3 . m ' ( a . 0 . 0 )  =  e x p [ - / (m - m ' ) a ]7 ^ . t fcl)ym-(0.0.0 ) Va (3.76)

in complete analogy to (3.31). Consequently. CTc-symmetry implies for the T -m atrix

~ -{k .k ') _   ̂q -(k .k ') ( 3
'  n .m .n '.m ' m .m  'n .m .n '.m  '  ’  •

which should be compared to (3.32). The relations (3.71). (3.72). and (3.73) can be 

summarized into the relations

sr-(k.k ')   /__J \k+k' rj~{k.k’ ) ,., —o\
n .— m .n '.  — m '  ' / n .m .n '.m ' ‘ I

~  ® unless {n -(- n 4- k' 4- k) even. (3.79)

The relations (3.77)-(3.79) are the symmetry relations for the T-matrix in spheroidal

coordinates for a particle in the point group. The relations (3.77) and (3.78) have
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been derived in the previous chapter (see Eqs. (2.89) and (2.90)) with the modified S V M  

approach, and they could be reproduced here in the framework o f group theory. The 

symmetry relation (3.79) is newly discovered here.

3.5 Summary

The relation between point group symmetries o f  a light scattering particle with a given 

geometry and the symmetry properties o f the particle’s T-matrix has been established. 

For the example o f  the <7/, operation, it has been shown in detail how to proceed in order 

to obtain from the transformation behavior o f  the vector spherical functions a repre

sentation o f the point group elements (symmetry operations) in the vector space o f  the 

coefficient vectors. The  components of these vectors are the expansion coefficients o f  the 

incident and scattered electromagnetic fields, and they are related by a linear transfor

mation represented by the T-matrix. Thus, one can obtain from the representation o f  

the point group elements in the vector space o f  the coefficient vectors the corresponding 

transformation o f  the T-matrix under the various operations. From these relations, one 

can derive the symmetry relations of the T-matrix which apply if  a particular operation 

is a symmetry operation o f  the particle. In this case, the matrix representation o f  the 

symmetry operation commutes with the particle's T-matrix.

The symmetry relations o f  the T-matrix for the reflection operations o v  <rL.. i. C 'y.  C> 

and S \  have been derived. Subsequently, these symmetry operations have been compiled 

in point groups, and the set o f  symmetry relations for the T-matrix has been reduced to 

a minimum set o f  independent relations, which were related to the point group's essential 

symmetry elements. In particular, the well-known diagonality-property o f  the T-matrix 

o f spherical particles has been verified, as well as two well-known symmetry properties o f 

axisymmetric particles. These results constituted two important test cases for the group 

theoretical approach. An additional symmetry property for particles with a horizontal 

plane o f reflection, such as spheroids or finite circular cylinders, could be derived, w-hich 

can be used in practical T-matrix computations to reduce the number o f elements com
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puted by a factor o f  two. As a further example, the complete set of symmetry relations 

for particles with P.v^-symmetry. explicitly with V^h-- 'P-ih~ and Pg^-symmetry. has been 

obtained. These relations can be used in future applications, both to save a considerable 

amount of computer time and to test the accuracy o f  the computations by verifying that 

the numerical computations satisfy the symmetry relations.

The two symmetry relations for the T-matrix in spheroidal coordinates for spheroidal 

particles were verified, which were derived in the previous chapter, and an additional 

symmetry relation has been discovered for spheroids, which is due to the horizontal 

reflection symmetry 07,, in analogy to the investigation o f  P ^ - s y m m e t r y  o f  the T - 

matrix in spherical coordinates.

In addition to the practical aspect o f  reducing computational efforts, this group the

oretical investigation o f  electromagnetic scattering also provides a deeper theoretical 

insight into the structure o f  the T-matrix. A  more profound understanding o f  the sym

metry structure o f  the T-matrix allows one to answer fundamental questions o f practical 

importance. As one example, it was argued on the ground o f  symmetry considerations 

that the use o f  spheroidal particles instead o f  bricks for modeling size-shape distribu

tions o f randomly oriented particles with the SVM  is more advantageous, because o f  the 

significantly higher symmetry o f  the T-matrix o f  a particle belonging to the P-^/i point 

group as compared to one belonging to the V^h point group. As another example, a 

possible extension o f  current nonspherical particle models was discussed that introduces 

two instead one shape parameter, such as the aspect ratios x/y and x/z  (a/b and a/c)in 

a brick (ellipsoid) with sides x. y. z (a. b. c). It was found that bricks would give a 

computationally more efficient model due to the fact that ellipsoids belong to the same 

point group, whereas the ellipsoidal eigenfunctions are significantly more complicated 

than those in rectangular coordinates.

The remarkably small analytical effort in the group theoretical calculations demon

strates the power o f  group theory. Also, the fact that the point group symmetries o f  a 

particle s geometry can be readily translated into symmetry relations o f  the T-m atrix
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clearly shows the advantage o f  characterizing a particle’s light scattering properties in 

terms o f the T-matrix. rather than in terms o f  the scattered field as a function o f  the 

incident field. Thus, the T-matrix is much more than just a by-product o f  the extended 

boundary condition method. It is. as stated earlier, the fundamental property charac

terizing a particle's light scattering properties. It has to be considered a great advantage 

o f a single scattering method if  it is capable o f  determining the particle's T-matrix. So 

far. only the extended boundary condition method and. according to the results o f  the 

previous chapter, the separation o f  variables method have that capability.
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Chapter 4

A Vector Discrete Ordinate 

Radiative Transfer Model 
(VDISORT)

At this point, one is in a position to efficiently calculate the ensemble-averaged optical 

properties o f  size-shape distributions o f randomly oriented spheroidal particles from first 

principles. These single-scattering optical properties (Stokes scattering matrix and single 

scattering albedo) will be used in a radiative transfer model which accounts for multiple 

scattering and which computes the intensity and polarization o f  the radiation field in a 

vertically inhomogeneous plane parallel medium. This radiative transfer model [36] is 

treated in the current chapter.

A previously developed model for vector discrete ordinate radiative transfer in ver

tically inhomogeneous plane parallel media has been tested for both Rayleigh and Mie 

scattering phase matrices. A  few errors were found in the implementation o f the model 

that seriously impaired the model output. An improved version o f  the model, described 

in this chapter, has been created in which the errors have been corrected. In addition, the 

procedure for computing the Fourier components o f  the phase matrix, required as input

9-1
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to the radiative transfer routines, has been replaced by a more efficient and more accu

rate procedure. While the original version o f the model was limited to phase matrices o f 

spherical particles or to scatterers much smaller than the wavelength o f  the incident light 

(Rayleigh limit), the new version presented here is valid for a much broader range o f  ap

plications including scattering by an ensemble o f  nonspherical particles. Extensive tests 

o f  the model in the Rayleigh limit as well as for unpolarized and polarized beam source 

applications in the Mie regime demonstrate the significant improvements in accuracy 

and efficiency achieved with the new version.

4.1 Introduction

The interest in interpreting the polarization o f  atmospheric radiation measured by in

struments deployed at the ground as well as on aircraft, balloons, and satellites, has 

increased rapidly in recent years [60. 61. 62. 63. 64. 65. 66. 67]. Polarimetric measure

ments can be used to retrieve atmospheric aerosol properties [4. 61. 68]. distinguish 

between atmospheric and surface contributions to the total reflectance o f the planet [62]. 

discriminate between ice and water clouds [ 1], and determine the shape o f  the scatter

ing particles [3]. Polarization measurements have a number o f  essential advantages as 

compared to standard photometry experiments [69]. The  accuracy o f  polarization mea

surements is high ( ~  0.1% for the linear polarization), since it is a relative measure and 

consequently does not require absolute calibration. The  relative errors o f polarization 

measurements can be kept much smaller than the polarization features o f radiation scat

tered by small particles. Also, radiation scattered by air molecules (Rayleigh scattering) 

shows polarization characteristics that are distinctly different from those exhibited by 

radiation scattered by aerosols and cloud particles. The  degree o f  polarization (linear 

and circular) produced by cloud and aerosol particles is more sensitive than the inten

sity to size, shape, and refractive index o f polvdispersed small scattering particles. The 

intensity as a function o f  the polar angle also has a stronger tendency, as compared to 

the corresponding polarization characteristics, to be smeared out in an optically thick
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medium with a correspondingly higher multiple scattering probability.

The high experimental precision o f  polarimetric data can be fully exploited only i f  

accurate results from a vector radiative transfer model are available for the retrieval 

and interpretation o f  the observations. The discrete ordinate radiative transfer model 

(D IS O R T ) lias proven to be an accurate, versatile, and reliable method for solution o f  

the scalar radiative transfer problem in plane-parallel, vertically inhomogeneous media 

[70],

Recently, an extension o f  the scalar discrete ordinate theory to solve the 4-vector 

problem for the complete set o f  Stokes parameters has been reported [71]. The approach 

to the solution o f  the problem adopted for the vector case is completely analogous to 

that for the scalar case (see Section 4.2 and compare to [70]). The computer code for 

the vector problem can therefore rely on the same well-tested routine to obtain the alge

braic eigenvalues and eigenvectors (see Section 4.2) as the one used in the scalar version 

(D IS O R T ).  Also, the same scaling transformation [72] can be applied to circumvent the 

notorious ill-conditioning problem that occurs when one applies boundary and layer in

terface continuity conditions [71]. The remaining numerical computations are done by 

using standard computational library subroutines. The main practical problem that re

mains for the implementation is the “ book-keeping" part involved in preparing the input 

to the numerical routines.

In this chapter, an improved solution to the full 4-vector problem is reported, in 

which a few errors in the numerical implementation o f  the model described in Ref. [71] 

have been corrected. These errors severely impaired the accuracy o f the results for beam 

source applications. In addition, the procedure to compute the Fourier components o f  

the phase matrix has been replaced by a different and more efficient method. These 

changes have led to significant improvements o f  the accuracy o f  the computed results. 

The superior performance o f  the upgraded vector version o f  D ISORT is demonstrated by 

t esting it against benchmark results and comparing it to the performance o f  the original 

version. The present version o f  the code has both the accuracy and the reliability needed
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to make it a useful tool for a variety o f  applications which require the interpretation o f  

polarization measurements. A  complete description o f the theoretical approach is given 

in the next section.

4.2 Theory

One method to solve the integro-differential radiative transfer equation is the discrete 

ordinate method, which has been applied with great success to the scalar radiative trans

fer problem. The basic idea o f  the discrete ordinate method is to discretize the integral 

term and to recast the radiative transfer equation in the form o f  an algebraic eigenvalue 

equation for the radiation field at discretized polar angles. This section describes the 

discrete ordinate method generalized to the full 4-vector problem.

4.2.1 D iscretization  o f  the vector radiative transfer equation

The basic integro-differential equation o f  the vector radiative transfer problem is

d I ( r .  u. o )
dr

=  I (r .  u. o )  — J (r .  u. o ) (4.1)

where

I  =

=   ̂  ̂ f do'  f du! M ( t \  u . o :  u .  o ' ) I { t .  il . o ' )  +
4 ~  J q J - i

Q (r .  u .o ) .

(4.2)

I  denotes the Stokes vector o f  the diffuse radiation, u is the cosine o f the polar angle, 

o  denotes the azimuth angle, and r  denotes the optical thickness in a plane-parallel, 

vertically inhomogeneous medium. The first term contributing to the source term J is

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

the multiple scattering term. M  is the phase matrix, a denotes the single scattering 

albedo, and

Q (r .  u. o )  =  M ( r .  u . o : - f i 0. o 0)S h( r )  e x p ( - r / f i 0)
4 77

+  [1 -  a ( r ) ] S t(r ) .

(4-3)

The first term on the rhs describes the incident beam Sj (which for an unpolarized beam 

would have the form [ Iq/2. Iq/2. 0. 0]r ). attenuated at depth r  by a factor exp ( —r//z0) 

and undergoing single scattering into the direction ( u . o ) .  The second term is the thermal 

emission, which is unpolarized, i.e. S<(r) =  [ B ( T ( t ) )/2. B ( T ( t ))/'2.0 .0 ] t . and B is the 

Planck function. It was set fi0 : =  j u0| :=  [ cos0o|- where 90 is the polar angle o f  the beam 

source. To isolate the azimuthal dependence from the radiative transfer equation, one 

performs the following Fourier expansions:

2:V-1 ,
M ( r .  u . o : u ' . o r) =  ^ 2  u . u ' ) c o s m ( o ' - o )

m =0

4- M „ ( r .  u. u )  sin m ( o '  — o )  |

(4 .4 )
2.V -1 .

I ( r .  u .o )  =  ^ 2  1 Im (T- u) c o s m (oo -  o )
—  n x7 7 1 = 0

4- I^ fr . u) sin m ( o a  -  o )

2.V -1 .

Q ( -  U.O) =  "52 Q m ( * “ ) COSra(G0 - O )
7 7 1 = 0  ^

(4.5)

4- Q sm(r .  u) sin m ( o 0 -  o )| .

(4.6)

Substitution o f (4.4) into (4.3) and comparison with (4.6) yields:

Q m (r< u) =  = ^ - M m(’  “ • - n o )  • Sfc(r) e xp (- r/ / i0)
47T
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+  <Wi [1 — a (r ) ]  S( (r )

(4.7)

Q m (*  « )  =  u. —̂ 0) ’ Sft(r) exp( —r/^0) (4.8)

F3\- substituting (4.4) - (4.6) into (4.1) and (4.2). performing the integration over 6  in 

tho multiple scattering term, and comparing Fourier terms o f  equal order, one obtains a 

transfer equation for each Fourier component:

The cosine modes start at m =  0. and the sine modes start at m =  1. i.e. 1^ and 

M *, vanish for m =  0. Thus, one can omit the Ivronecker-deltas in (4.10). as well 

as the second Kronecker-delta in (4.9). Subsequently, the remaining integration over 

u is replaced by a discrete sum by introducing the GauBian quadrature points uj and 

corresponding weights Wj. One obtains for each Fourier component:

I ^ ( r . u )  -  ^ ^ d U ' [ M ^ ( r . U . « ' ) I ^ ( ^ « , ) ( l  +  d o m )  

-  M ^ ( r .  u .  a ')  Vm ( T .  a ')  ( 1  -  < W ) }  -  Q ^ ( r .  u ) (4.9)

Pm( r . U) -  f _ li d u ' f 'M ‘m( r . u . u ' ) r m( r . U' ) ( l + S 0m)

+ M am(r, u. u') I^ (r . «i') (L -  ^ m) }  -  Q m (" «)■ (4.10)

(4.11)

.v

(4.12)

m =  0 .........2.V — 1
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i =  ± 1  i zN .

The convention for the indices o f  the quadrature points is such that uj <  0 for j  <  0. and 

uj >  0 for j  >  0. These points are distributed symmetrically about zero. i.e. u_ 7 =  —uj. 

The corresponding weights are equal, i.e. ir_j =  wj. In a plane parallel atmosphere it 

is convenient to consider the two hemispheres defined by u <  0 (downwelling radiation) 

and u >  0 (upwelling radiation) separately, and to introduce the quantity /i :=  |u|. 

Furthermore, as a consequence o f  certain symmetry relations, the Fourier components 

o f the phase matrix have the following form [73]:

(

M i ,  =

M i ,  =

A ' f l m -V / f2 m 0 0

* ^ 2 1  m ^  I2 2  m 0 0

0 0 M h m M i im

0 0 U $ 3 m - ^ 4 4 m

0 0 A / f 3 m \ f s '  1 14m

0 0 m \ / s* 2 4 m

-V/ I lm - ^ 3 2 m 0 0

U h m 0 0

M 2 m

o M I m

M 2m o

/

where (2 x 2) block matrices have been introduced for notational convenience. If one 

further defines

I =

1 In

I?, 

u

\

\ /

i s =-rr.
l2m

I s ^m.l

* m . r

i sV m

\ r

L1 m

L2m

/

then the combination o f  the first two components o f  (4.11) and the last two components 

o f (4.12) gives

(

± ,1 '7 T K m(r. ± f i i )
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a(r ) yx (  tt' - j ( l+^Om )M im —

~ h

n{r)
E
j =i

IL'j ( 1 +  i'om ) M j  r

IT_j M%r

- ^ M f m

^ M 2m /

~ H j )  

~ H j )

I l 7 n < r - + H j )

l S2 m( ”  +/M

/ QC \
VmJ

(4.13)
Q m . r

Q sm.u 

V ^m.L- /

where now / =  1 A\ and where the upper and lower signs pertain to the upper and

lower hemisphere, respectively.

Now the radiative transfer equation has been brought into a form that can be written 

in a much more compact way by combining the 4-vector components o f  the vectors in

(4.13) at the various quadrature points into 4Ar-vectors for the up and downweiling 

radiation, respectively:

TL

(  I cm . A r .  ~ H i )  N 

I m A r - - H i )

L  m  ( ' •  - H i )

J  lx4X

T c  —
- f -  *

f f n , r  (  T '  + H t )

+ H i )

\  v^T .+m ) J ix4X

(4.14)

where caligraphic letters were used for the 4Ar-vectors to avoid confusion with the cor

responding 4-vector quantities. Explicitly, the 4A’-vectors are o f  the form

l c- ^ i n  — =  [ fmj ( r . -Hy ) • ^ m . / ( r - ~ H X - l ) -  ■-------—  H i )

I r n A T • - H S ) - I r n , r  (  1 - H  A  — I )  • •------- I Cm A T ■ ~ H l )

i ' sm(T. -Hx) . £  m i T - ~ H X - l ) -  ■ ■ ■■ L  m ( T - ~ H l ) -

VZiT. -Hx) - ~ H i ) ] T -

=  U ^ , i ( T - + H i ) t  + ^ 2)7 - • •■ +H\)-

. i
- I
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^m.r(r - +/M)* Im.r ( T• + / ^ )....... ^m.r(r - + ^ ;v ) .

L  m ( T - + L l l ) -  f  m ( *  + ^ 2 )  t  m ( r - + ^ . V ) -

^ m ( ” • + M l ) -  l ' m ( r - + ^ 2) ............ '  m ( r - + / i A ' ) ] T -

By summarizing the phase matrix elements at the various quadrature angles in (4.13). 

new (4 .Y x 4.Y) matrices are defined that correspond to the 4A"-vectors in Eq. (4.14):

^ 2 l m ( ' )  : =  ~ W J

^ 2 2 m ( r ) WJ

a { r )  / ( l  +  ^0m )M fm —M j 7

a (r ) [ ( l  +  d"om)Mfm

a (r ) ( (1 +  <Jom)M)m

a ( r ) / ( l  +  <^om)M^m - M , m

4 M 2m M 2m

■ l .V x l .V

-1:V x - lA r

■ l.V x l.V

■ I.Vx-I.V

(4.15)

— =  1......V

(4.16)

T.-tif-i-H]'- i.j =  l  .V

(4.17)

T .+ n , .  — iij-.i.J =  1 -V

(4.18)

where =  it , has been used.

Then the radiative transfer equation (4.13) becomes

d l L
CIT

I I
dX\

+  ‘
m +

dr

whe re

(€  +  A \ lm ) l cm_ +  A\2mZ'm+ -  ^m -

+  (^  +  -422m)^m+ _  $m +

< QcmJ(r. ± n t) '

(4.19)

(4.20)

CC° m ±
Q m . r ( T - ± f * i )

V Q m .ft '  ± V i )  )

(4.21)

1 x-J.Y
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U ± =

± m  o o o  

o ± m  o o 

o o ± m  o
(4.22)

\ 0 0 0 j
X '  4.VX4.V

and £ denotes the 4A'-unit matrix. To combine the equations o f  the positive and negative 

hemisphere, one defines

14 :=

A t,  :=

U -  0 

0 14+
X c •=

S.VxS.V 

*^llm A i 2tti

Ac Ac
^ 2 2  m

x c ( r )  i

T c ( r )  j

J S cm-

S Cm +
: S i, :=

SA'xSA'

Then Eqs. (4.19) and (4.20) can be written in compact form as

d l i

1 x S .V

1 x8;V

14
dr

=  {£  +  A cm )X cm - S cm. (4.23)

where £ now denotes the 8A*-unit matrix. The components o f  the S.V-vectors are denoted 

by lower case letters. Thus the kth component o f  X will be denoted by icm { r . k ) .  where 

k =  1 S.Y.

Equation (4.23) for the SA'-cosine mode vectors was arrived at by first combining 

the first two components o f  (4.11) and the last two components o f  (4.12) into new 4- 

vectors. and by then combining the 4-vectors at different quadrature angle arguments 

into 4.Y and eventually 8 .Y vectors. In a similar way. an equation for 8A*-vector sine 

modes can be obtained by combining the first two components o f  (4.12) with the last 

two components o f  (4.11). In complete analogy, one defines new 8 .Y-vector and matrix 

quantities X sm. S 4 ^ .  where the latter consists o f  the four 4A-b lock matrices

/

A I Irn ( r )  :=  - W j <*(r)
4

M fm 

(1 4- dom) M 2r
t.Vx-I.V

(4.24)

— : t.j = 1.

■/4 l 2 r u ( 7’ ) tCJ
a { r )  | M f , M 1 m

(1 +  S0m) M c2m y  ̂v x4 v
(4.25)
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« ( - ) M c M \
I m

a ( r )
^ 22m(7) :=  ~  u'j —

^ 2 m  (  1 d “  ^ 0 rn )  j  ^ v  x  {  v

- M o m (1 +

(4.26)

r . + V f  — f i j  : ‘ .J =  I  -V

(4-27)

l . V x l . V

One arrives at an equation o f  exactly the same form as for the 8 A dimensional cosine 

mode vectors:

U
dl\
dr

(4.28)

4.2.2 G en era l so lution to the hom ogeneous rad iative  transfer equation

The vector radiative transfer equation is o f the same form for all cosine and all sine 

modes. Substitution o f  the ansatz

I m ( 7 ) =  Qm  G X p ( — A m • T )

into the homogeneous equation corresponding to (4.23) or (4.28) leads to

— Am IA Qm — (£ +  A m) Qt

(4.29)

or

{€ +  x4m 4- Am IA) Qm — 0-

Solving this eigenvalue equation yields 8.V eigenvalues Amt AmS.v with corresponding

eigenvectors Qmi  QmS.x- So the general solution to the homogeneous equation is a

linear combination o f 8 A* linearly independent solutions o f  the form o f  Eq. (4.29). For the 

case o f  a vertically inhomogeneous atmosphere, one can just subdivide the atmosphere 

into L horizontal layers labeled by a layer index p that are assumed to be homogeneous 

also in the vertical direction, i.e. the optical properties, such as the phase matrix and 

the single scattering albedo, are constant in each layer. The radiative transfer equation 

is then solved in each layer separately. The general solution to the homogeneous part o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t
!



105

the radiative transfer equations (4.23) or (4.28) in layer p is then

(4.30)
j =  i
j  : eigenvalue index

p =  L L  (index o f  atmospheric layer)

m =  0........ 2.Y — 1 (index o f  Fourier mode).

4.2.3 P a rticu la r solutions to the inhom ogeneous rad iative  transfer  

equation

From (4.7) and (4.8) . it can be seen that the source term in the inhomogeneous equations 

(4.23) and (4.28) is o f the form S m =  T m e x p ( - "/ ^ o ) + F t -  Particular solutions Z m and 

A’m are therefore found separately for the beam source term T m and the thermal source 

term T t. respectively, and for the cosine and sine modes, by making an appropriate 

ansatz in either case, quite like in the scalar problem. The 8.V-beam source term is 

obtained from (4.7). (4.8). and (4.21):

f A/fIm Mhrn  0 0 >

a ( r )  X I2 1 m M h m  0 0

-'/aim -'/32m 0 0 

,  . ' / 41m - ' / 42m 0  0  ) 8:V xS :V

(4.31)
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where

M l  :=

W l m ( T  

-V̂ ll m (T

V ^4SIm (”

Mi- f lo)SbJ  4~ -1^22m ( '"  Mi? MO)*^f>.r 

_ Mi- ~^o )^b . l  "1“ -^32m ( ' • Mi- — Mo)-^6.r

“ Mi- -M o )5 6 ./ +  -V /42m (" ~ M i- -M 0 )5 6 .r  

+ M i- —Mo)-56.Z 4" ^ l C2 m (r - + M i-  - Mo)-^6.r 

+ M i- —M o )^ .Z  4" -^22 m (r - + M i-  ~M oJ-S.r 

+ M i- — fto}Sb.l -f" -V/32m (r - 4*Mi? —Mo)-^6.r 

+ M i- — flo)Sb.l +  -^ .|2 m (r - + M i-  — Mo)-$6.r / 1xS;V

and likewise

-Fftm =
g ( ~ )

4 -

w lie re

^ -V /i3 m (r - “ Mi- -M o )5 6 ,u 4- . \ / f . ,m ( r .  ~ no )Sb .v  ^

-u 23m ( "  - M i -  - M o ) 5 i . u  4 -  -V /|4m ( r - “ M i-  ~ H o ) S b . v  

- ^ 3 3 m ( ' " -  M i-  — M o )-^ 6 .u  4 - A ^ 3 -t rn ( ' • M i -  _ M o)-^6.i- 

• ' ^ 3m ( r - - M i -  - M o ) - ^ . u  4 -  A / £ , m ( r .  - M i -  - M o J - ^ . L -  

- ^ 1 3 m ( r - 4 -M i?  - M o ) 5 6.u 4 - 4 - / i t . - H o ) S b . v

M %3m ( r - 4 -M i?  - M o ) 5 6 . u  4 - A / | 4 m ( r .  4 -M i -  ~ V o ) S b . v  

M 33m ( r - + M i -  —  M o J S & .u  4 - A / 3_,m ( r .  4 - M i -  —  Mo)-$6.L' 

i, - ^ 1 3 m ( '  + M i -  - M o ) S & . u  4 - - ' ^ l r a ( r - + M i -  ~M oJ-Sft.t- ^  , x g V

The source term (4.32) "drives" the sine modes o f  the first two and the cosine modes o f  

the last two Stokes vector components, i.e. if the incident beam source has no C  and 

V  component, as in atmospheric applications, then these modes vanish. Substitution o f  

the ansatz

(4.32)

1 ~ ( t ) =  2 ^ e x p ( - r / M o ) (4.33)
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into the inhomogeneous radiative transfer equations (4.23) and (4.28) with

lead s  to

[ ± - u  +  £ +  A % ) z z i a =  K n -
A<o

(4.34)

from which the particular solution vectors with components z^s{k) are determined.

From the thermal source term, there is only a contribution to the 0th cosine mode, 

as can be seen from (4.7) and (4.8). To get an approximate particular solution to 

the radiative transfer equation associated with the thermal source, one can make a 

polynomial approximation o f  both the Planck function and the source vector T t :

K
B { T { t ) )  =  Y , b‘T‘

1=0

and
K

(4.35)T t =  (1 — a ( r ) ) < w  y . V <T‘
1=0

where

f V u '

M (0)V 0i
V i  : = • V u  := • ■ V qi : = *

V u

\ ) 1 xS.Y
V bl 1 x 2.Y l 0 >

(4.36)

l x  2 A’

At this point it was taken into account that the thermal source is unpolarized. The

a n s a tz

Z cm{r )  :=  S0tn £  X , r ‘
K

E
1= 0

(4.37)

substituted into (4.23) with S =  Som^t yields 

K l<

i=i 1=0 1=0
SornU lX lT ‘~ l =  6° m (£ +  A m) S  X lT ‘ ~  S° m ( l  “  a ( T»  H  V l

K + 1

E
l=i

— <>Om (^  +  -^m) — ^Om ( 1 — fl( ' )) V [ -  l ~ l *
1=1

Equating equal powers o f  r .  one finds

/ < / v + l  : UlX i  =  (£ +  ^S),V/_, -  (1 -a (r ) )I> / _ ,

. L
i
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l =  K +  1 : 0 =  {£ +  J ' ) X K -  (1 — a ( r ) )  V K .

So to a first order approximation, the procedure is as follows:

1. Find A'i from

( S +  A Z ) X i  =  (1 - a ( r ) ) V l

(4.38)

2. Then find A’o from

(£  +  ^S ).V0 =  (1 - a ( r ) ) V 0 +  U A \ .

(4.39)

The combination o f  the general homogeneous solution (4.30) and the particular inhomo

geneous solutions then gives the final result for each layer p:

! " , ( - )  =  £  « * ! > < - » £ ,  • r > +  V S i T ) .
J = 1

or in components:

' ~ p ( - * 0  =  T . C % pg ĉ p( f c )e xP ( - X c; ^ p - r )  4- f ~ ( r .  k). (4.40)
j =i

where

4 P( '  k) :=  =cmp(k) e x p (-r /ju0) +  <W[x0p(fc) +  x i P(k) • ']-

C P( ' 4 ‘) :=  :*np( k ) c x p ( - r / p 0).

k =  1 S.Y (index o f  vector component).

p = l , . . . . L  (layer index ).

m =  0.......2.Y — 1 (index o f Fourier mode).

j  : index o f eigenvalue.
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4.2.4 B o u n d a ry  C onditions

The coefficients C'jmp now have to be determined from the boundary and layer interface 

conditions.

In terms o f  the 4-Stokes vectors, the radiation at the top o f  the horizontal slab is

I("o. — /*• o)  =  I,("o) +  I«(ro).

where I, and I f denote a possible source o f isotropic radiation incident from above the 

medium and the thermal emission from the upper boundary itself, respectively. Since 

both are isotropic, these vectors only have a cosine Fourier component for m =  0. Fur

thermore. they are both unpolarized, i.e. I, =  [/,/2. /,■/2.0. 0]r and I< =  [ I t/'2. f t/2 .0. 0]r . 

Thus, in terms o f  the 8A:-vectors. one must require that the radiation at the upper 

boundary be equal to

^Om (A'(t'o) 4- I t (~o) )/‘2 : k ~  1 V

$0m (A '(”o) +  h{~o) )/‘2 : k -  .V +  1 2.V

0 : k -  2 A' +  1..

0 : k =  3 .V +  1.. . . .4Ar

0 : k =  4.V 4- 1..

0 : k =  5 A +  1.. .  .. 6.Y

0 : k -  6.V +  1.. . . .  7.Y

0 : k =  7 A* +  1.. . . .  8.Y

(4.41)

and

VA-.

The radiation field at the lower boundary taken here to be the surface o f  a planet is 

given in 4-vector form by

I ( r L . fL.o)  =  E t ( f i ) S t ( r L )

1 f 2 ~ .
+  — I do' I dfi' fi' A (fi. O: —fi'. o ) I {rL. —ft', o')

~  Jo  Jo

+  A  (fi. o : - f i 0. o0) —  S5 e \ p ( - r L/fi0). (4.42)

. t
I
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The three terms on the rhs are the thermal emission o f  the surface, the reflection o f  

diffuse light by the surface, and the reflection of direct sunlight, respectively.

E, :=

(  e n 0 0 0 ^
0 €22 0 0

0 0 0 0

0 0 0 0 /
denotes the matrix o f  the unpolarized surface emittance. and

\

A  :=

^ a n  a 12 « i3  a M ^

a2i a 22 a-23 a 21

a 31 0 3 2  a 33  034

\  a 4 i a42 043 a4 4 y

is the bidirectional reflectance matrix. The azimuthal dependency is again eliminated 

by a Fourier expansion which, after integration over o  and GauBian quadrature leads to:

+/*■') =  ^om E i(+ / ‘ .)Si(r/,)

+  w jL1j {  ( !  +  d~0m) A£, (//,-. - U j )  Icm { r L . - U j )  

j =i L

~ A sm { fa.  - U j )  l am { r L , -//,-)}

4- —  exp ( ~ r L/fi0) A cm{m. - f i 0) S*. i =  1. (4.43)

.V

=  H  “•’j^ j{A ^ (/ if. - f i j )  l sm { r L . - f i j )  

j =  i
+  A *m { m .  - f i j )  Icm { r L . - f i j ) }

+  —  exp (-r -L/^0) A ^ (/ q .  - f i Q) S b. =  1. (4.44)

Fqs. (4.43) and (4.44) also have to be translated into 8.V-vector form. The first term on
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the rhs o f  (4.-13) takes on the form

B ( T ( t l ) )
1 t .m ( ‘ L - k )  "O m  2 "

^22(f1k-5\ )

0 

0

. (4.45)

If one assumes that the elements o f  the reflectance matrix have the same symmetry 

properties with respect to o '  — o  as those o f  the phase matrix, i.e.

for k =  4 A -f 1...... 5A

for k =  5A* +  1...... 6 A'

for k =  6A’ +  1........7.Y

for k =  7.V -f 1....... 3.Y

=

(
a l ' l m a l 2 m 0 0

a 2 l m a 2 2 m 0 0

0 0 G 3 3 m a 34 m

0 0 « 4 3 m a 44m

0 0 a l 3 m 22 14m

0 0 a 2 3 m G 24m

'23 1 m a 3 2 m 0 0

I s 41 m a 4 2  m 0 0

\

A c
l r

0

0

A 2m

0 A sA lm

\ sA 2m 0
=

/

then the combination o f  the //- and I r - components o f  the third term in (4.43) with the 

corresponding i  - and 1'-components in (4.44) becomes in 8.Y-vector form:

Mo
ib.rn(TL-k )  ■= —  exp { - tl /ho )

a l l m ( M k - 4 . \ ' , - M o )  S b . l  +  a \ 2 m { f i k _ Ax - - M o )  S b . r  

5 . \ .  ~ M o )  S b . l  +  a l 2 m ( M k - 5 .\'- ~ M o )  S b . r  

(l3 l m ( M k - 6 . \ .  - M o )  S b . l  4- a^ 2 m ( M k - 6 \ .  - M o )  S b . r  

. (l SU m ( M k - 7 X -  - M o )  S b . l  +  a A2m( M k - T X .  - M o )  S b . r

X

k — 4 A  -p 1. 

k =  5 A* -P 1. 

k =  6.Y +  1. 

k =  7 A* -P 1.

With the definition

:=  ( r i> ) :=  w j M + :

(l-P<Som)A fm — A|r

L2 m L2 m / 4.V; x4.Y

. 5 A*

. 6 A'

7.Y 

.8 A' 

(4.46)

(4.47;
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the combination o f the It - and l r - components o f the second term on the rhs o f (4.43) 

and the corresponding U  - and I ' - components o f  (4.44) becomes

•t.v

i j .m (TLr k) — ^  rk-4i\.n *m(r£.- n) • ^ ~  4 A  4" f ........ ^.\ .
n=l

Finally, substitution of (4.40) for i n̂ ( r ^ . n ) yields two terms:

s . v  r  4 \  'j

iCdj .m(TL - k )  := C cjmL I r ck_ 4 X ' n g cj m L { n )   ̂ e x p ( - X cj mL  ■ r L ) 
, = l  l n = [  J

and

k =  4 A  +  L.

-i.v

S.V (4-48)

‘dp.m(TL-k )  ^  r ck_ Ay n t cm L (TL. n)  . k — 4A -+- L 8 iV .
n=l

(4.49)

So at the lower boundary, the condition is that the intensity components be equal to

* m -f- ( TL  • ^ ) : =  i l .miTL'k)  +  i\.m(TL -k )  +  (t"£,. k) +  i d p . m { TL - k )

k =  4.V +  1 S.V (4.50)

where the different terms are defined in (4.45) -  (4.49).

In complete analogy, the components o f  the 8A*-sine mode Stokes vectors have to be 

equal to

,m+(7' t ^ ’ ) :=  *6.m i TL • *̂) +  idg,m( r L-k )  +  idp.m ( TL- k)

k =  4<V -f- 1 S.V (4.51)

where

Mo
(~L- k) :=  —  o x p ( - T L/fi0)

«13m(/^— I.V. - M o )  S b . u  +  af4m(/U—J.v. - M o )  S b . v

X
a 2 3 m ( M k - 5 \ . - M o )  S b . u  +  a ^ m ( f i k - 5 . x . - M o )  S b . v

a : i 3 m ( M k - 6 . X .  - M o )  S b . u  +  6 .V. - M o )  S b . u

. ^ - I 3 m  ( M & — 7 .V. M o )  S b . u  4 "  ® 4 . | m  ( M f c — ” .V • Mo) S b . v

k =  4.V-j- 1........ 5.Y

k =  5 .V +  1........ 6.Y

k =  6A +  1........ 7.Y

k =  7.V +  1........ S.Y
(4.52)
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8Af f  4.X ^

‘ d g . m i ' L -  k )  : =  Y .  C J m L  \ X  r k -4 .X .n  9 j m L ( n ) f  e X P ( - A j m i  • r L  )
j=l ln=L J

t  =  4.V +  1........ 8 .Y. (4.53)

4.X

1 dp.m (r£ .A ) X  r k - 4 . X . n t m . L ( T L -  n ) • A — 4A +  1.
n=l

•S.V.

(4.54)

and

Llm
L2m

kl m
(4.55)

 -v

'ft5 :=  (r f j )  :=  u?i/i+j
\ - A S _  l l + ( ) n m IA o _  I

4.X x 4.X

So if one requires continuity o f i^s at the upper and lower boundaries as well as across 

interfaces o f  lavers. then

=  U -(n ).A - )  .

A = 1.....4N : m = 0.......2.Y -  1

l m.p(TP-k)  — 'm.p+l ( TP- k)  .

A = 1 SiY: p = 1 A — 1: rn =  0..

=  W ( ^ - A - )  .

A = 4.Y + 1 8Ar: m = 0......2.Y — I .

2.Y -  1

(4.56)

Substitution o f  (4.40) finally yields:

X  eXP(_Ajml ‘ m) = 0-*0 ~ / (̂Tq.A) .
J =  1

A- =  1........ 4 A'
s.v r
X  C C W  « p ( - A ^ p - r p)
j= t L

-  9j^ .p+i (k )  e x p ( - A j£ p+1 • t-p ) j

(rp.A ) -  r £ ' ( r p.A ) A =  1........ 8A' : p =  1.m.p-f*1 v * p • A -  1
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s.v
£  <*£ «.(*>  -  C l t a - * )
j= i

A: =  4.V +  1 8Ar

b.m +  idp .m\ \  h e r e  * g ,m  • **,m *6.m "I” *rfp.m *

4 .V

and :=  H  '•fc_ 4.V.n ^ i. (n ) .
n =  I

(4.57)

So the boundary conditions yield a system o f  8 Ar x  L equations (at fixed m )  for the 8A' x L 

unknown coefficients C'jmp for each Fourier mode. Solving these equations and back 

substituting the determined coefficients into (4.40) solves the vector radiative transfer 

problem.

As in the discrete ordinate solution o f  the scalar radiative transfer problem, the 

determination o f  the constants o f  integration o f  the discrete ordinate solution (4.40) 

by means o f  the system o f  linear equations (4.57) may be a numerically ill-conditioned 

problem due to the occurrence o f  positive and negative exponentials in the coefficient 

matrix. In complete analogy to the scalar problem, this numerical obstacle is removed 

by tlie scaling transformation

C' C .S

j m p =  C ^ „ e x p ( A ^ p r>_ I )'  j m p

c c.s
j m p =  C j m p exp(A C.S \

j m p  ^~Pf

>  0

(4.58)

After substituting (4.58) into (4.5<). one can solve for Cj'^ and later transform back to

obtain the constants o f  integration C

4.3 Rayleigh scattering tests

The vector version o f  D ISORT (hereafter V D IS O R T ) has so far been tested only for a 

few cases o f  Rayleigh scattering as well as for scattering bv spherical particles in the mi

crowave region [74], Extensive additional tests for a Rayleigh scattering, non-absorbing 

atmosphere have been conducted in this work by generating new results for several val-
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ties o f  optical thickness, surface albedo, and solar zenith angle, and comparing them 

to benchmark values found in the literature [75]. For many test cases, the agreement 

between the literature values and the numerical results produced by the original code 

turned out to be very poor. Figure 4.1 gives a typical example o f  the problems encoun

tered. The intensity / obtained with the original version of V D IS O R T  is shown as a 

function o f the cosine o f  the polar angle /i (dashed line), both at the top and at the 

bottom of the atmosphere for an atmosphere o f  optical depth r  =  1. an underlying black 

surface (albedo a =  0 ). the sun incident at /to =  0-8. and the azimuth between the 

sun and the direction o f  observation o  — do =  90°. The benchmark values are marked 

by the circles. A  close investigation revealed a few errors in the implementation o f  the 

procedures specific to the vector problem. No errors were found in the numerical core 

routines of VD ISO R T. which had been adopted from the scalar version o f  the code [70]. 

After eliminating the technical errors in the code, the tests were repeated for an optical 

thickness -  =  1. surface albedos a =  0. 0.25. and 0.8. and the beam source incident at 

//o =  0.2. 0.6. and 0.8. Benchmark values can be found in the literature for /. Q.  and 

£' at the top and bottom o f  the Rayleigh scattering atmosphere for most combinations 

o f  these parameters [75] (the Stokes component V* vanishes in a purely Rayleigh scatter

ing atmosphere). No further problems were encountered in reproducing the benchmark 

values. As an example. Fig. 4.2 shows the Stokes components /. Q.  and C  o f  the down- 

welling radiation at the bottom, and o f  the upwelling radiation at the top o f  the medium 

as a function of /i. obtained with the corrected code, and with the input exactly as in 

Fig. 4.1. Comparison o f  Figs. 4.1 and 4.2 shows that the problem has been eliminated.

The Stokes parameters in Figs. 4.1 and 4.2 have been obtained at the computational 

cpiadrature angles. When interpolating between the quadrature angles to the angles o f 

the tabulated literature values with a standard spline procedure, the direct comparison 

between the benchmark and the interpolated VDISORT-values shows an agreement that 

is typically better than 99.5 %.
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4 .4  Fourier decomposition of the phase matrix— spherical 

particles

In the theoretical development o f the vector discrete ordinate radiative transfer theory 

it is convenient to choose the Stokes vector representation I  =  [//. l r .U .  V ] T - In terms 

o f  the complex transverse electric field components o f  the radiation field Ei  =  [fr/|e_IfI 

and E r =  |ZTr|e"‘f2. these Stokes vector components are given by

11 =  E i E -

Ir =  E r E ;

C  =  2\Ei\\Er \ cos<5

V =  2\Ei\\Er \ sin 8 (4.59)

where 8 =  t\ — to- The connection with the most commonly used representation I 3 =  

[/. Q. U. \/\r  is given by

L  =  D  I (4.60)

where

D :=

/ \1 1 0  0 

I - 1  0 0

0 0 1 0
V o o o i

The  scattered transverse electric field [E[. E r] T can be obtained in terms o f  the incident 

field [Eio. E ro]T by a linear transformation:

/

=  A

where A  is a 2 x ‘2 matrix. The corresponding linear transformation connecting the 

incident and scattered Stokes vectors in the scattering plane is called the Mueller matrix 

(in the case o f  a single scattering event). For scattering by a small volume containing
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an ensemble o f  particles, the ensemble-averaged Mueller matrix is referred to as the 

scattering matrix F .  Finally, when transforming from the scattering plane to a fixed 

laboratory frame, the corresponding matrix is referred to as the phase matrix M .

For the case o f  scattering by particles with a size parameter comparable to the wave

length o f the incident light, certain assumptions are usually made concerning the en

semble o f scattering particles, which have consequences for the scattering matrix. In 

particular, the matrix A  is diagonal for homogeneous spherical particles [76]. and the 

scattering matrix in the Stokes vector representation (4.60) is o f the following form [53]:

/ a 1 bi 0 0 \

b 1 a 1 0 0

0 0 <13 62

V 0 0 —bo a 3 /

where each o f  the four independent components a i.  03. b\. bo is a function o f  the scattering 

angle 0 .

4.5 Generalization to nonspherical particles

The original version o f  Y D IS O R T  assumes a scattering matrix o f  the form (4.61). and the 

four independent components are expanded in Legendre polynomials [71]. Consequently, 

the original Y D IS O R T  version is strictly limited to scattering by spherical particles, 

commonly referred to as Mie scattering. However, for the broad field o f  atmospheric and 

other applications, more general phase matrices often have to be considered. In order 

to expand the scope o f  Y D IS O R T  to more general applications including scattering by 

nonspherical particles, a phase matrix o f  the same form as the one considered by Hovenier
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[53] is considered:

F s ( 0 )  =

a i bx 0 0

bi «2 0 0

0 0 03 bn

0 0 —62 aA

(4.62)

This scattering matrix with six independent elements is valid if any o f  the following 

assumptions is satisfied [73]:

L. Each particle in the ensemble has a plane o f  symmetry (e.g. homogeneous spher

oids. which include homogeneous spheres), and the particles are randomly oriented: 

or

2. the ensemble contains particles and their mirror particles in equal number and in 

random orientation: or

3. the particles are much smaller than the wavelength (Rayleigh limit).

The elements o f  (4.6*2) are most conveniently expanded in generalized spherical functions. 

The procedure for expanding a scattering matrix o f  the form (4.62) in this basis was 

added to the original version o f  VDISORT. Thus, the generality o f  VD ISORT has been 

significantly enhanced to apply to cases satisfying any one o f  the above three assumptions.

4.6 Mie scattering test

A weil-studied and documented test case for Mie scattering is based on the use o f  a 

Gamma-size distribution for the scattering particles

1
- V ( r ) = /•<>- 3 (4.63)

(a6) ^ " 2) r (£  -  2)

with the choices a =  0.2/im and b =  0.07. and an index o f  refraction o f the particles o f 

n =  1.44 with vanishing imaginary part. The Fourier components o f the phase matrix
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have been computed up to the 13<A order for the wavelength A =  0.951/im. For this 

reason, this case has been referred to as the L =  13 case, and the expansion coefficients 

o f the scattering matrix in the basis o f the generalized spherical functions can be found 

in the literature [77], Benchmark values for the Stokes vector components have been 

computed for beam incidence by Garcia and Siewert with the F\  method [34. 78] by 

using this particular scattering matrix, but then allowing for some absorption by setting 

the single scattering albedo to a =  0.99. The surface albedo was assumed to be rv =  0.1. 

the total optical thickness r  =  1. the cosine o f  the solar zenith angle /i0 =  0.2. and the 

Stokes vector o f  the incident beam source term Sj, =  7r [ l . 0. 0. 0]r  in the representation 

(4.60). The benchmark values o f  Garcia and Siewert could initially not be reproduced 

with the original version o f  VDISORT. not even after the errors found while performing 

the Rayleigh scattering tests had been corrected. Some major changes were necessary 

in the theoretical approach as well as those parts o f  the code that prepare the input to 

the YD ISO R T  core routines in the Mie scattering case. Again, these changes affected 

only routines specific to the vector version. In order to obtain the Fourier components 

o f the phase matrix (as required by the discrete ordinate method, see Section 4.2) from 

the expansion coefficients o f  the scattering matrix, the original approach consisted o f  an 

expansion o f  the scattering matrix in Legendre polynomials (in the newly substituted 

procedure, the generalized spherical functions are chosen as the expansion basis). Subse

quently. the scattering matrix was transformed into the phase matrix by rotating it from 

the scattering plane into the laboratory frame. The Fourier components were finally 

obtained in W'eng's original approach by applying a numerical Fast Fourier Transform 

routine to the phase matrix. So in order to get from one set o f  expansion coefficients 

to another set in a different expansion basis, this procedure relies on a detour via the 

scattering matrix and the phase matrix. The expansion, rotation, and particularly the 

Fast Fourier Transformation involved in that detour are quite costly in terms o f  com

puting time. The poor results one obtains in the L =  13 test case also suggest that the 

implementation o f  this procedure is not error-free.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
j.



120

A much more efficient method was developed by Siewert [79. 80] and successfully 

implemented and applied in connection with the doubling/adding method [35. 73]. In 

this method, the expansion coefficients o f the scattering matrix in the basis o f  generalized 

spherical functions are directly and analytically transformed into the Fourier components 

o f the phase matrix. No unnecessary detour via the scattering matrix and the phase 

matrix is involved, and the time consuming Fourier transformation procedure is rendered 

unnecessary. Another advantage is that the expressions for the Fourier components 

in terms o f the generalized spherical functions are purely analytical. The numerical 

implementation basically relies on a few simple recurrence relations for the generalized 

spherical functions, as described in detail elsewhere [35. 80].

Upon replacing the original Fast Fourier Transform (F F T ) package including the 

expansion and transformation routines for the scattering matrix, this method has been 

adopted for the upgraded version o f VD ISO RT. Siewert's method [79. 80] for the Fourier 

decomposition o f the phase matrix pertains to a scattering matrix o f  the same form as 

in (-1.62) and is thus valid for ensembles o f nonspherical particles satisfying any o f  the 

assumptions mentioned above. CPU  time comparisons in the L  =  13 test case showed 

that the new procedure is about 16 times as fast as the F F T  method used in the original 

version o f V D IS O R T.

The improvement in accuracy achieved by the new procedure can be seen in Figs. 

-1.3 and -1.4. showing the Stokes vector components I .  Q .  and C . as well as the degree o f 

polarization P  =  \JQ2 4- i  2 +  V2/1 for the L  =  1 3 case at the top and bottom o f the 

medium, respectively. The dashed line represents the numerical values obtained with 

the original version o f V D IS O R T  after correcting the errors detected in the Rayleigh 

scattering tests, but still using the original F F T  method. The solid line represents the 

results from the corrected and improved version o f V D IS O R T  using Siewert's method. 

The circles indicate the benchmark values from Garcia and Siewert's F \  method [78].
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4.7 Polarized incident beam test

The first two Stokes components / and Q  o f the scattered field are symmetric in o  — 

o ',  while the last two. U  and V  are antisymmetric, unless the Stokes vector o f  the 

incident beam source has a U-  or I -component (see Section -1.2). which is not the 

case in atmospheric applications. Therefore, after performing a Fourier expansion o f all 

vector and matrix quantities pertinent to the radiative transfer equation and boundary 

conditions, only the cosine modes contribute to / and Q.  and only the sine modes to  U  

and I '. V D IS O R T  is. however, capable o f  handling also the general case o f an arbitrarily 

polarized incident beam source. To test the performance o f  those routines com puting 

the sine modes o f / and Q  and the cosine modes o f U  and V . a polarized beam source 

term Si, =  ~ • [ 1. 0.4. 0.2. 0.05]r  is chosen as input: all other parameters are as in the 

L - 13 case.

For comparison, the Stokes parameters I .  Q. U . and the degree o f polarization P  for 

this test case have been computed with the General Adding Program  (G A P ) described 

by de Haan et al. [3-5]. (In the L =  13 case with an unpolarized beam source, as 

considered in the previous section, the test o f G A P  gave an agreement with the results 

published by Garcia and Siewert that was typically better than 99.999 %  .)

The particular V D IS O R T  routines responsible for the computation o f the sine modes 

o f [  and Q  and the cosine modes o f U  and V  also needed some corrections. The com 

parison in Fig. 4.5 o f the results obtained with the new V D IS O R T  version for the case 

o f a polarized beam source to the values obtained with G A P  in this test case show that 

the routines in question are now working correctly.

4.8 Summary

An extension o f the scalar discrete ordinate radiative transfer model to the 4-vector prob

lem including polarization has been tested for Rayleigh and M ie scattering. The tests for 

Rayleigh scattering revealed some errors in the original implementation o f this model.
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Although these errors had large effects on the numerical results and thus on the overallO O

performance o f the code, they were nevertheless not fundamental and could readily be 

rectified. The poor performance o f the original code for M ie scattering indicated some 

errors in the routines computing the Fourier components o f the Mie phase matrix. Since 

this procedure as a whole was found to be inefficient, it was completely eliminated and 

replaced by an analytical, more direct and more efficient method. This analytic Fourier 

decomposition approach yields accurate results for M ie scattering. In contrast to the 

original package for calculating the Fourier components o f the phase matrix, which was 

restricted to spherical particles only, the new method is also valid for scattering by a 

wide range o f nonspherical particles. Thus, the upgraded version o f V D ISO R T has been 

generalized and extended to a much broader range o f applications. A fter all corrections 

and improvements, the results obtained with the new version o f V 'D ISORT compare 

very well with published benchmark values, for both Rayleigh and Mie scattering. The 

performance o f the code for the special test case o f a polarized beam source was equally 

satisfactory.
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Figure 4.1. Rayleigh scattering test, original version o f V D ISO R T
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Figure 4.2. Rayleigh scattering test, new version o f  V D ISO R T
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Chapter 5

Angular distribution of the Stokes 

vector in VDISORT

The output o f V D IS O R T  is the Stokes vector at arbitrary user-specified azimuth angles, 

and at the discrete quadrature polar angles. A method is needed to calculate the radia

tion field at arbitrary polar angles other than the discrete ordinates (quadrature angles). 

In this chapter, a method to calculate analytically the Stokes vector at arbitrary polar 

angles and optical depths from a given vector discrete ordinate solution is developed [81]. 

The derived expressions are analytic solutions to the radiative transfer equation for the 

full 4-vector (polarized) radiative transfer problem. These analytic solutions satisfy the 

boundary conditions and across-layer continuity conditions in a vertically inhomogeneous 

slab consisting o f multiple plane-parallel layers. The new scheme is tested for Rayleigh 

scattering, scattering by spherical particles, and scattering by nonspherical particles. In 

all three test cases, the new scheme proves to be superior to a spline interpolation that 

has previously been used in connection with the vector discrete ordinate method, in 

terms o f  both accuracy and computational speed. In particular, the analytic method 

presented here has. in contrast to the spline, no difficulties with extrapolations. For 

the spherical particle case, a numerical imprecision in the discrete ordinate solution is 

simulated, and the analytic expressions developed here are found to actually improve

128
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5.1 Introduction

The discrete ordinate method provides a solution to the radiative transfer equation that 

is "exact" in the sense that it yields the radiation field at a number o f discrete polar 

quadrature angles (ordinates) that can be increased to approach the exact solution as 

closely as desired. In practice, however, the computer time required for the discrete 

ordinate method increases cubically with the number o f discrete ordinates. It is there

fore cost-effective to obtain the discrete ordinate solution at a rather limited number 

o f quadrature angles and then generate the radiation field at additional angles by us

ing a much less computer-time intensive interpolation scheme. The disadvantage o f 

this approach is that standard interpolation methods, such as the spline procedure, are 

known to produce poor results when the function to be interpolated has discontinuities 

or changes rapidly. To overcome this problem in the scalar radiative transfer problem, 

an analytic method has been developed previously that uses the discrete ordinate so

lution at the quadrature points to calculate the angular distribution o f the intensity at 

arbitrary angles. This scheme has been referred to as the iteration o f the source function 

method. The analytic expressions for the intensity at arbitrary angles and optical depths 

obtained by this method satisfy not only the scalar radiative transfer equation, but also 

the boundary and layer-interface continuity conditions at arbitrary angles (i.e. not just 

at the quadrature angles) [82]. This method is implemented in the scalar discrete ordi

nate radiative transfer code D ISO R T [70] and has been proven to be superior to standard 

interpolation schemes. For the scalar problem, the existence o f this analytic method for 

calculating the angular dependence o f the intensity from the solution at the quadrature 

points is one o f the advantages o f  the discrete ordinate method over other methods for 

solving the radiative transfer equation.

The original version o f YD IS O R T  [71] uses a conventional spline interpolation for 

interpolating from the quadrature to arbitrary angles. However. Weng [74] pointed out

the discrete ordinate result.
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that it would be desirable to develop a scheme for calculating the angular distribution o f 

each Stokes component in the full 4-vector problem similar to the one used successfully 

in the scalar case. The purpose o f this chapter is (i) to develop such a scheme, (ii) to test 

its performance against benchmark results, and (iii) to compare it to the performance 

o f a standard spline procedure. It is also found that the iteration o f the source function 

method is capable o f actually improving the accuracy o f the discrete ordinate solution.

5.2 Formulation of the iteration of the source function 

method for VDISORT

In a plane parallel horizontally homogeneous slab, the Stokes vector o f the radiation field

I  =

\

l r

V

V

(5.1)

is a function o f the vertical optical depth r. the polar angle 9, and the azimuth angle o. 

By making a Fourier expansion o f  I. one may isolate the azimuthal dependency in terms 

o f cosine and sine functions. "Isolation" simply means that each Fourier component 

(a . m) (where a  =  c .s  denotes cosine and sine modes, respectively, and where m denotes 

the Fourier order) independently obeys the radiative transfer equation

d l * ( r .  u) _  TO t o , .
u  j  =  I m("- U) -  J m( ' • «d r

(5.2)

where u =  cos0. and is the source function. Equation (5.2) can be formally integrated 

to yield analytic expressions for the down- and upwelling radiation field:

r  dt
I  =  i r ( ( M ) e - r/"  +  f  (5.3)

Jo

Im+(r - f1) = I™+( W  + f  - J  “ (f.+jOe-*1- ^  (5.4)
J  T U

\
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where I^ -  and I£,+ denote the Stokes vector Fourier components o f  the down- and up- 

welling radiation, respectively. r “ is the optical thickness o f the slab, and /.i =  |u|. A  

vertically inhomogeneous plane-parallel medium can be described by L adjacent, hori

zontal. homogeneous layers, where the optical properties o f the medium are allowed to 

vary from layer to  layer. The cumulative optical depths at the layer-interfaces are

r0 =  0. Ti. t2. . . .  77, =  r*. (5-5)

If a given optical depth r  falls into the ntfl layer, i.e. <  t  <  rn. then, following

Chapter 4. the source function can be expressed with GauBian quadrature angles Uj and 

corresponding weights wj. j  =  ± 1....... ± .V . as

1 J*0

T ( l - 5 m0) M ^ ( r n.u. Uj) I “  (r .  ttj) }

+  S°mn( T ) e - r/™ 4- iomd ; , , [ l - a ( r n) ]S t( r )  (5.6)

where the upper and lower sign pertains to a  =  c and a  =  s. respectively. For notational 

convenience, the symbols

have been introduced. .V denotes the number o f streams (quadrature angles) per hemi

sphere. For the GauBian quadrature angles. =  —Uj. M ^ ( r n. u. Uj) denote, as usual, 

the Fourier components o f the phase matrix in the n th layer, and the single scattering 

source term is

S L ( r )  =  ^ M ^ ( r n. u. - /i0) - S 6. (5.7)

Si, denotes the Stokes vector o f the beam source, —fio the cosine o f the solar zenith 

angle, and a ( r n) stands for the single scattering albedo o f the ntfl layer. The thermal 

source is unpolarized, i.e. in the chosen representation. Eq. (5.1). o f the Stokes vector. S*
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is given by [ B { T { t ))/2. B ( T ( t ) )/ ’2 .0. 0]T . where B  is the Planck function. The Fourier 

components M l  o f the phase matrix have, as in Chapter -1. the following form:

M c =

M l  =

/
A ' . c l m A / r 2 m 0 0 \

- U f l m 0 0

0 0 A / & m M i l m

V 0 0 -V/4C3 m A ^ 4 4 m /

/
0 0 A ' / f a m A ' ? 4 m

\

0 0 \  f s* 2 3 m \ [ s ‘  24m

\ f s3 l m \ r s• 3 2 m 0 0

\ \ f s4 l m -l i 4 2 m 0 0 /

M I m o
(o-8)

M lm

o
(5.9)

Due to the special symmetries o f  Eqs. (5.8) and (5.9). the source term (5.6) can be 

simplified in the following way. First one defines new vectors

(  I f  X 

I f

I s

V s

bn  : =

'  l i '  

If
C c

V c\

(5.10)

and similar expressions for the source function j l n and the single scattering source term 

s))m . i.e. one mixes sine and cosine modes o f different Stokes vector components in newly 

defined vectors, analogous to the procedure in Chapter 4. For the unpolarized thermal 

source term. s( =  S t . Likewise. s/, =  S& if one is dealing with an unpolarized solar beam 

term.

Next it is noted that the sine modes start at m =  1. Thus. M l  =  0 and I I  =  0 for 

m =  0. Consequently, the second <Wi factor for a =  c. and the first two S0m factors for 

a =  .? can be omitted in (5-6). New (4 x  4) matrices are introduced:

/

a l ( r n.u. Uj) := tvj a ( Tn )

4

(l+ < 5 0m )M ^ m M \ r

\
- M s2m M 2 771

(5.11)

(rn.u.uj)
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a sm ( r n.u .U j )  :=  wj
« ( ' „ )  M f

a .̂. u. uJ=o) :=

a sm ( T n . u . u J = Q ) : =

a (~n)
4 -

4 -

-M f ,

( I +  <Wi) M or

(Tn .U. — Hq )

(5.12)

(5.13)

(5.14)

( Tn .11. fig )

For notational convenience, the definition Uj =  hq for j  =  0 has been introduced, where 

- f io  =  cos0o- and Oq is the polar angle o f the solar beam source. One should, however, 

keep in mind that hq is not one o f the quadrature angles. W ith the definitions (5 .10)- 

(5.14). Eqs. (5 .2 ). (5.6). and (5.7) become

d r =  ( " • “ ) -  jmn(" “ ) (5.15)

jmn(r - “ ) =  £  “ • “ j) ' ^ ( ^  U j )
j  =  - . V  

1*0

+  smn(M) e ‘ +  ^0m [1 — fi("n)] S[ (r)

C ( “ ) =  a ^ ( r n . u. uJ = 0 ) - s b.

(5.16)

(5.17)

and n  is again the layer index so that the condition rn_ t <  t  <  r n is satisfied in Eqs. 

(5.15)—(5.17).

The discrete ordinate method yields a solution to (5.15) that is valid at the quadrature 

angles Uj and that can be written as

s.v
'C  ( r .  U j ) =  £  Cfmn S?mn ( U j ) e

— A0 rtmn
1 = 0

4* ^0m ^ a ,c  [^On( U j  ) 4“ X i  n ( l l j )  / ] . (5 .IS)

where the notation o f Chapter 4 is adopted. Note that Eq. (4.40) refers to the com

ponents o f the S.V-vectors defined in the previous chapter, whereas Eq. (5 .IS) is the 

same equation recast into 4-vector form, which will turn out to be more advantageous 

for the purpose o f  this chapter. For i ^  0. Afmn and gfmn ( i  =  I  S.V) denote the

t
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8.V eigenvalues and eigenvectors o f the discrete ordinate solution determined from the 

homogeneous radiative transfer equation, and the coefficients Cfmn are the constants o f 

integration determined from the boundary and layer-interface continuity conditions. For 

i =  0 . C'omn :=  1. Agmn :=  1 /ftQ. ggm„ (u , )  :=  z l n( « j )  is the particular solution due 

to the beam source term, and xon( « j )  4- * i n(u j )  ~ is the particular solution due to the 

thermal source term, expanded to first order in r .  Substitution o f (5.18) into (5.16) 

yields

8.V

j m n ( r -  U )  -  E * . ?« n ( « ) e - V* - T
t = 0

+  qmn.o(u) +  q L . i ( “ ) • T (-5-19)

where

.v 
:=  I I  Cm aal(rn. U. Uj) •gfmn(uJ)

j  =  - . V

+  <*ios!n(u) (5.20)

Qmn.o(u) '=  ^Om &a,c ^ ^  ~ am ( ”n* U j )  • XQn ( ) 4" [ l — a (~n ) ]bo^

’ 1* 0
(5.21)

^ m n . l  ( U ) ' —  ^Om & a .c  j  ^  ^ a m  ( * i f  U ' u j )  '  x l n ( Uj )  4 "  [ l  a  ( ” „  ) ]  b (
*■ j = -.v J

1*0
(5.22)

As in V D IS O R T . an approximation o f the Planck function linear in r  is assumed: 

B ( T { r ) )  =  B 0 -r B i  ■ r .  and thus in (5.21) and (5.22). b0 =  [Bo- B0. 0 .0]T . b i =  

[C i. B , .0 .0 ]r .

For the L-layer model and with the lower-case 4-vectors defined in (5.10). Eqs. (5.3) 

and (5.4) become

i l - ( r . M) =  i l - ( 0 . M) e - r/“ 4- £  r  l p( l . - / 0 e - (" - f)/^
p = 1  rP—! C

4- f T - j ( 5. 23)
J r n - 1
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im+('/0 = iS.+ (r '-/ * )e  (r* T)l̂  + f -jjm„(f.+AO
J  r  H-

dt  ............... e—(t—” )/**

L

+  E  / "  (5.24)
p = n + l  -/rP - l  ^

The condition rn_ [  <  t  <  r n is actually not unambiguous and should be rewritten more 

precisely as r n_ i <  r  <  r n. if cos0 =  u <  0. and rn_ t <  r  <  r n. if u >  0. If one 

substbutes (-5.19) into (5.23) and (5.24). the integration can be carried out analytically. 

The result is

i  Z T i r . f i )  =  i ^ - ( 0 . M ) e - r ^

8:V r  n — L*  n — l

+  H  | H  f - ( T- Tp - l - Tp'-Kmp-V)
i = 0  ^ p = l

+  L n ( " t1 ) f - { T . r n _ i . r :  A f ^ . / / )  j

n — I

+  2  *lm p.o (-/1) / - ( "  r p- i . T p : 0 . f i )
p =  1

+  qmn.o(-^) / - ( ' •  r„_!.r:0./i)
n— L

+  Z ]  (lmp.l(-/<) h - ( T . T p_ i . T p : ^ )  
p =  I

+  q L . i ( - / ‘ ) /*-(r - rn_|.r:/i) (5.25)

° + t-r ;o + (r - ./ z )e - ( r ’ _ r)/ 'i
s.\ ..

+  5Z  I / + (r - r - Tn- A?mn-f1)
: —n v

i^+ ("•/*) =  »m ( r " - ^ ) e
s.v

1=0 
L+ Y , 1T™P(H) f+(T.Tp. i . r p:Xfmp.fi) |

p = n + L  ^P=

+  qmn.o(/0 / + (r - r .r „ :0 ./ i)
L

+  H  q m p . o ( ^ ) / + ( r - V l - V ° T )
p = n - f  I

+  qmn.l(/')A + (r. r . Tn l f l )
L

+  5 1  qm p. i ( / ' ) /+ ( r - V i - V / i ) (5-26)
p = n  +  l

■ \
. I
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where

f ± ( r . T U r 2 : 3 . p )  ~  ± ~ l— ; -  e ~ ^  e M r - r 2 ) / ^  ( 5 .2 7 )
1 ±  pa

h ± ( r . n . r 2 : n )  :=  ±  ( r t ±  p )  -  e± (^ > ^  (r2 ±  /x)]. (5.28)

The terms and i^ + fr './ i) are determined from the boundary conditions, see

Chapter 4.

it can be easily verified that the expressions (5.25) and (5.26) satisfy the radiative 

transfer equation by substituting them into (5.15) and taking into account (5.19). The 

functions (5.27) and (5.28) are continuous functions o f r. and thus the expressions ob

tained for the Stokes vectors in the upper and lower hemisphere are also continuous, 

particularly across the interfaces o f the computational layers. Furthermore, for r  —>• 0. n 

in Eq. (5.25) is 1. and thus there is no sum over the summation index p in (5.25). Only 

the first term in this expression survives, since /_ (r . 0. r : Afmn. p )  and h _ ( r .0 .T :  p )  go to 

zero for r  —>• 0. Thus. i“ - ( r .^ )  - »  i^ ~ (0 .p )  for t  —> 0. Similarly. i ^ ~ ( r .p )  —> i“ + ( r ‘ ./j) 

for r  —r r~ . So the resulting expressions (5.25) and (5.26) are solutions to the radiative 

transfer equation that satisfy the boundary conditions at the top and bottom o f the 

atmosphere as well as the continuity conditions across layer-interfaces. In contrast to 

the solution (5.18) at the quadrature points, these solutions satisfy the boundary and 

continuity conditions not only at the discrete set o f quadrature angles, but at arbitrary 

angles u. The expressions (5.25) and (5.26) do not. however, constitute an alternative 

solution to the radiative transfer problem that replaces the discrete ordinate method, 

since they rely on the knowledge o f the quantities and. via Eqs. (5.20)-(5.22). C’£nn. 

Slmn- z mn* x 0n* and X in. and thus on the discrete ordinate solution. One may therefore 

be tempted to regard this scheme as a sophisticated interpolation formula. It will later 

become clear that this notion is not quite correct. Therefore, the expressions (5.25) and 

(5.26) shall be referred to as the iteration o f the source function expressions, or. for the 

sake o f brevity, as the ISF expressions. The existence o f such a scheme that allows one 

to analytically calculate the radiation field at arbitrary angles and optical depths from 

the discrete ordinate solution, both in the scalar radiative transfer problem (Ref. [82])
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and. as shown in this Chapter, in the full 4-vector problem including polarization, is one 

o f the unique advantages o f the discrete ordinate method.

5.3 Numerical Tests

As can be seen from the ISF equations, the only information that is necessary in addition 

to the discrete ordinate solution in order to apply this scheme is the knowledge o f  the 

matrices (r n. u. U j ) .  and consequently, according to the Eqs. (5.11)—(5.14) defining 

these matrices, the knowledge o f the phase matrix Fourier components at polar angie 

cosines (iz. uj). These Fourier components can. however, be calculated very efficiently for 

arbitrary angles from the expansion coefficients o f the scattering matrix by the method 

proposed by Siewert [80. 35]. as explained in Chapter 4. Thus, the new interpolation 

scheme can easily be applied in connection with VD ISO R T.

As a first test case to compare the performance o f the ISF scheme to benchmark 

results and to the performance o f a spline interpolation, a simple Rayleigh scattering 

atmosphere is considered with an optical depth 1. overlying a black surface (a lbedo= 0). 

the sun incident at /zo =  0.8. and with the azimuth between the sun and the direction o f 

observation o  — Oo =  90°. The radiative transfer problem is solved with V D IS O R T  for 

the Stokes components at the quadrature angles. Subsequently, the Stokes components 

are computed at user-specified angles with either the ISF expressions or a spline interpo

lation. The user-angles are set to values at which one can find benchmark results in the 

literature [75] for the Stokes vector components in this test case. In order to optimize 

the performance o f the spline interpolation, the radiation field has been interpolated 

separately in each hemisphere (tz >  0 and u <  0). This way one avoids the notorious 

problems associated with spline interpolations at discontinuities, such as that occurring 

in the Stokes components at fi =  0 at the bottom or top o f the medium. The down- 

welling radiation (zz <  0 in the convention used here) is considered at the bottom o f the 

slab. The Stokes components /. Q.  and i '  obtained with either method (ISF or spline) 

as a function o f user specified angles can be compared to the benchmark values, and an
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average error can be computed for each scheme. In general, this error will depend on 

the number o f quadrature points 2A\ often referred to as the number o f streams, that 

is chosen in the discrete ordinate method to solve the radiative transfer problem at the 

quadrature points. Th e  number o f streams have been varied between six and 28. i.e. 

between .V =  3 and A" =  14 streams per hemisphere. Figure 5.1 shows the absolute 

error in the computation o f  I .  Q . and U  as a function o f the number o f hemispherical 

streams .Y. obtained with the ISF expressions and the spline (represented by the crosses 

and the circles, respectively), and the C PU  time needed for either method. As expected, 

the spline performs particularly poorly if the number o f streams between which the in

terpolation is carried out is low. whereas the analytic ISF expressions yield much more 

accurate results for low A'. The Stokes components Q  and even more so U  clearly show 

that the ISF method yields superior results to the spline even for higher A\ The C P U  

time increases cubically with N  for both test cases and lies about 35 %  higher for the ISF 

method than for the spline. The ISF scheme considerably improves the computational 

efficiency for the Stokes components Q  and U . For a twelve-stream model, for instance, 

the Q  component is computed with an accuracy o f  5 • 10“ ° by the ISF scheme. The 

required C P U  time on an Alpha workstation is about 0.70 s. In order to obtain the same 

accuracy with the spline, one needs to employ a 24-stream model, which required 1.76 s 

o f computer time, an increase by 250 %. The situation is even more dramatic for the L 

component, where the computational accuracy o f the ISF scheme is unmatched by the 

spline in the considered interval o f streams. In case o f the intensity component, there 

is little gain in computational accuracy with increasing A’ for higher values o f A'. But 

even here, when considering, for instance, a 20-stream model, the ISF scheme computes 

the I  component with 1.5 • lO-4 accuracy, using 1.62 s C P U  time. To achieve the same 

accuracy, the spline needs a 24-stream model, which requires 9 %  more computer time. 

Although computer tim e is o f no serious concern in this simple Rayleigh model, the 

above considerations illustrate the progress in accuracy and efficiency achieved by the 

ISF method generalized here to the 4-vector radiative transfer problem.
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In order to gain some more insight in the particular advantages o f the ISF method, 

a second test case is considered which involves scattering by a size-shape distribution 

o f randomly oriented prolate spheroidal particles with index o f refraction 1.19 +  0.055/. 

The power law size-distribution has an effective area-equivaient-sphere size parameter 

o f 3 and an effective variance o f 0.02. The aspect ratio o f  the spheroids varies between 

5 and 11. and all aspect ratios inside that interval occur with equal probability in the 

shape distribution. The optical properties o f this ensemble o f nonspherical particles have 

been computed with the new method described in Chapter 2. The optical depth o f the 

slab is 1. the underlying Lambertian surface has an albedo o f 0.1. and the unpolarized 

beam source is incident at cos#0 =  0.2. The results for the optical properties and for 

the radiation field in this and similar test cases are presented in Chapters 6 and 7. Here, 

the radiation field is considered at an azimuth A d  =  180° away from the beam source 

and at the bottom o f the scattering medium. A t this azimuth, the U  and I ' components 

o f the Stokes vector are zero. First, the nonzero I  and Q  components are computed 

with VD ISO RT for a 36-stream model at the corresponding quadrature angles. Next, 

the computation o f the radiation field is repeated for a twelve-stream model, i.e. for a 

much smaller number o f discrete ordinates. The solution is obtained for the new set o f 

twelve quadrature angles (six per hemisphere). Then, the original 36 quadrature angles 

are specified as user-angles. the radiation field at these angles is computed both with 

the spline and with the ISF scheme from the twelve-stream solution, and the results are 

compared to the original 36-stream discrete ordinate solution. It should be recalled that 

the use o f the two schemes compared here is to reduce the number o f streams in the 

discrete ordinate computation (in this example from 36 to twelve), and then to compute 

the radiation field with less computational effort at any other points (in this case at the 

original 36 discrete ordinates) with either the spline or the ISF scheme. The comparison 

carried out here is therefore a good indication for the usefulness o f the spline and the ISF 

scheme, respectively. It is required that the spline or ISF scheme results compare well
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with the original 36-stream solution. Figure 5.2 shows the relative error o f the intensity

S I  =  1 -  (5.29)
'36

(top ), and the relative error o f the degree o f linear polarization

r n  , \ Q l l \ / h 2 / -  . > n \

dP‘ =  ‘ - j e S T i *  ( , '! 0 )

(bottom ) as a function o f the cosine o f the polar angle. The subscripts L2 and 36 denote 

the Stokes components obtained from the twelve-stream model in connection with the 

spline or ISF scheme, and those obtained with the 36-stream model, respectively. The 

dotted and dashed lines represent these relative errors for the ISF and spline scheme, 

respectively. The plots clearly demonstrate again the superiority o f  the new ISF method. 

The maximum error observed for the spline interpolation is 19 % for the intensity and 

36 %  for the degree o f linear polarization. In contrast, the error o f  the ISF results 

never exceeds 1 % for both quantities. Figure 5.2 also provides a clearer picture o f the 

weaknesses o f the spline and the strengths o f the new method. T h e  spline's performance 

is particularly poor near the edges o f the interval. The reason is the following: In the 36- 

stream model, the quadrature points at the edges o f the interval [0.1] are 0.043 and 0.998. 

whereas in the twelve-stream modei. the edge points are 0.125 and 0.982. Thus, when 

calculating the radiation field at 0.043 and 0.998 from the discrete ordinate solution 

in the twelve-stream model, the spline interpolation is actually not interpolating but 

extrapolating to these points, which considerably degrades its performance. The poor 

results for the spline near cos# =  ±1  must be considered a particularly serious drawback 

o f this method and an important advantage o f the ISF method, since accurate modeling 

results in the zenith and nadir direction are required for many applications.

The L=13 case described in Chapter 4 is used for another test o f  the new scheme, 

which will reveal an additional interesting advantage o f the ISF method. Figure 5.3 

shows the I  and Q  component as a function of the cosine o f  the polar angie at the 

bottom o f  the medium and at an azimuth A o  =  90° from the beam source. The crosses 

represent the correct \’D ISO RT solution at the seven hemispherical quadrature points
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c o s i n e  o f  p o i a r  a n g l e

c o s i n e  o f  p o l a r  a n g l e

Figure 5.2. Test for scattering by nonspherical particles
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in the 14-stream model used here. The correct solution at cos# =  0.65 and 0.85 is now 

deliberately manipulated in order to simulate a numerical imprecision o f the solution at 

these quadrature points. To this end. the /-component o f the particular beam source 

solution z cmn(u j)  is deliberately increased by ‘20% at u =  0.85 and decreased by 10% at 

a =  0.65 for all Fourier modes. The manipulated values o f / and Q  at the quadrature 

points are represented by circles in the figure. As can be seen, the spline (dashed line) 

takes the incorrect %alues as a given and places a smooth least-square fit polynomial 

through them. In contrast, the ISF scheme improves the "incorrect” quadrature solution 

and produces a curve that fits the correct solution at the quadrature points. The reason 

for this kind o f behavior is the fact that the ISF method is not primarily bound by 

the provided quadrature solution, but rather by the radiative transfer equation and the 

boundary and continuity conditions. I f  the values at the quadrature points are not 

quite in agreement with the radiative transfer equation under the given boundary and 

continuity conditions, then the ISF scheme will tend to bring the solution closer to the 

correct solution. If the error is only' slight, as in this example, then the one iteration 

step provided by the ISF method is enough to yield an accurate solution. It is also 

noted that the spline and ISF curves diverge again near cos# =  0 on account o f the poor 

performance o f the spline in the extrapolation region.

5.4 Summary

A new scheme for analytically calculating the angular distribution for the full 4-vector 

radiative transfer problem including polarization has been developed. The theoretical 

development o f this scheme is conceptually similar to the iteration o f the source function 

(ISF ) method for the intensity in the scalar discrete ordinate method. The resulting 

formula is an analytic expression for the Stokes vector Fourier components as a function o f 

// and r. which satisfies both the radiative transfer equation and the boundary conditions 

and the layer-interface continuity conditions. This analytic solution depends on the 

knowledge o f the discrete ordinate solution at the quadrature angles and can therefore

' | 
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only be used in connection with the discrete ordinate method.

A  first test o f the new interpolation scheme for a Rayleigh scattering medium showed 

that it yields more accurate results than a standard spline interpolation for a given 

number o f quadrature angles. To  achieve a given computational accuracy, the spline 

interpolation clearly proved to be less efficient in terms o f computer time than the ISF 

scheme.

A  second test for a medium containing a size-shape distribution o f randomly oriented 

nonspherical particles revealed that the spline's deficiencies become particularly apparent 

in the extrapolation region near the angular edge points o f  the interval. The error in the 

calculation o f the interpolated intensity and degree o f linear polarization was as high as 

19% and 36%. respectively, for the spline interpolation. The ISF scheme, on the other 

hand, showed no such deficiencies, the error in the fit o f  the benchmark values was less 

than 19c at all angles for both the intensity and the degree o f linear polarization.

In the third test case o f a M ie scattering medium, a numerical imprecision has been 

simulated by deliberately manipulating the discrete ordinate solution at some o f the 

quadrature points. The spline produced, as expected, a least square fit to the "incorrect" 

quadrature points. The new ISF method improved and actually restored the correct 

solution, in spite o f the fact that this scheme relies on the discrete ordinate solution. 

This remarkable property o f the ISF method is due to the fact that it inherently satisfies 

the radiative transfer equation and the boundary and continuity across layer-interface 

conditions.
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Chapter 6

Shape-Sensitivity Study of 
Optical Properties

One is now in a position to model from first principles single and multiple scattering in 

size-shape distributions o f randomly oriented spheroidal particles. The model described 

in Chapter 2 starts with the Helmholtz equation and computes the single scattering 

optical properties o f size-shape distributions o f  randomly oriented spheroidal particles. 

These optical properties, i.e. the expansion coefficients o f  the Stokes scattering matrix 

and the single scattering albedo, can be directly used as input to V D IS O R T  in order to 

solve the radiative transfer equation and perform multiple scattering calculations.

In this chapter, the single scattering model is applied to conduct a sensitivity study 

to assess the effect o f  particle shape on the optical properties o f size-shape distributions 

o f randomly oriented prolate spheroidal particles [58]. The emphasis is on covering a 

large range o f the spheroids' aspect ratio in order to include the effects o f  highly aspher

ical particles. The investigation reveals that the elements F n ,  F i i jF \ \ .  and F^.\/F\i o f 

the Stokes scattering matrix are very sensitive to the effective aspect ratio o f  a shape 

distribution in the test cases under consideration, which will impact the radiance, the 

degree o f linear polarization and the degree o f circular polarization o f light singly scat

tered by such an ensemble o f particles. The same elements are only mildly sensitive to a

146
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variation in the effective variance o f the shape-distribution. The remaining elements o f 

the scattering matrix are only mildly sensitive to a variation o f the effective aspect ratio, 

and rather insensitive to a variation o f the effective variance o f the shape-distribution. 

The single scattering albedo and the asymmetry parameter are found to be near-linear 

functions o f the effective aspect ratio o f the shape-distribution and rather insensitive to 

the effective variance. Comparison o f averages over a shape-distribution with a vary

ing number o f averaging points shows that only a few averaging points are necessary to 

obtain converging results for the optical properties.

6.1 Introduction

A recent investigation by Mishchenko that relied on the use o f  spheroidal particles has 

provided strong indications that when considering a size-shape distribution o f randomly 

oriented particles, the additional averaging over shape, i.e. over the spheroids' aspect 

ratio in this case, yields a smooth featureless phase function qualitatively resembling the 

phase functions that one typically observes in natural aerosol layers [27]. This result 

suggests that the crucial difference between a spherical and nonspherical particle model 

is not just the additional averaging over particle orientations, but also the additional 

averaging over different particle shapes. This result also justifies the use o f  a simple 

particle shape, such as the spheroid, since the conspicuous features related to particle 

shape disappear in the averaging process. The spheroidal shape is in fact, as pointed 

out earlier, particularly appealing for modeling purposes. If a spherical particle model 

is found to be inadequate for a particular application, then a spheroidal particle model 

introduces just one additional parameter, the spheroid's aspect ratio, which can be var

ied to obtain a wide range o f particle shapes including flat oblate disks, spheres, and 

elongated prolate needles.

The recent study by Mishchenko [27] on the phase-function o f size-shape distributions 

o f spheroids raises a number o f interesting questions. Firstly, the sensitivity o f the optical 

single-scattering properties to the parameters characterizing the shape-distribution needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

to be investigated. It is well-known that the optical properties o f  size-distributions o f 

spherical particles are very sensitive to variations in the effective radius. They do not. 

however, depend very strongly on the effective variance o f the size-distribution. One can 

similarly define an effective aspect ratio and an effective variance for a shape-distribution 

o f polydisperse randomly oriented spheroids and investigate the sensitivity o f  the optical 

properties to variation in these quantities. In particular. Mishchenko's study showed 

that a relatively narrow shape distribution was enough to average out any shape-related 

features in the phase function, which may lead to the hypothesis that the phase function 

is rather insensitive to increasing the width o f a shape distribution. Secondly, whereas 

the phase function only concerns the intensity (radiance) o f  the scattered radiation, 

one has to investigate the effect o f particle shape on polarization. For this purpose, 

the full Stokes scattering matrix has to be considered. The interpretation o f polarization 

measurements by instruments on the ground, on balloons, on aircraft, or in space can add 

valuable information to the measured intensity [60. 61. 62. 63. 64. 65. 66. 67]. The correct 

interpretation o f polarimetric data stemming from ice clouds and aerosol layers therefore 

requires a suitable nonspherical particle model and a more thorough understanding o f 

the sensitivity o f polarization to particle shape.

Mishchenko's investigation [27] relied on the use o f the extended boundary condition 

method (E B C M ) [13. 14. 15. 16. 17], which calculates the particle's T -m atrix. The 

study o f shape-sensitivity o f the optical properties with the E B C M  is.however, limited 

to mildly aspherical spheroids due to the inherent ill-conditioning o f the EBCM  when 

dealing with highly aspherical particles. Thus, the dependency o f  the phase function on 

the variance o f the shape distribution has so far only been investigated for a narrow range 

o f mildly aspherical particles. The dependence o f the optical properties on the effective 

aspect ratio, i.e. the center o f the shape-distribution. still remains to be explored. It 

is the subject o f this chapter to begin filling these gaps in our understanding o f the 

impact o f  particle shape, particularly moderate and extreme departures from sphericity, 

on intensity and polarization.

i
!,
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6.2 Methods

The new method developed in Chapter 2 allows one to calculate the T -m atrix  in spher

oidal coordinates (denoted by caligraphic font), and it thereby entirely avoids the ill-con

ditioning encountered in the EBCM . The spheroidal T -m atrix  can easily be transformed 

into the spherical coordinate system, on which the EBCM  relies. Then, one can apply 

the well-established procedure o f analytical averaging over orientational angles [32] in 

order to compute the optical properties o f ensembles o f randomly oriented particles. In 

this way. one is not limited to mildly aspherical shapes. The modified S V M  approach 

will be applied in connection with the analytical averaging procedure to conduct the 

sensitivity study.

A  spheroid can be characterized by its major and minor axes a and b. Alternatively, 

the aspect ratio e =  a/b determines the shape o f the spheroid, whereas its size can be

characterized by the radius o f an area-equivalent sphere, or by the radius o f a volume-

equivalent sphere.

For the form o f the size distribution, a power-law distribution is assumed:

1
C  : r  <  r x

C ( r i / r ) 3  : r i <  r  <  r 2 ( 6 . 1 )

0  : r  >  r 2

where r  is the area-equivalent sphere radius. The constant C' is chosen such that

[  d r n si:(;{ r )  =  1.  (6.2)
Jo

A size distribution can be characterized [69] by its effective radius

I 'cff =  q  JQ ( l r r ~ r2ns,ze{r) (6.3)

and its effective variance

1 , 2  

V'-SS =  ~2— 7̂  d r ( r ~ r ' f f )  ~ r  nst.e( r ) (6.4)
re//
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whore the averaged cross sectional area is

G  =  f d r - r 2 nslze( r ) .  (6.5)
Jo

The parameters n  and r-i in (6.1) can be expressed in terms o f rej f  and i'ef f -

For the size-distribution o f spheroids that is to be considered, an effective size param

eter o f the size distribution x ĵj =  2;rreyy/A =  3 is chosen, where A is the wavelength 

o f light. The effective variance is taken to be i/ej j  =  0.2. and the index o f refraction is 

n = 1.19 -f- 0.055 i.

Very little quantitative information is available about the distribution o f shapes in 

natural cirrus clouds or aerosol layers. The description o f natural shape-distributions is 

complicated by the irregularity o f the shapes o f natural particles. An exact description o f 

such shape-distributions which would account for every individual shape, is impractical 

and from a modeling standpoint undesirable, since it would introduce a large number 

o f parameters. The shape-distribution o f spheroidal particles that will be considered 

is described by only one parameter, namely the aspect ratio c =  a/b. Such a shape 

distribution is therefore ideal for modeling purposes and a natural generalization o f 

the in many cases over-simplified spherical particle model. For the form o f the shape 

distribution, this study shall follow Mishchenko's work [27] and assume an equiprobable 

distribution o f  the aspect ratio

C  : C i  <  e  <  e 2

^s/iape(c) — (6 .6 ) 
0 : otherwise

where C  =  !/(«■> — ei )• The effective aspect ratio ce// and effective variance ° f  the

equiprobable shape distribution are defined as

u „  =  (6.7)

/*<// =  (6-8 )

In this investigation, the size-distribution is kept constant, whereas the parameters char

acterizing the shape-distribution are varied, and the effect on the optical single-scattering 

properties will be observed.
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One o f the optical properties o f interest is the Stokes scattering matrix F . which for 

spheroidal particles is o f the special form (4.62). Fn connects the scattered and incident 

intensity and is therefore identical with the phase function. The other elements o f the 

Stokes scattering matrix describe the change in polarization in a single scattering event 

as a function o f the scattering angle 0 .

6.3 Results

Figure 6.1 shows the six independent elements o f the Stokes scattering matrix for the 

size distribution defined above and for three fixed aspect ratios e =  1.1 (dotted line). 

8 (dashed line), and 15 (solid line). The particles are randomly oriented. Note that 

the phase function F u  is plotted on a logarithmic scale, whereas the other elements of 

the scattering matrix are shown in relation to the phase function. One can see that 

the elements F n . F22- and F34 vary considerably with shape. The other three elements 

clearly vary when going from e =  1.1 to c =  8. but not much more when going from 

c =  8 to e =  15. It is also noted that the deviation o f F22/F11 from 1 appears to be a 

good measure for asphericity. as previously suggested by Yang and Liou [10].

The first question that needs to be addressed is how sensitive the elements o f the 

Scattering matrix are to variations o f the effective aspect ratio ce// in a size-shape dis

tribution o f randomly oriented prolate spheroids. Figure 6.2 shows the elements o f the 

scattering matrix for an ensemble o f randomly oriented particles o f the same size dis

tribution as in Fig. 6.1. but instead o f having fixed aspect ratios, one now considers 

equiprobable shape distributions. The effective variance o f all five shape distributions is 

H,jj =  3. and the effective aspect ratio is ee// =  4 (solid line). 6 (dotted line). 8 (dashed 

line). 10 (dashed-dotted line), and 12 (triple-dot-dashed line). In all cases, the shape 

distribution has been averaged over seven equidistant points. Thus, the solid curve, for

instance, has been obtained by averaging over e =  1.2........ 7. One observes a strong

dependency o f F u . F22/Fu . and F34/ F 11 on ee//. as one might have guessed from Fig.

6.1. The other three elements F33/F11. F ^ / F n . and - F 12/Fn  do not change by more
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Figure 6.1. Stokes scattering matrix for size distribution o f spheroids
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Figure 6.2. Stokes scattering matrix, variation in effective aspect ratio
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than 5-10% with ce//. The phase function Fn  relates the scattered field intensity to 

the incident field intensity. The element F 22 relates the corresponding Stokes vector Q -  

components to one another, and the element F3.1 constitutes the linear relation between 

the U -  and V -  components o f the incident and scattered field. Thus, both the intensity 

and the degree o f linear polarization and the degree o f circular polarization o f radia

tion singly scattered in a size-shape distribution o f randomly oriented spheroids will be 

sensitive to the effective aspect ratio ee// o f  the shape distribution.

It is also noted that particularly the element F3 4 /F 11 as a function o f the scattering 

angle in Fig. 6.1 shows strongly shape-characteristic qualitative features. For an aspect 

ratio o f 1.1. it has two local maxima at ca. 40° and 70°. one local minimum at 155°. 

and two saddle points at 100° and 140°. For e =  8. it has only one local maximum at 

80° and two local minima at 25° and 140°. whereas for e =  15. only one local maximum 

and one local minimum at 110° and at 20°. respectively, are left. Thus, when the 

ensemble-average is carried out only over size and orientation, and when the aspect 

ratio o f the spheroids is assumed to be the same for all particles in the ensemble, the 

function F3.1/ F 11 changes not only quantitatively but also qualitatively with c. In Fig.

6.2. on the other hand, where the ensemble-average includes an additional averaging over 

shape, one obtains smoothly varying functions that basically have the same qualitative 

features, a local minimum in the forward-scattering region, a local maximum in the 

side scattering direction, and another local minimum at higher scattering angles, which 

slowly disappears with increasing effective aspect ratio. The minimum in the forward 

scattering region shifts to higher angles and deepens. The maximum also shifts to higher 

angles and becomes more flat with increasing €e//-

In Fig. 6.3. the dependency o f the scattering matrix components on the effective 

variance o f the shape-distribution is investigated. The effective aspect ratio is 8 

for all three curves, and the effective variance fief f  is 7 (solid line). 4 (dotted line), and 

I (dashed line). In all three cases, the averaging over shape involved 15 equidistantly- 

spaced aspect ratios. Thus, for instance, the solid curve has been obtained by averaging
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Figure 6.3. Stokes scattering matrix, variation in effective variance
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over t =  1.2.........15. The elements Fn . —F ^ / F n . F33/ F n . and F4 4/ F u  are insensitive

to a variation in The element F22/Fu  shows some slight sensitivity in the region

between 90-140°. but only when going to a high variance o f ^ c// =  where the deep 

minimum o f highly aspherical spheroids, which is observed in Fig. 6.1. brings the curve 

somewhat down in this angular region. The element F h / F h  also seems to be somewhat 

sensitive to the effective variance. However, by comparing Fig. 6.3 to Fig. 6.2. one 

can conclude that the sensitivity o f the scattering matrix to a variation in the effective 

variance /ie// is rather small for the two elements F2 2 / F u  and F ^ / F u .  The effect o f a 

variation o f ceyy is clearly much more pronounced.

It is noted that in Fig. 6.2. curves have been compared that were obtained by 

averaging over an equal number o f equidistant points in the shape distribution. The 

same is true in Fig. 6.3. If this were not the case, then one could not be sure that the 

observed effects may not be statistical artifacts due to a varying number o f averaging 

points. For practical calculations, it is interesting to get a feeling for how many points 

one actually has to use for averaging over shape in the size-shape-distribution in order 

to obtain converging results. Figure 6.4 shows the elements o f the Stokes scattering 

matrix for a size-shape distribution o f randomly oriented particles with the usual size 

distribution and an equiprobable shape-distribution o f ee// =  8 and /ie// =  4. which 

is identical to the dotted curve in Fig. 6.3. The three different curves in Fig. 6.4 are 

obtained by carrying out the averaging over shape over a varying number :Y o f equidistant 

aspect ratios, namely A* =  15 (solid line). 8 (dotted line), and 3 (dashed line). Thus, 

for instance, the dashed curve has been obtained by averaging over e =  4.8. 12. One 

observes remarkably little change by going from .Y =  3 to .Y =  8, and virtually no 

change by going from .Y =  8 to .Y =  15. Consequently, a relatively small number of 

points appears to be enough for obtaining converging results when averaging over shape, 

at least in an equiprobable shape-distribution.

The sensitivity o f  the single scattering albedo and the asymmetry parameter to shape 

will now be investigated. First, an identical-shape size-distribution o f randomly oriented
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Figure 6.-1. Stokes scattering matrix, variation in the number o f averaging points
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prolate spheroids is considered in which all particles have the same aspect ratio. By 

calculating the optical properties for different ensembles with different aspect ratios e. 

one obtains the single scattering albedo and the asymmetry parameter in a single-shape 

size-distribution o f randomly oriented particles as a function o f e. The result is shown in 

Fig. 6.5. Both parameters are near-linear functions o f the aspect ratio. Figure 6.6 shows 

the same parameters for size-shape distributions as a function o f the effective aspect 

ratio. The effective variance and the number o f averaging points is as in Fig. 6.2. One 

observes hardly any difference between Fig. 6.5 and Fig. 6.6. which is to be expected due 

to the near-linear behavior o f the two parameters (note the difference in the range o f the 

abscissae in Figs. 6.5 and 6.6). Due to this near-linear dependency, the single scattering 

albedo and the asymmetry parameter in these size-shape distributions are insensitive to 

changes in the effective variance or to changes in the number o f averaging points. Both 

the scattering cross section and the extinction cross section decrease with increasing 

effective aspect ratio. The monotonous decrease o f the single scattering albedo is due 

to the fact that the scattering cross section decreases stronger with an increase o f the 

effective aspect ratio than the extinction cross section.

6.4 Summary

The sensitivity o f the elements o f the Stokes scattering matrix, the single scattering 

albedo, and the asymmetry parameter to changes in the parameters characterizing the 

particle shape has been investigated. As a model system, a size-shape distribution o f 

randomly oriented prolate spheroids has been considered. The shape-parameters in this 

study covered the whole range from mildly aspherical to extremely elongated prolate 

spheroidal particles. It was found that the elements F u -  Fz2 / F n .  and F 3 4 / F 1 1  o f the 

scattering matrix are strongly dependent on the effective aspect ratio, whereas F 3 3 / F n .

F.\.\/Fu . and —F 12/F11 are only mildly sensitive to changes in f e//- As a result, the 

intensity (radiance), the degree o f linear polarization and the degree o f circular polar

ization o f the radiation will be sensitive in a single-scattering event to a variation o f
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the effective aspect ratio ee//- 1°  contrast, a variation o f  the effective variance o f  the 

shape-distribution had only little effect on the elements F 2 2/ F 11 . and F^.\/F\\. and vir

tually no effect on the other four elements o f the scattering matrix including the phase 

function. It was further found that averaging over only 3-8 points (aspect ratios) in the 

shape-distribution was enough to obtain converging results.

The single-scattering albedo and the asymmetry parameter were found to be near- 

linear monotonously decreasing functions o f the aspect ratio. As a consequence, the 

additional averaging over shape in the size-shape distributions yielded almost exactly 

the same near-linear functions with the aspect ratio e replaced by the effective aspect 

ratio ref f . Also, due to the near-linear dependency o f the single-scattering albedo and 

the asymmetry parameter on e. both parameters are fairly insensitive to a variation o f 

the effective variance in a shape-distribution.
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Chapter 7

Shape-Sensitivity Study of the 

Radiance and Polarization

The results from the last chapter strongly suggest that the intensity and polarization 

o f radiation undergoing single scattering by an ensemble o f nonspherical particles is 

strongly sensitive to the effective aspect ratio o f the shape-distribution. The next ques

tion is whether this shape-sensitivity is also observed in macroscopic media, or whether 

multiple scattering tends to smear out the shape-sensitivity observed in the single scat

tering optical properties. In this chapter, the vector discrete ordinate radiative transfer 

(V D IS O R T ) model described in Chapters 4 and 5 is applied to investigate the shape- 

sensitivity o f the radiance (intensity), the degree o f linear polarization, and the degree 

o f circular polarization [59]. The investigation confirms that all three quantities are 

strongly sensitive to a variation o f the effective aspect ratio in the considered case. This 

shape-sensitivity is observed consistently from size-shape distributions containing mainly 

moderately aspherical particles to those containing predominantly extremely aspherical 

particles. Within a range o f the effective aspect ratio from 4 to 12. the degree o f linear 

polarization changes by as much as 0.15. At certain angles from the sun. the radiance 

changes by as much as 60% within the same range o f the effective aspect ratio.

161
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7.1 Introduction

Most retrieval algorithms employing radiance and polarimetric remote sensing data rely 

on the use o f spherical particle models in order to model the scattering and absorption 

o f radiation. However, when observing ice clouds, aerosol layers, or air bubbles in sea 

ice. just to name a fe%v examples, the assumption o f spherical shape is not justified. The 

newly developed model presented in the previous chapters allows one to systematically 

study the effect o f particle shape on atmospheric radiation over a wide range o f size 

parameters, refractive indices, and. most importantly, shapes.

As a demonstration o f the capabilities o f the model, a particular case is investigated, 

in which the same nonspherical particle model as in the previous chapter is considered. 

The results o f Chapter 6 for the single scattering optical properties are used as input 

to V D ISO R T. The question addressed here is how the changes o f the single scattering 

properties with shape affect the radiative transfer, which includes multiple scattering o f 

radiation, in a medium.

7.2 Results

The size-distribution in the model system considered here is as in Chapter 6. The 

shape-distribution is again assumed to be equiprobable. One result o f Chapter 6 was 

that the crucial parameter characterizing the shape o f  the size-shape distribution o f 

randomly oriented spheroids is the effective aspect ratio, because the single scattering 

optical properties are considerably more sensitive to cef / than to Therefore, the

effective variance o f the shape-distribution is kept constant at f iej / =  3. and the sensitiv

ity o f the radiative transfer in the medium to the shape-parameter ee// is quantitatively 

investigated.

The medium containing the ensemble o f prolate spheroidal particles is assumed to 

be plane-parallel and homogeneous with an optical depth r  =  1. the sun incident at 

jiQ =  |cos0o| =  0.2. Oo =  0. and with an underlying Lambertian surface o f albedo= 0.1.
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The single scattering optical properties o f the size-shape distribution o f randomly 

oriented spheroids, i.e. the single scattering albedo and the Stokes scattering matrix, 

have been computed in Chapter 6 by means o f the modified separation o f variables 

method (Chapter 2). The optical properties are used as input to V D IS O R T  (Chapters 

-1 and 5), which performs the radiative transfer (multiple scattering) calculations. The 

number o f streams (polar quadrature angles) was set to 36. The output is the Stokes 

vector o f the diffuse radiation with components I . Q .  L\ V  as a function o f the polar and 

azimuthal angle and as a function o f the optical depth.

Figure 7.1 shows the upwelling radiance / (top row) and the degree o f linear polar

ization Pi =  \/Q2 +  U 2/1 (bottom  row) at the top o f the medium ( r  =  0) for three 

different azimuth angles 6  =  0 (le ft column). 90° (m iddle column), and 180° (right col

umn) as a function o f  the cosine o f the polar angle u =  cosd. The five curves are for 

a size-shape distribution o f  randomly oriented spheroids with an effective aspect ratio 

o f t ef j  =  -1 (solid line). 6 (dotted  line). 8 (dashed line). 10 (dotted-dashed line), and 

12 (triple-dotted dashed). For all three azimuths, the shape-sensitivity o f the radiance 

(intensity) is seen to be larger in the horizontal looking direction near u =  0. A t o  =  0. 

the radiance decreases with ce//. whereas at o  =  90° and 6  =  180°. the order is reversed. 

The degree o f linear polarization Pi is strongly shape-sensitive and increases with ee/f 

at o  =  0 and o  =  90°. A t 6  — 180°. one observes in fact also a strong shape-sensitivity 

o f the linear polarization between u =  — 1 and u =  —0.6. as can be seen from comparing 

the different ordinate scales in the bottom row plots. The increase in Pi when going from 

c , f j  =  4 to cef f  =  12 is as high as 0.15 when looking in the nadir direction.

Figure 7.2 is analogous to Figure 7.1, except that now the downwelling radiation 

at the bottom o f the medium ( r  =  1) is shown. The intensity is seen to be strongly 

shape-sensitive for all polar directions at o  =  0 and o  =  90° and decreasing with ce// 

at these azimuths. A t o  =  180°. the change o f intensity with shape is mostly observed 

at intermediate polar angles. A t  u =  0.3 and o  — 0. the intensity decreases by as 

much as 60% when t ej j  is increased from 4 to 12. The degree o f linear polarization
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Figure 7.1. Radiance and linear polarization, top o f medium
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Figure 7.2. Radiance and linear polarization, bottom o f medium
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is strongly shape-sensitive and increasing with ce// at o  =  90° and at all polar angles. 

A t o  =  0. the situation is similar except when looking at the diffuse radiation in the 

direction o f the sun at u =  0.2. A t an azimuth o f o  =  180°. Pi is fairly insensitive 

to changes in ee// at intermediate polar angles, slightly shape-sensitive when looking 

in near-horizontal directions (around u =  0). and strongly shape-sensitive for small 

polar angles (near u =  1). When observing in the zenith direction, the degree o f linear 

polarization increases by 0.16 from 0.60 at ec// =  4 to 0.76 at ce/y =  12.

Figure 7.3 depicts the degree o f circular polarization Pc =  V / I  as a function o f u 

at the top (le ft) and bottom (right) o f the medium and at o  =  90°. It is noted that 

\' is zero at o  =  0 and o  =  180°. The curves shown are for the same size-shape 

distributions o f randomly oriented spheroids as in the preceding figures. The degree o f  

circular polarization in the atmosphere is generally very small. However, one observes 

that the relative change o f Pc with €ej j  is very strong. The graphs o f Pc as a function o f  

u do not merely shift or become more or less "fla t“ . as in Figs. 7.1 and 7.2. but actually 

change their qualitative appearance very sensitively when varying the effective aspect 

ratio.

In the three figures, one observes that the radiance and the degree o f linear and 

circular polarization depend sensitively on shape even for extremely elongated particles, 

i.e. they change, for instance, even when going from ee/y = 9  to ce// =  12- One also 

observes that at an azimuth o f o  =  90°. the radiance, the degree o f linear polarization 

and the degree o f  circular polarization show a consistently strong sensitivity to particle 

shape for all polar angles, both at the top and at the bottom o f the medium.

7.3 Summary

The radiance and the degree o f linear and circular polarization o f radiation that under

goes multiple scattering in a medium containing a size-shape distribution o f randomly- 

oriented nonspherical particles has been modeled by employing a spheroidal particle 

model. This model introduces, compared to aspherical particle model, only one param
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eter in addition to  the size parameter, namely the aspect ratio o f the spheroids, or. in 

a shape-distribution. the effective aspect ratio. This model is therefore ideally suited 

to asses in a controlled manner the effect o f  particle shape on the radiative transfer 

properties o f a medium. The results show a generally strong dependence o f both the 

radiance and the linear and the circular polarization on shape in the size-shape distri

bution. One also observes that this shape-sensitivity does not disappear for extremely 

elongated particles departing significantly from spherical shape. Retrieval algorithms for 

remote sensing data involving scattering by nonspherical particles, such as ice crystals, 

aerosols, or air bubbles in sea ice. will have to  employ a suitable nonspherical particle 

model for interpreting the measurements. In particular, correct interpretation o f  the 

measured degree o f  polarization, which can be obtained with very high accuracy, will 

depend on a thorough understanding o f the effect o f particle shape on polarization. One 

result obtained for the model systems studied here ranging from cey/ =  4 to ee// =  1*2 is 

that the impact o f  particle shape on polarization alone, while keeping all other physical 

properties o f the particles constant, can be on the order o f 0.15. which is substantial. 

The relative change in radiance can be as much as 60c/t.

At azimuths o f o  =  90°. a consistently strong shape-sensitivity o f all three quantities, 

the radiance, the degree o f linear and the degree o f circular polarization, is observed over 

the entire range o f polar angles. Measurements at and around this azimuth over a range 

o f polar angles therefore appears to be ideal for obtaining information on the shape o f 

the scattering particles.
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Chapter 8

Summary

A comprehensive model for scattering o f electromagnetic radiation by nonspherical par

ticles has been developed and tested. The model starts from first principles by rigorously 

solving the vector Helmholtz equation in spheroidal coordinates for a single spheroidal 

particle. It proceeds by analytically calculating the ensemble-averaged single scattering 

optical properties for a size-shape distribution o f randomly oriented nonspherical parti

cles. and concludes by solving the radiative transfer equation for the full 4-vector problem 

(including polarization), using the results from the single-scattering computations.

The new Separation o f Variables Method (S V M ) developed here for solving the vector 

Helmholtz equation is capable o f covering a large range o f  aspect ratios. The output in 

form o f the T-m atrix  allows one to perform the ensemble-average over orientational 

angles in an ensemble o f randomly oriented particles analytically. This new approach 

to the single scattering problem therefore circumvents the disadvantages o f the S V M  

and the Extended Boundary Condition Method (E B C M ). respectively, while it retains 

the advantages o f both methods. Thus, this new SV M  approach allows for efficient 

computation o f the optical properties o f size-shape distributions o f randomly oriented 

small nonspherical particles over a range o f shapes unprecedented by previous methods. 

One can therefore, for the first time, systematically study the effect o f particle shape on 

the single scattering optical properties over an extensive range o f particle shape.

169
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The formalism o f point group theory has been applied to the electromagnetic scatter

ing problem in order to systematically study the relation between geometrical symmetries 

o f scattering particles and symmetry relations for the electromagnetic scattering solu

tion. The results obtained result in a substantial reduction o f the computer time needed 

for the single scattering solution.

The optical properties in the model output are in the correct format to  be directly 

used in a vector discrete ordinate radiative transfer model (V D IS O R T ). which has been 

corrected, improved, and generalized to apply for nonspherical particles. Th e  iteration 

o f the source function (IS F ) method has been generalized to the full 4-vector radiative 

transfer problem to allow for accurate computation o f the angular distribution o f  the 

Stokes vector (a t arbitrary angles) from the V D IS O R T  solution at the discrete angles. 

The new scheme has been implemented in V D IS O R T  and tested. In particular, the 

ISF method has been found to be superior, both in terms o f accuracy and in terms o f 

computer time, to a spline interpolation.

A sensitivity study o f the optical properties in a particular test case revealed that the 

elements F n . and F-j-t o f the Stokes scattering matrix as well as the single scattering 

albedo and asymm etry parameter are strongly sensitive to a variation in the effective 

aspect ratio o f a shape distribution, but only m ildly sensitive to a variation in the effective 

variance. The remaining elements o f the scattering matrix were only mildly sensitive to a 

variation in the effective aspect ratio, and rather insensitive to a variation in the effective 

variance. Also, it was found that a small number o f averaging points in the shape 

distribution was sufficient to obtain converging results for the shape-averaged optical 

properties. The extinction cross section decreases with increasing effective aspect ratio 

o f the shape distribution. As a consequence, highly aspherical particles will show less IR  

omission in remote sensing measurements than mildly aspherical particles o f  comparable 

size. In particular, a spherical particle model applied to IR  emission measurements on 

ice clouds will overestimate the IR emission, and thus the cloud temperature, which 

results in an underestimate o f the cloud height. The scattering cross section decreases
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even faster than the extinction cross section with an increase in the effective aspect 

ratio. As a result, their ratio, the single scattering albedo, is monotonously decreasing 

with the effective aspect ratio. This decrease was found to be near-linear. Similarly, the 

asymmetry parameter was found to be near-linearly monotonously decreasing with the 

effective aspect ratio.

A  sensitivity study o f the intensity, the degree o f linear polarization, and the degree 

o f circular polarization, using the results for the optical properties as input to V D IS O R T. 

showed a strong dependency on the effective aspect ratio o f  all three quantities at most 

angles. In particular, the shape-sensitivity was consistently strong for all three quantities 

and for all polar angles at an azimuth o f 90° from the beam source, which suggests that 

remote sensing observations at and around this azimuth are expected to be ideal for re

trieving shape-information o f ice cloud and aerosol layers. Even for ensembles o f highly 

aspherical particles, no convergence o f the intensity or polarization o f  the radiation field 

with increasing departure from spherical shape was found, which underscores the impor

tance o f a model that is not confined to only a limited range o f shapes. The intensity 

was found to change by as much as 60% when varying the effective aspect ratio from 4 

to 12. which shows the dramatic impact that particle shape can have on remotely sensed 

radiance and possibly on heating/cooling rates in climate models, and the inadequacy 

o f modeling scattering by ensembles o f nonspherical particles by spheres. The linear po

larization changed by as much as 0.15 over the same range o f the effective aspect ratio. 

It is therefore essential to accurately account for shape effects in the interpretation o f 

remotely sensed polarization o f aerosol layers and ice clouds. The circular polarization 

as a function o f the polar angle was found to be strongly sensitive to a variation o f the 

effective aspect ratio, which makes this quantity a potential candidate for future remote 

sensing measurements targeted at the retrieval o f particle shape information.

The model developed in this work fills a gap because existing models either are 

limited to only mildly aspherical shapes or are numerically too inefficient to be applied 

to realistic size-shape distributions o f randomly oriented particles. The new model can
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bo used, as already demonstrated in the applications presented here, to investigate the 

extent o f shape-sensitivity for different size-distributions and refractive indices, and to 

devise new remote sensing experiments that may be used to retrieve shape information in 

future applications. It can also be used for the development o f shape-parameterizations 

for climate models, as well as for the development o f new retrieval algorithms for remotely 

sensed radiative measurements o f ice clouds or aerosol layers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] K. N. Liou and Y . Takano. Light scattering by nonspherical particles: Rem ote 

sensing and climatic implications. Atmos. Res.. 31:271-298. 1994.

[2] S. Asano and M . Sato. Light scattering by randomly oriented spheroidal particles. 

Appl. Opt.. 19:962-974. 1980.

[3] M. I. Mishchenko. Light scattering by size-shape distributions o f randomly ori

ented axially symmetric particles o f a size comparable to a wavelength. Appl. Opt.. 

32:4652-4665. 1993.

[4] M. 1. Mishchenko and L. D. Travis. Satellite retrieval o f  aerosol properties over the 

ocean using polarization as well as intensity o f reflected sunlight. ./. Geophys. Res.. 

102:16.989-17.013. 1997.

[5] A . A . Lacis. J. Chowdhary. M . I. Mishchenko, and B. Cairns. Modeling errors in 

diffuse-skv radiation: Vector vs. scalar treatment. Geophys. Res. Lett.. 25:135-138. 

1998.

[6] D. L. M itchell. A . Macke, and Y . Liu. Modeling cirrus clouds. Part II: Treatm ent 

o f radiative properties. J. Atmos. Sci.. 53:2967-2988. 1996.

[7] P. Yang and I\. N. Liou. Light scattering by ice crystals o f  complex shapes. In Xinth  

Conference on Atmospheric Radiation. Long Beach. California. February 2-7. 1997. 

pages 373-377. Boston. Mass.. 1997. Am. Meteorol. Soc.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



174

[8] P. Yang and K. N:. Liou. Light scattering by hexagonal ice crystals: Solutions by a 

ray-by-ray integration algorithm. ./. Opt. Soc. Am. .4. 14:2278-2289. 1997.

[9] P. Yang. K . X. Liou. and W . P. Arnott. Extinction efficiency and single-scattering 

albedo for laboratory and natural cirrus clouds. ./. Geophys. Res.. 102:21.825-21.835. 

1997.

[10] P. Yang and K. X. Liou. Finite-difFerence time domain method for light scattering 

by small ice crystals in three-dimensional space. J. Opt. Soc. Am. .4. 13:2072-2085.

1996.

[11] P. Vang and K. X. Liou. Geometric-optics-integral-equation method for light scat

tering by nonspherical ice crystals. Appl. Opt.. 35:6568-6584. 1996.

[12] P. Yang and K. X. Liou. Light scattering by hexagonal ice crystals: Comparison 

o f finite-difference time domain and geometric optics models. ./. Opt. Soc. Am .  .4. 

12:162-176.1995.

[13] P. C’ . W aterm an. M atrix formulation o f electromagnetic scattering. Proc. IE E E .  

53:805-812. 1965.

[14] P. C'. W aterm an. Symmetry, unitarity. and geom etry in electromagnetic scattering. 

Phys. Rev. D. 3:825-839. 1970.

[15] P. Barber. Differential scattering o f  electromagnetic waves by homogeneous isotropic 

dielectric bodies. PhD thesis. L'niversity o f  California. Los Angeles. 1973.

[16] P. Barber and C. Yeh. Scattering o f electromagnetic waves by arbitrarily shaped 

dielectric bodies. Appl. Opt.. 14:2864-2872. 1975.

[17] P. C’ . W aterm an. M atrix  methods in potential theory and electromagnetic scattering. 

■J. Appl. Phys.. 50:4550-4566. 1979.

[18] D. J. W ielaard. M. I. Mishchenko, A . Macke, and B. E. Carlson. Improved T -m atrix  

computations for large, nonabsorbing and weakly absorbing nonspherical particles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



175

and comparison with geometrical-optics approximation. Appl. Opt.. 36:4305—1313.

1997.

[19] S. Asano and G. Yam am oto. Light scattering by a spheroidal particle. Appl. Opt.. 

14:29-49. 1975.

[20] Y. G. Farafonov. Scattering o f electromagnetic waves by a perfectly conducting 

spheroid. Radio Engineering and Electronic Physics. 29:39-45. 1984.

[21] X. V. Yoshchinnikov and V. G. Farafonov. Optical properties o f spheroidal particles. 

Astrophys. Space Sci.. 204:19-86. 1993.

[22] X. V. Yoshchinnikov. Electromagnetic scattering by homogeneous and coated 

spheroids: Calculations using the separation o f variable method. ./. Quant. Spec- 

trosc. Radiat. Transfer. 55:627-636. 1996.

[23] J. Stamnes. Exact two-dimensional scattering o f an arbitrary wave by perfectly 

reflecting elliptical cylinders, strips, and slits. Pure Appl. Opt.. 4:841-855. 1995.

[24] .J. Stamnes and H. A . Eide. Exact and approximate solutions for focusing o f two

dimensional waves. I. Theory. ./. Opt. Soc. Am . .4. 1998. (in press).

[25] II. A. Eide and J. Stamnes. Exact and approximate solutions for focusing o f two

dimensional waves. II. Xumerical comparisons amongst exact. Debye, and Kirchhoff 

theories. ./. Opt. Soc. Am. A. 1998. (in press).

[26] II. A. Eide and J. Stamnes. Exact and approximate solutions for focusing o f

two-dimensional waves. III. Xumerical comparisons bet%veen exact and Rayleigh- 

Sommerfeld theories. ./. Opt. Soc. Am. .4. 199S. (in press).

[27] M. I. Mishchenko. L. D. Travis. R. A. Kahn, and R. A . West. Modeling phase func

tions for dustlike tropospheric aerosols using a shape mixture o f randomly oriented 

polydisperse spheroids. ./. Geophys. Res.. 102:16.831-16.847. 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



176

[28] F. M. Schulz. K. Stamnes. and J. J. Stamnes. Scattering o f electromagnetic waves 

by spheroidal particles: A  novel approach exploiting the T -m atrix  computed in 

spheroidal coordinates. Appl. Opt.. 1998. (in press).

[29] P. X. Francis. Some aircraft observations o f  the scattering properties o f ice crystals.

Atmos. Sci.. 52:1142-1154. 1995.

[50] B. A. Wielicki. J. T .  Suttles. A. J. Heymsfield. R. M. Welch. J. D. Spinhirne. 

M.-L. C'. Wu. D. O 'C . Starr. L. Parker, and R. F. Arduini. The 27-28 October 

1986 F IRE  IFO  cirrus case study: Comparison o f radiative transfer theory with 

observations by satellite and aircraft. Mon. Wea. Rev.. 118:2356-2376. 1990.

[31] M. I. Mishchenko. W . B. Rossow. A . Macke, and A. A . Lacis. Sensitivity o f cirrus 

cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice 

particle shape. ./. Geophys. Res.. 101:16.973-16.985. 1996.

[32] M. I. Mishchenko. Light scattering by randomly oriented axially symmetric particles.

Opt. Soc. Am. .4.. 8:871-882. 1991.

[33] R. A. West. M . G. Tomasko. and L. R. Doose. Optical properties o f small mineral 

dust particles at visible-near IR wavelengths: Numerical calculations and labora

tory measurements. In Eighth Conference on Atmospheric Radiation. Nashville. 

Tennessee. .January 23-28. 1994. pages 341-343. Boston. Mass.. 1994. Am . Meteo- 

rol. Soc.

[3 1] R. D. M. Garcia and C. E. Siewert. A  generalized spherical harmonics solution 

for radiative transfer models that include polarization effects. ./. Quant. Spectrosc. 

Radiat. Transfer. 36:401-423. 1986.

[35] .J. F. de Haan. P. B. Bosma, and J. W . Hovenier. The adding method for multiple 

scattering calculations o f polarized light. Astron. Astrophys.. 183:371-391. 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



177

[36] F. M . Schulz. K. Stamnes. and F. VVeng. V D IS O R T : An improved and generalized 

discrete ordinate radiative transfer model for polarized (vector) radiative transfer 

computations. Quant. Spectrosc. Radiat. Transfer. 1998. (in press).

[37] C'. Flammer. Spheroidal Wave Functions. Stanford University Press. 1957.

[38] C. J. Bouwkamp. On spheroidal wave functions o f order zero. ./. Math. Phys.. 

26:79-93. 1947.

[39] M. I. Mishchenko and L. D. Travis. Light scattering by polydispersions o f  randomly- 

oriented spheroids with sizes comparable to wavelengths o f  observation. Appl. Opt.. 

33:7206-7225.1994.

[40] M. I. Mishchenko. L. D. Travis, and A. Macke. Scattering o f light by polydisperse. 

randomly oriented, finite circular cylinders. Appl. Opt.. 35:4927-4940. 1996.

[41] M. I. Mishchenko. L. D. Travis, and D. YV. Mackowski. T-m atrix computations o f 

light scattering by nonspherical particles: A  review. ./. Quant. Spectrosc. Radiat. 

Transfer. 55:535-575. 1996.

[42] M. F. Iskander. A . Lakhtakia. and C. H. Durney. A  new procedure for improving 

the solution stability and extending the frequency- range o f the EBCM. IE E E  Trans. 

Antennas Propay.. 31:317-324. 1983.

[43] M. F. Iskander and A . Lakhtakia. Extension o f the iterative EBCM to calculate 

scattering by low-loss or lossless elongated dielectric objects. Appl. Opt.. 23:948-952. 

1984.

[44] P. M . Morse and H. Feshbach. Methods o f  Theoretical Physics. McGraw-Hill Book 

Company Inc.. 1953.

[45] C .-T . Tai. Dyadic Green Functions in Electromagnetic Theory. IEEE Press. 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

[46] A. J. G iarola. Dyadic Green's functions in the prolate spheroidal coordinate system. 

In I E E E  Antennas and Propagation Society International Symposium. 1995 Digest 

I .2. pages 826—829. New York. N Y . 1995. IEEE.

[47] R. H. Hackman. The transition matrix for acoustic and elastic wave scattering in 

prolate spheroidal coordinates. ./. Acoust. Soc. Am.. 75:35-45. 1984.

[48] R. H. Hackman. Development and application o f  the spheroidal coordinate based 

T  matrix solution to elastic wave scattering. Radio Science. 29:1035-1049. 1994.

[49] L. Tsang. J. A . Kong, and R. T . Shin. Radiative transfer theory for active remote 

sensing o f a layer o f nonspherical particles. Radio Sci.. 19:629-642. 1984.

[50] V. V. Yaradan and V . K. Yaradan. Multiple scattering o f electromagnetic waves by 

randomly distributed and oriented dielectric scatterers. Pltys. Rev. D. 21:388-394. 

1980.

[51] N. G. Khlebtsov. Orientational averaging o f  light-scattering observables in the T - 

matrix approach. Appl. Opt.. 31:5359-5365. 1992.

[52] S. Hanish. R. V . Baier. A . L. van Buren, and B. J. King. Tables o f  Radial Spheroidal 

Wave Functions, volume 1-6. Naval Research Laboratory. 1970.

[53] .J. \Y. Hovenier. Multiple scattering o f polarized light in planetary atmospheres. 

Astron. Astrophys.. 13:7-29. 1971.

[54] J. J. Stamnes and B. Spjelkavik. New method for computing eigenfunctions (M ath- 

ieu functions) for scattering by elliptical cylinders. Pure Appl. Opt.. 4:251-262. 

1995.

[55] F. M. Schulz. K . Stamnes. and J. J. Stamnes. Point group symmetries in electro

magnetic scattering. J. Opt. Soc. Am. .4. 1998. (submitted).

[56] D. A. Y'arshalovich. A . N. Moskalev. and V . K. Khersonskii. Quantum Theory o f  

Angular M om entum . World Scientific, 1988.

.'i
P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L79

[51 ] L. Tsang. J. A . Kong, and R. T . Shin. Theory o f  Microwave Remote Sensing. John 

W iley Sons. 1995.

[58] F. M. Schulz. K. Stamnes. and J. J. Stamnes. Shape-dependence o f the optical prop

erties in size-shape distributions o f randomly oriented prolate spheroids, including 

highly elongated shapes. J. Geophys. Res.. 1998. (subm itted).

[59] F. M. Schulz. K. Stamnes. and J. J. Stamnes. Modeling o f the radiative transfer 

properties o f media containing particles o f moderately and extremely elongated 

shape. Geophys. Res. Lett.. 1998. (subm itted).

[60] J. C'howdhary, L. D. Travis, and A. A . Lacis. Incorporation o f a rough ocean surface 

and a semi-infinite water body in multiple scattering computations o f polarized light 

in an atmosphere-ocean system. In R. Santer. editor. Atmospheric Sensing and 

Modeling. SP IE  Proceedings 2311. 1994.

[61] M. Herman. J. Y . Balois. L. Gonzalez. P. Lecomte. J. Lenoble. R. Santer. and 

C'. Yerwaerde. Stratospheric aerosol observations from a balloon-borne polarimetric 

experiment. Appl. Opt.. 25:3573-3584. 1986.

[62] J. L. Deuze. F. M. Breon. P. V'. Deschamps. C’. Devaux. M. Herman. A . Podaire. 

and J. L. Roujean. Analysis o f the P O LD E R  (POLarization and Directionality o f 

Earth's Reflectance) airborne instrument observations over land surfaces. Remote 

Sens. Environ.. 45:137-154. 1993.

[63] P. Y . Deschamps. F. M . Breon. M. Leroy. A . Podaire. A . Bricaud. J.-C. Buriez. and

G. Seze. The P O L D E R  mission: Instrument characteristics and scientific objectives. 

IE E E  Transactions on Geoscience and Remote Sensing. 32:598-615. 1994.

[6 1] F. M. Breon and P. Y . Deschamps. Optical and physical parameter retrieval from 

PO LD ER  measurements over the ocean using an analytical model. Remote Sens. 

Environ.. 43:193-207. 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ISO

[Go] J. L. Deuze. C'. Devaux. M. Herman. R. Santer. J. V'. Balois. L. Gonzalez. 

P. Lecomte. and C. Verwaerde. Photopolarim etric observations o f aerosols and 

clouds from balloon. Remote Sens. Environ.. 29:93-109. 1989.

[66] J. C’. Roger. R. Santer. M . Herman, and J. L. Deuze. Polarization o f the solar 

light scattered by the Earth-atmosphere system as observed from the L’ .S. shuttle. 

Remote Sens. Environ.. 48:275-290. 1994.

[67] A . Dollfus. M . Deschamps. and L. V*. Ksanfomaliti. The surface texture o f the M ar

tian soil from the Soviet spacecraft Mars-5 photopolarimeters. Astron. Astrophys.. 

123:225-237.1983.

[68] J. Hansen. W . Rossow. B. Carlson. A . Lacis. L. Travis. A. Del Genio. I. Fung. 

B. Cairns. M . Mishchenko, and M. Sato. Low-cost long-term monitoring o f global 

climate forcings and feedbacks, d im .  Change. 31:247-241. 1995.

[69] J. E. Hansen and L. D. Travis. Light scattering in planetary atmospheres. Space 

Sci. Rev.. 16:527-610. 1974.

[70] K. Stamnes. S.-C. Tsay. W . Wiscombe. and K. Javavveera. Numerically stable 

algorithm for discrete-ordinate-method radiative transfer in multiple scattering and 

em itting layered media. Appl. Opt.. 27:2502-2509. 1988.

[71] F. Weng. A  multi-layer discrete-ordinate method for vector radiative transfer in 

a vertically-inhomogeneous. emitting and scattering atmosphere— I. Theory. ./. 

Quant. Spectrosc. Radiat. Transfer. 47:19-33. 1992.

[72] K. Stamnes and P. Conklin. A  new multi-layer discrete ordinate approach to radia

tive transfer in vertically inhomogeneous atmospheres. Quant. Spectrosc. Radiat. 

Transfer. 31:273-282. 1984.

[73] J. W . Hovenier and C. V'. M. van der Mee. Fundamental relationships relevant 

to the transfer o f polarized light in a scattering atmosphere. Astron. Astrophys.. 

128:1-16. 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



181

[74] F. Weng. A  multi-layer discrete-ordinate method for vector radiative transfer in a 

vertically-inhomogeneous. em itting and scattering atmosphere— II. Application. ./. 

Quant. Spectrosc. Radial. Transfer. 47:35-42. 1992.

[75] K. L. C'oulson. J. V . Dave, and Z. Sekera. Tables Related to Radiation Emerging  

from  a Planetary Atmosphere with Rayleigh Scattering. University o f California 

Press. 1960.

[76] H. C'. van de Hulst. Light Scattering by Small Particles. John W iley & Sons. Inc.. 

1957.

[77] P. Yestrucci and C. E. Siewert. A  numerical evaluation o f an analytical represen

tation o f the components in a Fourier decomposition o f the phase matrix for the 

scattering o f polarized light. ./. Quant. Spectrosc. Radiat. Transfer. 31:177-183. 

1984.

[78] R. D. M. Garcia and C’. E. Siewert. The F\- method for radiative transfer models 

that include polarization effects. J. Quant. Spectrosc. Radiat. Transfer. 41:117-145. 

1989.

[79] C- E. Siewert. Ori the equation o f transfer relevant to the scattering o f polarized 

light. Aslrophys. ./.. 245:1080-1086. 1981.

[80] C. E. Siewert. On the phase matrix basic to the scattering o f polarized light. Aslron. 

Astrophys.. 109:195-200. 1982.

[81] F. M . Schulz and K. Stamnes. Angular distribution o f the Stokes vector in a plane 

parallel, vertically inhomogeneous medium in the vector discrete ordinate radiative 

transfer (V D IS O R T ) model. ./. Quant. Spectrosc. Radiat. Transfer. 1998. (subm it

ted).

[82] K. Stamnes. On the computation o f angular distributions o f radiation in planetary 

atmospheres. J. Quant. Spectrosc. Radiat. Transfer. 28:47-51. 1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii
5-


